# 300-FF-5 Operable Unit Enhanced Attenuation Stage A Delivery Performance Report

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



## **300-FF-5 Operable Unit Enhanced Attenuation Stage A Delivery Performance Report**

Date Published December 2016

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



**APPROVED** By Julia Raymer at 2:40 pm, Dec 08, 2016

**Release Approval** 

Date

Approved for Public Release; Further Dissemination Unlimited

#### TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

#### **Executive Summary**

This report presents the results and performance evaluation of the Stage A enhanced attenuation (EA) remedy implemented during November 2015 to sequester residual uranium that presents a continuing source of contamination to groundwater in the 300-FF-5 Operable Unit in the 300 Area of the Hanford Site. Past contaminant releases at waste disposal sites in the 300 Area Industrial Complex resulted in persistent uranium contamination within the underlying soil and groundwater.

Cleanup of the 300 Area is being accomplished under the *Comprehensive Environmental Response, Compensation, and Liability Act of 1980*<sup>1</sup> in accordance with the 300 Area Record of Decision (ROD).<sup>2</sup> Uranium is identified as a contaminant of concern in both soil and groundwater. Part of the selected remedy for uranium contamination in the 300 Area is EA of uranium using polyphosphate solutions to sequester the uranium and reduce its mobility in the vadose zone, periodically rewetted zone (PRZ), and top of the aquifer.

Enhanced attenuation of uranium is being implemented at a 1.2 ha (3 ac) area of high residual uranium contamination in the 300 Area Industrial Complex in accordance with the 300 Area ROD. Uranium sequestration will occur in two sequential stages (Stage A and Stage B), as described in the remedial design report/remedial action work plan addendum.<sup>3</sup>

Stage A was implemented from November 6 through 18, 2015 within an area of approximately 0.3 ha (0.75 ac). Polyphosphate solutions were applied to the vadose zone using a near-surface drip infiltration system, to the PRZ using subsurface injection, and to the top of aquifer using deeper subsurface injection. Soil samples were collected before and after treatment from three pairs of collocated boreholes to compare uranium concentrations and uranium leaching characteristics before and after the application of polyphosphate solutions. Groundwater samples and water levels were collected before,

<sup>&</sup>lt;sup>1</sup> Comprehensive Environmental Response, Compensation, and Liability Act of 1980, 42 USC 9601, et seq., Pub. L. 107-377, December 31, 2002. Available at: <u>http://epw.senate.gov/cercla.pdf</u>.

 <sup>&</sup>lt;sup>2</sup> EPA and DOE, 2013, *Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1*, U.S. Environmental Protection Agency and U.S. Department of Energy, Richland, Washington, Richland, Washington. Available at: <a href="http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180">http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180</a>.
<sup>3</sup> DOE/RL-2014-13-ADD2, 2015, *Remedial Design Report/Remedial Action Work Plan Addendum for the 300 Area Groundwater*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <a href="http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081151H">http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180</a>.

during, and after application of polyphosphate solutions to evaluate the effectiveness of the treatment. Electrical resistivity tomography (ERT) was used to monitor the migration of polyphosphate solutions applied using infiltration.

The Stage A treatment performance was evaluated in accordance with the sampling and analysis plan,<sup>4</sup> based on the following aspects of the treatment:

- Monitoring of dissolved uranium concentrations in downgradient groundwater wells
- Post-treatment assessment of phosphate delivery and distribution within the subsurface
- Monitoring of groundwater to detect mobilization of uranium to groundwater
- Fate and transport modeling to predict downgradient uranium concentrations
- Assessment of the effect of polyphosphate solutions on aquifer properties

The data collected during and following the treatment indicate using injection wells to deliver high phosphate concentrations to the PRZ and to the top of aquifer was successful. The PRZ is the principal target zone of the remedy because it is deemed to be the primary contributor of uranium mass to the aquifer. Both the PRZ and aquifer injections were able to deliver high phosphate concentrations to the target depths containing residual uranium. The concentrations of phosphate in the groundwater continued to remain high following treatment, indicating further that delivery of phosphate was achieved within the PRZ and the aquifer.

The delivery of phosphate using infiltration to the lower vadose zone and PRZ was uneven because of the subsurface media heterogeneities that led to variable vertical flow velocities along the infiltrated depth. Due to varying travel times, the chemical reactions between infiltrating solutions and the soil column resulted in non-uniform precipitation of phosphate within the vadose zone, with some phosphate precipitating within shallow portions of the vadose zone above the target depth.

The column leach testing of soil samples collected from the PRZ, where high phosphate concentrations were delivered using injection, indicates residual uranium in the

<sup>&</sup>lt;sup>4</sup> DOE/RL-2014-42, 2015, *300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H.

post-treatment samples is less leachable than uranium in the pre-treatment samples. Results of the sequential extraction tests indicate the chemical interactions from addition of polyphosphate solutions to the vadose zone, PRZ, and aquifer led to some initial mobilization followed by reprecipitation of uranium. The chemical interactions have resulted in conditions favorable for formation of the amorphous calcium-phosphate phases that result in sequestration of uranium. A conceptual model of the chemical interactions resulting from polyphosphate solution application was developed based on the laboratory analyses and field observations. However, detailed laboratory testing has not been conducted to confirm the conceptual model or to evaluate potential secondary effects of adding high-concentration polyphosphate solutions to the 300 Area sediments.

Groundwater samples collected from the two closest wells downgradient of the Stage A area during the 6 months following the treatment show a significant decline in dissolved uranium concentrations, and concentrations have remained below the cleanup level  $(30 \ \mu g/L)$ . Longer term groundwater monitoring is needed to confirm these trends.

A three-dimensional numerical model was used to simulate fate and transport of uranium in the vadose zone and unconfined aquifer in order to evaluate the effectiveness of the Stage A remedy. The modeling results predict reductions in groundwater uranium concentrations downgradient of the Stage A EA area in the near future and in the longer term as a result of the Stage A remedy. The model predicts that for the first year, due to treatment, the extent of the groundwater uranium plume will be considerably reduced in the Stage A area and will remain reduced, compared to the prediction for the no action case. The longer term simulated concentrations for the two closest downgradient wells that showed sharp declines in uranium concentrations following Stage A treatment indicate a gradual concentration increase but remain below the concentrations predicted for the no action case. The gradual rise reflects the combined effect of slow continued desorption of uranium into the aquifer from the Stage A area and contribution to the aquifer from areas outside of the Stage A area. The longer term predictive cases assume the post-treatment model parameters remain unchanged over the simulated time period. Due to these assumptions, the uncertainty in these longer term estimates is high and needs to be considered when making decisions.

Aquifer properties were evaluated to assess whether aquifer permeability was reduced due to the precipitation of phosphate minerals following infiltration and injection of polyphosphate solutions. Field testing methods, such as slug tests, were not conducted

٧

using the Stage A injection and monitoring wells. Instead, the effect of the polyphosphate applications was assessed by comparing aquifer hydraulic properties in the vicinity of the Stage A area before and after treatment. The evaluation indicated the polyphosphate injections and infiltration did not alter the hydraulic conductivity of the aquifer.

Based on the results of Stage A uranium sequestration, Stage B uranium sequestration operations will follow the same general design approach as used during Stage A treatment, with refinements made on how the polyphosphate solutions are delivered to the treatment zone. The 0.9 ha (2.25 ac) Stage B treatment area will consist of two depth intervals where polyphosphate solutions are injected into the lower vadose zone and PRZ. Polyphosphate solutions will be delivered to the lower vadose zone and PRZ through a network of up to 48 injection wells, each screened in the lower vadose zone and the PRZ. Up to 24 monitoring wells, an ERT network, pre-treatment and post-treatment soil sampling, and downgradient groundwater sampling are planned for evaluation of the Stage B treatment performance.

## Contents

| 1 | Intro | oduction                                                    | 1-1  |
|---|-------|-------------------------------------------------------------|------|
|   | 1.1   | Purpose                                                     | 1-4  |
|   | 1.2   | Site Description                                            | 1-4  |
|   |       | 1.2.1 Background                                            | 1-4  |
|   |       | 1.2.2 Physical Setting                                      | 1-5  |
|   |       | 1.2.3 Enhanced Attenuation Remedy Timeline                  | 1-13 |
|   | 1.3   | Uranium Sequestration Technology Description                | 1-15 |
|   |       | 1.3.1 Treatability Tests                                    | 1-15 |
|   |       | 1.3.2 Enhanced Attenuation Remedy                           | 1-15 |
| 2 | Urar  | nium Sequestration Implementation Approach                  | 2-1  |
|   | 2.1   | Stage A Objectives                                          | 2-1  |
|   | 2.2   | Stage A Design                                              | 2-1  |
|   |       | 2.2.1 Stage A Enhanced Attenuation Area                     | 2-2  |
|   |       | 2.2.2 Stage A Injection Wells                               | 2-2  |
|   |       | 2.2.3 Stage A Monitoring Wells                              | 2-3  |
|   |       | 2.2.4 Stage A Infiltration System                           | 2-3  |
|   |       | 2.2.5 Stage A Chemical Mixing Skids and Site Infrastructure | 2-10 |
|   |       | 2.2.6 Stage A Electrical Resistivity Tomography Network     | 2-10 |
|   |       | 2.2.7 Stage A Enhanced Attenuation System Configuration     | 2-10 |
|   | 2.3   | Stage A Timing and Order of Treatment                       | 2-13 |
|   | 2.4   | Deviations from Design                                      | 2-14 |
| 3 | Sam   | pling and Monitoring Methods                                | 3-1  |
|   | 3.1   | Soil Sampling and Analysis                                  | 3-1  |
|   |       | 3.1.1 Pre-Treatment Sampling and Analysis                   | 3-1  |
|   |       | 3.1.2 Post-Treatment Sampling and Analysis                  |      |
|   | 3.2   | Groundwater Sampling and Monitoring                         |      |
|   |       | 3.2.1 Manual Monitoring                                     |      |
|   |       | 3.2.2 Automated Monitoring                                  |      |
|   | 3.3   | Operations Monitoring                                       |      |
|   | 3.4   | Electrical Resistivity Tomography                           |      |
|   | 3.5   | Numerical Modeling of Uranium Fate and Transport            | 3-11 |
|   | 3.6   | Long-Term Groundwater Monitoring                            | 3-11 |
|   | 3.7   | Data Management                                             | 3-11 |
|   | 3.8   | Lessons Learned from Stage A Operations                     | 3-11 |
| 4 | Sam   | pling and Monitoring Results                                | 4-1  |
|   | 4.1   | Soil Sampling and Leachability Characteristics              | 4-1  |

|   |      | 4.1.1   | Pre-Treatment Sampling and Analysis                                                     | 4-1      |
|---|------|---------|-----------------------------------------------------------------------------------------|----------|
|   |      | 4.1.2   | Post-Treatment Sampling and Analysis                                                    | 4-4      |
|   | 4.2  | Grour   | ndwater Sampling and Monitoring                                                         | 4-18     |
|   |      | 4.2.1   | Manual Monitoring                                                                       | 4-18     |
|   |      | 4.2.2   | Automated Monitoring                                                                    | 4-29     |
|   | 4.3  | Opera   | ations Monitoring                                                                       | 4-30     |
|   |      | 4.3.1   | Infiltration System                                                                     | 4-30     |
|   |      | 4.3.2   | Injection System                                                                        | 4-32     |
|   | 4.4  | Electr  | rical Resistivity Tomography                                                            | 4-35     |
|   |      | 4.4.1   | Pre-Treatment Monitoring                                                                | 4-35     |
|   |      | 4.4.2   | Monitoring During Treatment                                                             | 4-36     |
|   |      | 4.4.3   | Post-Treatment Monitoring                                                               | 4-39     |
| 5 | Stag | ge A En | hanced Attenuation Performance Evaluation                                               | 5-1      |
|   | 5.1  | Polyp   | hosphate Delivery and Distribution                                                      | 5-2      |
|   |      | 5.1.1   | Polyphosphate Solution Distribution in the Vadose Zone During Infiltration              | 5-2      |
|   |      | 5.1.2   | Polyphosphate Distribution in the PRZ during PRZ Injection                              | 5-5      |
|   |      | 5.1.3   | Polyphosphate Distribution in the Aquifer during PRZ and Aquifer Injection              | 5-5      |
|   |      | 5.1.4   | Phosphate Transport Modeling During Treatment and Post-Treatment Time Periods           | 5-8      |
|   |      | 5.1.5   | Other Monitoring                                                                        | 5-8      |
|   | 5.2  | Effect  | t of Polyphosphate Applications on Geochemical Processes and Aquifer Propert            | ies.5-11 |
|   |      | 5.2.1   | Conceptual Model of Geochemical Processes                                               | 5-11     |
|   |      | 5.2.2   | Aquifer Properties                                                                      | 5-14     |
|   | 5.3  | Mobi    | lization of Uranium to Groundwater                                                      | 5-16     |
|   | 5.4  | Down    | ngradient Uranium Groundwater Concentrations                                            | 5-18     |
|   | 5.5  | Urani   | um Fate and Transport Modeling                                                          | 5-20     |
|   |      | 5.5.1   | Uranium Transport Without Treatment (No Action Case)                                    | 5-21     |
|   |      | 5.5.2   | Uranium Transport during Treatment and Post-Treatment Time Periods                      | 5-21     |
| 6 | Con  | clusion | S                                                                                       | 6-1      |
|   | 6.1  | Opera   | ational Delivery of Treatment Solutions                                                 | 6-1      |
|   |      | 6.1.1   | Infiltration Delivery                                                                   | 6-1      |
|   |      | 6.1.2   | PRZ Injection Delivery                                                                  | 6-2      |
|   |      | 6.1.3   | Aquifer Injection Delivery                                                              | 6-2      |
|   | 6.2  | Effect  | t of Polyphosphate Treatments                                                           | 6-2      |
|   | 6.3  | Refin   | ements for Stage B                                                                      | 6-3      |
|   |      | 6.3.1   | Elimination of Infiltration and Optimization of Lower Vadose Zone and PRZ<br>Injections | 6-3      |
|   |      | 6.3 2   | Elimination of Aquifer Injections                                                       |          |
|   |      | 633     | Expansion of Groundwater Monitoring                                                     |          |
|   |      | 0.5.5   | Expansion of Ground mater monitoring                                                    | т        |

| 7 | Bibliography7-1 |
|---|-----------------|
| 8 | References      |

## Appendices

| A | Soil Sample Analytical Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| B | Pre-Treatment Well Development DataB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i  |
| С | Groundwater Analytical Data for Enhanced Attenuation Stage A Monitoring WellsC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i  |
| D | Field Measurements for Enhanced Attenuation Stage A Monitoring WellsD-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i  |
| E | Mixing Skid Analytical DataE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i  |
| F | Electrical Resistivity Tomography ReportF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i  |
| G | Environmental Calculation Files Documenting Numerical Model Development<br>and ResultsG-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·i |
| Н | Long-Term Groundwater Monitoring DataHere and the second | i  |
| I | Technical MemorandumI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i  |
| J | Data Validation ReportJ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i  |
| K | Lessons LearnedK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i  |

## Figures

| Figure 1-1. | Map of the Hanford Site, 300 Area, and 300 Area Industrial Complex                                                                  | 1-2  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1-2. | Aerial View of a Portion of the 300 Area Industrial Complex Showing the Stage A<br>Enhanced Attenuation Area and Nearby Waste Sites | 1-3  |
| Figure 1-3. | Cross Section of the General Geologic Features of the 300 Area Industrial Complex<br>and Stage A Enhanced Attenuation Area          | 1-6  |
| Figure 1-4. | Inferred Contour Map of the Contact Between the Hanford Formation and Ringold Formation                                             | 1-7  |
| Figure 1-5. | Stage A Enhanced Attenuation Area Well Field                                                                                        | 1-9  |
| Figure 1-6. | Southwest-Northeast Cross Section of Stage A Enhanced Attenuation Area                                                              | 1-10 |
| Figure 1-7. | Northwest-Southeast Cross Section of Stage A Enhanced Attenuation Area                                                              | 1-11 |
| Figure 1-8. | Elevations of the Periodically Rewetted Zone and Lower Vadose Zone in the<br>Stage A Enhanced Attenuation Area                      | 1-12 |
| Figure 1-9. | Timeline of Documents and Activities Supporting Uranium Sequestration at the Stage A Enhanced Attenuation Area                      | 1-14 |
| Figure 2-1. | Construction Diagrams of Typical Injection, Periodically Rewetted Zone<br>Monitoring, and Aquifer Monitoring Wells for Stage A      | 2-4  |
| Figure 2-2. | Injection Well Features and Elevations                                                                                              | 2-5  |
| Figure 2-3. | Monitoring Well Features and Elevations                                                                                             | 2-7  |
| Figure 2-4. | Infiltration System in the Stage A Enhanced Attenuation Area                                                                        | 2-9  |

| Figure 2-5.  | Electrical Resistivity Tomography Arrays for the Stage A Enhanced Attenuation<br>Area2-11                                                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-6.  | Aerial View of the Stage A Uranium Sequestration System2-12                                                                                                                                                            |
| Figure 3-1.  | Location of Characterization Boreholes in the Stage A EA Area                                                                                                                                                          |
| Figure 3-2.  | Stage A Monitoring Wells Sampled Daily During Treatment                                                                                                                                                                |
| Figure 3-3.  | Groundwater Wells Sampled by PNNL During and Following Stage A Treatment                                                                                                                                               |
| Figure 3-4.  | Stage A Aquifer Monitoring Wells Used for Continuous In Situ Measurements<br>Recorded on Data Loggers                                                                                                                  |
| Figure 3-5.  | AWLN Wells in the Vicinity of the Stage A Enhanced Attenuation Area                                                                                                                                                    |
| Figure 4-1.  | Total Uranium Concentrations in Pre-Treatment Boreholes C8933,<br>C8936, C8938, C8940, and C9451                                                                                                                       |
| Figure 4-2.  | Results from the Semi-Selective Sequential Extraction Experiments on Pre-<br>Treatment Samples from Boreholes C8933, C8936, and C89384-3                                                                               |
| Figure 4-3.  | Results from the Semi-Selective Sequential Extraction Experiments on Pre-<br>Treatment Samples from Boreholes C8940 and C94514-3                                                                                       |
| Figure 4-4.  | Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared<br>with the Uranium Concentration from Weak Acetic Acid Extraction for Pre-<br>Treatment Samples from Boreholes C8933, C8936, and C89384-5 |
| Figure 4-5.  | Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared<br>with the Uranium Concentration from Weak Acetic Acid Extraction for the Pre-<br>Treatment Samples from Boreholes C8940 and C94514-6     |
| Figure 4-6.  | Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment<br>Borehole C9451 and Post-Treatment Borehole C95804-7                                                                                       |
| Figure 4-7.  | Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment<br>Borehole C8940 and Post-Treatment Borehole C95814-7                                                                                       |
| Figure 4-8.  | Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment<br>Borehole C8936 and Post-Treatment Borehole C9582                                                                                          |
| Figure 4-9.  | Phosphate Concentrations based on Water Extraction in Samples from<br>the Post-Treatment Boreholes                                                                                                                     |
| Figure 4-10. | Phosphate (Total Phosphorus as Phosphate) Concentrations based on Acid<br>Extraction in Samples from the Post-Treatment Boreholes                                                                                      |
| Figure 4-11. | Concentration of Phosphate (Total Phosphorus as Phosphate) Based on 0.5 M<br>Nitric Acid Extraction on Post-Treatment Samples4-10                                                                                      |
| Figure 4-12. | Results from Semi-Selective Sequential Extraction Experiments on Samples from<br>Post-Treatment Boreholes C9580 and C95814-12                                                                                          |
| Figure 4-13. | Results from Semi-Selective Sequential Extraction Experiments on Samples from<br>Post-Treatment Borehole C95824-13                                                                                                     |
| Figure 4-14. | Relative Uranium Extraction Contribution in Borehole Pair C9451-C95804-14                                                                                                                                              |
| Figure 4-15. | Relative Uranium Extraction Contribution in Borehole Pair C8940-C95814-15                                                                                                                                              |
| Figure 4-16. | Relative Uranium Extraction Contribution in Borehole Pair C8936-C95824-15                                                                                                                                              |
| Figure 4-17. | Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared<br>with the Uranium Concentration from Weak Acetic Acid Extraction for Post-<br>Treatment Borehole Samples                                 |

#### SGW-59614, REV. 0

| Figure 4-18. | Comparison of Effluent Uranium Concentrations from Column Leach Tests<br>Performed on Intact (Field-Textured) Samples from Post-Treatment and Pre-<br>Treatment Boreholes | 4-17 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 4-19. | Phosphate Concentration and Specific Conductance Trends in Stage A Monitoring Wells                                                                                       | 4-19 |
| Figure 4-20. | Distribution of Phosphate in the PRZ on November 20, 2015                                                                                                                 | 4-22 |
| Figure 4-21. | Distribution of Phosphate in the Aquifer on November 20, 2015                                                                                                             | 4-23 |
| Figure 4-22. | Distribution of Phosphate in the Aquifer on December 3, 2015                                                                                                              | 4-24 |
| Figure 4-23. | Uranium Concentration Trends in Stage A PRZ Monitoring Wells                                                                                                              | 4-25 |
| Figure 4-24. | Uranium Concentration Trends in Stage A Aquifer Monitoring Wells                                                                                                          | 4-26 |
| Figure 4-25. | Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-23                                                                                  | 4-27 |
| Figure 4-26. | Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-17A                                                                                 | 4-27 |
| Figure 4-27. | Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-7                                                                                   | 4-28 |
| Figure 4-28. | Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-2-2                                                                                   | 4-28 |
| Figure 4-29. | Temporary Increase in Arsenic Concentration in Well 399-1-17A following<br>Polyphosphate Treatment                                                                        | 4-29 |
| Figure 4-30. | Electrical Conductivity and Phosphate Correlation                                                                                                                         | 4-30 |
| Figure 4-31. | Stage A Daily Average Infiltration Flow Rates                                                                                                                             | 4-31 |
| Figure 4-32. | Stage A Infiltration Solution Daily Sample Concentrations at the Mixing Skid                                                                                              | 4-32 |
| Figure 4-33. | Stage A Aquifer Injection Volume Per Well                                                                                                                                 | 4-33 |
| Figure 4-34. | Stage A PRZ Injection Volume Per Well                                                                                                                                     | 4-34 |
| Figure 4-35. | Stage A Injection Solution Daily Sample Concentrations at the Mixing Skid                                                                                                 | 4-35 |
| Figure 4-36. | Baseline ERT Images for the Stage A EA Area                                                                                                                               | 4-36 |
| Figure 4-37. | Change in Bulk Conductivity from Baseline Conditions on Operational Days 1<br>through 5                                                                                   | 4-37 |
| Figure 4-38. | Change in Bulk Conductivity from Baseline Conditions on Operational Days 6 through 10                                                                                     | 4-38 |
| Figure 4-39. | Change in Bulk Conductivity from Baseline Conditions on Operational Days 11 through 15                                                                                    | 4-39 |
| Figure 4-40. | Change in Bulk Conductivity from Baseline Conditions on Operational Days 20, 25, 30, and 34                                                                               | 4-40 |
| Figure 5-1.  | Schematic of Projected Concentrations and Trends from EA                                                                                                                  | 5-1  |
| Figure 5-2.  | Baseline and Day 1.5 ERT Images                                                                                                                                           | 5-3  |
| Figure 5-3.  | Average Phosphate Solution Migration Velocity                                                                                                                             | 5-4  |
| Figure 5-4.  | Groundwater Elevations and Phosphate Concentrations in PRZ Monitoring Wells during PRZ Injections (11/16/2015 through 11/18/2015)                                         | 5-6  |
| Figure 5-5.  | Phosphate Concentrations and Specific Conductance in PRZ Monitoring Wells during PRZ Injections (11/16/2015 through 11/18/2015)                                           | 5-7  |

#### SGW-59614, REV. 0

| Figure 5-6.  | Groundwater Elevation, Phosphate Concentrations, and Specific Conductance in<br>Aquifer Monitoring Wells during Aquifer and PRZ Injections                                                        | 5-9  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 5-7.  | Simulated Phosphate Concentration Distribution in the Aquifer for November 20, 2015, through December 31, 2016                                                                                    | 5-10 |
| Figure 5-8.  | Conceptual Model of Probable Reactions Occurring in the Subsurface from<br>Infiltration of Phosphate-Bearing Solutions                                                                            | 5-13 |
| Figure 5-9.  | Water Level Elevation in Wells 399-1-23 and 399-1-12                                                                                                                                              | 5-15 |
| Figure 5-10. | Water Level Elevation and Specific Conductance in Well 399-1-23                                                                                                                                   | 5-15 |
| Figure 5-11. | Water Level Elevation and Specific Conductance in Well 399-1-12                                                                                                                                   | 5-16 |
| Figure 5-12. | Specific Conductance in Wells 399-1-23, 399-1-7, and 399-2-2                                                                                                                                      | 5-17 |
| Figure 5-13. | Uranium and Phosphate Concentrations in Aquifer Monitoring Wells 399-1-65 and 399-1-74                                                                                                            | 5-18 |
| Figure 5-14. | Uranium Concentrations and Water Level Elevations in Well 399-1-17A                                                                                                                               | 5-19 |
| Figure 5-15. | Simulated Uranium Plumes in 2015, 2022, and 2040 under the No Action Scenario                                                                                                                     | 5-22 |
| Figure 5-16. | Simulated Uranium Concentrations for Wells 399-1-23 and 399-1-17A Compared to Observed Data Before and After Treatment                                                                            | 5-23 |
| Figure 5-17. | Post-Treatment Simulated Uranium Concentrations at the End of December 2016<br>for (a) 10 Times Reduction in Desorption Rate; (b) 5 Times Reduction in<br>Desorption Rate; and (c) No Action Case | 5-25 |
| Figure 5-18. | Long-Term Simulated Uranium Concentrations for Well 399-1-23 and<br>Well 399-1-17A Comparing the Predicted Post-Treatment Results to the No<br>Action Case                                        | 5-27 |
| Figure 6-1.  | Layout of the Proposed Stage B EA Area and Lower Vadose Zone/PRZ Injection Wells                                                                                                                  | 6-4  |

## Tables

| Table 2-1. | Summary of Stage A Uranium Sequestration Operations                               | 2-13 |
|------------|-----------------------------------------------------------------------------------|------|
| Table 3-1. | Constituents Monitored in Groundwater Samples                                     | 3-6  |
| Table 3-2. | Constituents Monitored Daily in Polyphosphate Solutions                           |      |
| Table 4-1. | Target Concentrations for Vadose Zone Infiltration                                |      |
| Table 4-2. | Target Concentrations for Aquifer and PRZ Injections                              | 4-34 |
| Table 5-1. | Travel Time Calculation Results                                                   | 5-17 |
| Table 7-1. | Chronological Summary of Key Documents Associated with the 300-FF-5 Operable Unit | 7-1  |

## Terms

| AWLN     | automated water level network                                                 |
|----------|-------------------------------------------------------------------------------|
| bgs      | below ground surface                                                          |
| CERCLA   | Comprehensive Environmental Response, Compensation, and Liability Act of 1980 |
| CHPRC    | CH2M HILL Plateau Remediation Company                                         |
| CSM      | conceptual site model                                                         |
| DOE      | U.S. Department of Energy                                                     |
| DOW      | description of work                                                           |
| EA       | enhanced attenuation                                                          |
| ERT      | electrical resistivity tomography                                             |
| ESD      | explanation of significant differences                                        |
| FS       | feasibility study                                                             |
| IC       | institutional control                                                         |
| MNA      | monitored natural attenuation                                                 |
| OU       | operable unit                                                                 |
| PNNL     | Pacific Northwest National Laboratory                                         |
| PRZ      | periodically rewetted zone                                                    |
| QC       | quality control                                                               |
| RDR      | request for data review                                                       |
| RDR/RAWP | remedial design report/remedial action work plan                              |
| RI       | remedial investigation                                                        |
| Rlm      | Ringold Formation lower mud unit                                              |
| ROD      | record of decision                                                            |
| ROI      | radius of influence                                                           |
| SAP      | sampling and analysis plan                                                    |
| SMR      | Sample Management and Reporting                                               |
| TPA      | Tri-Party Agreement                                                           |

#### SGW-59614, REV. 0

This page intentionally left blank.

#### 1 Introduction

This report presents the results and performance evaluation of the Stage A enhanced attenuation (EA) remedy implemented during November 2015 to sequester residual uranium that provides a continuing source of contamination to groundwater in the 300-FF-5 Operable Unit (OU) in the 300 Area of the Hanford Site.

The 300 Area encompasses approximately 105 km<sup>2</sup> (40 mi<sup>2</sup>) adjacent to the Columbia River in the southern portion of the Hanford Site (Figure 1-1). The 300 Area includes a smaller operations area, called the 300 Area Industrial Complex, comprising several facilities and waste disposal sites that supported uranium fuel production and research and development activities. Past contaminant releases at waste disposal sites in the 300 Area Industrial Complex resulted in persistent uranium contamination within the underlying soil and groundwater.

Completion of the soil and groundwater cleanup is being accomplished under the *Comprehensive Environmental Response, Compensation, and Liability Act of 1980* (CERCLA) in accordance with EPA and DOE, 2013, *Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1*, hereinafter called the 300 Area Record of Decision (ROD). Uranium is identified as a contaminant of concern in both soil and groundwater. Part of the selected remedy for uranium contamination in the 300 Area Industrial Complex is EA of uranium using polyphosphate solutions to sequester the uranium and reduce the mass of mobile uranium migrating into the groundwater. The polyphosphate solutions interact with the sediment to form calcium-phosphate minerals that can bind residual uranium, thereby sequestering the uranium in situ.

Enhanced attenuation of uranium is being implemented at a 1.2 ha (3 ac) area of high residual uranium contamination in the 300 Area Industrial Complex in accordance with the 300 Area ROD (EPA and DOE, 2013). Uranium sequestration will occur in two sequential stages (Stage A and Stage B), as described in DOE/RL-2014-13-ADD2, *Remedial Design Report/Remedial Action Work Plan Addendum for the 300 Area Groundwater*.

Stage A was implemented from November 6 through 18, 2015, by infiltrating and injecting polyphosphate solutions at high concentrations into the vadose zone, periodically rewetted zone (PRZ), and top of the unconfined aquifer within an area of approximately 0.3 ha (0.75 ac) (Figure 1-2). The Stage A treatment performance is evaluated in this report in accordance with Appendix B of DOE/RL-2014-42, *300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan* (hereinafter called the sampling and analysis plan [SAP]). The evaluation focuses on the following aspects of the treatment: (1) the change in uranium concentrations in groundwater downgradient from the Stage A area; (2) the delivery and distribution of phosphate to the lower vadose zone, PRZ, and top of the aquifer; (3) the mobilization of uranium to groundwater; (4) fate and transport modeling to predict the uranium concentrations in groundwater downgradient of the Stage A area; and (5) effect of the polyphosphate solutions on aquifer properties due to precipitation of phosphate minerals.

This report also identifies refinements needed for implementation of Stage B, based on the evaluation of the Stage A treatment performance. Stage B uranium sequestration will be performed in an adjacent area of approximately 0.9 ha (2.25 ac).



Figure 1-1. Map of the Hanford Site, 300 Area, and 300 Area Industrial Complex



Figure 1-2. Aerial View of a Portion of the 300 Area Industrial Complex Showing the Stage A Enhanced Attenuation Area and Nearby Waste Sites

#### 1.1 Purpose

The purpose of this report is to present the results and evaluate the performance of the Stage A uranium sequestration treatment. This report discusses the operational approach used for the Stage A polyphosphate applications and provides the operational and characterization data and observations collected before, during, and after the Stage A treatment.

Information on the final design and installation of the Stage A uranium sequestration system is documented in SGW-59455, 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report. Site layout plans and equipment design sheets are contained in ECR-15-000692, 300 Area Chemical Injection System (Attachment A of SGW-59455).

#### 1.2 Site Description

The 300 Area is located adjacent to the Columbia River in the southern portion of the Hanford Site (Figure 1-1). This section of the Columbia River is within the Hanford Reach, a nontidal, free flowing section of the Columbia River in Washington State. The Hanford Reach extends from the Priest Rapids Dam downstream to the slack water of Lake Wallula, which was created by McNary Dam.

#### 1.2.1 Background

Operations in the 300 Area began in 1943. The 300 Area Industrial Complex included the buildings and facilities where the majority of uranium fuel production and research and development activities took place. Large volumes of liquid waste containing uranium were discharged to the soil column through waste disposal sites in the 300 Area Industrial Complex. Two former liquid waste disposal sites are located close to the Stage A EA area (Figure 1-2). The primary waste stream disposed to these two waste sites was process waste from nuclear fuel fabrication as described below.

- The 300 Area North Process Pond (Waste Site 316-2) was located to the northeast of the Stage A EA area. This waste site consisted of several separate sections separated by dikes. From 1948 to 1974, this site was used to dispose of cooling water and low-level liquid waste from the 300 Area fuel fabrication facilities. Lack of infiltration was a problem for the pond because it accumulated sludge containing large amounts of uranium and copper. The bottom of the pond was periodically dredged, and the sludge was deposited on the dikes. The site was remediated from May 1998 through January 1999 by excavating contaminated soil to a maximum depth of 7.5 m (25 ft) and backfilling the excavation.
- The 300 Area Process Trenches (Waste Site 316-5) were located north of the Stage A EA area. This site consisted of two trenches, each 468 m (1,535 ft) long, operated alternately. From 1975 to 1994, the trenches were used to dispose of cooling water and low-level liquid waste from the 300 Area fuel fabrication facilities. In 1991, the site was partially remediated through an expedited response action, which removed 0.3 to 0.9 m (1 to 3 ft) of contaminated soil and sludge from the bottom and sides of the trenches, respectively. The contaminated soil and sludge were stockpiled at the north end of the trenches. Final remediation, under CERCLA, was conducted from July 1997 through February 1998 by excavating contaminated soil to a maximum depth of about 5.5 m (18 ft) and backfilling the excavation.

Solid waste was disposed in burial grounds and shallow landfills from 1943 through the 1950s. Two former solid waste burial grounds are located near the Stage A EA area (Figure 1-2).

• The Solid Waste Burial Ground No. 2 (Waste Site 618-2) and Dry Waste Burial Ground No. 3 (Waste Site 618-3) were located to the southwest of the Stage A EA area. From 1951 through 1955, these waste sites were used to dispose of uranium-contaminated solid waste, including contaminated equipment and contaminated metal wastes, from 300 Area Industrial Complex facilities. Solid Waste Burial Ground No. 2 was remediated from August 1996 through November 2004 by excavating contaminated material to a depth of approximately 6 m (19.7 ft) and backfilling. One location was excavated to groundwater (between 11.5 and 15 m [37.7 and 49.2 ft] bgs). Dry Waste Burial Ground No. 3 was remediated from September 2004 through October 2004 by excavating contaminated material to a depth of approximately 5 m (16 ft).

Contaminant releases at waste sites resulted in uranium contamination in groundwater that exceeds the 30  $\mu$ g/L cleanup level in the 300 Area ROD (EPA and DOE, 2013). In 2015, the area of the uranium plume in the 300 Area Industrial Complex was approximately 0.34 km<sup>2</sup> (0.13 mi<sup>2</sup>) (DOE/RL-2016-09, *Hanford Site Groundwater Monitoring Report for 2015*).

#### 1.2.2 Physical Setting

The following sections provide a summary of the site geology and hydrogeology for the 300 Area Industrial Complex and Stage A EA area. Detailed information on the geology and hydrogeology of the 300 Area is presented in Chapters 3 and 4 of the 300 Area remedial investigation (RI)/feasibility study (FS) report (DOE/RL-2010-99, *Remedial Investigation/Feasibility Study for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units*). Detailed information on the geology and hydrogeology of the Stage A area is presented in the borehole summary report for the Stage A injection and monitoring wells installed in 2015 and 2016 (Chapter 3 of SGW-59465, *Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit*).

#### 1.2.2.1 Geology

The ground surface in the 300 Area Industrial Complex is relatively flat, except for the steep embankment that slopes to the Columbia River. The surface elevation for the 300 Area Industrial Complex is approximately 115 m (377 ft) (Section 3.1 of DOE/RL-2010-99).

The stratigraphic units that underlie the 300 Area Industrial Complex, from youngest to oldest, are the eolian surficial deposits, Hanford formation, and Ringold Formation. These sediments overlie the Columbia River Basalt Group (Figure 1-3):

- Eolian deposits (Holocene age): The most recently deposited sediment is a discontinuous veneer containing eolian (windblown) sand and/or sand and gravel backfill deposited within waste sites that were excavated during remediation. These deposits generally overlie the 300 Area Industrial Complex, with a typical thickness of approximately 1 to 6 m (3.3 to 19.7 ft).
- Hanford formation (Pleistocene age): The Hanford formation cataclysmic flood deposits generally comprise three subunits (silt-dominated, sand-dominated, and gravel-dominated), which grade into one another both vertically and laterally. In the 300 Area Industrial Complex, the Hanford formation is primarily composed of the gravel-dominated subunit with a typical range in thickness from 12 to 24 m (40 to 80 ft). The gravel-dominated sequence is coarse-grained, basalt-rich, clast-supported, open framework, sandy gravel with variable silt and clay content. As a result, the Hanford formation permeability is generally several orders of magnitude greater than that of the underlying Ringold Formation. The inferred contour map of the contact between the Hanford formation and Ringold Formation is shown in Figure 1-4.



Figure 1-3. Cross Section of the General Geologic Features of the 300 Area Industrial Complex and Stage A Enhanced Attenuation Area



Figure 1-4. Inferred Contour Map of the Contact Between the Hanford Formation and Ringold Formation

• Ringold Formation (late Miocene to Pliocene age): The Ringold Formation is an unconsolidated to semiconsolidated sedimentary sequence deposited on the basalt by the ancestral Columbia River. The gravel-dominated Ringold Formation upper coarse unit (Unit E) is up to 24 m (80 ft) thick and is composed of pebble-cobble gravel compacted within a matrix of fine- to medium-grained sand with silt. A finer grained interval of silt and fine sand occurs at or near the top of the Ringold Formation Unit E over portions of the 300 Area Industrial Complex. The Ringold Formation Unit E overlies the Ringold Formation lower mud (Rlm) unit, a silt and clay-dominated layer, which ranges up to 24 m (80 ft) thick. These Rlm fine-grained, low-permeability sediments form an aquitard that significantly impedes the downward flow of groundwater. The Ringold Formation lower coarse unit (Unit A) is a silty, sandy gravel that occurs locally below the Rlm. The Rlm, or the Ringold Formation Unit A where present, forms the base of the unconfined aquifer system and overlies the basalt.

Injection and monitoring wells were installed to support implementation of the Stage A EA remedy for uranium (Figure 1-5). During drilling of the Stage A wells, only the gravel-dominated units of the Hanford formation and Ringold Formation Unit E were encountered (Chapter 3 of SGW-59465). The Ringold Formation Unit E was not fully penetrated.

Backfill placed into the remediated 316-2 North Process Pond and 316-5 300 Area Process Trenches is composed of Hanford formation sandy cobble gravel and clast-supported gravel. Large boulders are often present throughout the backfill material. Backfill in the 316-5 300 Area Process Trenches is present from ground surface to 4.9 to 5.5 m (16 to 18 ft) below ground surface (bgs). Backfill in the 316-2 North Process Pond extends from ground surface to no greater than 7.5 m (25 ft) bgs. Disturbed surface sediments surrounding the trenches and the pond extend from ground surface to approximately 0.6 m (2 ft) bgs.

The Hanford formation underlies the Stage A EA area between 0.6 and 15.4 m (2 ft and 50 ft) bgs (Figures 1-6 and 1-7). Rip-up clasts composed of silt and gravelly silt, present in abundance throughout the Hanford formation, are encountered sporadically throughout the Stage A area. Rip-up clasts are typically composed of nonindurated to very well indurated, massive to finely laminated silt, clayey silt, and gravelly silt. The rip-up clasts encountered throughout the Stage A area range in size from a few centimeters (inches) up to 1.2 m (4 ft).

The gravel-dominated Ringold Formation Unit E is present across the Stage A area between 11.4 and 15.5 m (37 and 50.5 ft) bgs (Figures 1-6 and 1-7). The silty sand to silt, fine-grained Ringold Formation subunit that locally overlies the gravel-dominated Ringold Formation Unit E in the vicinity of the 316-1 South Process Pond was not encountered during drilling in the Stage A area. However, stratigraphically equivalent, discontinuous sand lenses were encountered in the top meter (top few feet) of the Ringold Formation Unit E in some of the deep injection and monitoring wells.

#### 1.2.2.2 Hydrogeology

The following information is obtained from Section 1.2 of the SAP (DOE/RL-2014-42).

The vadose zone in the 300 Area Industrial Complex consists primarily of backfill materials and unconsolidated gravels and sand of the Hanford formation. The average thickness of the vadose zone is 10 m (33 ft). However, the vadose zone thickness varies with the seasonal stages of the Columbia River and distance inland from the river. Rising groundwater elevations resulting from higher Columbia River stages seasonally saturate lower portions of the vadose zone, while lower river stages result in falling groundwater elevations that de-water these same lower portions of the vadose zone. These fluctuating groundwater elevations create the PRZ. Generally, wells adjacent to the river within the 300 Area Industrial Complex show larger variations in water level elevation in response to river stage changes than wells located at increasing distance from the shoreline.



Figure 1-5. Stage A Enhanced Attenuation Area Well Field



1-10

Figure 1-6. Southwest-Northeast Cross Section of Stage A Enhanced Attenuation Area



1-1 1

Figure 1-7. Northwest-Southeast Cross Section of Stage A Enhanced Attenuation Area

In the Stage A area, the PRZ is defined as the portion of the vadose zone from 105.0 to 107.0 m elevation that is contacted by typical seasonal increases in the groundwater elevation (Figure 1-8). The lower vadose zone, from 107.0 to 108.5 m elevation, represents the portion of the vadose contacted by increases in groundwater elevation in atypical high water years. The low elevation of the water table is 105.0 m.

The unconfined aquifer occurs in the highly permeable, gravel-dominated Hanford formation and in the underlying, less permeable gravel-dominated Ringold Formation Unit E.

Paleochannels carved into Ringold Formation Unit E sediments are filled with Hanford formation sand and gravel and act as preferential pathways for groundwater flow and for intrusion of river water during periods of high river stage. Paleochannels have not been identified in the Stage A area (Figure 1-4). The Ringold Formation lower mud unit is a confining layer (i.e., aquitard) that forms the base of the unconfined aquifer and is characterized by very low-permeability fine-grained sediment. This hydrologic unit prevents further downward movement of groundwater contamination to the deeper aquifers. The thickness of the unconfined aquifer along the Columbia River shoreline is about 25 m (80 ft).



Figure 1-8. Elevations of the Periodically Rewetted Zone and Lower Vadose Zone in the Stage A Enhanced Attenuation Area

#### 1.2.2.2.1 Groundwater Flow

Groundwater in the unconfined aquifer discharges to the Columbia River via upwelling through the riverbed and riverbank seeps. The flux from the unconfined aquifer is very low compared to the flow of the river. Because the river stage regularly fluctuates up and down, flow beneath the shoreline oscillates back and forth, with river water intruding into the unconfined aquifer and mixing with groundwater at times. When the river stage drops quickly to a low elevation, riverbank seeps appear.

Groundwater flow velocities beneath the 300 Area in the Hanford formation portion of the aquifer can be relatively rapid, with a velocity of 15.2 m/d (50 ft/d) estimated during a polyphosphate tracer test in December 2006 (PNNL-17708, *Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State*). However, the hydraulic gradients change direction in response to river stage, which fluctuates on seasonal and multiyear cycles. Consequently, groundwater flow is not always directed toward the river.

In general, regional groundwater flow converges on the 300 Area from the northwest, west, and southwest, inducing a southeast or east flow direction in the 300 Area (Section 3.6.1.3 of DOE/RL-2010-99). During periods of extended high river stage (typically March through June), water flows from the river into the aquifer.

The rise and fall of the river stage create a dynamic zone of interaction between groundwater and river water affecting groundwater flow patterns, contaminant transport rates (e.g., uranium in groundwater), groundwater geochemistry, contaminant concentrations, and contaminant attenuation rates.

#### 1.2.2.2.2 Movement of Uranium Contamination

Uranium contamination remaining in the vadose zone resulted from active liquid waste discharge of uranium-bearing solutions during 300 Area operations. Uranium soil concentrations vary within the soil column, with higher concentrations associated typically with finer grained sediments. Uranium is mobilized during periodic rewetting of the lower portion of the vadose zone due to Columbia River stage fluctuations. The groundwater within the PRZ leaches residual uranium and drains under gravity, providing a pathway for dissolved uranium to reach the aquifer. Due to periodic river stage fluctuations and depending upon the inland distance from the river, the groundwater flow direction can change over a wide area and distribute the dissolved uranium within the aquifer. As a result of mixing of river water and groundwater, the alkalinity also varies spatially and temporally within the aquifer and can lead to variable speciation of uranium aqueous complexes. The amount of uranium leaching from the PRZ is affected by both the degree of saturation of the sediments and the alkalinity of the solution. The combination of uranium desorption and dilution in the river water/groundwater mixing zone results in a varying distribution of uranium concentrations in the aquifer.

#### 1.2.3 Enhanced Attenuation Remedy Timeline

The 300 Area ROD (EPA and DOE, 2013) was issued in November 2013. Figure 1-9 shows the chronology of the significant activities, investigations, and decisions completed after issuance of the ROD that support implementation of uranium sequestration at the Stage A EA area. On the figure, key documents and decisions are shown above the timeline; investigations and actions are shown below the timeline. Chapter 7 of this document contains a bibliography that provides information on the documents shown on the timeline. Environmental investigations and remedial actions conducted in the 300 Area before the 300 Area ROD was issued are summarized in the 300 Area RI/FS report (Section 1.3 of DOE/RL-2010-99).



Figure 1-9. Timeline of Documents and Activities Supporting Uranium Sequestration at the Stage A Enhanced Attenuation Area

### 1.3 Uranium Sequestration Technology Description

The uranium sequestration technology was developed during treatability tests, and the technology was adapted for use as the EA remedy.

#### 1.3.1 Treatability Tests

A treatability test was conducted at the 300 Area Industrial Complex to evaluate the use of polyphosphate as a remedial technology to sequester uranium (PNNL-18529, *300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report*). The treatability test included both laboratory and field studies. The laboratory studies evaluated applying polyphosphate to vadose zone and PRZ sediments to immobilize uranium and prevent it from leaching to the aquifer. The field study evaluated direct sequestration of dissolved uranium in groundwater by injecting polyphosphate into the aquifer.

Laboratory tests demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium can occur due to formation of relatively insoluble uranyl-phosphate minerals, such as autunite  $(Ca(UO_2)_2(PO_4)_2 \cdot nH_2O)$ .

Results of the field study demonstrated that, upon direct injection, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent. Monitoring wells located at a radial distance of 23 m (75 ft) showed phosphate concentrations as high as 40 to 60 percent of the injection concentrations, which indicated that uranium sequestration could be effectively implemented on a full field scale.

Laboratory-scale column studies (PNNL-21733, *Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment*) also were conducted to evaluate short- and long-term effects of polyphosphate treatment on uranium leaching from 300 Area PRZ sediments. Under idealized laboratory conditions, a wide range of polyphosphate treatments resulted in significant (average 54 percent) decreases in leached uranium mass in columns run for up to 1 year. Polyphosphate treatment decreased uranium leaching through the formation of nonuranium calcium-phosphate precipitates coating uranium surface phases, uranium adsorption to precipitates, or slow formation of uranium-phosphate precipitates. The simulated phosphate delivery strategy that resulted in the greatest decrease in uranium leaching involved maximizing stop-flow conditions to increase phosphate-sediment reaction time before groundwater advection, and the use of high-concentration (~50 mM) polyphosphate solutions.

#### 1.3.2 Enhanced Attenuation Remedy

Based on the results of the treatability tests, uranium sequestration using polyphosphate solutions was adapted for use as a remedy for uranium in the 300 Area. During Stage A, two different polyphosphate solutions were blended and then infiltrated and injected into the vadose zone, PRZ, and top of the unconfined aquifer. The blend of orthophosphate<sup>1</sup> and pyrophosphate solutions was used to take advantage of the reaction kinetics of each compound. Orthophosphate combines with naturally occurring calcium in the vadose zone pore water for rapid formation of a monocalcium phosphate rind around sediment surfaces, some of which contain mobile uranium. Pyrophosphate hydrolyzes, or breaks down, slowly to orthophosphate over time, which allows for enhanced transport of phosphate to the lower vadose zone and PRZ and formation of the calcium phosphate rind.

The primary sequestration mechanism is the formation of an amorphous (unstructured) monocalcium phosphate rind that coats the sediments containing uranium and thereby reduces the dissolution of uranium-bearing mineral phases. Over months to years, this rind is expected to crystallize to form a stable calcium-phosphate mineral, hydroxyapatite ( $Ca_{10}(PO_4)_6(OH_2)$ ), which has very low solubility. During crystallization, some incorporation of uranium into the hydroxyapatite structure is also expected.

<sup>&</sup>lt;sup>1</sup> Orthophosphate refers to phosphate associated with monosodium (primarily) along with disodium species.

This page intentionally left blank.

### 2 Uranium Sequestration Implementation Approach

This chapter provides an overview of the approach used to implement uranium sequestration in the Stage A EA area. The sections summarize the objectives, design, and implementation of the Stage A polyphosphate infiltration and injection. The final section briefly discusses changes that were made from the original Stage A design when the Stage A system was completed and operated in the field.

## 2.1 Stage A Objectives

The objectives for the Stage A polyphosphate applications to sequester uranium include the following elements summarized from SGW-58976, *Field Instructions for Uranium Sequestration in the 300 Area.* 

- Implement uranium sequestration on 0.3 ha (0.75 ac) using polyphosphate injection in nine wells spanning a length of 75 m (246 ft) and polyphosphate infiltration in the vadose zone from near-surface infiltration lines covering the area.
- Optimize the use of two injection skids to maximize the amount of polyphosphate solution in the vadose zone and PRZ through infiltration followed by well injections into the PRZ. Use two submersible river pumps to deliver makeup water to the mixing skids.
- Refine the use of the high-concentration formulations of orthophosphate and pyrophosphate solutions previously used in pilot test applications.
- Monitor delivery of polyphosphate solutions at selected monitoring wells using downhole instrumentation, electrical resistivity tomography (ERT), and groundwater monitoring in accordance with sampling and analysis protocols.
- Evaluate the treatment effectiveness of the Stage A polyphosphate application based on the phosphate distribution efficiency, overall decrease in uranium leachability in vadose zone and PRZ soil samples, decrease in uranium mobilization to groundwater, and changes to hydraulic conductivity of the aquifer due to precipitation of phosphate minerals.
- Apply experience and lessons learned from the Stage A application of polyphosphate solutions to a larger scale for Stage B.

The effectiveness of the Stage A phosphate applications in meeting these objectives is evaluated in this report. The proposed design of Stage B is discussed in Chapter 6.

## 2.2 Stage A Design

As specified in the 300 Area ROD (EPA and DOE, 2013), EA using uranium sequestration involves infiltrating and injecting polyphosphate solutions into the vadose zone, PRZ, and top of the aquifer to sequester, or bind, residual uranium by forming insoluble minerals. The target area for application of the polyphosphate solutions is a 1.2 ha (3 ac) area containing a persistent source of mobile uranium that contributes to contamination of the underlying groundwater. Uranium sequestration in the EA area is anticipated to reduce the mass of soluble uranium, thereby reducing the amount of uranium available to leach into the groundwater.

The conceptual design for implementing uranium sequestration in two stages is provided in DOE/RL-2014-13, *Integrated Remedial Design Report/Remedial Action Work Plan for the 300 Area (300-FF-1, 300-FF-2 & 300-FF-5 Operable Units)*, hereinafter called the remedial design report/remedial action work plan (RDR/RAWP). The conceptual design for Stage A included the number and spacing of injection wells and infiltration lines, polyphosphate solution formulations, and injection and infiltration volumes and rates, based on chemical arrival responses observed during previous treatability tests in the 300 Area. The SAP (DOE/RL-2014-42) describes the monitoring required during injection and infiltration.

The Stage A polyphosphate applications were timed to coincide with the low river stage of the Columbia River to maximize the thickness of PRZ into which polyphosphate solutions could be injected (DOE/RL-2014-13-ADD2).

The following sections summarize the design of the Stage A uranium sequestration system as it was installed and implemented. Information on the Stage A uranium sequestration system is obtained from SGW-59455.

#### 2.2.1 Stage A Enhanced Attenuation Area

In accordance with the RDR/RAWP, a supplemental post-ROD field investigation was conducted from December 30, 2014, through January 15, 2015, to collect uranium soil concentration data to refine the location of the Stage A EA area. Three boreholes were drilled within the EA area proposed in the 300 Area ROD (EPA and DOE, 2013). Samples were analyzed to provide uranium leachability data and to fill data gaps in the uranium conceptual site model (CSM). Results of the field investigation are provided in SGW-58830, *300-FF-5 Supplemental Post-ROD Field Investigation Summary*. Data collected during the supplemental field investigation were used to refine the uranium soil distribution within the region of the EA area. Based on the revision, the location and shape of the Stage A area were modified to coincide with the region of highest anticipated uranium concentrations in the PRZ.

Because two of the three post-ROD field investigation boreholes were not within the refined Stage A area, uranium soil concentrations were measured in samples collected from two wells drilled in the refined Stage A area during implementation of Stage A. Minor modifications to the shape of the Stage A EA area were made during site setup in the field to accommodate existing infrastructure and site topography. The final Stage A area is shown in Figure 1-5.

#### 2.2.2 Stage A Injection Wells

The Stage A injection system included nine combination PRZ and aquifer injection wells (Figure 1-5). Each injection well was constructed with two screened intervals, with one screen in the PRZ and one screen in the upper part of the aquifer. The screens are separated by a grout seal at the interface of the bottom of the PRZ and top of aquifer to allow isolated injection (using inflatable packers) into either the PRZ or top of the aquifer.

The injection wells were drilled using a sonic drill rig between July 15 and July 28, 2015, in accordance with SGW-58553, *Description of Work for the Installation of Twenty Two Monitoring Wells and Nine Injection Wells in the 300-FF-5 Operable Unit, FY2015.* A summary of the drilling and well construction details are contained in SGW-59465. The injection wells were developed by overpumping in order to obtain maximum flow rates.

The wells are screened from elevations of approximately 108.9 to 105.9 m (depths of 6.1 m [20 ft] to 9.1 m [30 ft] bgs) through the PRZ and from elevations of approximately 104.3 to 101.3 m (depths of 10.7 m [35 ft] to 13.7 m [45 ft] bgs) in the aquifer, based on the seasonal low water table elevation. Figure 2-1 shows the construction of a typical injection well, PRZ monitoring well, and aquifer monitoring well. The seasonal low water table in this region is estimated to be at an elevation of 105.0 m (depth of approximately 10 m [33 ft] bgs), and the seasonal high water table in this region is estimated to be at an elevation of 107.0 m (depth of approximately 8 m [26 ft] bgs). Therefore, the seasonal PRZ is approximately 2 m (6.6 ft) thick in this region (Figure 1-8). In atypical high water conditions, the elevation of the high water table is estimated to be 108.5 m (depth of approximately 6.5 m [21 ft] bgs), making the lower vadose zone approximately 1.5 m (4.9 ft) thick in this region. Figure 2-2 shows each of the injection wells and the elevations of the well screens and total depth.

#### 2.2.3 Stage A Monitoring Wells

The Stage A monitoring system included 26 individual monitoring wells, consisting of 13 collocated well pairs (including 2 existing well pairs and 1 well from the post-ROD investigation). For each well pair, one well is partially screened in the PRZ, and one well is screened in the aquifer to enable monitoring of these two zones. The monitoring well system includes three monitoring well pairs upgradient of the Stage A treatment area, 6 monitoring well pairs within the Stage A treatment area, and four monitoring well pairs downgradient of the Stage A treatment area (Figure 1-5).

The PRZ and aquifer monitoring wells were drilled using a sonic drill rig between June 9 and July 13, 2015, in accordance with SGW-58553. A summary of the drilling and well construction details are contained in SGW-59465. All of the monitoring wells were developed with a submersible pump using a pumping rate of approximately 4 L/min (1 gal/min).

The 13 PRZ monitoring wells are screened from elevations of approximately 105.9 to 104.3 m (depths of 9.1 m [30 ft] to 10.7 m [35 ft] bgs) (Figure 2-1). The PRZ wells were screened across the lower portion of the PRZ and top of the aquifer to ensure the presence of groundwater for sampling the uppermost portion of the aquifer during low water conditions. With the exception of well 399-1-84, the aquifer monitoring wells are screened from elevations of approximately 102.8 to 101.3 m (depths of 12.2 m [40 ft] to 13.7 m [45 ft] bgs). Well 399-1-84 is screened from elevations of approximately 100.2 to 98.6 m (depths of 14.8 m [48 ft] to 16.3 m [53 ft] bgs) because of a deep silt layer that would have encompassed the planned screened depth. Figure 2-3 shows each of the monitoring wells and the elevations of the well screens and total depth.

#### 2.2.4 Stage A Infiltration System

A polyphosphate solution infiltration system was installed within the Stage A area in accordance with SGW-58976. The infiltration network consisted of high-density polyethylene liquid distribution lines installed approximately 1.8 m (6 ft) bgs to prevent accumulation and wicking of sodium and phosphate up into the surficial soil, which would inhibit the establishment and growth of vegetation. The drip lines were spaced approximately 2 m (6.5 ft) apart, resulting in a total of 44 lines aligned southeast to northwest (Figure 2-4).







CHSGW20170022

Figure 2-2. Injection Well Features and Elevations
This page intentionally left blank.



Figure 2-3. Monitoring Well Features and Elevations

CHSGW20170021

This page intentionally left blank.



Figure 2-4. Infiltration System in the Stage A Enhanced Attenuation Area

Each drip line was designed to infiltrate polyphosphate solutions at a rate of 8 L/hr (2 gal/hr) from each of the emitters spaced 0.36 m (14 in.) apart along the drip lines. Each drip line was installed with a pressure regulator set at 103.4 kPa (15 lb/in<sup>2</sup>) and was connected to a flexible header hose through which the polyphosphate solution was delivered. The specification of liquid distribution lines was selected to achieve a liquid application rate of at least 511 L/min (135 gal/min) over the 0.3 ha (0.75 ac) Stage A treatment area. Details of the infiltration system installation are provided in SGW-59455.

#### 2.2.5 Stage A Chemical Mixing Skids and Site Infrastructure

Two chemical mixing skids were used during Stage A in accordance with SGW-58976. Each skid was capable of delivering polyphosphate solution at a flow rate of up to 1,136 L/min (300 gal/min). Skid 1 delivered polyphosphate solution to six injection wells at a time; the target design rate was 189 L/min (50 gal/min) per well. Skid 2 delivered polyphosphate solution to the infiltration network; the target design rate was 511 L/min (135 gal/min). Flowmeters and sample ports were provided on each skid to monitor and collect samples of the polyphosphate solution.

Feed water for the polyphosphate solutions was obtained using two separate submersible pumps, each capable of supplying up to 1,136 L/min (300 gal/min). The pumps were set in the Columbia River approximately 9.1 m (30 ft) apart and approximately 30.5 m (100 ft) from shore. Feed water was piped from the Columbia River to the chemical mixing skids, where it was filtered and then blended with the phosphate chemicals in an inline mixing chamber. Following mixing, a manifold routed the polyphosphate solutions to transfer hoses for distribution to the injection wells and infiltration lines. Flowmeters and pressure gauges were installed on each manifold to monitor the polyphosphate solution flow rates.

Phosphate chemicals were delivered to the site in tanker trucks in concentrated liquid form and stored in eight 30,283 L (8,000 gal) tanks. The tank configuration included two tanks containing pyrophosphate solution and six tanks containing orthophosphate solution. Two separate chemical distribution lines routed the phosphate chemicals to the chemical mixing skids. The chemical feed pumps were set to mix the phosphate chemicals and feed water automatically at the specified ratios. Details of the chemical tank and mixing skid installation are provided in SGW-59455.

### 2.2.6 Stage A Electrical Resistivity Tomography Network

Infiltration of polyphosphate solutions into the vadose zone and PRZ increased the electrical conductivity of the vadose zone by increasing both liquid saturation and pore fluid specific conductance. These changes enabled use of time-lapse ERT for remotely monitoring the advancement of the wetting front of the polyphosphate solution through the vadose zone and PRZ.

An ERT network was installed in the Stage A area (Figure 2-5). The longer ERT array (Line A-A'), oriented east-west through the Stage A area, was monitored using 60 electrodes at 1.5 m (5 ft) spacing. The shorter array (Line B-B'), oriented north-south through the Stage A area, was monitored using 47 electrodes at 1.5 m (5 ft) spacing. Details of the ERT network installation are provided in SGW-59455.

#### 2.2.7 Stage A Enhanced Attenuation System Configuration

Figure 2-6 is an aerial view of the Stage A uranium sequestration system showing the location of the river pumps, chemical mixing skids, chemical storage tanks, and general location of the Stage A treatment area. The injection wells and ERT network can be seen within the Stage A EA area.







Figure 2-6. Aerial View of the Stage A Uranium Sequestration System

### 2.3 Stage A Timing and Order of Treatment

Design of the Stage A EA treatment system specified application of polyphosphate solutions using nearsurface infiltration into the vadose zone, direct injection into the PRZ, and direct injection into the top of the aquifer. Stage A treatment of the EA area occurred over 13 days from November 6 through November 18, 2015.

Polyphosphate solution was injected through nine injection wells into the unconfined aquifer on November 6, 9, and 16 (days 1, 4, and 11). On each day, a different combination of six injection wells was used for approximately 8 hours (Table 2-1). The design sequence of the Stage A aquifer injections was to inject polyphosphate solution into the aquifer at least 1 day before, during, and after the polyphosphate infiltration period to establish a layer of phosphate in groundwater below the infiltration area in order to remediate uranium that might be flushed to groundwater during infiltration operations. The design sequence also called for conducting injections into at least six wells at a time, during daytime hours while varying the locations of the six wells being injected over the 3 days in order to maximize the distribution of phosphate in groundwater below the infiltration area.

Infiltration of polyphosphate solution was continuous (24 hr/d operation) for 217 hours, starting November 7 and concluding November 16 (days 2 through 11) (Table 2-1). Polyphosphate solution was delivered to all 44 infiltration lines simultaneously. Infiltration was continued after ERT imaging and sustained increases in groundwater specific conductivity confirmed that the infiltration solution had reached the PRZ and aquifer in order to deliver the required amount of chemical to the vadose zone and to ensure the PRZ moisture content was maximized prior to injection into the PRZ.

Polyphosphate solution was injected into the PRZ on November 16, 17, and 18 (days 11, 12, and 13). Each day, a different combination of six injection wells was used for approximately 8 hours (Table 2-1).

The volumes and rates of polyphosphate solution injected and infiltrated during Stage A are provided in Section 4.3 of this report.

|                         |                                         |                                     | Average<br>Infiltration Rate  | Total Injection<br>Rate Achieved<br>(L/min [gal/min]) | Duration of<br>Operations |      |
|-------------------------|-----------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------------------|---------------------------|------|
| Operation Day<br>(Date) | Aquifer Injection<br>Wells <sup>a</sup> | PRZ Injection<br>Wells <sup>a</sup> | Achieved<br>(L/min [gal/min]) |                                                       | Start                     | Stop |
| 1 (Nov. 6)              | 1-89, 1-90, 1-91,<br>1-92, 1-93, 1-94   |                                     |                               | 1,136 (300)                                           | 0854                      | 1646 |
| 2 (Nov. 7)              |                                         |                                     | 212 (56)                      |                                                       | 0716                      | b    |
| 3 (Nov. 8)              |                                         |                                     | 198 (52)                      |                                                       | b                         | b    |
| 4 (Nov. 9)              | 1-92, 1-93, 1-94,<br>1-95, 1-96, 1-97   |                                     | 197 (52)                      | 1,136 (300)                                           | 0935                      | 1600 |
| 5 (Nov. 10)             |                                         |                                     | 202 (53)                      |                                                       | b                         | b    |
| 6 (Nov. 11)             |                                         |                                     | 254 (67)                      |                                                       | b                         | b    |
| 7 (Nov. 12)             |                                         |                                     | 316 (84)                      |                                                       | b                         | b    |
| 8 (Nov. 13)             |                                         |                                     | 311 (82)                      |                                                       | b                         | b    |

 Table 2-1. Summary of Stage A Uranium Sequestration Operations

| Operation Day<br>(Date) | Aquifer Injection<br>Wells <sup>a</sup> | PRZ Injection<br>Wells <sup>a</sup>   | Average<br>Infiltration Rate<br>Achieved<br>(L/min [gal/min]) | Total Injection<br>Rate Achieved<br>(L/min [gal/min]) | Duration of<br>Operations |      |
|-------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------|------|
|                         |                                         |                                       |                                                               |                                                       | Start                     | Stop |
| 9 (Nov. 14)             |                                         |                                       | 303 (80)                                                      |                                                       | b                         | b    |
| 10 (Nov. 15)            |                                         |                                       | 298 (79)                                                      |                                                       | b                         | b    |
| 11 (Nov. 16)            |                                         |                                       | 303 (80)                                                      |                                                       | b                         | 0800 |
|                         | 1-95, 1-96, 1-97,<br>1-89, 1-90, 1-91   |                                       |                                                               | 1,136 (300)                                           | 0930                      | 1600 |
|                         |                                         | 1-89, 1-90, 1-91,<br>1-92, 1-93, 1-94 |                                                               | 1,136 (300)                                           | 1855                      | 0300 |
| 12 (Nov. 17)            |                                         | 1-92, 1-93, 1-94,<br>1-95, 1-96, 1-97 |                                                               | 1,136 (300)                                           | 0404                      | 1200 |
| 13 (Nov. 18)            |                                         | 1-95, 1-96, 1-97,<br>1-89, 1-90, 1-91 |                                                               | 1,136 (300)                                           | 0700                      | 1300 |

 Table 2-1. Summary of Stage A Uranium Sequestration Operations

a. All well names begin with 399-.

b. 24 hr/d infiltration began on November 7 and concluded on November 16, 2015.

Monitoring during Stage A polyphosphate infiltration and injection included (1) pre-treatment (baseline) groundwater and soil sampling; (2) monitoring of skid system parameters and chemical concentrations, ERT, and groundwater during treatment; and (3) post-treatment groundwater and soil sampling. Sampling and analysis requirements are described in Chapter 6 of SGW-58976 and Chapter 3 of the SAP (DOE/RL-2014-42). Sampling and monitoring methodology is described in Chapter 3 of this report.

# 2.4 Deviations from Design

The following bullets summarize instances where implementation and operation of the Stage A treatment and monitoring differed from the design presented in DOE/RL-2014-13-ADD2 and the SAP (DOE/RL-2014-42). The potential impact of the deviations is also discussed.

- DOE/RL-2014-42 states "Infiltration and injection will be performed in September through October, the time of year when the river stage is low and groundwater flow direction at the EA area will be to the southeast." The Stage A application of polyphosphate solution (infiltration and injection) was conducted in November 2015. Groundwater levels in the treatment area began to climb during the period in early November when operations were conducted. Although not conducted during the optimal low river stage season (September and October), the groundwater levels were low (within 0.3 m [1 ft] of September and October water levels) and the flow direction was to the southeast during this time, based on increased phosphate concentrations detected in this direction. The difference in groundwater levels represents less than about 10 percent of the 3 m (10 ft) long PRZ injection screen interval, so the impact to treatment effectiveness is not considered significant.
- Aquifer monitoring well 399-1-84 was screened from 14.6 m (48 ft) to 16.2 m (53 ft) bgs, due to a deep silt layer that would have encompassed the planned screened depth. All other aquifer monitoring

wells were screened from approximately 12.2 m (40 ft) to 13.7 m (45 ft) bgs in accordance with the design. Aquifer monitoring well 399-1-84 was used for sampling, although it was screened in a deeper part of the aquifer. The data are considered adequate for the purpose of monitoring the constituents of concern in the aquifer.

- The infiltration system was not operated at 511 L/min (135 gal/min). The initial flow rates ranged from 197 to 212 L/min (52 to 56 gal/min). After modification of pressure regulators, flow rates ranged from 298 to 316 L/min (79 to 84 gal/min). Also, the infiltration system was operated for a longer period of time in order to achieve application of the design volume. Nonuniform flow rates or lower flow rates throughout the infiltration emitter network could have affected vertical fluid velocity, which potentially negatively impacted phosphate distribution in the vadose zone.
- Daily sampling of all 26 monitoring wells during the treatment application was not feasible with available resources. Seven wells within the Stage A EA area were sampled daily. This limited number of daily sampling locations presented challenges in thoroughly evaluating Stage A performance because daily samples were not available to monitor changes at the other 19 locations during treatment.
- Water levels and field parameters (specific conductivity, temperature, pH, and oxidation-reduction potential) were monitored every 30 minutes using downhole instruments in 6 monitoring wells rather than in all 26 monitoring wells. Additional wells could not be configured with instrumentation because of lack of equipment, and manual monitoring of this number of wells at 4-hour intervals was not feasible with available resources. This limited number of continuous sampling locations presented challenges in thoroughly evaluating Stage A performance because continuous samples were not available to monitor changes at the other 20 locations during treatment.

#### SGW-59614, REV. 0

This page intentionally left blank.

# 3 Sampling and Monitoring Methods

This chapter describes the methods used for sampling, analysis, and monitoring of soil, groundwater, polyphosphate solutions, and electrical resistivity before, during, and after completion of treatment activities to determine the initial site conditions and changes during and following implementation of the Stage A EA remedy.

### 3.1 Soil Sampling and Analysis

Soil samples were collected during borehole drilling before and after application of polyphosphate solutions. The soil samples were analyzed for uranium concentrations and used for uranium leachability analyses. The leachability data were collected by Pacific Northwest National Laboratory (PNNL) during four different laboratory tests (Section 1.0 of PNNL-25420, *Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582*, included in Appendix A of this report):

- Sequential uranium extraction tests These tests quantify how uranium in sediment samples is distributed among surface phases that require different strengths of extraction solutions to remove the uranium from the sediment. Uranium phases that require stronger solutions have slower leaching characteristics under normal field conditions.
- Labile uranium leach tests These tests evaluate the quantity of uranium that is readily solubilized into the aqueous phase, helping define the most mobile portion of uranium in a sediment sample. The test simulated field conditions expected during groundwater-soil interactions in the PRZ (Section 4.2 of PNNL-25420, included in Appendix A of this report).
- Flow-through column tests on both intact soil samples and fine-grained (<2-mm size fraction) repacked columns These tests provide information about the rate of uranium released into groundwater.
- Identification of uranium mineral phase(s) and surface coating(s) Identification of mineral phases can be used to interpret uranium leaching behavior based on the types of surface phases present.

Comparison of data from the pre-treatment and post-treatment boreholes is used to evaluate the distribution of the uranium and phosphate and the sequestration of uranium.

Analytical results for the soil samples are summarized in Section 4.1. The data are provided in Appendix A.

#### 3.1.1 Pre-Treatment Sampling and Analysis

Soil samples were collected from three boreholes drilled in accordance with SGW-58261, *Description of Work for Borehole Drilling, Sampling, and Construction of Monitoring Wells in Support of the 300-FF-5 OU Supplemental Post ROD Field Investigation*. Boreholes C8933, C8936, and C8938 were drilled from December 30, 2014 to January 15, 2015 (Figure 3-1). The borehole locations were selected based on elevated uranium groundwater concentrations observed at wells 399-1-17A and 399-1-55. Boreholes C8936 and C8938 were completed as monitoring wells (399-1-67 and 399-1-68, respectively). Borehole C8933 was decommissioned. Well 399-1-67 was used as part of the monitoring well network for the Stage A EA area. The data from the boreholes drilled in December 2014 through January 2015 were used to select the location for the refined Stage A EA area.

Because boreholes C8933 and C8938 were outside of the refined Stage A EA area, two additional boreholes inside the EA area were sampled to characterize pre-treatment uranium concentrations. Boreholes C8940 and C9451 were drilled from July 7 to July 14, 2015, and completed as monitoring

wells (399-1-76 and 399-1-80, respectively) (Figure 3-1). Soil samples were collected from boreholes C8940 and C9451 in accordance with SGW-58553.

Continuous split-spoon samples were collected from these five boreholes from approximately 3.1 m (10 ft) bgs to 11.4 m (37 ft) bgs and analyzed for total uranium concentrations in accordance with SGW-56993, *Sampling Instruction for the 300-FF-5 Operable Unit Supplemental Post ROD Field Investigation.* The samples were not analyzed for phosphate concentrations. The total uranium results were used to select discrete samples for leachability characteristic tests, uranium-bearing mineral-phase analyses, and flow-through column tests. The uranium leachability characteristic data were used to document the pre-treatment leachability of uranium in the vadose zone and PRZ at these locations and refine the CSM.

### 3.1.2 Post-Treatment Sampling and Analysis

Soil samples were collected from three boreholes drilled after the Stage A polyphosphate application in accordance with SGW-59369, *Description of Work for the Installation of Three Boreholes in the 300-FF-5 Groundwater Operable Unit, FY2016.* Boreholes C9580, C9581, and C9582 were drilled from January 5 to January 11, 2016 for post-treatment characterization of the Stage A EA area. Each post-treatment borehole was drilled at a location adjacent to one of the three pre-treatment boreholes within the Stage A EA area (Figure 3-1).

Continuous split-spoon samples were collected and analyzed for total uranium and uranium leachability in accordance with SGW-56993 to determine the post-treatment uranium leaching characteristics in soil. The samples for uranium leachability characteristic tests, uranium-bearing mineral-phase analyses, and flow-through column tests were collected at the same depth intervals that were selected for the pre-treatment soil samples. The uranium leachability characteristic data were used to characterize the post-treatment leachability of uranium in the vadose zone and PRZ at these locations and to refine the CSM.

The following two methods were used to analyze for phosphorus in the post-treatment soil samples. Water-based sample extractions were analyzed using ion chromatography, which measures the phosphorus present as the phosphate ion. The results represent phosphate in the soil that is soluble in water. Acid-based sample extractions were analyzed using inductively coupled plasma-optical emission spectroscopy, which measures the phosphorus present as elemental phosphorus. The results are closer to an approximation of total phosphorus in the soil samples. Although most of the elemental phosphorus may be present as phosphate, results of the two methods are not directly comparable. In this report, the total phosphorus is assumed to represent phosphate because the treatment solutions contained significant quantities of phosphate.

# 3.2 Groundwater Sampling and Monitoring

Groundwater sampling and monitoring was conducted prior to, during, and following the Stage A uranium sequestration treatment.

### 3.2.1 Manual Monitoring

Groundwater was sampled from all 26 Stage A PRZ and aquifer monitoring wells (Figure 1-5) to evaluate the distribution and concentration of uranium and phosphate in the PRZ and aquifer. Samples were collected before, during, and after treatment. A portable pump was operated at a nominal flow rate of 3.8 L/min to 7.6 L/min (1 gal/min to 2 gal/min). Typically, three well volumes were purged, and the sample was collected after field parameters (pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and temperature) had stabilized.



Figure 3-1. Location of Characterization Boreholes in the Stage A EA Area

The new PRZ and aquifer monitoring wells installed for Stage A were developed in June and July 2015 using a submersible pump. The pre-treatment well development data are provided in Appendix B.

Prior to treatment (August 28 through September 2015), 1 round of samples was collected from all 26 wells to determine baseline (pre-treatment) conditions.

During treatment and the day after treatment (November 6 through November 19, 2015), groundwater samples were collected daily from a subset of five PRZ wells (399-1-67, 399-1-75, 399-1-77, 399-1-81, and 399-1-87) and two aquifer wells (399-1-65 and 399-1-74) (Figure 3-2). These samples were collected to determine the influence of the polyphosphate solution infiltration and injection in the PRZ and aquifer and the impact to uranium.

For the month following treatment (November 20 through December 16, 2015), groundwater samples were collected weekly from all 26 monitoring wells.

The pre-treatment and post-treatment samples were analyzed for the constituents listed in Table 3-1. The samples collected during treatment were analyzed for the characteristics listed in Table 3-1 plus selected metals (calcium, sodium, and uranium) and anions (phosphate).

PNNL collected groundwater samples from seven downgradient wells (399-1-23, 399-1-16A, 399-1-17A, 399-2-1, 399-2-2, 399-2-3, and 399-1-7) before, during, and following application of polyphosphate solutions at the Stage A EA area (Figure 3-3). The samples were analyzed for groundwater characteristics (dissolved oxygen, specific conductance, pH, and temperature), water level, metals (calcium, iron, magnesium, manganese, potassium, sodium, and uranium), and anions (chloride, fluoride, nitrite, nitrate, phosphate, and sulfate).

Analytical results for the groundwater samples are summarized in Section 4.2. The data are provided in Appendix C.

#### 3.2.2 Automated Monitoring

Automated groundwater measurements were obtained from monitoring wells before, during, and following Stage A uranium sequestration treatment.

#### 3.2.2.1 In Situ Measurements

Data logging downhole instruments were deployed in six Stage A aquifer monitoring wells for continuous monitoring of water levels and field parameters (specific conductivity, temperature, pH, and oxidation-reduction potential). One well (399-1-70) was upgradient of the Stage A treatment area, two wells (399-1-82 and 399-1-84) were downgradient of the Stage A treatment area, and three wells (399-1-76, 399-1-80, and 399-1-86) were within the Stage A treatment area (Figure 3-4). Water levels and field parameters were measured in situ every 30 minutes from September 11 to December 28, 2015. The data were stored on data loggers, which were manually downloaded at the conclusion of the monitoring period. This information was used to evaluate the distribution and migration of the polyphosphate solution in the aquifer.

Analytical results for the automated groundwater measurements are discussed in Section 4.2.2. The data are provided in Appendix D.



Figure 3-2. Stage A Monitoring Wells Sampled Daily During Treatment

| Characteristics               | Metals    | Anions    |
|-------------------------------|-----------|-----------|
| Bicarbonate alkalinity        | Calcium   | Chloride  |
| Carbonate alkalinity          | Magnesium | Phosphate |
| рН                            | Potassium | Sulfate   |
| Specific conductivity         | Sodium    |           |
| Oxidation-reduction potential | Uranium   |           |
| Dissolved oxygen              |           |           |
| Temperature                   |           |           |

Table 3-1. Constituents Monitored in Groundwater Samples

### 3.2.2.2 Water Level Monitoring

Six groundwater wells (399-1-12A, 399-1-16A, 399-1-23, 399-1-7, 399-2-2, and 399-8-1) in the vicinity of the Stage A EA area and the 300 Area river gauge (station SWS-1) were monitored as part of the local automated water level network (AWLN) (Figure 3-5). Water levels and, in some wells, temperature and specific conductivity, were logged at 15-minute intervals during 2014, 2015, and 2016 and stored on dataloggers or data collection telemetry units. The data were used to monitor the extent of migration of the polyphosphate solution and to evaluate the impact of the injections on nearby water levels. The data also were used to assess whether aquifer permeability was reduced due to the precipitation of phosphate minerals by comparing aquifer hydraulic properties in the vicinity of the EA area before and after polyphosphate application (Section 5.2.2). Results for the automated groundwater measurements are discussed in Section 4.2.2. The data are provided in Appendix D.

# 3.3 Operations Monitoring

Field measurements and samples for laboratory analysis were collected to monitor the infiltration and injection system operations. Results for the operations monitoring are discussed in Section 4.3.

Flow rates for the pyrophosphate chemical, orthophosphate chemical, and filtered river water entering the infiltration and injection mixing skids were displayed continuously on control panels and inline flowmeters that were mounted on the mixing skid piping at various locations. Flow rates were monitored at the control panel and inline flowmeters and recorded hourly by operations personnel. Injection wellhead pressure readings and flow rates were measured and recorded hourly for each injection well during injection operations.

Grab samples of the polyphosphate treatment solutions were collected at the start of infiltration or injection and then every 4 hours throughout the duration of the operation. Field measurements of pH, temperature, specific conductivity, oxidation-reduction potential, and dissolved oxygen of the polyphosphate treatment solution grab samples were recorded by operations personnel.



Figure 3-3. Groundwater Wells Sampled by PNNL During and Following Stage A Treatment



Figure 3-4. Stage A Aquifer Monitoring Wells Used for Continuous In Situ Measurements Recorded on Data Loggers



Figure 3-5. AWLN Wells in the Vicinity of the Stage A Enhanced Attenuation Area

The primary design parameter for successful completion of the infiltration and injection treatment was to deliver polyphosphate solutions to the vadose zone, PRZ, and top of the aquifer that contained specific concentrations of orthophosphate and pyrophosphate. The orthophosphate and pyrophosphate concentrations were monitored using samples of the polyphosphate treatment solution collected daily from the discharge end of the infiltration and injection skids. One sample of river water was collected for each skid prior to mixing with the chemicals. The samples were analyzed at an offsite laboratory for the constituents listed in Table 3-2. The analytical results associated with these samples are provided in Appendix E.

|                        | 5 51      | •         |
|------------------------|-----------|-----------|
| Characteristics        | Metals    | Anions    |
| Bicarbonate alkalinity | Calcium   | Chloride  |
| Carbonate alkalinity   | Magnesium | Phosphate |
|                        | Potassium | Sulfate   |
|                        | Sodium    |           |

Table 3-2. Constituents Monitored Daily in Polyphosphate Solutions

# 3.4 Electrical Resistivity Tomography

Real-time ERT was conducted by PNNL in the Stage A EA area to monitor the spatial and temporal change in electrical conductivity corresponding to the advancement of the polyphosphate infiltration solution through the vadose zone. Baseline ERT surveys were collected prior to polyphosphate infiltration in order to image pre-infiltration subsurface structure and establish baseline conditions. Infiltration of the polyphosphate solution increased electrical conductivity in the vadose zone and PRZ by increasing both the degree of saturation and the specific conductance of the pore fluid. These changes enabled use of time-lapse ERT for remote monitoring of the advancement of the wetting front of the polyphosphate solution. ERT imaging surveys were conducted at 12-minute intervals and reported on a dedicated website. The turnaround time from the beginning of a survey until time-lapse images were available on the website was approximately 30 minutes.

The ERT electrodes were deployed along two transects bisecting the length and width of the infiltration area (Figure 2-5). Line A-A' consisted of 60 electrodes and extended a total length of 89.9 m (295 ft). Line B-B' consisted of 47 electrodes and extended a total length of 70.1 m (230 ft). Each electrode consisted of a 1.88 cm (0.75 in.) diameter carbon steel rod, approximately 40.6 cm (16 in.) long. Each ERT measurement required applying a voltage across a pair of electrodes to induce current flow within the subsurface.

ERT data were recorded from November 2 through December 16, 2015, with the exception of three short periods caused by site power supply interruptions. For time-lapse imaging, surveys were continuously collected and processed to provide a chronological sequence of image frames that illustrate the change in bulk conductivity with time. Subtracting the baseline image (i.e., the pre-treatment image) from the time-lapse images reveals the change in bulk conductivity caused by the polyphosphate solution, thereby providing the distribution of solution in space and time. The time-lapse images were then analyzed to investigate solution delivery performance and timing. Results for the ERT monitoring are discussed in Section 4.4. A detailed description of the ERT operations and imaging interpretation is provided in PNNL-SA-25232, *Electrical Resistivity Tomography Report*, which is included as Appendix F of this report.

### 3.5 Numerical Modeling of Uranium Fate and Transport

A numerical model was developed to evaluate the fate and transport of uranium in the vadose zone and unconfined aquifer following the injection and infiltration of polyphosphate solutions within the Stage A EA area. Two environmental calculation files were prepared to document development of the model and are provided in Appendix G of this report: ECF-300FF5-16-0087, *Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford Washington*, and ECF-300FF5-16-0091, *Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit*.

## 3.6 Long-Term Groundwater Monitoring

Semiannual long-term groundwater samples were collected from four downgradient wells (399-1-17A, 399-1-7, 399-2-1, and 399-2-2) in December 2015 and June 2016 in accordance with the SAP (DOE/RL-2014-42). The samples were analyzed for groundwater characteristics (specific conductance, pH, temperature, and turbidity), water level, uranium, and gross alpha. Analytical results for the groundwater samples are summarized in Section 4.2. The data are provided in Appendix H.

### 3.7 Data Management

A data review and usability determination was conducted in accordance with Section 4.4 of the SAP (DOE/RL-2014-42). The CH2M HILL Plateau Remediation Company (CHPRC) Sample Management and Reporting (SMR) organization, in coordination with the 300-FF-5 OU Project Manager, was responsible for ensuring analytical data were appropriately reviewed, managed, and stored in accordance with the applicable programmatic requirements governing data management methods. All samples submitted to analytical laboratories were accompanied by appropriately filled out chain-of-custody forms.

All operational monitoring, field measurements, and quality control (QC) data were recorded on data sheets by operations in accordance with SGW-58976. The original data sheets were reviewed by operations and transferred to the 300 Area field lead following completion of injections. The 300 Area field lead provided the data sheets to SMR for archiving. The data sheets are included in Appendix I.

Data review and verification were performed to confirm sampling and chain-of-custody documentation was complete. This review included linking sample numbers to specific sampling locations, reviewing sample collection dates and sample preparation and analysis dates to assess whether holding times were met, and reviewing QC data to determine whether analyses met the data quality requirements specified in the SAP (DOE/RL-2014-42).

Data validation of laboratory samples was completed. No major deficiencies were found. There were no minor deficiencies leading to qualification of sample results as estimates. The data validation report is provided in Appendix J.

### 3.8 Lessons Learned from Stage A Operations

Post-job review meetings covering the Stage A uranium sequestration activities were held on December 9 and 10, 2015. Representatives of the groups and disciplines that supported and executed installation and operation of the Stage A system participated in the meetings. These lessons learned have been considered during planning of the Stage B uranium sequestration activities. The report on the lessons learned review of Stage A implementation is provided in Appendix K.

This page intentionally left blank.

# 4 Sampling and Monitoring Results

This chapter provides the results for sampling and monitoring of soil, groundwater, polyphosphate solutions, and electrical resistivity before, during, and after the completion of treatment activities to determine initial site conditions and changes resulting from implementation of the Stage A EA remedy.

# 4.1 Soil Sampling and Leachability Characteristics

Soil sampling and analysis was conducted before and after application of polyphosphate treatment solutions. Samples were analyzed for uranium and tested for leachability characteristics.

### 4.1.1 Pre-Treatment Sampling and Analysis

Five boreholes were drilled and sampled to determine pre-treatment characteristics of the vadose zone, PRZ, and top of the aquifer (Section 3.1.1). The locations of the pre-treatment boreholes are shown in Figure 3-1.

Soil samples collected from the pre-treatment boreholes were analyzed for total uranium concentrations. The total uranium results were used to select discrete sample intervals for comprehensive tests on uranium leachability, mineral phase association, and soil characteristics.

### 4.1.1.1 Total Uranium and Phosphate Results

Samples collected in boreholes C8933, C8936 (well 399-1-67), and C8938 (well 399-1-68) during January 2015 and boreholes C8940 (well 399-1-76) and C8951 (well 399-1-80) during July 2015 were analyzed for total uranium concentrations. A summary of total uranium results is provided in Appendix A.

Concentrations of total uranium ranged from 0.141 to 41.4  $\mu$ g/g. Background uranium levels in 300 Area soil have been previously calculated as 3.21  $\mu$ g/g (Section 3.1 of SGW-58830). Pre-treatment samples showed elevated uranium above background levels at all five borehole locations.

Among the three boreholes sampled in January 2015, the highest concentrations of uranium were found in borehole C8936 (Figure 4-1). The location of the refined Stage A area was selected to include borehole C8936. Based on the relatively low uranium concentrations in boreholes C8933 and C8938, the refined Stage A area did not include these locations (Section 2.2.1 and Figure 3-1). Samples from boreholes C8940 and C9451, which were drilled within the refined Stage A area in July 2015, had slightly higher uranium concentrations in the lower vadose zone and PRZ than boreholes C8933 and C8938.



Figure 4-1. Total Uranium Concentrations in Pre-Treatment Boreholes C8933, C8936, C8938, C8940, and C9451.

Phosphate extraction using nitric acid was conducted on selected pre-treatment samples from boreholes C8940 and C9451 (PNNL-25420, included in Appendix A of this report). Results from the pre-treatment samples provide an average phosphate concentration of 1,750 mg/kg, indicating that residual phosphate exists in this area from past liquid discharges (Section 6.3 of ECF-300FF5-16-0091, *Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit*, included in Appendix G of this report).

#### 4.1.1.2 Uranium Leachability Characteristics Test Results

Semi-selective chemical extractions were conducted on 10 pre-treatment soil samples. The semi-selective extractions were performed sequentially in the following order: weak acetic acid, strong acetic acid, ammonium oxalate, and nitric acid. The results are presented in Figures 4-2 and 4-3 as the percent of uranium extracted during each extraction along with the total extracted uranium concentration. The total extracted uranium concentrations ranged from about 7 to  $126 \mu g/g$ , with the highest concentration observed in a sample from borehole C8936. In almost all samples, the weak acetic acid and nitric acid extracted the highest uranium concentrations. The weak acetic acid extractions target the weakly adsorbed and readily leachable uranium-bearing carbonate mineral phases, while the nitric acid extraction targets the nonleachable (strongly bound) uranium associated with crystalline oxides, hydroxides, and clays that remain after all other extractions have occurred. The strong acetic acid and ammonium oxalate extractions target the strongly bound (surface complexed) uranium and uranium associated with amorphous oxides of iron, manganese, aluminum, and silica.



Figure 4-2. Results from the Semi-Selective Sequential Extraction Experiments on Pre-Treatment Samples from Boreholes C8933, C8936, and C8938



Figure 4-3. Results from the Semi-Selective Sequential Extraction Experiments on Pre-Treatment Samples from Boreholes C8940 and C9451

The relatively large fraction of uranium associated with the carbonate mineral phases, based on the weak acetic acid extractions, indicates that the labile and readily leachable uranium fraction varies from 20 to 50 percent of the total uranium. In the sample from a depth of 8.2 m (27 ft) bgs in borehole C8936 with the highest extracted total uranium concentration of approximately 126  $\mu$ g/g, the labile uranium fraction is around 43 percent. Because this sample is located near the PRZ, it is likely that the relative mobility of the labile uranium contributes to contamination of the groundwater (Section 4.5.2 of SGW-58830).

The leachable (labile) uranium concentrations determined using the sodium bicarbonate (and sodium carbonate) extraction method are compared with the weak acetic acid extraction method in Figures 4-4 and 4-5. Samples showing higher uranium concentrations from sodium bicarbonate/carbonate extraction also tend to indicate higher concentrations from weak acetic acid extraction; however, the latter extraction leads to larger uranium concentrations. This implies that most of the uranium that is potentially labile is associated with soluble carbonate mineral phases with a relatively smaller amount weakly complexed at the surface sites (Section 4.5.2 of SGW-58830).

#### 4.1.2 Post-Treatment Sampling and Analysis

Three boreholes were drilled and sampled in January 2016 to determine post-treatment characteristics of the Stage A EA area (Section 3.1.2). The three boreholes were drilled adjacent to three pre-treatment boreholes, resulting in the following corresponding collocated borehole pairs: C9451 and C9580; C8940 and C9581; and C8936 and C9582 (Figure 3-1).

#### 4.1.2.1 Total Uranium and Phosphate Results

Sampling performed in boreholes C9580, C9581, and C9582 was used to obtain post-treatment total uranium and phosphate concentrations in the vadose zone, PRZ, and top of the aquifer. A summary of the results for total uranium and other selected metals (calcium and phosphorus) and anions (chloride, fluoride, nitrate, nitrite, phosphate, and sulfate) from the post-treatment boreholes is provided in Appendix A. The samples also were used to test for leachability characteristics, including total uranium extracted by sequential extraction (Section 4.1.2.2). The pre-treatment and post-treatment total uranium concentrations and total extracted uranium concentrations are shown on Figures 4-6 through 4-8.

Post-treatment borehole C9580 shows total uranium values near or below the background value  $(3.21 \ \mu g/g)$  with the exception of the sample collected from the PRZ (9.1 to 9.2 m [29.5 to 30 ft] bgs) (Figure 4-6). Total uranium concentrations in the collocated pre-treatment borehole C9451 are highest in the lower vadose zone and PRZ. At this location, the maximum concentrations in pre- and post-treatment samples are  $12 \ \mu g/g$  and  $7.6 \ \mu g/g$ , respectively. The maximum total extracted uranium concentrations based on sequential extraction in pre- and post-treatment samples are  $15.7 \ \mu g/g$  and  $13.6 \ \mu g/g$ , respectively.

Post-treatment borehole C9581 samples from just above and within the PRZ (7.8 to 8.8 m [25.5 to 28.5 ft] bgs) contained total uranium concentrations that slightly exceeded the background value (Figure 4-7). Total uranium results from the adjacent pre-treatment borehole C8940 also exceeded the background value in the PRZ. At this location, the maximum concentrations in pre- and post-treatment samples are 11.5  $\mu$ g/g and 5.3  $\mu$ g/g, respectively. The maximum total extracted uranium concentrations based on sequential extraction in pre- and post-treatment samples are 15.5  $\mu$ g/g and 5.9  $\mu$ g/g, respectively.



Figure 4-4. Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared with the Uranium Concentration from Weak Acetic Acid Extraction for Pre-Treatment Samples from Boreholes C8933, C8936, and C8938



Figure 4-5. Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared with the Uranium Concentration from Weak Acetic Acid Extraction for the Pre-Treatment Samples from Boreholes C8940 and C9451



Figure 4-6. Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment Borehole C9451 and Post-Treatment Borehole C9580



Figure 4-7. Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment Borehole C8940 and Post-Treatment Borehole C9581

#### SGW-59614, REV. 0

Total uranium concentrations in samples from post-treatment borehole C9582 exceed the background value at all depths sampled; concentrations were highest in the lower valoes zone (Figure 4-8). Uranium concentrations in the collocated pre-treatment borehole C8936 exceeded background in all but the shallowest sample. At this location, the maximum concentrations in pre- and post-treatment samples are 41  $\mu$ g/g and 100  $\mu$ g/g, respectively. The maximum total extracted uranium concentrations based on sequential extraction in pre- and post-treatment samples are 125.8  $\mu$ g/g and 105.3  $\mu$ g/g, respectively.



Figure 4-8. Total Uranium Concentrations and Total Extracted Uranium in Pre-Treatment Borehole C8936 and Post-Treatment Borehole C9582

Comparing total uranium concentrations and total extracted uranium based on sequential extraction in collocated pre- and post-treatment borehole samples indicates the uranium concentrations remained largely unchanged in the soil following treatment. Some difference in vertical concentration profiles is expected based on natural variability in the soil column. However, uranium concentrations in the pre-treatment and post-treatment pairs are of the same order of magnitude. This shows that most of the uranium present in the soil remained in place, and only a limited amount was displaced during infiltration and injection (Section 6.3 of ECF-300FF5-16-0091, included in Appendix G of this report).

The vertical profiles of phosphate concentrations detected in the post-treatment boreholes can be used to indicate the distribution of the phosphate delivered by the polyphosphate solutions. Phosphate concentrations obtained by performing water extraction (analyzed using ion chromatography) are shown in Figure 4-9; phosphate concentrations obtained by performing acid extraction (analyzed using inductively coupled plasma-optical emission spectroscopy) are shown in Figure 4-10. The highest concentrations in boreholes C9580 and C9581 occur at approximately 5 m (16.4 ft) and 2 to 3 m (6.6 to 9.8 ft) bgs, respectively, suggesting that more phosphate in the infiltration solutions precipitated in upper vadose zone. (The high concentration at 5 m [16.4 ft] bgs in borehole C9580 corresponds to the presence of a thin silt zone.) However, the phosphate concentrations are relatively higher throughout the vadose zone in borehole C9580. Phosphate concentrations in borehole C9582 are relatively low throughout the vadose zone. All three boreholes show increased phosphate concentrations in the PRZ, reflecting the direct injection of phosphate solution at that depth.



Figure 4-9. Phosphate Concentrations based on Water Extraction in Samples from the Post-Treatment Boreholes



Figure 4-10. Phosphate (Total Phosphorus as Phosphate) Concentrations based on Acid Extraction in Samples from the Post-Treatment Boreholes

Phosphate extraction using nitric acid was conducted on selected post-treatment samples from boreholes C9580, C9581, and C9582 (PNNL-25420, included in Appendix A of this report). Phosphate concentrations are typically higher than 2,000 mg/kg (i.e., higher than the pre-treatment average concentration) for samples from borehole C9580 and for deeper samples from borehole C9582 (Figure 4-11). These elevated concentrations are consistent with contact by phosphate-bearing solutions resulting from Stage A treatment. Borehole C9580 has high phosphate concentrations throughout its depth profile, consistent with the ERT data. The ERT data show that infiltrating solutions migrated to about 6 m (19.7 ft) bgs (i.e., above the lower vadose zone) in most of the Stage A area but were able to reach the water table in the western region where infiltration was more rapid and where borehole C9580 is located (Section 4.4). Higher phosphate injections into the PRZ. The higher phosphate concentration for the deeper sample from borehole C9581 also is consistent with injections delivering high concentrations of phosphate (Section 6.3 of ECF-300FF5-16-0091, included in Appendix G of this report).

The relative vertical distribution of phosphate in post-treatment boreholes based on nitric acid extraction (Figure 4-11) is consistent with laboratory analyses of phosphate concentrations in sediment samples collected from the post-treatment boreholes (Figures 4-9 and 4-10). The magnitude of phosphate concentrations derived from acid extraction (Figure 4-10) is similar to the phosphate concentrations based on nitric acid extraction (Figure 4-11). Concentrations derived by water extraction are lower (Figure 4-9).



Reference: Figure 6-16 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

#### Figure 4-11. Concentration of Phosphate (Total Phosphorus as Phosphate) Based on 0.5 M Nitric Acid Extraction on Post-Treatment Samples

Based on the vertical profile of phosphate concentrations, direct injection of polyphosphate solutions into the PRZ is a more effective method than infiltration for delivery of phosphate to the PRZ.

#### 4.1.2.2 Uranium Leachability Characteristics Test Results

Semi-selective chemical extractions were conducted on nine soil samples collected from the three post-treatment boreholes. The sample intervals were selected to correspond with those tested in the pre-treatment boreholes. Semi-selective extraction was performed on the post-treatment samples using the same sequence as used for the pre-treatment samples: weak acetic acid, strong acetic acid, ammonium oxalate, and nitric acid. Results are presented in Figures 4-12 and 4-13 as the percent of uranium extracted during each extraction along with the total extracted uranium concentration.

The total extracted uranium ranged from 2.4 to  $105 \ \mu g/g$ . Consistent with the total uranium results, the highest uranium concentrations were extracted from the five samples collected from borehole C9582. Borehole C9582 is collocated with borehole C8936, which contained the highest concentrations of total uranium among the pre-treatment boreholes (Figure 4-1).

In all of the post-treatment samples, strong acetic acid extracted the highest concentrations of uranium, ranging from 37.5 to 56.8 percent of the total extracted uranium concentration. The strong acetic acid extractions selectively target the (strongly bound) uranium surface complexed with carbonate minerals.

The relative contribution of uranium from each semi-selective extraction is compared for samples from similar depths in the pre-treatment borehole C9451 (Figure 4-14, shown on the left) and the collocated post-treatment borehole C9580 (Figure 4-14, shown on the right). In each of the sample pairs, the relative contribution of uranium from the strong acetic acid extraction is higher in the post-treatment sample, indicating more uranium is strongly bound by surface complexation. Most of the post-treatment samples also show a decrease in the relative contribution from the weak acetic acid and nitric acid extractions, indicating that less of the uranium is readily soluble or nonleachable.

Figure 4-15 shows the relative contribution of uranium from each semi-selective extraction for samples from comparable depths in pre-treatment borehole C8940 and the collocated post-treatment borehole C9581. Figure 4-16 shows the relative contribution of uranium from each semi-selective extraction for samples from comparable depths in pre-treatment borehole C8936 and the collocated post-treatment borehole C9582. The sample pairs show a similar change in the relative contribution of uranium in the extractions between pre-treatment and post-treatment conditions.

Each extractant solution was also analyzed for phosphorus, calcium, aluminum, iron, and manganese. Results for these analyses are discussed in Section 6.3.1 in ECF-300FF5-16-0091 (included in Appendix G of this report). The results are used in Section 5.2 of this report to develop the conceptual model of geochemical reactions resulting from application of polyphosphate solutions.

The readily leachable (labile) uranium concentrations determined using the sodium bicarbonate and sodium carbonate extraction method are presented in Figure 4-17. The amounts of uranium that are weakly surface complexed and readily leachable from weak acetic acid extraction also are presented for comparison. The three shallower samples from borehole C9582 (samples B347P0, B347P5, and B347R1 from the lower vadose zone) have higher uranium concentrations from sodium bicarbonate/carbonate extraction and from weak acetic acid extraction. These results imply most of the uranium that is potentially labile in these samples is associated with soluble carbonate mineral phases. Similar results were obtained for the pre-treatment samples, suggesting phosphate from infiltration did not reach the lower vadose zone at this location.



Figure 4-12. Results from Semi-Selective Sequential Extraction Experiments on Samples from Post-Treatment Boreholes C9580 and C9581



Figure 4-13. Results from Semi-Selective Sequential Extraction Experiments on Samples from Post-Treatment Borehole C9582


Figure 4-14. Relative Uranium Extraction Contribution in Borehole Pair C9451-C9580





Figure 4-15. Relative Uranium Extraction Contribution in Borehole Pair C8940-C9581

Figure 4-16. Relative Uranium Extraction Contribution in Borehole Pair C8936-C9582



CHSGW20160304

Figure 4-17. Uranium Concentration from Sodium Bicarbonate/Carbonate Extraction Compared with the Uranium Concentration from Weak Acetic Acid Extraction for Post-Treatment Borehole Samples

The distribution of phosphate and uranium is not uniform among the three post-treatment boreholes. Uranium concentrations in boreholes C9580 and C9581 are at or below the background concentration at depths above the PRZ. Uranium concentrations in borehole C9582 exceed the background concentration throughout the vadose zone and PRZ. The vertical distribution of uranium is similar in the collocated pre-treatment samples. Phosphate concentrations in boreholes C9580 are higher. As a result, only overall trends can be compared.

Flow-through column leach tests were conducted on three intact samples and four repacked columns containing less than 2 mm size fraction material from post-treatment boreholes (Table 6-4 in ECF-300FF5-16-0091, included in Appendix G of this report). The depth intervals were selected based on the distribution of uranium concentrations in the soil and the depth of the pre-treatment samples.

Results from flow-through column leach tests performed on two intact lower vadose zone samples from pre-treatment borehole C8936 are compared to intact lower vadose zone and PRZ samples from collocated post-treatment borehole C9582 in Figure 4-18. The total uranium soil concentrations based on sequential leach tests are shown next to the column test results. Initial high uranium concentrations decline over the first few pore volumes, after which the rate of decline is slower. The intermittent increase in concentrations and gradual decline results from resumption of flow following the stop-flow events. The total uranium soil concentration in all five samples is high (ranging from 31 to 126  $\mu$ g/g), and the effluent concentrations are sustained, indicating uranium mass has not been depleted. Results for repacked columns containing less than 2 mm size fraction material correspond to the results for the intact samples from the same depths (Section 6.3 of ECF-300FF5-16-0091, included in Appendix G of this report).



#### Comparison of Post & Pre-Treatment Samples (Field-Textured)

Reference: Figure 6-28 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 4-18. Comparison of Effluent Uranium Concentrations from Column Leach Tests Performed on Intact (Field-Textured) Samples from Post-Treatment and Pre-Treatment Boreholes The flow-through column leaching behavior of the pre-treatment samples from the lower vadose zone (B30541 and B30543) is similar to the leaching behavior observed for the two post-treatment samples from the lower vadose zone (B347P4 and B347R0). High phosphate concentrations were not available in the pre-treatment samples, and they were not delivered to the post-treatment lower vadose zone samples by infiltration. The results for the post-treatment sample from the PRZ (B347T6) show that initial concentrations are lower and remain low throughout the duration of the experiment. The low effluent concentrations indicate the post-treatment sample from the PRZ most likely was impacted by phosphate injection into the PRZ and that the injected phosphate appears to have sequestered uranium. Because all three post-treatment boreholes show similar high phosphate concentrations at depth (Figure 6-17 in ECF-300FF5-16-0091, included in Appendix G of this report), similar leaching behavior of uranium is likely in all three locations.

Labile uranium leach testing was conducted on aliquots of the less than 2 mm size fraction samples from the three post-treatment boreholes. The results indicate uranium-containing carbonates are present in the soil in sufficient amounts to continue to dissolve and release uranium even after 66 days of continuous testing. This type of nonequilibrium, kinetically controlled leaching in contact with a bicarbonate aqueous solution could be expected to continue under field conditions. However, the amount of uranium leached is relatively low for three samples from borehole C9580, one PRZ sample from borehole C9581, and two PRZ samples from borehole C9582 (Figure 5-6 in PNNL-25420, included in Appendix A of this report). The amount of uranium leached is relatively high for four samples above the PRZ from borehole C9582. These results suggest that the labile uranium concentration remains relatively low in samples where the phosphate concentration is above background due to possible reactions of the uranium with calcium phosphate (Section 6.3.3 of ECF-300FF5-16-0091, included in Appendix G of this report).

# 4.2 Groundwater Sampling and Monitoring

The following subsections provide results of groundwater sampling and monitoring conducted before, during, and after application of polyphosphate treatment solutions to the vadose zone, PRZ, and top of the aquifer. The purpose of the sampling was to monitor the effects of the polyphosphate solutions on the groundwater and evaluate performance of the remedy.

### 4.2.1 Manual Monitoring

Manual groundwater monitoring is described in Section 3.2.1. Analytical results for the samples collected as part of operational monitoring are provided in Appendix C of this report, and analytical results for the samples collected as part of long-term monitoring are provided in Appendix H.

Phosphate concentrations were minimal in the three pairs of monitoring wells (399-1-72/73, 399-1-70/71, and 399-1-66/69) upgradient from the treatment area (Figure 1-5). These wells were located outside the radius of influence (ROI) of the polyphosphate injections, and the phosphate data suggest that groundwater was not flowing toward the northeast during and after treatment.

Figure 4-19 shows trend plots of phosphate concentration at the 10 pairs of Stage A monitoring wells located inside and downgradient of the EA area and at groundwater well 399-1-23 located downgradient of the EA area. In the two aquifer monitoring wells sampled daily (399-1-65 and 399-1-74) (Figure 3-2), the trend plots show no significant increase in phosphate following aquifer injections despite their close proximity to the injection wells. In four of the five PRZ monitoring wells located in the EA area and sampled daily (399-1-75, 399-1-87, 399-1-67, and 399-1-77), a significant increase in phosphate concentrations (to approximately 4,000 to 8,000 mg/L) immediately following PRZ injections was followed by a decrease, which suggests that PRZ injections were effective at delivering a high concentration of phosphate to the PRZ for a short duration. However, the plot of the fifth PRZ monitoring well sampled daily (399-1-81) showed no significant increase in phosphate following PRZ injections, most likely because it was not within the ROI of the injections or in the flow path of groundwater.



Figure 4-19. Phosphate Concentration and Specific Conductance Trends in Stage A Monitoring Wells

This page intentionally left blank.

In the weekly samples taken after polyphosphate treatment, data showed that phosphate concentrations in the PRZ and aquifer were much lower (approximately <2,000 mg/L) than concentrations immediately following injections. This suggests that phosphate reached the PRZ and aquifer in the EA area during treatment, but concentrations reduced as the phosphate was diluted and migrated in the groundwater.

The distribution of phosphate in the PRZ on November 20, 2015, 2 days after PRZ injections were completed, is shown in Figure 4-20. The distribution of phosphate in the aquifer on November 20 and December 3, 2015, is shown in Figures 4-21 and 4-22, respectively. The two figures for November 20, 2015, show relatively high concentrations in the PRZ, but not in the aquifer, following PRZ injections. The figure for December 3, 2015, indicates that the phosphate is draining from the PRZ to the aquifer. The western Stage A area drained faster than the eastern Stage A area, consistent with ERT data for infiltration rates (Section 4.4).

Figures 4-23 and 4-24 show trend plots of uranium concentrations in the PRZ and aquifer in the 26 monitoring wells. In the monitoring wells sampled daily during treatment, a pulse of uranium was observed shortly after infiltration began. Application of the polyphosphate solutions with higher ionic strength would be expected to temporarily mobilize uranium. There were minimal changes in uranium concentration in the monitoring wells upgradient from the EA area or outside the downgradient flow path of the groundwater.

Trend plots of uranium, phosphate, and specific conductance through June 2016 (7 months after the completion of polyphosphate injection and infiltration) are shown for downgradient wells 399-1-23, 399-1-17A, 399-1-7, and 399-2-2 in Figures 4-25 through 4-28. The locations of the wells are shown on Figure 3-3. All of the data for these wells and for wells 399-1-16A, 399-2-1, and 399-2-3 collected by PNNL between September 2015 and June 2016 are provided in Appendix C; the data collected by CHPRC in December 2015 and June 2016 are provided in Appendix H.

- Well 399-1-23 (~5 m [16 ft] downgradient of the Stage A area) and well 399-1-17A (38.1 m [125 ft] downgradient of the Stage A area) show steep increases in specific conductance and phosphate concentrations approximately 1 week after the start of polyphosphate application. Concentrations slowly declined but remained slightly elevated above pre-treatment concentrations as of June 2016. During this same timeframe, uranium concentrations decreased below pre-treatment concentrations and the cleanup level (30 μg/L).
- Well 399-1-7 (157.0 m [515 ft] downgradient of the Stage A area) shows a gradual increase in specific conductance and phosphate concentrations approximately 1 month after the start of polyphosphate application. Concentrations had not started to decline as of June 2016. During this same timeframe, uranium concentrations decreased and remained below pre-treatment concentrations and the cleanup level.
- Well 399-2-2 (280.4 m [920 ft] downgradient of the Stage A area) shows no significant increases in specific conductance or phosphate. Uranium concentrations in this well have fluctuated and were typically lower in June (high river stage) than in December (low river stage). The low concentrations near the cleanup level in June 2016 may reflect this seasonal variation.

The data collected from wells farther downgradient of the Stage A EA area corroborate the observations made at monitoring wells within and near the EA area, which show that any temporary spikes of uranium in the aquifer due to polyphosphate application have not impacted groundwater quality. Conversely, uranium concentrations downgradient of the Stage A EA area have decreased due to the Stage A phosphate application.



Figure 4-20. Distribution of Phosphate in the PRZ on November 20, 2015



Figure 4-21. Distribution of Phosphate in the Aquifer on November 20, 2015



Figure 4-22. Distribution of Phosphate in the Aquifer on December 3, 2015



Figure 4-23. Uranium Concentration Trends in Stage A PRZ Monitoring Wells



Figure 4-24. Uranium Concentration Trends in Stage A Aquifer Monitoring Wells



Figure 4-25. Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-23



Figure 4-26. Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-17A



Figure 4-27. Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-1-7



Figure 4-28. Groundwater Specific Conductance, Uranium, and Phosphate Concentrations in Well 399-2-2

#### SGW-59614, REV. 0

Groundwater monitoring results for well 399-1-17A show temporary increases in trace metals such as arsenic and vanadium following application of the polyphosphate solutions (Figure 4-29). Both arsenic and vanadium are likely naturally occurring and possibly being mobilized from dissolution of iron oxides and clay minerals from interaction with phosphate-bearing solutions. Vanadium could also be made available from dissolution of a uranium-bearing mineral, such as carnotite.



#### 3 51 - 1

#### 4.2.2 Automated Monitoring

Automated groundwater monitoring is described in Section 3.2.2. Analytical results for the automated groundwater measurements are summarized in Appendix D of this report.

#### 4.2.2.1 In Situ Monitoring

Data loggers were installed in six aquifer monitoring wells inside and outside of the Stage A EA area (Figure 3-4). Specific conductance measurements recorded using the dataloggers indicate the extent of the polyphosphate solution migration. Figure 4-30 shows the correlation between the specific conductance measured using the data loggers and the phosphate concentration analyzed in groundwater samples from five of the six monitoring wells that were in or downgradient from the EA area. The sixth data logger was in a monitoring well (399-1-70) upgradient from the EA area that did not receive a significant amount of phosphate. Specific conductance at monitoring wells 399-1-80, 399-1-82, and 399-1-84 did not change (Figure 4-19). This is consistent with groundwater samples from the wells, which contained low concentrations of phosphate. Specific conductance measured at monitoring wells 399-1-86 increased after each aquifer injection (Figure 4-19). Phosphate was not measured daily in these two wells; however, the specific conductance/phosphate correlation (Figure 4-30) indicates phosphate was present in the aquifer.



Reference: Figure 6-7 in ECF-300FF5-16-0091, *Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit* (included in Appendix G of this report).

Note: Regression excludes outlier.

#### Figure 4-30. Electrical Conductivity and Phosphate Correlation

#### 4.2.2.2 Water Level Monitoring

Six groundwater wells in the vicinity of the Stage A treatment area and the 300 Area river gauge (station SWS-1) were continuously monitored as part of the local AWLN (Figure 3-5). The water levels and river stage measured before, during, and after the injections were used in the numerical fate and transport modeling described in Chapter 5 of this report and in ECF-300FF5-16-0091 (included in Appendix G of this report). The water levels and specific conductivity measurements were used in the evaluation of the impact of phosphate injections on aquifer properties described in Chapter 5 of this report.

## 4.3 Operations Monitoring

The following subsections describe the results of operations monitoring of the Stage A infiltration and injection systems. The data are provided in Appendix E of this report.

#### 4.3.1 Infiltration System

Infiltration was initiated on November 7, 2015. One mixing skid was used to mix concentrated orthophosphate and pyrophosphate chemicals with filtered Columbia River water and deliver the polyphosphate solution to the infiltration system distribution header. From the distribution header, the polyphosphate solution was delivered to infiltration drip lines (Figure 2-4). The configuration of the infiltration system is described in Section 2.2.4.

The infiltration system was operated 24 hr/d for 271 hours, ending on November 16, 2015. During the first 4 days of infiltration, the polyphosphate solution infiltrated at average flow rates ranging between 197 and 212 L/min (52 and 56 gal/min) (Table 2-1). This flow rate was less than half of the design flow rate of 511 L/min (135 gal/min). On November 11, 2015, the 103 kPa (15 lb/in<sup>2</sup>) pressure regulators connecting each drip line to the header were replaced with 138 kPa (20 lb/in<sup>2</sup>) pressure regulators. The average flow rate increased, ranging between 254 and 318 L/min (67 and 84 gal/min), for the

remaining 5 days of infiltration. Figure 4-31 shows the average daily infiltration flow rates for the 10 days of infiltration.



Figure 4-31. Stage A Daily Average Infiltration Flow Rates

Conductivity levels on the first day of infiltration were higher than anticipated in the treatment solution discharging from the mixing skid to the infiltration lines. This indicated the solution may have contained a higher phosphate concentration than intended. Operations personnel continued to collect field measurements every 4 hours to monitor conductivity. These data continued to show elevated conductivity levels and confirmed the phosphate concentrations were higher than desired. The issue was traced to inaccurate flow rates displayed on the skid control panel. Using the more accurate flow rates displayed on the in-line flowmeters, operators were able to adjust the mixing parameters and bring the phosphate concentrations into the desired range. The success of the adjustment was confirmed by the field measurements.

Totalizer volumes recorded on the inline flowmeters at the conclusion of the infiltration operations on November 16, 2015, indicated 3,342,889 L (883,194 gal) of polyphosphate solution was delivered to the vadose zone during Stage A. The actual volume was less than the design volume of 3,679,420 L (972,000 gal) by 10.1 percent.

The polyphosphate solution used for infiltration was composed of a mixture of 90 percent orthophosphate and 10 percent pyrophosphate, by weight as phosphate. The target infiltration concentrations are provided in Table 4-1. The composition of the infiltrated solution for the three primary components (sodium, potassium, and phosphate) is shown in Figure 4-32, based on daily samples collected from the infiltration skid. During infiltration, phosphate concentrations were generally maintained around 5,000 mg/L (50 mM) except for the first day of infiltration when the concentrations were around 12,000 mg/L due to operational issues related to mixing with river water. Sodium and potassium concentrations varied in proportion to the phosphate concentrations, with the sodium concentrations being slightly greater than potassium concentrations.

| Infiltration Solution Component                                | Target Infiltration<br>Concentration<br>(mM) | Approximate Target<br>Infiltration Concentration of<br>Phosphate<br>(mg/L) |  |  |  |
|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Orthophosphate*                                                | 47.5                                         | 4,520                                                                      |  |  |  |
| Pyrophosphate (Na <sub>4</sub> P <sub>2</sub> O <sub>7</sub> ) | 2.5                                          | 480                                                                        |  |  |  |
| Total approximate phosphate (PO <sub>4</sub> ) concentration   | 50                                           | 5,000                                                                      |  |  |  |
| * Mixture of NaH2PO4-Na2HPO4-KH2PO4-K2HPO4                     |                                              |                                                                            |  |  |  |

| Table 4-1. | Target | Concentrations | for \ | /adose | Zone  | Infiltration     |
|------------|--------|----------------|-------|--------|-------|------------------|
|            | Turget | ooncentration5 | 101 1 | 100000 | 20110 | in in in a cloth |



Source: Figure 6-3b in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Note: No sample taken on November 13, 2015.

Figure 4-32. Stage A Infiltration Solution Daily Sample Concentrations at the Mixing Skid

### 4.3.2 Injection System

Injections into the top of the aquifer were conducted on November 6, 9, and 16, 2015 (Table 2-1). Injections into the PRZ were conducted between November 16, 17, and 18, 2015 (Table 2-1). The duration of each round of injections was 8 continuous hours; starting and ending times for the injections are provided in Table 2-1. During injections, the polyphosphate solution was delivered simultaneously to six of the nine injection wells at a combined target flow rate of 1,136 L/min (300 gal/min). Instruments on the injection mixing skid were monitored to ensure that appropriate flow rates and system parameters were maintained.

Totalizer volumes recorded on the inline flowmeters at the conclusion of the final aquifer injection on November 16, 2015, indicated 1,697,722 L (448,492 gal) of polyphosphate solution was delivered to the top of the aquifer during Stage A. The actual volume exceeded the intended design volume of 1,635,298 L (432,000 gal) by 3.7 percent.

Total volumes of polyphosphate solution delivered to each well during aquifer injections is shown in Figure 4-33. The volume injected into seven of the nine wells exceeded the target volume of 181,699 L (48,000 gal) of polyphosphate solution per well. Wells 399-1-95 and 399-1-97 accepted solution at rates less than the target operational parameter of 189 L/min (50 gal/min). This deficiency was anticipated due to very low pumping rates experienced when the wells were developed during construction (Appendix B). The low injection rates and pumping rates in these two wells are consistent with the presence of the less permeable Ringold Formation in the lower portion of the screened intervals in the aquifer (Figure 2-2). In an effort to mitigate the lower flow rates for wells 399-1-95 and 399-1-97, flow rates (and subsequent volumes) were increased to the adjacent wells (399-1-91, 399-1-94, and 399-1-96).



Figure 4-33. Stage A Aquifer Injection Volume Per Well

Totalizer volumes recorded on the inline flowmeters at the conclusion of the final PRZ injections on November 18, 2015, indicated 1,809,474 L (478,014 gal) of polyphosphate solution was delivered to the PRZ during Stage A. The actual volume exceeded the design volume of 1,635,298 L (432,000 gal) by 10.7 percent.

Total volumes of polyphosphate solution discharged to each of the nine wells during PRZ injections are shown in Figure 4-34. The volume injected into all of the wells exceeded the polyphosphate treatment solution target volume of 181,699 L (48,000 gal).



Figure 4-34. Stage A PRZ Injection Volume Per Well

The polyphosphate solution used for aquifer and PRZ injections was composed of a mixture of 90 percent orthophosphate and 10 percent pyrophosphate, by weight as phosphate. The target infiltration concentrations are provided in Table 4-2. The composition of the injected solution for the three primary components (sodium, potassium, and phosphate [PO4]) is shown in Figure 4-35, based on daily samples collected from the injection skid. Concentrations were higher on the days when solutions were being injected (Figure 4-35), and lower on days when they were infiltrated (Figure 4-32), per the design objectives. During injection, phosphate concentrations varied from around 8,000 mg/L to 9,000 mg/L (84 to 95 mM), reflecting variability in the manufacturing of the concentrated solution and mixing with the river water in the mixing skids. Sodium and potassium concentrations varied in proportion to the phosphate concentrations, with the sodium concentrations being slightly greater than potassium concentrations.

The sample collected on November 16 represents both the aquifer injection and PRZ injection solution on that day of the operation. On November 16, a decision was made to continue 8-hour PRZ injections through the night rather than shut down in the afternoon and restart the following morning. Therefore, a second sample of the phosphate treatment solution was not collected when injections were transitioned from the top of the aquifer to the PRZ on November 16.

| Injection Solution Component                                                                                                                        | Target Injection<br>Concentration<br>(mM) | Approximate Target Injection<br>Concentration of Phosphate<br>(mg/L) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Orthophosphate*                                                                                                                                     | 78.4                                      | 7,450                                                                |
| Pyrophosphate (Na <sub>4</sub> P <sub>2</sub> O <sub>7</sub> )                                                                                      | 4.1                                       | 790                                                                  |
| Total approximate phosphate (PO <sub>4</sub> ) concentration                                                                                        | 82.5                                      | 8,240                                                                |
| * Mixture of NaH <sub>2</sub> PO <sub>4</sub> -Na <sub>2</sub> HPO <sub>4</sub> -KH <sub>2</sub> PO <sub>4</sub> -K <sub>2</sub> HPO <sub>4</sub> . | •                                         | •                                                                    |

Table 4-2. Target Concentrations for Aquifer and PRZ Injections



Source: Figure 6-3a in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

#### Figure 4-35. Stage A Injection Solution Daily Sample Concentrations at the Mixing Skid

Application of polyphosphate solution through injection met the design parameters.

## 4.4 Electrical Resistivity Tomography

Real-time ERT was used to image the spatial and temporal change in electrical conductivity corresponding to migration of the polyphosphate infiltration solution through the vadose zone. The ERT network is described in Section 2.2.6, and ERT data collection is described in Section 3.4. The ERT report (PNNL-SA-25232) is provided in Appendix F.

### 4.4.1 Pre-Treatment Monitoring

The baseline (pre-treatment) ERT image represents the bulk conductivity distribution prior to infiltration of polyphosphate solution. The baseline image is critical because it is subtracted from every time-lapse image to reveal the change in bulk conductivity with time. During Stage A infiltration operations, the change in bulk conductivity is caused by the increase in saturation and pore fluid conductivity. The baseline image can also be used to infer geologic structure or other properties related to spatial variations in porosity, saturation, pore fluid conductivity, texture, and mineralogy.

The baseline image for the time-lapse imaging was collected at 6:00 a.m. on November 6, 2015, just prior to the onset of polyphosphate solution injection into the saturated zone (Figure 4-36). The image shows background levels of low conductivity as expected for this region and conditions. However, some localized regions of elevated conductivity are evident. Prior to the acquisition of the baseline image, the performance of the polyphosphate solution infiltration system was tested by injecting river water into the infiltration lines. Areas of elevated bulk conductivity likely resulted from the infiltration performance test.



Reference: Figure 4.1 from PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

#### Figure 4-36. Baseline ERT Images for the Stage A EA Area

Due to the increase in saturation and likely change in pore water specific conductance, the baseline image does not represent absolute native conditions. However, the conditions shown are well within the range caused by natural precipitation events for this period (SGW-59455).

### 4.4.2 Monitoring During Treatment

Figure 4-37 shows ERT images for operating days 1 through 5 (November 6 through November 10, 2015). The column of images on the left depicts the bulk conductivity measurements for line A-A' (line A). The column of images on the right depicts the bulk conductivity measurements for line B-B' (line B).



Reference: Figure 4.3 from PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

Note: The white, gray, and black contour lines represent increases in bulk conductivity of 0.002, 0.003, and 0.004 S/m, respectively.

#### Figure 4-37. Change in Bulk Conductivity from Baseline Conditions on Operational Days 1 through 5

On day 1 (November 6, 2015), polyphosphate solution was injected into the aquifer wells. Increases in conductivity are evident below the water table beneath both ERT lines. There also appears to be a slight increase in vadose zone conductivity during day 1, which may be an artifact of limited imaging resolution.

Polyphosphate solution infiltration began on day 2 (November 7, 2015) and ended on the morning of day 11 (November 16, 2015). Figures 4-37 and 4-38 show marked increases in bulk conductivity as the solution wetting front moves toward the water table from day 2 to day 10. On day 10, ERT images display increases in bulk conductivity throughout the unsaturated zone beneath each line, suggesting the presence of polyphosphate solution throughout, with the caveat that resolution limitations disable the capability to resolve small (less than approximately 1 m<sup>3</sup> [35 ft<sup>3</sup>]) regions that may have been left untreated. With the exception of one region on the western end of line A and one on the southern end of line B, the polyphosphate solution wetting front appears to have advanced relatively uniformly beneath both lines. There is no evidence of untreated regions beneath either line (Section 4.2 of PNNL-SA-25232, included in Appendix F of this report).

Figure 4-37 shows that the polyphosphate solution reached the water table relatively quickly within the region below the western end of line A, from approximately 15 to 22 m east of the westernmost end of the line. The relatively low increase in conductivity suggests lower saturation compared to the upper mid- and

eastern sections of line A from days 2 through 5. Conductivity below the western end of line A steadily increased from days 6 through 10 (Figure 4-38). All of these observations are consistent with relatively coarse-grained, higher porosity materials at the western end of line A (Section 4.2 of PNNL-SA-25232).

The southern end of line B, from approximately 48 to 50 m south of the northernmost end of the line, exhibits relatively low increases in conductivity during infiltration (Figures 4-37 and 4-38). However, the southern end of line B shows a significant increase in conductivity down to the water table on day 10. The time-lapse images suggest significant lateral flow of polyphosphate solution above an elevation of approximately 110 m (5 m [16.4 ft] bgs). Lateral flow from adjacent infiltration lines delivered polyphosphate solution deeper below the southern end of line B. These observations suggest that vertical flow may have been relatively low beneath the southern end of line B because of relatively low solution application rates rather than geologic heterogeneities (Sections 4.2 and 5.1 of PNNL-SA-25232).



Reference: Figure 4.4 from PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

Note: The white, gray, and black contour lines represent increases in bulk conductivity of 0.002, 0.003, and 0.004 S/m, respectively.

Figure 4-38. Change in Bulk Conductivity from Baseline Conditions on Operational Days 6 through 10

#### 4.4.3 Post-Treatment Monitoring

Figures 4-39 and 4-40 show ERT images collected after completion of polyphosphate solution application through the infiltration system. These images show bulk conductivity decreasing with time as polyphosphate solution drains from the unsaturated zone, starting at the water table and progressing upward. By day 25, the unsaturated zone appears to have reached a relatively steady-state condition of elevated conductivity, suggesting the presence of polyphosphate solution in the residual pore water. Increases in conductivity after day 25, particularly near the surface, are likely associated with significant precipitation events that occurred during that period (Section 4.2 of PNNL-SA-25232, included in Appendix F of this report).



Reference: Figure 4.5 from PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

Note: The white, gray, and black contour lines represent increases in bulk conductivity of 0.002, 0.003, and 0.004 S/m, respectively.

Figure 4-39. Change in Bulk Conductivity from Baseline Conditions on Operational Days 11 through 15



Reference: Figure 4.6 from PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

Note: The white, gray, and black contour lines represent increases in bulk conductivity of 0.002, 0.003, and 0.004 S/m, respectively.

Figure 4-40. Change in Bulk Conductivity from Baseline Conditions on Operational Days 20, 25, 30, and 34

## 5 Stage A Enhanced Attenuation Performance Evaluation

The expected outcome of the Stage A EA using polyphosphate solution application is uranium concentrations in groundwater downgradient of the EA treatment area will be lower than before the treatment (Appendix B of DOE/RL-2014-42). Furthermore, mobilization of uranium resulting from seasonal fluctuations in groundwater elevations is expected to be diminished because the uranium will be sequestered "in situ" within the vadose zone and PRZ. This may be expected to result in less seasonal variation in uranium concentrations in the underlying groundwater. The conceptual pattern of one possible groundwater response to the EA is depicted in Figure 5-1.



Source: Figure B-1 in DOE/RL-2014-42, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan.

### Figure 5-1. Schematic of Projected Concentrations and Trends from EA

Figure 5-1 is simplified to show a linear change in concentrations following treatment, but in reality concentrations are expected to change in a more complicated manner varying spatially and temporally within the aquifer. It may take more than one cycle (e.g., 1 year) of seasonal fluctuations in groundwater elevation to evaluate the change in uranium groundwater concentrations affected by polyphosphate solution application.

Five performance measures for Stage A treatment are evaluated in this chapter:

- Phosphate delivery and distribution
- Effect of polyphosphate applications on geochemical processes and aquifer properties
- Mobilization of uranium to groundwater
- Downgradient uranium groundwater concentrations
- Uranium fate and transport modeling

The Stage A EA treatment performance is evaluated using the following lines of evidence in accordance with DOE/RL-2014-42:

- Groundwater data from samples collected before, during, and after polyphosphate solution application
- Uranium leachability data collected before and after Stage A polyphosphate solution application
- Fate and transport modeling before and after Stage A polyphosphate solution application
- Real-time monitoring of the polyphosphate solution movement in the vadose zone, PRZ, and aquifer
- Aquifer properties before and after the polyphosphate solution treatment

Treatment effectiveness also is evaluated based on the polyphosphate solution distribution resulting from infiltration and injection operations.

# 5.1 Polyphosphate Delivery and Distribution

This discussion is supported by the real-time monitoring of phosphate line of evidence and the analysis of soil samples needed for the leachability data line of evidence. Real-time ERT was used to evaluate polyphosphate solution infiltration by imaging the changes in spatial and temporal distribution of electrical conductivity in the vadose zone and PRZ. A complete discussion of the ERT imaging implementation and data interpretation is presented in PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F in this report).

Samples were collected daily from five PRZ and two aquifer monitoring wells (Figure 3-2) to evaluate the distribution of polyphosphate solution during operations (Sections 3.2.1 and 4.2.1). Analytical results for the samples are in Appendix C of this report.

Automated monitoring was conducted at six aquifer monitoring wells (Figure 3-4) to evaluate the distribution of polyphosphate solution (Sections 3.2.2 and 4.2.2). The data are summarized in Appendix D of this report.

#### 5.1.1 Polyphosphate Solution Distribution in the Vadose Zone During Infiltration

Figure 5-2 shows the ERT images beneath line A-A' (east-west-oriented array) and line B-B' (northsouth-oriented array) (Figure 2-5) prior to treatment (baseline) and after an elapsed time of 1.5 days. As shown in the 1.5-day images, some areas beneath the infiltration area (white ellipses) show no change in electrical conductivity, indicating a lower rate of application of solution from some of the infiltration lines. However, time-lapse images (Figures 4-37 and 4-38) show that flow rates in these zones were sufficient for solution migration to the water table. It may be that low flows in these zones were compensated by lateral flow from adjacent infiltration lines with higher flow rates (Section 5.1 of PNNL-SA-25232, included in Appendix F of this report). Correspondingly, some areas beneath ERT lines show good function of infiltration lines and a high rate of application, such as on the northern, western, and eastern ends of the infiltration area.

Figure 5-3 shows the depth-averaged vertical fluid migration velocity, or the rate of downward movement of infiltration fluids, across ERT lines A-A' and B-B'. Interpretation of ERT data indicated polyphosphate solution wetting-front advancement rates ranging from 0.75 to 3.00 m/d (2.5 to 9.8 ft/d). Although the wetting-front velocity varied across the EA area, polyphosphate solution reached the water table across the entire infiltration area in 7 days or less after the start of infiltration (3 days prior to the end of infiltration).





Reference: Figures 5.1 and 5.2 in PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).





Reference: Figure 5.6 in PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography* (included in Appendix F of this report).

Figure 5-3. Average Phosphate Solution Migration Velocity

The highest rates of migration were on the western end of line A-A', along with areas of higher migration velocity on the eastern end of line A-A' and on the farthest southern end of line B-B'. The central portion of the Stage A area generally showed slower velocities than those along the western, eastern, and southern ends.

With the exception of the western end of line A-A', the vertical migration rates infer a horizontally stratified structure. These include a lower migration velocity zone of approximately 0.75 to 1.0 m/d (2.5 to 3.3 ft/d) bounded above and below by higher velocity zones of approximately 1.5 to 1.75 m/d (4.9 to 5.7 ft/d) (Figure 5-3). Estimates of solution arrival times suggest a decrease in hydraulic conductivity at an elevation of approximately 110 m (5 m [16.4 ft] bgs), which is consistent with patterns observed in the time-lapse images. For example, Figures 4-37 and 4-38 show the highest increase in bulk conductivity above approximately 110 m, which may have been caused by elevated polyphosphate solution saturation above this elevation because of reduced downward flow rate at and below this elevation. Interpretation of the time-lapse images indicates significant lateral migration above 110 m, which could have been caused by the presumed low hydraulic conductivity zone at and below this elevation. It appears this low hydraulic conductivity zone may have aided the overall performance of the infiltration system by promoting lateral flow above 110 m, thereby creating an even horizontal distribution of solution and compensating for variable application rates that appear to have occurred within the infiltration system (Section 5.4 of PNNL-SA-25232, included in Appendix F of this report).

During days 6 through 10 (November 11 through November 15, 2015), bulk conductivities greater than 0.004 S/m (black contour in Figure 4-38) were restricted to the region above an elevation of 109 m (6 m [19.7 ft] bgs), indicating high-concentration phosphate-bearing solutions were present in the sediments above the lower vadose zone and PRZ. The 0.002 S/m and 0.003 S/m contours (white and gray contours) reach the water table (Section 6.2 of ECF-300FF5-16-0091, included in Appendix G of this report).

The vertical profiles of phosphate concentrations in soil samples from the post-treatment boreholes are consistent with the ERT data (Figures 4-9 and 4-10). Borehole C9580 near the western end of line A-A' shows high phosphate concentrations throughout its depth profile, consistent with the relatively rapid migration of infiltrated polyphosphate solutions and higher bulk conductivity in that location. The sharp increase in phosphate concentration at about 5 m (16.4 ft) depth is due to the presence of a silt lens, which slowed the downward movement and increased saturation of polyphosphate solution at this depth. Borehole C9581 shows higher phosphate concentrations at elevations in the upper vadose zone, consistent with poor performing infiltration lines and lower solution application rates in the middle southern portion of the EA area where borehole C9581 is located. At borehole C9582, the amount of phosphate precipitation above the PRZ does not appear to be appreciable and may have been the result of local heterogeneities in permeability that could have precluded uniform distribution of phosphate at the far eastern end of the EA area (Section 6.3 of ECF-300FF5-16-0091).

### 5.1.2 Polyphosphate Distribution in the PRZ during PRZ Injection

PRZ injections were conducted from November 16 through 18, 2015, after completion of infiltration operations when moisture content in the PRZ was maximized.

Water levels were measured and groundwater samples were collected for analysis of phosphate and specific conductance in five PRZ monitoring wells (Figure 3-2). Groundwater elevation, phosphate concentration, and specific conductance at PRZ monitoring wells up to 10.4 m (34 ft) away from the nearest injection well showed positive hydraulic and chemical influence as a result of PRZ injections. Groundwater elevation increases on the order of 0.5 m (1.6 ft) were measured during PRZ injections (Figure 5-4). Spikes in phosphate concentrations ranged from 86 to 160 percent of the target in situ concentration of approximately 5,000 mg/L (phosphate associated with a mixture of 47.5 mM orthophosphate and 2.5 mM pyrophosphate)<sup>1</sup>. These spikes were also consistent with spikes in specific conductance, which increased from a background of approximately 500  $\mu$ S/cm up to 4,404 to 9,790  $\mu$ S/cm (Figure 5-5).

The ROI for PRZ injections during Stage A operations was estimated based on the phosphate concentrations and specific conductance in samples from the PRZ monitoring wells (Figures 4-19, 5-4, and 5-5). High levels of specific conductance and phosphate concentrations near or above the target in situ concentration of approximately 5,000 mg/L were detected in monitoring wells 399-1-67 and 399-1-75 (4.9 m [16 ft] from injection wells 399-1-97 and 399-1-90, respectively) and in monitoring well 399-1-77 (10.4 m [34 ft] from injection well 399-1-93). In monitoring well 399-1-81 (13.1 m [43 ft] from injection well 399-1-89), a steep drop-off in phosphate and specific conductance was observed compared to the wells located within 12.2 m (40 ft) of an injection well. Based on these observations, and assuming no preferential flow pathways, the average PRZ injection ROI during Stage A is judged to be around 10 to 12 m (33 to 40 ft). This ROI is expected to be variable within the vadose zone due to effects of heterogeneity in the geologic media, volume of injected solution, and injection time.

### 5.1.3 Polyphosphate Distribution in the Aquifer during PRZ and Aquifer Injection

Aquifer injections were conducted prior to, during, and immediately after polyphosphate solution infiltration (November 6, 9, and 16, 2015, respectively).

<sup>&</sup>lt;sup>1</sup> To account for dilution in the PRZ and aquifer, the design injection concentration was increased in order to meet the target in situ concentration. The concentrations chosen for injection were 78.4 mM orthophosphate and 4.1 mM pyrophosphate, which leads to injected phosphate concentration of about 8,240 mg/L.



Note: The distance of each PRZ monitoring well to the nearest injection well is provided in the chart titles.

5-6

Figure 5-4. Groundwater Elevations and Phosphate Concentrations in PRZ Monitoring Wells during PRZ Injections (11/16/2015 through 11/18/2015)



Note: The distance of each PRZ monitoring well to the nearest injection well is provided in the chart titles.

Figure 5-5. Phosphate Concentrations and Specific Conductance in PRZ Monitoring Wells during PRZ Injections (11/16/2015 through 11/18/2015)

Water levels were measured and groundwater samples were collected for analysis of phosphate and specific conductance in two aquifer monitoring wells (Figure 3-2). These data show that aquifer injections resulted in lower chemical concentration changes in the aquifer monitoring wells than those changes observed during PRZ injections. Spikes in phosphate concentrations detected in aquifer monitoring wells 399-1-65 and 399-1-74 were 0.1 and 14 percent of the target in situ phosphate concentration of approximately 5,000 mg/L, respectively, whereas phosphate spikes during PRZ injections were 36 and 51 percent of the target in situ concentration, respectively (Figure 5-6). Phosphate spikes in the aquifer also persisted for several days longer after PRZ injections compared to aquifer injections. The observations in phosphate concentration spikes were also generally consistent with spikes in specific conductance.

## 5.1.4 Phosphate Transport Modeling During Treatment and Post-Treatment Time Periods

Polyphosphate solution injection and infiltration were simulated based on the operational records for Stage A. The rate of injection and infiltration along with the timing and locations were consistent with the Stage A operation schedule presented in Table 2-1. Phosphate concentrations varied over time as well. The simulated plume maps of phosphate in the aquifer are presented in Figure 5-7 for times during treatment and following treatment.

The figure shows the phosphate plume increasing in size during phosphate solution applications and for a period afterwards. The figure shows how the phosphate plume is predicted to reduce significantly in size after about 1 year (December 2016).

### 5.1.5 Other Monitoring

Specific conductance, temperature, and pH were also monitored using automated sensors deployed in upgradient aquifer wells (399-1-70), aquifer wells within or at the edge of the Stage A area (399-1-80, 399-1-86, and 399-1-76), and downgradient aquifer wells (399-1-82 and 399-1-84) (Figure 3-4). General observations in parameter trends are summarized in the following paragraphs.

In upgradient well 399-1-70, minor increases in specific conductance and decreases in pH were observed during the aquifer and PRZ injection events, indicating some hydraulic influence from injections in the Stage A area. Well 399-1-91, the nearest injection well to well 399-1-70, is located approximately 21 m (69 ft) to the south.

Wells 399-1-86 and 399-1-76, located within and at the downgradient edge of the Stage A EA area, respectively, generally exhibited increases in specific conductance and decreases in temperature and pH during aquifer and PRZ injection events. Changes in parameters were more dramatic during PRZ injection events than aquifer injection events. Parameter changes in well 399-1-80, located slightly cross-gradient of the nearest injection well, were much less compared to the other two wells. More dramatic increases in specific conductance and decreases in pH were observed 1 week after PRZ injections. These changes may be due to delayed arrival of polyphosphate solution from the cumulative infiltration and injection efforts.

Downgradient well 399-1-82, located approximately 43.6 m (143 ft) downgradient of the nearest injection well (399-1-92), exhibited a steady increase in specific conductance and decrease in pH with the increase starting several days after the first two aquifer injection events, indicating a groundwater velocity on the order of 15.2 m/d (50 ft/d). Parameter changes in downgradient well 399-1-84, located approximately 15.2 m (50 ft) southeast of the Stage A area, were more difficult to discern due to the variability in background groundwater conditions.



Figure 5-6. Groundwater Elevation, Phosphate Concentrations, and Specific Conductance in Aquifer Monitoring Wells during Aquifer and PRZ Injections
#### SGW-59614, REV. 0



(a)





(d)

(e)

Source: Figure 7-20 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 5-7. Simulated Phosphate Concentration Distribution in the Aquifer for November 20, 2015, through December 31, 2016 (page 1 of 2)



Source: Figure 7-20 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 5-7. Simulated Phosphate Concentration Distribution in the Aquifer for November 20, 2015, through December 31, 2016 (page 2 of 2)

### 5.2 Effect of Polyphosphate Applications on Geochemical Processes and Aquifer Properties

This section is supported by the leachability data line of evidence as well as the fate and transport modeling and groundwater data lines of evidence. The flow-through column and batch leach tests indicate residual uranium in the post-treatment samples is less leachable where higher concentrations of phosphate were delivered to the subsurface soils. The tests indicate injection of polyphosphate solution in the PRZ was more effective in delivering sufficient phosphate than infiltration of polyphosphate solutions from the near-surface through the vadose zone (Sections 6.2 and 8 of ECF-300FF5-16-0091, included in Appendix G of this report).

Results of the sequential extraction tests indicate the anticipated chemical interactions, which take place with the addition of polyphosphate solutions to the 300 Area vadose zone, PRZ, and aquifer, did occur as expected. The results indicate the interactions have resulted in the sequestration of uranium (ECF-300FF5-16-0091). In the pre-treatment samples, uranium is associated with crystalline iron oxides and clays, with a lesser amount complexed with carbonate minerals. In the post-treatment samples, uranium is strongly bound with carbonate minerals, weakly complexed with carbonate minerals, and present as silicate minerals. The data from the uranium leachability characteristics testing, particularly the sequential extraction tests, and field observations were used to develop a conceptual model of the geochemical processes resulting from application of the polyphosphate solutions to the vadose zone and PRZ. However, detailed laboratory testing has not been conducted to confirm the conceptual model or to evaluate potential secondary effects of adding high concentration polyphosphate solutions to the 300 Area sediments.

#### 5.2.1 Conceptual Model of Geochemical Processes

In the sediments, uranium is found associated primarily with crystalline oxides of iron (including aluminum and manganese), clay minerals, and carbonate minerals (primarily the calcium carbonate mineral calcite, CaCO<sub>3</sub>). Some of the uranium may also be associated with silicate minerals (PNNL-20004, *Uranium Sequestration in the Hanford Vadose Zone using Ammonia Gas: FY 2010 Laboratory-Scale Experiments*).

The uranium sequestration remedy depends on calcium being made available in solution to complex with phosphate leading to precipitation of amorphous monocalcium phosphate. Over a period of several weeks, the amorphous monocalcium phosphate recrystallizes to di- to octa-calcium phosphate and eventually forms hydroxyapatite over several months to years (PNNL-21733).

A conceptual model of possible reactions resulting from infiltration/injection of phosphate-bearing solutions is presented in Figure 5-8. Based on the column leach tests, sequential extraction leach tests, and the geochemical evaluations and reactive transport modeling described in Appendix B of ECF-300FF5-16-0091, the following sequence of primary reactions appears to have occurred during the Stage A application of polyphosphate solutions:

- As sodium-potassium-bearing polyphosphate solution contacts the sediment:
  - Cation-exchange reactions lead to release of calcium (Ca<sup>2+</sup>) ions from the sediment into the solution (example shown for exchange with sodium):

Na<sup>+</sup> + 0.5 Ca-X 
$$\leftarrow \rightarrow$$
 Na-X + 0.5 Ca<sup>2+</sup>

As more calcium becomes available in the solution, the aqueous complexation of Ca<sup>2+</sup> with the phosphate species (e.g., HPO<sub>4</sub><sup>2-</sup>) will lead to formation of calcium hydrogen phosphate (CaHPO<sub>4</sub>) under the chemical conditions at the 300 Area. With continued addition of phosphate and reaction with Ca<sup>2+</sup>, the aqueous concentrations would increase, leading to the precipitation of amorphous calcium phosphate that thermodynamically favors formation of calcium phosphate-bearing mineral phases, such as hydroxyapatite and whitlockite. In this process, hydrogen ions (H<sup>+</sup>) are released:

5 Ca<sup>2+</sup> + 3 HPO<sub>4</sub><sup>2-</sup> + H<sub>2</sub>O 
$$\rightarrow$$
 Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH + 4 H<sup>+</sup>  
Hydroxyapatite  
3 Ca<sup>2+</sup> + 2 HPO<sub>4</sub><sup>2-</sup>  $\rightarrow$  Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 2 H<sup>+</sup>  
Whitlockite

- As the pH starts to decline due to continued supply of H<sup>+</sup>, buffering reactions start to occur where H<sup>+</sup> ions are consumed and pH is buffered. The following reactions consume H<sup>+</sup> ions:
  - Surface complexation-based reactions, primarily with reactive iron oxyhydroxide mineral surfaces (represented as ≡FeOH), will occur to consume H<sup>+</sup>:

 $\equiv FeOH + H_2PO_4^- + H^+ \leftrightarrow \Rightarrow \equiv FeH_2PO_4 + H_2O$  $\equiv FeOH + HPO_4^{2-} + H^+ \leftrightarrow \Rightarrow \equiv FeHPO_4^- + H_2O$ 

Mineral reactions that lead to consumption of H<sup>+</sup> ions can cause mineral phase dissolution.
For uranium-bearing mineral phases that are associated with carbonates and silicates (represented by mineral uranophane as shown below), such reactions would lead to dissolution of the mineral and release of uranyl ion that could result in increased dissolved concentrations of uranium:

 $Ca(H_3O)_2(UO_2)_2(SiO_4)_2(H_2O)_3 + 6 H^+ \leftarrow \rightarrow Ca^{2+} + 2 UO_2^{2+} + 2 SiO_2 + 9 H_2O$ 

Uranophane



Reference: Figure 6-24 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).



 Other carbonate-bearing mineral phases, predominantly calcite, that are present in the sediments will undergo dissolution in order to consume H<sup>+</sup> ions:

$$CaCO_3 + H^+ \rightarrow Ca^{2+} + HCO_3^-$$

- While there is continued supply of phosphate, the released Ca<sup>2+</sup> made available from the reactions shown above will continue to bind with HPO<sub>4</sub><sup>2-</sup> to form calcium phosphate-bearing mineral phases (e.g., hydroxyapatite), which then lead to release of H<sup>+</sup> ions (as shown previously). This cycle of release of H<sup>+</sup> ions followed by consumption of H<sup>+</sup> ions will continue as long as a supply of both phosphate and reacting iron oxyhydroxide surfaces and minerals (primarily uranium-bearing carbonates and silicates and calcite) is maintained. If and when the surface capacity is reached (i.e., all surface sorption sites are at equilibrium with the influent solution) and if the buffering mineral phases completely dissolve away, then phosphate concentrations will rise to match the influent solution concentrations. Some phosphate will also react with the calcium (that is made available from ion exchange reactions), leading to calcium phosphate-bearing mineral phases. In this process, any uranium in the solution will adsorb on the newly formed surfaces or become bound within the mineral and be sequestered.
- While surface reactions occur quickly and initially buffer the pH, the primary buffering reactions are likely to be controlled by mineral phase dissolution. As a result, the kinetics of the mineral dissolution along with initial available amount of reactants plays an important role in describing the behavior of the system.

• Due to varying pH, the aqueous speciation of phosphate will be dominated by either dihydrogen phosphate (H<sub>2</sub>PO<sub>4</sub><sup>-</sup>) or HPO<sub>4</sub><sup>2-</sup>. As the pH reduces below approximately 7.2, H<sub>2</sub>PO<sub>4</sub><sup>-</sup> becomes the dominant aqueous phosphate species:

$$HPO_4^{2-} + H^+ \leftarrow \rightarrow H_2PO_4^{--}$$

• The aqueous complexes formed by uranium will depend on the ratio of  $HPO_4^{2-}/HCO_3^{-}$  in the solution and pH. As long as the activity ratio of  $HPO_4^{2-}/HCO_3^{-}$  remains greater than  $10^{-5}$  and pH is below 8, formation of uranyl orthophosphate mineral phase,  $(UO_2)_3(PO_4)_2(H_2O)_4$ , is favored assuming no other reactants are in the solution.

The conceptual model described above is consistent with the observations where dissolution and reprecipitation are noticed on sediment samples following treatment. The results of sequential extraction tests conducted on post-treatment samples indicate a relatively larger fraction of uranium associated with carbonate minerals and relatively lower fraction associated with iron oxides and clay minerals when compared to the pre-treatment samples. This is attributed to dissolution of uranium-bearing oxyhydroxides followed by incorporation of uranium with the calcium-carbonate-phosphate-bearing amorphous phases by surface adsorption and/or co-precipitation. Observed changes in association of calcium and iron, based on sequential extraction results from pre- and post-treatment samples, are consistent with the observations made for uranium and support the conceptual model. Further details are presented in ECF-300FF5-16-0091 (included in Appendix G of this report).

#### 5.2.2 Aquifer Properties

This section is supported by the aquifer properties line of evidence. The purpose of evaluating aquifer properties is to assess whether aquifer permeability was reduced due to the precipitation of phosphate minerals following infiltration and injection of polyphosphate solutions (Section B2.5 of DOE/RL-2014-42). Field testing methods, such as slug tests, were not conducted using the Stage A injection and monitoring wells. Instead, the effect of the polyphosphate applications was assessed by comparing aquifer hydraulic properties in the vicinity of the Stage A EA area before and after treatment. The assessment is summarized from Appendix E of ECF-300FF5-16-0091 (included in Appendix G of this report). The evaluation indicated the polyphosphate injections and infiltration did not alter the hydraulic conductivity of the aquifer (Appendix E of ECF-300FF5-16-0091).

Water levels in well 399-1-23 (located downgradient) were compared to water levels in well 399-1-12 (located upgradient) (Figure 3-5). The assumption for this analysis is that water levels in well 399-1-23 could be influenced by injections because of the proximity of the well to the injection sites, but that water levels in well 399-1-12 should not be affected by changes caused by injection because of its upgradient location and distance from the Stage A treatment area. Water level fluctuations in both wells before, during, and after treatment remained similar (Figure 5-9). During treatment, the specific conductance in well 399-1-23 increased, indicating it received polyphosphate solutions when they were applied in the Stage A treatment area (Figure 5-10). During this same time, specific conductance in well 399-1-12 remained at background levels, indicating no or negligible influence of polyphosphate solutions during treatment (Figure 5-11). Well 399-1-23 showed large increases in specific conductance during injection of polyphosphate solution but continued to have similar water levels as well 399-1-12 during and following treatment. Therefore, it can be concluded polyphosphate solution injections caused either no appreciable changes or only negligible changes in aquifer properties (porosity or permeability). Evaluation of the absolute difference in head between these two wells also indicated that no or only negligible change in aquifer properties occurred (Appendix E of ECF-300FF5-16-0091).



Reference: Figure E-2 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).



Figure 5-9. Water Level Elevation in Wells 399-1-23 and 399-1-12

Reference: Figure E-3 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 5-10. Water Level Elevation and Specific Conductance in Well 399-1-23



Reference: Figure E-4 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 5-11. Water Level Elevation and Specific Conductance in Well 399-1-12

Estimated travel times were calculated for polyphosphate to reach three downstream monitoring wells located on an inferred flow path: 399-1-23, 399-1-7, and 399-2-2. The travel velocity from well 399-1-23 to the other two wells was calculated based on the arrival of the first peak specific conductance value (Figure 5-12). The estimated average linear velocity ranged from 9.2 m/d to 11.5 m/d with the average value of 10.3 m/d (Table 5-1). These average linear velocity estimates following injection are similar to the velocity estimated in previous studies (prior to injection) (PNNL-18529; PNNL-22048, *Updated Conceptual Model for the 300 Area Uranium Groundwater Plume*), indicating the aquifer properties have not been altered.

### 5.3 Mobilization of Uranium to Groundwater

This discussion is supported by the groundwater data line of evidence. Data obtained in the early (less than 1 year) post-treatment sample events are used to evaluate short-term changes in uranium concentrations due to sequestration and/or mobilization from the vadose zone and PRZ and the distribution efficiency of polyphosphate solution across the EA area groundwater (Section B2.5.4 of DOE/RL-2014-42).

Aquifer monitoring wells 399-1-65 and 399-1-74 were monitored before, during, and after infiltration and injections to assess changes in uranium concentrations and evaluate the potential for uranium mobilization to the aquifer during phosphate solution application (Figure 3-2). Uranium concentration trends in these two aquifer wells along with other aquifer wells within or at the edge of the Stage A EA area (wells 399-1-76, 399-1-78, 399-1-80, and 399-1-86) were compared with data collected from upgradient aquifer wells (399-1-66, 399-1-70, and 399-1-72) and downgradient aquifer wells (399-1-25, 399-1-36, 399-1-82, and 399-1-84) to differentiate between background changes in uranium concentrations and changes directly associated with the polyphosphate solution application.



Reference: Figure E-6 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit.

| Well    | Travel Time from<br>Well 399-1-23<br>(days) | Velocity<br>(m/d) |
|---------|---------------------------------------------|-------------------|
| 399-1-7 | 20.49                                       | 9.2               |
| 399-2-2 | 28                                          | 11.5              |
|         | Average Velocity                            | 10.3              |

| Table 5-1. Travel Time Calculation | Results |
|------------------------------------|---------|
|------------------------------------|---------|

Daily monitoring data from aquifer wells 399-1-65 and 399-1-74 also provided insight into the potential for temporary uranium concentration spikes during polyphosphate solution application (Figure 5-13). No significant uranium concentration spikes were observed in aquifer well 399-1-74. In aquifer well 399-1-65, a uranium concentration spike of  $1,036.5 \mu g/L$  occurred on the eighth day of infiltration. The spike dissipated within 3 to 4 days. The aquifer well downgradient of this concentration spike (399-1-84) also exhibited no significant change in uranium concentrations following polyphosphate solution application (Figure 4-24), indicating that a very limited mass of uranium was mobilized locally around aquifer well 399-1-65 and that temporary spikes of uranium in the aquifer due to polyphosphate solution application did not pose a significant impact to groundwater quality.





#### 5.4 Downgradient Uranium Groundwater Concentrations

Groundwater data collected at downgradient groundwater monitoring wells through June 2016 (7 months after the completion of polyphosphate solution injection and infiltration) were also reviewed to evaluate the occurrence and degree of uranium mobilization downgradient of the Stage A EA area (Figure 3-3).

#### SGW-59614, REV. 0

Increases in specific conductance and phosphate concentrations were observed in the two wells (399-1-23 and 399-1-17A) closest to the Stage A area approximately 1 week after the start of polyphosphate solution application (Figures 4-25 and 4-26). During this same timeframe, uranium concentrations decreased below baseline (pre-treatment) concentrations collected between September 15 and 23, 2015 and also below the uranium cleanup level ( $30 \mu g/L$ ). Uranium concentration trends in well 399-1-17A from 2010 through June 2016 are shown in Figure 5-14. The increasing concentrations in March through June 2016 may be a result of the rising water level mobilizing residual uranium. Approximately 1 month after the start of polyphosphate solution application, specific conductance and phosphate concentrations gradually increased and uranium decreased in well 399-1-7 (Figure 4-27). Longer term groundwater monitoring is needed to confirm these trends.

The data collected from the groundwater wells farther downgradient of the Stage A EA area corroborate the observations made at monitoring wells within and near the Stage A area, which show that any temporary spikes of uranium in the aquifer due to polyphosphate solution application have not impacted groundwater quality. Conversely, uranium concentrations downgradient of the Stage A EA area have decreased due to the Stage A phosphate solution application.



Figure 5-14. Uranium Concentrations and Water Level Elevations in Well 399-1-17A

Uranium concentration data collected approximately 1 month after completion of polyphosphate solution infiltration and injection were compared to baseline (pre-treatment) concentrations collected between August 28 and September 2, 2015. Overall, uranium concentrations in the aquifer upgradient, within, and downgradient of the Stage A EA area decreased after polyphosphate solution application. Uranium concentrations in upgradient aquifer wells decreased by 13 to 67 percent from baseline concentrations (from between 31 and 50  $\mu$ g/L to between 16 and 44  $\mu$ g/L). Changes in uranium concentrations in

upgradient wells likely reflect normal seasonal variability. By comparison, uranium concentrations in the EA area aquifer wells decreased by 50 to 98 percent (from between 27 and 291  $\mu$ g/L to between 4.8 and 85  $\mu$ g/L), indicating further concentration decreases due to polyphosphate solution infiltration and injection. Downgradient aquifer wells, which represent groundwater flowing from the Stage A EA area during and after polyphosphate solution application, showed similar decreases in uranium concentrations (48 to 98 percent, or from between 3.5 and 61  $\mu$ g/L to between 0.26 and 24  $\mu$ g/L) as a result of polyphosphate solution application.

## 5.5 Uranium Fate and Transport Modeling

This discussion is supported by the fate and transport modeling and groundwater data lines of evidence. The discussion uses numerical modeling of the fate and transport of uranium in 300 Area soils and the unconfined aquifer to evaluate the effectiveness of the Stage A EA remedy. The model simulates fate and transport for cases in which no remedial action is implemented and in which Stage A application of polyphosphate solutions is implemented. Detailed documentation on development and calibration of the fate and transport modeling is provided in ECF-300FF5-16-0091 (included in Appendix G in this report). The uranium soil distribution and geologic framework used in the model was taken from ECF-300FF5-16-0087, *Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford, Washington* (included in Appendix G in this report).

The fate and transport modeling results predict possible changes in groundwater uranium concentrations in the near future (1 year) and in the long term (over 20 years) as a result of the Stage A EA remedy. These results are compared to predictions of groundwater uranium concentrations that would result if no remedial action was taken (the hypothetical "no action" case).

Fate and transport modeling was performed in three stages:

1. Modeling uranium transport prior to Stage A treatment.

The fate and transport model was developed to estimate the uranium soil and groundwater concentrations prior to Stage A treatment. The emphasis of this model was to match the uranium concentrations in the aquifer observed over the past approximately 20 years. The model was also extended for an additional 25 years in the future (until 2040) to project the concentrations under the hypothetical no action case. The results demonstrate the adequacy of the modeling methodology and choice of parameters at the scale of the model domain.

2. Modeling phosphate transport during Stage A treatment and post-treatment time periods.

Phosphate transport was modeled based on information derived from experimental data on phosphate migration and retardation and from observations of phosphate concentrations made during the treatment and post-treatment time periods. Polyphosphate solution injection and infiltration operations were simulated, and phosphate concentrations were compared to the observations made in the PRZ and aquifer wells. The results were used to demonstrate adequacy of parameters for modeling polyphosphate solution transport in the vadose zone and aquifer and for projecting concentrations in the aquifer. The results of this monitoring stage are discussed in Section 5.1.4.

3. Modeling uranium transport during Stage A treatment and post-treatment time periods.

The impact of injecting/infiltrating polyphosphate solutions on uranium transport was modeled by changing the kinetic sorption-desorption parameters. The choice of parameters was based on evaluation of flow-through column test results on post-treatment samples, phosphate concentrations measured in the samples, and observed changes in uranium concentrations in the aquifer.

#### 5.5.1 Uranium Transport Without Treatment (No Action Case)

The fate and transport model was used to simulate uranium groundwater concentrations assuming no remedial action had occurred (no action case). The focus was on matching the trend in uranium concentrations in selected wells where long-term monitoring records exist and to be reasonably close to the magnitude of uranium concentrations observed in the aquifer. The exact reconstruction of the past was not the objective of the model due to limited information on the uranium soil distribution and various past remediation activities.

Calibration of the uranium model included adjusting the initial soil uranium concentrations by setting all saturated zone Hanford and Ringold unit soil concentrations to zero. This is based on the understanding that the labile fraction would have been removed over many decades of pore volume flushing prior to start of the model. The simulated uranium groundwater concentrations are compared to the observed concentration for selected monitoring wells using both an equilibrium and kinetic sorption model.

Figure 5-15 shows simulated uranium plume maps for equilibrium and kinetic sorption models for the years 2015, 2022, and 2040. The simulation results presented in ECF-300FF5-16-0091 (included in Appendix G of this report), when compared to the long-term monitoring records, indicate that the kinetic model better mimics the observed uranium groundwater concentrations than the equilibrium model. The modeling results show slow reduction in the uranium concentrations over the simulated time period (until 2040) under the no action case.

#### 5.5.2 Uranium Transport during Treatment and Post-Treatment Time Periods

Fate and transport modeling of uranium during and following polyphosphate solution treatment was conducted by simulating the effects of injection and infiltration during the operation period. For this purpose, the kinetic sorption-desorption model was used. Prior to treatment, the uranium distribution within the vadose zone and aquifer was based on pre-treatment model results. During and following treatment, the desorption rate constant was reduced by factors of 5 and 10 within the treatment area to reflect the range of reduction over the scale of the Stage A treatment area. The choice of reduction factor was based on (a) evaluation of the flow-through column leaching tests conducted on pre- and post-treatment sediment samples from the PRZ, (b) changes in dissolution rate of uranium-rich calcite in the presence of polyphosphate amended solutions (PNNL-17818, *300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe*), and (c) observed concentration of uranium in the groundwater monitoring wells. Additional details are presented in Section 7.8.1.3 of ECF-300FF5-16-0091 (included in Appendix G of this report).

Modeled uranium concentrations before and after treatment are compared to the observed concentrations at wells 399-1-17A and 399-1-23 in Figure 5-16. The observed uranium concentrations show a sharp decline immediately following the Stage A treatment but then increase slowly over time. The last three monthly observations indicate establishment of newly equilibrated concentrations that vary within a narrow range and are expected to persist in the aquifer over the near future.



Source: Figure 7-18 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).

Figure 5-15. Simulated Uranium Plumes in 2015, 2022, and 2040 under the No Action Scenario





Source: Figure 7-23 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit (included in Appendix G of this report).



The model-predicted results match reasonably well with observed post-treatment uranium concentration trends in groundwater, indicating desorption rates have indeed declined within the Stage A area as a result of polyphosphate solution injection and infiltration. A factor of 4 to 6 reduction in uranium concentrations is observed between the pre-treatment and post-treatment concentrations at well 399-1-23. This indicates the remedy implemented for Stage A has been successful. The simulated concentrations in well 399-1-17A following treatment decline less steeply than at well 399-1-23. Well 399-1-17A is located farther downgradient of the Stage A area and, therefore, is influenced by groundwater migrating from areas outside the Stage A area. Nevertheless, some reduction of the concentration (up to a factor of 2) along with the change in long-term trend is noticeable.

The footprint of the predicted uranium plume at the end of December 2016 for cases where the desorption kinetic rate constants were reduced by factors of 5 and 10 and for the no action case are shown in Figure 5-17. The model predicts that due to polyphosphate solution treatment, the extent of the groundwater uranium plume was considerably reduced in the Stage A EA area and remains reduced. This can be seen by comparing the predicted post-treatment plume maps (Figures 5-17a and 5-17b) to the plume map under the no action scenario (Figure 5-17c).

The model setup used for the short-term predictions presented in Figure 5-17 was extended to evaluate long-term uranium concentrations. For this purpose, post-treatment model parameters were kept unchanged, and the model was run up to year 2040. The results are presented in Figure 5-18 for cases where the desorption kinetic rate constants were reduced by factors of 5 and 10. Results for the no action case are presented to compare the change predicted from polyphosphate solution treatment in Stage A. The predictive cases are presented assuming the desorption rates are not going to change over the simulated time period. Due to these assumptions, the uncertainty in these estimates is high and needs to be considered when making any decisions based on model predictions. Long-term simulated uranium concentrations for well 399-1-23 show a gradual rise but remain below the concentrations predicted for the no action case. The gradual rise reflects the combined effect of slow continued desorption of uranium into the aquifer from the Stage A area and contribution to the aquifer from areas outside of the Stage A area. The long-term simulated concentrations for well 399-1-17A also continue to remain below the no action case.



(a)



(b)

Figure 5-17. Post-Treatment Simulated Uranium Concentrations at the End of December 2016 for (a) 10 Times Reduction in Desorption Rate; (b) 5 Times Reduction in Desorption Rate; and (c) No Action Case (page 1 of 2)



Source: Figure 7-24 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit.

Figure 5-17. Post-Treatment Simulated Uranium Concentrations at the End of December 2016 for (a) 10 Times Reduction in Desorption Rate; (b) 5 Times Reduction in Desorption Rate; and (c) No Action Case (page 2 of 2)





Source: Figure 7-25 in ECF-300FF5-16-0091, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit.

Figure 5-18. Long-Term Simulated Uranium Concentrations for Well 399-1-23 and Well 399-1-17A Comparing the Predicted Post-Treatment Results to the No Action Case

This page intentionally left blank.

### 6 Conclusions

The operational objective of the EA of uranium remedy for the 300-FF-1 and 300-FF-2 OUs was to deliver polyphosphate-bearing solutions at high concentrations in the vadose zone and PRZ in order to sequester residual uranium in the sediments. For the 300-FF-5 OU, the operational objective of the remedy was to deliver polyphosphate-bearing solutions to the top of the aquifer underlying the waste sites in order to limit the mobility of untreated uranium in the aquifer.

The operational objectives of the Stage A uranium remedy have been met by optimizing two injection skids to infiltrate polyphosphate solutions over a 0.3 ha (0.75 ac) area and inject polyphosphate solutions into the PRZ and top of the aquifer. The application of polyphosphate solutions was effectively monitored using downhole instrumentation, ERT, and groundwater monitoring.

Post-treatment soil sampling and the ERT measurements indicate the delivery of polyphosphate solutions through infiltration was not uniform throughout the vadose zone. However, the data indicate injections in the PRZ effectively delivered high concentrations of polyphosphate solution to the treatment zone. Injection of polyphosphate solution to the top of the aquifer appears to be less effective due to dilution in the groundwater. Post-treatment leachability testing showed effective sequestration of uranium by phosphate minerals in areas where polyphosphate solution was delivered in higher concentrations, such as in the PRZ.

Groundwater monitoring indicated uranium was mobilized in some portions of the Stage A EA area when polyphosphate solutions were applied. However, uranium concentrations quickly decreased to pre-treatment levels and in some cases to below pre-treatment levels. Downgradient groundwater wells monitored following treatment showed trends of decreasing uranium concentrations. Fate and transport modeling predicted both short-term and long-term decreases in uranium concentrations in groundwater.

The following sections provide additional information on the effectiveness of the Stage A treatment applications and recommended refinements for the Stage B treatment applications that will complete the remedy implementation.

## 6.1 Operational Delivery of Treatment Solutions

Implementation of the remedy during the Stage A treatment application included infiltration of polyphosphate solutions to the vadose zone and injection of polyphosphate solutions into the PRZ and top of the aquifer at the treatment zone. The purpose of the coordinated application of polyphosphate solutions was to precipitate relatively insoluble phosphate-bearing phases that sequester, or bind, residual uranium in the vadose zone and PRZ. Based on the data collected and evaluated in the previous chapters, the following conclusions summarize the effectiveness of the Stage A treatment application.

#### 6.1.1 Infiltration Delivery

ERT data collected during Stage A show the movement of the polyphosphate solution wetting front varied across the EA area, with downward velocities ranging from 0.75 to 3 m/d (2.5 to 9.8 ft/d). The variability in downward migration of the polyphosphate solution was primarily a result of lateral and vertical heterogeneity of the vadose zone soil, which caused preferential flow pathways. Delivery of solutions via the infiltration system was also affected by impaired performance of some infiltration lines in the central portion of the Stage A EA area (crushed tubing and/or clogged emitters). As shown by the ERT measurements discussed in Section 5.1.1, the polyphosphate solution wetting front reached the water table across the entire infiltration area in 7 days or less after the start of infiltration.

Distribution of polyphosphate solution across the vadose zone and PRZ from infiltration was affected by the subsurface heterogeneity that influenced the solution migration paths and velocities. Analysis of post-treatment soil samples collected from boreholes C9580, C9581, and C9582 showed the vertical distribution of phosphate from infiltration was impacted by differences in wetting-front velocity. In general, where infiltration was faster the phosphate concentrations were higher in soil samples from the lower vadose zone and PRZ. Phosphate concentrations were generally higher in soil samples from the upper vadose zone where infiltration was slower and phosphate precipitated out of solution. These data show the infiltration delivery of phosphate to the lower vadose zone and PRZ was spatially variable.

#### 6.1.2 PRZ Injection Delivery

The effectiveness of PRZ injections in delivering polyphosphate to PRZ soil was evaluated by comparing groundwater monitoring data with phosphate concentrations in post-treatment soil samples collected from boreholes C9580, C9581, and C9582. Soil samples collected near PRZ monitoring wells that showed spikes in groundwater phosphate concentrations during PRZ injections also had the highest phosphate concentration in soil samples. This correlation was observed in PRZ soil samples from C9581 (approximately 9 m [30 ft] from injection well 399-1-93) and C9582 (approximately 6 m [20 ft] from injection well 399-1-97). Overall, the data show phosphate delivery to the PRZ via injections was effective and contributed more phosphate mass to the PRZ compared to phosphate delivered through infiltration.

Groundwater monitoring during Stage A PRZ injections and soil sampling after polyphosphate application indicates the average PRZ injection ROI was close to 12 m (40 ft). The average volume injected into each PRZ injection well during Stage A was 199,181 L (52,618 gal), compared to the design volume of 167,913 L (44,358 gal) per well specified in DOE/RL-2014-13.

#### 6.1.3 Aquifer Injection Delivery

The design volume for Stage A aquifer injection also was 167,913 L (44,358 gal) per well (DOE/RL-2014-13). The average volume injected into each aquifer injection well during Stage A was 186,852 L (49,361 gal).

Based on the operational and performance monitoring data collected during Stage A, aquifer injections were able to deliver high concentrations of phosphate to the top of aquifer but due to dilution in the aquifer the concentrations declined relatively quickly following injection.

In summary, both the PRZ and aquifer injections effectively delivered high volumes of polyphosphate solution to the target depths containing residual uranium.

# 6.2 Effect of Polyphosphate Treatments

Flow-through column leach experiments on intact soil samples from pre-treatment borehole C8936 and collocated post-treatment borehole C9582 were conducted to evaluate the reduction in uranium leachability in post-treatment soil samples.

The flow-through column leaching behavior in the column effluent from the pre-treatment samples is similar to the leaching behavior observed for the post-treatment samples collected above the PRZ. These tests indicated uranium was not effectively sequestered in the post-treatment samples where high phosphate concentrations could not be effectively delivered by infiltration of the polyphosphate solution through the vadose zone. In contrast, leaching characteristics of the post-treatment samples collected from the PRZ show much lower leachability, indicating the effects of sequestration from polyphosphate injections. Uranium in PRZ soil exposed to high phosphate concentrations delivered via injection was

sequestered through formation of calcium-uranium-phosphate bearing amorphous mineral phases. These amorphous minerals should eventually form hydroxyapatite over a time period of months to years.

Groundwater monitoring within and downgradient of the Stage A EA area indicates uranium concentrations in groundwater have decreased following treatment with polyphosphate solutions. Continued monitoring will be needed to confirm these trends. Fate and transport modeling predicted both short-term and long-term decreases in uranium concentrations in groundwater.

## 6.3 Refinements for Stage B

The following subsections provide information on refinements that are recommended for the Stage B treatment application. The refinements are based on data and lessons learned from the Stage A treatment application. The remaining 0.9 ha (2.25 ac) treatment area that comprises Stage B is presented in Figure 6-1. Configuration of the Stage B area was developed with the objective of remediating uranium in the lower vadose zone and PRZ soil in a region of high uranium concentration.

#### 6.3.1 Elimination of Infiltration and Optimization of Lower Vadose Zone and PRZ Injections

Stage A infiltration performance data indicate a large proportion of polyphosphate delivered through infiltration precipitated on soils in the vadose zone above 6 m (20 ft) bgs. Much of the Stage B EA area overlies the former North Process Pond and 300 Area Process Trenches excavation areas, where contaminated soil was removed to depths of approximately 4.5 m (15 ft) to 6 m (20 ft) bgs. These areas were backfilled with clean fill. Therefore, use of infiltration is not recommended for Stage B. In order to maximize the delivery of phosphate to the lower vadose zone and PRZ where contamination is present, a combination of lower vadose zone and PRZ injections will be employed for Stage B. Each injection well will be constructed with two separate screens, one in the lower vadose zone and one in the PRZ.

One of the Stage A design objectives of combining polyphosphate infiltration with injection was to provide more uniform aerial coverage of the EA area than could be achieved with injection alone. In order to provide uniform coverage with the revised injection-only Stage B approach, the number of injection wells will be increased from 27 (based on the number [9] of Stage A injection wells scaled up by a factor of 3) to 48 (Figure 6-1). The recommended plan for Stage B is to inject a volume of polyphosphate solution equivalent to approximately 3 pore volumes of the lower vadose zone and PRZ. The polyphosphate solution concentration injected into both the lower vadose zone and PRZ will be the same as the concentration used for Stage A: 78 mM orthophosphate and 4 mM pyrophosphate.

#### 6.3.2 Elimination of Aquifer Injections

Due to the level of dilution in the aquifer, polyphosphate injections into the top of the aquifer during the Stage B treatment application are not recommended. PRZ injections are recommended in lieu of aquifer injections during Stage B. Based on observations during Stage A, injecting into the PRZ at the onset of Stage B polyphosphate application will likely result in higher and more sustained phosphate concentrations in the aquifer compared to what could be achieved with multiple aquifer injections.

As noted in Section 2.4, daily sampling at a limited number of monitoring wells presented challenges in evaluating the Stage A performance. Therefore, daily sampling at all monitoring locations is recommended during Stage B. Daily sampling may be implemented at both wells in a PRZ and aquifer monitoring well pair, or at only one well in the pair.





#### 6.3.3 Expansion of Groundwater Monitoring

During Stage B, downgradient groundwater monitoring wells should be monitored at the same frequency as the Stage B monitoring wells. Although this downgradient monitoring was not part of the Stage A design, the groundwater monitoring results obtained by PNNL provided valuable input to the Stage A evaluation. Based on the impact of the Stage A polyphosphate application on downgradient uranium groundwater concentrations, this component is recommended for the Stage B design. Details on the revised Stage B monitoring well network layout and ERT imaging array will be presented in an addendum to the SAP (DOE/RL-2014-42).

## 7 Bibliography

After the *Hanford Federal Facility Agreement and Consent Order*, hereinafter called the Tri-Party Agreement (TPA) (Ecology et al., 1989), was signed in May 1989, CERCLA investigations, treatability studies, and decisions were completed for the 300-FF-5 OU. Table 7-1 provides a chronological summary of significant documents describing previous investigations, interim remedial actions, decision documents, and studies for the 300-FF-5 OU. The list is not intended to be comprehensive but provides a bibliography of key documents that have led to implementation of the EA using uranium sequestration remedy.

| Document                                                                                                                                           | Issue Date    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOE/RL-89-14, Remedial<br>Investigation/Feasibility Study<br>Work Plan for the<br>300-FF-5 Operable Unit,<br>Hanford Site, Richland,<br>Washington | June 1990     | The RI/FS work plan addresses the nature and extent of<br>the threat posed by a release of hazardous substances to<br>the environment and evaluates proposed remedies for<br>such a release.                                                                                                                                                                                                                                                                                                                                                                                 |
| DOE/RL-94-85, Remedial<br>Investigation/<br>Feasibility Report for the<br>300-FF-5 Operable Unit                                                   | May 1995      | This RI/FS report addresses groundwater, contaminated saturated soils, river sediments, and river contamination associated with the 300 Area.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOE/RL-95-88, Proposed Plan<br>for the 300-FF-1 and<br>300-FF-5 Operable Units                                                                     | November 1995 | The recommended remedial alternative for the 300-FF-5 OU was natural attenuation with ICs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EPA/ROD/R10-96/143, Record<br>of Decision for the 300-FF-1<br>and 300-FF-5 Operable Units,<br>Hanford Site, Benton County,<br>Washington           | November 1996 | The selected remedy for the 300-FF-5 OU is an interim<br>remedial action that involves imposing restrictions on<br>the use of the groundwater until such time as<br>health-based criteria are met for uranium,<br>trichloroethene, and 1,2-dichloroethene. The selected<br>interim remedy included continued monitoring of<br>groundwater that is contaminated above health-based<br>levels to ensure that concentrations continue to decrease<br>and ICs to ensure that groundwater use is restricted to<br>prevent unacceptable exposures to groundwater<br>contamination. |
| EPA/ESD/R10-00/524,<br>Explanation of Significant<br>Difference for the<br>300-FF-5 Record of Decision                                             | June 2000     | The ESD expanded the scope of the 300-FF-5 OU ROD to<br>include all groundwater that underlies the 300 Area waste<br>sites and burial grounds. The ESD also requires an update<br>to the Operations and Maintenance Plan for the 300-FF-5<br>OU to ensure that an adequate monitoring and ICs plan is<br>in place for groundwater beneath 300-FF-1 OU and<br>300-FF-2 OU waste sites.                                                                                                                                                                                        |
| PNNL-17034, Uranium<br>Contamination in the Subsurface<br>Beneath the 300 Area, Hanford<br>Site, Washington                                        | February 2008 | This report summarizes the measurements made to<br>characterize uranium inventories in the 300 Area<br>Industrial Complex.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Document                                                                                                                                                             | Issue Date    | Description                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PNNL-18529, 300 Area<br>Uranium Stabilization Through<br>Polyphosphate Injection: Final<br>Report                                                                    | June 2009     | This report summarizes a phosphate injection pilot study<br>conducted to optimize phosphate formulations in the<br>laboratory and to evaluate the effectiveness of phosphate<br>in sequestering uranium in the aquifer by two methods:<br>direct formation of the insoluble uranium mineral<br>autunite and formation of the mineral apatite.                                       |
| TPA (Ecology et al., 1989)<br>Target Date M-016-110-T05<br>(Ecology et al., 1989)                                                                                    | August 2009   | TPA target date established to have a remedy in place by 12/31/2015 designed to meet federal drinking water standards for uranium throughout the groundwater plume in the 300-FF-5 OU.                                                                                                                                                                                              |
| DOE/RL-2009-30, 300 Area<br>Remedial Investigation/<br>Feasibility Study Work Plan for<br>the 300-FF-1, 300-FF-2, and<br>300-FF-5 Operable Units                     | April 2010    | This RI/FS work plan proposed obtaining information to<br>better define potential effects of residual soil<br>contamination, extent of contamination in the unconfined<br>aquifer, extent of uranium contamination in the deep<br>vadose and periodically rewetted zone, persistent<br>groundwater contamination, and hydraulic properties of the<br>aquifer and river interaction. |
| DOE/RL-2009-45, 300 Area<br>Remedial Investigation/<br>Feasibility Study Sampling and<br>Analysis Plan for the 300-FF-1,<br>300-FF-2, and<br>300-FF-5 Operable Units | April 2010    | This SAP is part of the RI/FS work plan for the 300 Area.                                                                                                                                                                                                                                                                                                                           |
| DOE/RL-2010-99, Remedial<br>Investigation/Feasibility Study<br>for the 300-FF-1, 300-FF-2, and<br>300-FF-5 Operable Units                                            | February 2013 | This RI/FS report summarizes the results of the RI and<br>previous field investigations and remedial actions. The<br>report supports remedy selection for the 300-FF-1 and<br>300-FF-2 Source OUs and the 300-FF-5 Groundwater OU.                                                                                                                                                  |
| DOE/RL-2011-47, Proposed<br>Plan for Remediation of the<br>300-FF-1, 300-FF-2, and<br>300-FF-5 Operable Units                                                        | July 2013     | The 300-FF-1, 300-FF-2, and 300-FF-5 proposed plan was issued.                                                                                                                                                                                                                                                                                                                      |
| EPA and DOE, 2013, Hanford<br>Site 300 Area Record of<br>Decision for 300-FF-2 and<br>300-FF-5, and Record of<br>Decision Amendment for<br>300-FF-1                  | November 2013 | The final ROD specified EA of uranium at the top of the aquifer. The remedy also included MNA, groundwater monitoring, and ICs.                                                                                                                                                                                                                                                     |
| SGW-56993, Sampling<br>Instruction for the<br>300-FF-5 Operable Unit<br>Supplemental Post ROD Field<br>Investigation                                                 | August 2014   | This sampling instruction describes drilling and<br>sampling procedures for refining the location of Stage A<br>and Stage B EA areas.                                                                                                                                                                                                                                               |

| Document                                                                                                                                                                                    | Issue Date   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGW-58261, Description of<br>Work for Borehole Drilling,<br>Sampling, and Construction of<br>Monitoring Wells in Support of<br>the 300-FF-5 OU Supplemental<br>Post ROD Field Investigation | October 2014 | This DOW describes the drilling, construction,<br>development, and sampling activities associated with<br>installation of three characterization boreholes, two of<br>which were completed as groundwater monitoring wells.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TPA-CN-656, TPA Change<br>Notice for SGW-56993,<br>Sampling Instruction for the<br>300-FF-5 Operable Unit<br>Supplemental Post-ROD Field<br>Investigation                                   | April 2015   | This change notice adds two boreholes to SGW-56993.<br>Boreholes C8940 and C9451 were identified for<br>pre-treatment soil sampling following selection of the<br>refined Stage A EA area.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analytical Data Report for<br>Sediment Samples Collected<br>From 300-FF-5 OU,<br>Wells C8933, C8936, and C8938                                                                              | April 2015   | Data report for soil samples collected from supplemental post-ROD boreholes C8933, C8936, and C8938.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SGW-58589, Borehole<br>Summary Report for the<br>Installation of 2 Wells and<br>Drilling of 1 Borehole in the<br>300-FF-5 Operable Unit,<br>FY2015                                          | April 2015   | This report summarizes field activities for the drilling<br>and construction of two monitoring wells and one<br>characterization borehole associated with the<br>300-FF-5 OU supplemental post-ROD field<br>investigation.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SGW-58736, 300-FF-5<br>Enhanced Attenuation Area<br>Stage A Location Selection                                                                                                              | April 2015   | This technical memorandum summarizes the field effort<br>conducted during the post-ROD field investigation and<br>provides the proposed location of the Stage A EA area<br>for polyphosphate injection/infiltration.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DOE/RL-2014-13, Integrated<br>Remedial Design Report/<br>Remedial Action Work Plan for<br>the 300 Area (300-FF-1,<br>300-FF-2 & 300-FF-5 Operable<br>Units)                                 | May 2015     | This integrated RDR/RAWP addresses all three OUs in<br>the 300 Area and is accompanied by two addenda. The<br>addenda correspond to the two distinct media (soil and<br>groundwater). The document is written in three parts: an<br>integrated RDR/RAWP that contains common<br>information to support remedy implementation, an<br>addendum containing information specific to waste<br>site/soil-specific remedies for the 300-FF-2 OU, and an<br>addendum containing information specific to<br>groundwater-specific remedies for the 300-FF-5 OU and<br>uranium sequestration elements implemented at the<br>300-FF-1 and 300-FF-2 OUs. |
| DOE/RL-2014-13-ADD2,<br>Remedial Design<br>Report/Remedial Action Work<br>Plan Addendum for the<br>300 Area Groundwater                                                                     | June 2015    | The RDR/RAWP addendum for 300 Area Groundwater<br>describes the work elements, construction management<br>and oversight, schedule, and cost specific to EA using<br>uranium sequestration in the vadose zone and<br>periodically rewetted zone, MNA, and groundwater<br>monitoring.                                                                                                                                                                                                                                                                                                                                                         |
| SGW-58830, 300-FF-5<br>Supplemental Post-ROD Field<br>Investigation Summary                                                                                                                 | June 2015    | This report summarizes observations and measurements<br>made during the field activities conducted as part of the<br>supplemental post-ROD field investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Document                                                                                                                                                                                                                                                | Issue Date        | Description                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGW-58553, Description of<br>Work for the Installation of<br>Twenty Two Monitoring Wells<br>and Nine Injection Wells in the<br>300-FF-5 Operable Unit,<br>FY2015                                                                                        | June 2015         | This DOW describes the drilling, construction,<br>development, and sampling activities associated with<br>installation of 22 monitoring wells and 9 injection wells<br>in the 300-FF-5 OU to support Stage A of the EA<br>remedy.                              |
| SGW-58976, Field Instructions<br>for Uranium Sequestration in<br>the 300 Area                                                                                                                                                                           | July 2015         | This document provides the field instructions and<br>technical guidance for implementation of the Stage A<br>uranium sequestration activities in the 300 Area<br>Industrial Complex.                                                                           |
| DOE/RL-2014-42,<br>300-FF-5 Operable Unit<br>Remedy Implementation<br>Sampling and Analysis Plan                                                                                                                                                        | September 2015    | This SAP presents the plans for 300-FF-5 OU remedy<br>implementation, performance monitoring, and<br>groundwater monitoring.                                                                                                                                   |
| DOE/RL-2015-55,<br>Administrative Record Index for<br>the 2013 Hanford Site 300 Area<br>Record of Decision for<br>300-FF-2 and 300-FF-5, and<br>Record of Decision Amendment<br>for 300-FF-1; and the 2015<br>Explanation of Significant<br>Differences | October 2015      | This document is the Administrative Record Index for EPA and DOE, 2013; EPA/ROD/R10-96/143; and EPA/ESD/R10-00/524.                                                                                                                                            |
| SGW-58883, Methodology for<br>the Calculation of<br>Concentration Trends, Means,<br>and Confidence Limits for<br>Performance and Attainment<br>Monitoring                                                                                               | October 2015      | This document describes the methodology to evaluate<br>water quality sample results from individual monitoring<br>wells and other monitoring devices in the 300-FF-5 OU<br>to assess the progress toward, and attainment of,<br>remedial action objectives.    |
| ECF-300FF5-15-0017,<br>Calculation of Concentration<br>Trends, Means, and<br>Confidence Limits for<br>cis-1,2-Dichloroethene, Gross<br>Alpha, Nitrate, Trichloroethene,<br>Tritium, and Uranium in the<br>300-FF-5 Operable Unit                        | October 2015      | This environmental calculation file presents estimates of concentration trends, yearly mean concentrations, and cleanup time for wells used in the 300-FF-5 OU for MNA of cis-1,2-dichloroethene, gross alpha, nitrate, trichloroethene, tritium, and uranium. |
| PNNL-24911, Analytical Data<br>Report for Sediment Samples<br>Collected From 300-FF-5 OU,<br>Wells C8940 and C9451                                                                                                                                      | November 2015     | Data report for soil samples collected from boreholes C8940 and C9451.                                                                                                                                                                                         |
| 1232138, "100/300 Area Unit<br>Manager Meeting Minutes"                                                                                                                                                                                                 | November 12, 2015 | M-016-110-T05 target date completed.                                                                                                                                                                                                                           |

| Document                                                                                                                                                                       | Issue Date    | Description                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGW-59369, Description of<br>Work for the Installation of<br>Three Boreholes in the<br>300-FF-5 Groundwater<br>Operable Unit, FY2016                                           | December 2015 | This DOW describes the drilling, construction,<br>decommissioning, and sampling activities associated<br>with installation of three post-treatment characterization<br>boreholes in the 300-FF-5 OU to support Stage A of the<br>EA remedy. |
| SGW-59455, 300-FF-5<br>Operable Unit Stage A Uranium<br>Sequestration System<br>Installation Report                                                                            | March 2016    | This report provides the final design and installation of<br>the Stage A uranium sequestration system. This report<br>also provides lessons learned on the installation of the<br>Stage A system.                                           |
| PNNL-25420, Analytical Data<br>Report for Sediment Samples<br>Collected from 300-FF-5:<br>Boreholes C9580, C9581, and<br>C9582                                                 | May 2016      | Data report for soil samples collected from boreholes C9580, C9581, and C9582.                                                                                                                                                              |
| SGW-59465, Borehole<br>Summary Report for the<br>Installation of Nine Injection<br>Wells, Twenty-One Monitoring<br>Wells, and Three Boreholes in<br>the 300-FF-5 Operable Unit | July 2016     | This borehole summary report describes field activities<br>for installing and sampling 33 wells as part of the<br>Stage A uranium sequestration remedial action for the<br>300-FF-5 OU.                                                     |
| DOW = description of work                                                                                                                                                      |               | RAWP = remedial action work plan                                                                                                                                                                                                            |
| EA = emanced attentiation                                                                                                                                                      | t difference  | <b>DI/ES</b> – remedial investigation/fassibility study                                                                                                                                                                                     |
| IC = institutional control                                                                                                                                                     |               | ROD = record of decision                                                                                                                                                                                                                    |
| MNA = monitored natural attenu                                                                                                                                                 | ation         | SAP = sampling and analysis plan                                                                                                                                                                                                            |
| OU = operable unit                                                                                                                                                             |               | TPA = Tri-Party Agreement                                                                                                                                                                                                                   |

#### SGW-59614, REV. 0

This page intentionally left blank.

#### 8 References

- 1232138, 2015, "100/300 Area Unit Manager Meeting Minutes," U.S. Department of Energy, Richland Operations Office, Washington State Department of Ecology, and U.S. Environmental Protection Agency, Richland, Washington, November 12. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=1512230002</u>.
- *Comprehensive Environmental Response, Compensation, and Liability Act of 1980*, 42 USC 9601, et seq., Pub. L. 107-377, December 31, 2002. Available at: <u>http://epw.senate.gov/cercla.pdf</u>.
- DOE/RL-89-14, 1990, *Remedial Investigation/Feasibility Study Work Plan for the 300-FF-5 Operable Unit, Hanford Site, Richland, Washington*, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D196008257</u>.
- DOE/RL-94-85, 1995, *Remedial Investigation/Feasibility Report for the 300-FF-5 Operable Unit*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D196019032</u>.
- DOE/RL-95-88, 1995, Proposed Plan for the 300-FF-1 and 300-FF-5 Operable Units, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D1341829</u>.
- DOE/RL-2009-30, 2010, 300 Area Remedial Investigation/Feasibility Study Work Plan for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084376</u>.
- DOE/RL-2009-45, 2010, 300 Area Remedial Investigation/Feasibility Study Sampling and Analysis Plan for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084377</u>.
- DOE/RL-2010-99, 2013, *Remedial Investigation/Feasibility Study for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0088359</u>. <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0088307</u>. <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0088306</u>. <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0088305</u>.</u>
- DOE/RL-2011-47, 2013, Proposed Plan for Remediation of the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0088360</u>.
- DOE/RL-2014-13, 2015, Integrated Remedial Design Report/Remedial Action Work Plan for the 300 Area (300-FF-1, 300-FF-2 & 300-FF-5 Operable Units), Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081153H</u>.

- DOE/RL-2014-13-ADD2, 2015, *Remedial Design Report/Remedial Action Work Plan Addendum for the* 300 Area Groundwater, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081151H</u>.
- DOE/RL-2014-42, 2015, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H</u>.
- DOE/RL-2015-55, 2015, Administrative Record Index for the 2013 Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1; and the 2015 Explanation of Significant Differences, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079637H.
- DOE/RL-2016-09, 2016, *Hanford Site Groundwater Monitoring Report for 2015*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0075314H</u>.
- ECF-300FF5-15-0017, 2015, Calculation of Concentration Trends, Means, and Confidence Limits for cis-1,2-Dichloroethene, Gross Alpha, Nitrate, Trichloroethene, Tritium, and Uranium in the 300-FF-5 Operable Unit, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079510H.
- ECF-300FF5-16-0087, 2016, Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford, Washington, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- ECF-300FF5-16-0091, 2016, Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- Ecology, EPA, and DOE, 1989, *Hanford Federal Facility Agreement and Consent Order*, 2 vols., as amended, Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, Washington. Available at: <a href="http://www.hanford.gov/?page=81">http://www.hanford.gov/?page=81</a>.
- ECR-15-000692, 2015, 300 Area Chemical Injection System, Engineering Change Request, Attachment A, CH2M HILL Plateau Remediation Company, Richland, Washington.
- EPA/ESD/R10-00/524, 2000, Explanation of Significant Difference for the 300-FF-5 Record of Decision, U.S. Environmental Protection Agency, Region 10, Washington State Department of Ecology, and U.S. Department of Energy, Seattle, Washington. Available at: <u>http://www.epa.gov/superfund/sites/rods/fulltext/e1000524.pdf</u>.
- EPA/ROD/R10-96/143, 1996, Record of Decision for the 300-FF-1 and 300-FF-5 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Washington State Department of Ecology, and U.S. Department of Energy, Olympia, Washington. Available at: <u>http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=1000544M.TXT</u>.

- EPA and DOE, 2013, *Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1*, U.S. Environmental Protection Agency and U.S. Department of Energy, Richland, Washington, Richland, Washington. Available at: <a href="http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180">http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180</a>.
- PNNL-17034, 2008, Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17034.pdf</u>.
- PNNL-17708, 2008, *Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site*, *Washington State*, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17708.pdf</u>.
- PNNL-17818, 2008, 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17818.pdf</u>
- PNNL-18529, 2009, 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-18529.pdf.
- PNNL-20004, 2010, Uranium Sequestration in the Hanford Vadose Zone using Ammonia Gas: FY 2010 Laboratory-Scale Experiments, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-20004.pdf.
- PNNL-21733, 2012, Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-21733.pdf</u>.
- PNNL-22048, 2012, Updated Conceptual Model for the 300 Area Uranium Groundwater Plume, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22048.pdf.
- PNNL-24911, 2015, Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8940 and C9451, Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-25420, 2016, Analytical Data Report for Sediment Samples Collected From 300-FF-5: Boreholes C9580, C9581, and C9582, Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-SA-25232, 2016, Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography, Pacific Northwest National Laboratory, Richland, Washington.

SGW-56993, 2014, Sampling Instruction for the 300-FF-5 Operable Unit Supplemental Post ROD Field Investigation, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079680H</u>.

Modified by:

TPA-CN-656, 2015, *Tri-Party Agreement Change Notice Form: SGW-56993, Sampling Instruction for the 300-FF-5 Operable Unit Supplemental Post ROD Field Investigation, Rev 0*, dated March 31, U.S. Department of Energy, Richland Operations Office, and U.S. Environmental Protection Agency, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081527H.

- SGW-58261, 2014, Description of Work for Borehole Drilling, Sampling, and Construction of Monitoring Wells in Support of the 300-FF-5 OU Supplemental Post ROD Field Investigation, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- SGW-58553, 2015, Description of Work for the Installation of Twenty Two Monitoring Wells and Nine Injection Wells in the 300-FF-5 Operable Unit, FY2015, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078186H</u>.
- SGW-58589, 2015, Borehole Summary Report for the Installation of 2 Wells and Drilling of 1 Borehole in the 300-FF-5 Operable Unit, FY2015, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- SGW-58736, 2015, 300-FF-5 Enhanced Attenuation Area Stage A Location Selection, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- SGW-58830, 2015, *300-FF-5 Supplemental Post-ROD Field Investigation Summary*, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079681H</u>.
- SGW-58883, 2015, Methodology for the Calculation of Concentration Trends, Means, and Confidence Limits for Performance and Attainment Monitoring, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079695H</u>.
- SGW-58976, 2015, *Field Instructions for Uranium Sequestration in the 300 Area*, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078185H</u>.
- SGW-59369, 2015, Description of Work for the Installation of Three Boreholes in the 300-FF-5 Groundwater Operable Unit, FY2016, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- SGW-59455, 2016, 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0077730H.
- SGW-59465, 2016, Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit, Rev. 1, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0074320H</u>.

# Appendix A

# Soil Sample Analytical Data

#### SGW-59614, REV. 0

This page intentionally left blank.

# Contents

| Introduction                               | A-1                                                                                                                                                                                 |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Treatment Soil Sample Results          | A-1                                                                                                                                                                                 |
| Pre-Treatment Uranium Leachability Reports | A-4                                                                                                                                                                                 |
| Post-Treatment Soil Sample Results         | A-4                                                                                                                                                                                 |
| Post-Treatment Uranium Leachability Report | A-4                                                                                                                                                                                 |
|                                            | Introduction<br>Pre-Treatment Soil Sample Results<br>Pre-Treatment Uranium Leachability Reports<br>Post-Treatment Soil Sample Results<br>Post-Treatment Uranium Leachability Report |

## Tables

| Table A-1. | Total Uranium Results for the Post-ROD Supplemental Borehole Samples            | A-1 |
|------------|---------------------------------------------------------------------------------|-----|
| Table A-2. | Total Uranium Results for the Pre-Treatment Borehole Samples                    | A-3 |
| Table A-3. | Total Uranium, Metal, and Anion Results for the Post-Treatment Borehole Samples | A-5 |

# Supporting Information

| Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8933,<br>C8936 and C8938            | <b>.</b> -9 |
|--------------------------------------------------------------------------------------------------------------------|-------------|
| PNNL-24911, Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU,<br>Wells C8940 and C9451       | 21          |
| PNNL-25420, Analytical Data Report for Sediment Samples Collected From 300-FF-5: Boreholes C9580, C9581, and C9582 | 91          |
This page intentionally left blank.

# A1 Introduction

This appendix provides analytical results for soil samples collected in 2015 and 2016 from boreholes installed to implement the 300-FF-5 Operable Unit Stage A enhanced attenuation (EA) remedy.

# A2 Pre-Treatment Soil Sample Results

Uranium concentrations were analyzed in samples collected from boreholes drilled in and near the Stage A EA area to characterize the contaminant levels prior to application of polyphosphate solutions. Table A-1 provides total uranium results for samples from three boreholes drilled as part of the post-record of decision (ROD) supplemental investigation to refine the location of the Stage A EA area. Table A-2 provides total uranium results for samples from two boreholes drilled prior to the Stage A polyphosphate treatment to characterize pre-treatment soil concentrations within the Stage A EA area. The data are stored in the Hanford Environmental Information System (HEIS) database, and users also may retrieve the data via the internet through the U.S. Department of Energy (DOE) Environmental Dashboard Application available at: https://ehs.hanford.gov/eda/.

|               |             | Sampling Interval<br>(m [ft] bgs) |               | Total Uranium* |
|---------------|-------------|-----------------------------------|---------------|----------------|
| Sample Number | Sample Date | Тор                               | Bottom        | μg/kg)         |
|               |             |                                   |               |                |
| B30508        | 01/13/2015  | 3.4 (11)                          | 3.5 (11.5)    | 434 D          |
| B30513        | 01/13/2015  | 4.1 (13.5)                        | 4.3 (14)      | 14700 D        |
| B30519        | 01/13/2015  | 4.9 (16)                          | 5.0 (16.5)    | 16800 D        |
| B30524        | 01/14/2015  | 5.6 (18.5)                        | 5.8 (19)      | 34800 D        |
| B30529        | 01/14/2015  | 6.6 (21.6)                        | 6.7 (22.1)    | 26100 D        |
| B30534        | 01/14/2015  | 7.4 (24.2)                        | 7.5 (24.7)    | 16900 D        |
| B30535        | 01/14/2015  | 7.4 (24.2)                        | 7.5 (24.7)    | 20600 D        |
| B30540        | 01/14/2015  | 8.3 (27.2)                        | 8.4 (27.7)    | 41400 D        |
| B30545        | 01/14/2015  | 9.1 (29.7)                        | 9.2 (30.2)    | 20800 D        |
| B30550        | 01/14/2015  | 10.1 (33)                         | 10.2 (33.5)   | 25800 D        |
| B309C9        | 01/14/2015  | 10.7 (35.2)                       | 10.9 (35.7)   | 12300 D        |
| B30552        | 01/14/2015  |                                   | 10.7 (35)     | 19900 D        |
|               | Bor         | ehole C8938 (W                    | ell 399-1-68) |                |
| B30556        | 01/08/2015  | 3.1 (10.1)                        | 3.2 (10.6)    | 6590 D         |
| B30557        | 01/08/2015  | 3.1 (10.1)                        | 3.2 (10.6)    | 6520 D         |
| B30562        | 01/08/2015  | 4.1 (13.3)                        | 4.2 (13.8)    | 3120 D         |

Table A-1. Total Uranium Results for the Post-ROD Supplemental Borehole Samples

|               |             | Sampling Interval<br>(m [ft] bgs) |             | Total Uranium* |
|---------------|-------------|-----------------------------------|-------------|----------------|
| Sample Number | Sample Date | Тор                               | Bottom      | μg/kg)         |
| B30567        | 01/08/2015  | 4.4 (14.5)                        | 4.6 (15)    | 3390 D         |
| B30572        | 01/08/2015  | 5.3 (17.3)                        | 5.4 (17.8)  | 4210 D         |
| B30577        | 01/08/2015  | 6.0 (19.7)                        | 6.2 (20.2)  | 4420 D         |
| B30583        | 01/12/2015  | 6.7 (22)                          | 6.9 (22.5)  | 2010 D         |
| B30588        | 01/12/2015  | 7.6 (25)                          | 7.8 (25.5)  | 4390 D         |
| B30593        | 01/12/2015  | 8.5 (27.9)                        | 8.7 (28.4)  | 3090 D         |
| B30598        | 01/12/2015  | 8.9 (29.2)                        | 9.1 (29.7)  | 3200 D         |
| B309F4        | 01/12/2015  | 9.7 (31.7)                        | 9.8 (32.2)  | 2150 D         |
| B305B0        | 01/12/2015  |                                   | 10.0 (32.9) | 2030 D         |
|               |             | Borehole C                        | 8933        |                |
| B304V0        | 12/31/2014  | 3.4 (11)                          | 3.5 (11.5)  | 460 D          |
| B304V5        | 12/31/2014  | 4.0 (13)                          | 4.1 (13.5)  | 688 D          |
| B304W0        | 12/31/2014  | 4.6 (15.1)                        | 4.8 (15.6)  | 540 D          |
| B304W5        | 12/31/2014  | 5.3 (17.5)                        | 5.5 (18)    | 508 D          |
| B304W6        | 12/31/2014  | 5.3 (17.5)                        | 5.5 (18)    | 622 D          |
| B304X1        | 12/31/2014  | 6.1 (20)                          | 6.2 (20.5)  | 726 D          |
| B304X6        | 12/31/2014  | 6.6 (21.5)                        | 6.7 (22)    | 739 D          |
| B304Y1        | 01/06/2015  | 8.0 (26.4)                        | 8.2 (26.9)  | 8180 D         |
| B304Y7        | 01/06/2015  | 9.1 (30)                          | 9.3 (30.5)  | 7130 D         |
| B30504        | 01/07/2015  | 10.8 (35.5)                       | 12.1 (39.7) | 2030 D         |

Table A-1. Total Uranium Results for the Post-ROD Supplemental Borehole Samples

\* EPA Method 6020.

bgs = below ground surface

D = compounds identified in an analysis at a secondary dilution factor

|               |             |               | ig Interval<br>ft] bgs) | Total Uranium* |  |
|---------------|-------------|---------------|-------------------------|----------------|--|
| Sample Number | Sample Date | Тор           | Bottom                  | μg/kg)         |  |
|               | Borehole C  | 8940 (Well 39 | 9-1-76)                 |                |  |
| B31MY3        | 07/13/2015  | 3.4 (11)      | 3.8 (12.5)              | 987 D          |  |
| B31MY8        | 07/13/2015  | 4.1 (13.5)    | 4.6 (15)                | 1300 D         |  |
| B31N04        | 07/13/2015  | 4.9 (16)      | 5.3 (17.5)              | 1180 D         |  |
| B31N14        | 07/13/2015  | 6.6 (21.5)    | 6.9 (22.5)              | 2540 D         |  |
| B31N15        | 07/13/2015  | 6.6 (21.5)    | 6.7 (22)                | 2140 D         |  |
| B31N20        | 07/13/2015  | 7.3 (24)      | 7.6 (25)                | 2500 D         |  |
| B31N25        | 07/13/2015  | 7.9 (26)      | 8.4 (27.5)              | 5900 D         |  |
| B31N30        | 07/13/2015  | 8.7 (28.5)    | 9.1 (30)                | 11500 D        |  |
| B31N35        | 07/13/2015  | 9.4 (31)      | 9.9 (32.5)              | 4490 D         |  |
|               | Borehole C  | 9451 (Well 39 | 9-1-80)                 |                |  |
| B31N65        | 07/14/2015  | 3.4 (11)      | 3.8 (12.5)              | 1440 D         |  |
| B31N70        | 07/14/2015  | 4.1 (13.4)    | 4.6 (15)                | 1180 D         |  |
| B31N75        | 07/14/2015  | 4.9 (16)      | 5.3 (17.5)              | 1270 D         |  |
| B31N76        | 07/14/2015  | 4.9 (16)      | 5.3 (17.5)              | 1030 D         |  |
| B31N81        | 07/14/2015  | 5.6 (18.5)    | 6.1 (20)                | 1100 D         |  |
| B31N86        | 07/14/2015  | 6.4 (21)      | 6.6 (21.5)              | 12000 D        |  |
| B31N91        | 07/14/2015  | 7.3 (24)      | 7.6 (25)                | 5440 D         |  |
| B31N97        | 07/14/2015  | 8.1 (26.5)    | 8.4 (27.5)              | 10600 D        |  |
| B31NB2        | 07/14/2015  | 8.7 (28.5)    | 8.8 (29)                | 9290 D         |  |
| B31NB7        | 07/14/2015  | 9.6 (31.5)    | 9.9 (32.5)              | 6500 D         |  |

\* EPA Method 6020.

bgs = below ground surface

D = compounds identified in an analysis at a secondary dilution factor

# A3 Pre-Treatment Uranium Leachability Reports

Soil samples from boreholes drilled in and near the Stage A EA area prior to application of polyphosphate solutions were analyzed by Pacific Northwest National Laboratory (PNNL) to characterize the adsorption and leachability of uranium and to identify crystalline uranium compounds in the samples. Two reports were prepared by PNNL to provide the results:

- Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8933, C8936 and C8938
- PNNL-24911, Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8940 and C9451

The two reports are provided as supporting information to this appendix.

## A4 Post-Treatment Soil Sample Results

Uranium, metal, and anion concentrations were analyzed in samples collected from boreholes drilled in the Stage A EA area to characterize the contaminant levels following application of polyphosphate solutions. Table A-3 provides results for total uranium, metals (calcium and phosphorus), and anions (chloride, fluoride, nitrate, nitrite, and phosphate) for three boreholes drilled to characterize post-treatment soil concentrations. The data are stored in the HEIS database, and users also may retrieve the data via the internet through the DOE Environmental Dashboard Application.

# A5 Post-Treatment Uranium Leachability Report

Soil samples from boreholes drilled in the Stage A EA area following application of polyphosphate solutions were analyzed by PNNL to characterize the adsorption and leachability of uranium and to identify crystalline uranium compounds in the samples. One report was prepared by PNNL to provide the results:

• PNNL-25420, Analytical Data Report for Sediment Samples Collected From 300-FF-5: Boreholes C9580, C9581, and C9582

This report is also provided as supporting information to this appendix.

| Sample Sample Sample |                     | Metals <sup>a</sup><br>(µg/kg) |            | Anions <sup>b</sup><br>(µg/kg) |            |             |          |          |         |         |           |         |
|----------------------|---------------------|--------------------------------|------------|--------------------------------|------------|-------------|----------|----------|---------|---------|-----------|---------|
| Date                 | Number              | Тор                            | Bottom     | Calcium                        | Phosphorus | Uranium     | Chloride | Fluoride | Nitrate | Nitrite | Phosphate | Sulfate |
|                      |                     |                                |            |                                | Bor        | ehole C9580 |          |          |         |         |           |         |
| 04/19/2016           | B356D9 <sup>c</sup> | 1.5 (5)                        | 3.0 (10)   |                                | 1700000    |             |          |          |         |         | 521000    |         |
| 04/19/2016           | B356F0 <sup>c</sup> | 3.0 (10)                       | 4.0 (13)   |                                | 1500000    |             |          |          |         |         | 736000    |         |
| 04/19/2016           | B356F1°             | 4.0 (13)                       | 4.9 (16)   |                                | 1900000    |             |          |          |         |         | 1350000   |         |
| 04/19/2016           | B356F2 <sup>c</sup> | 4.9 (16)                       | 5.2 (17)   |                                | 1900000    |             |          |          |         |         | 3680000   |         |
| 04/19/2016           | B356F3°             | 5.2 (17)                       | 6.1 (20)   |                                | 1700000    |             |          |          |         |         | 951000    |         |
| 01/05/2016           | B347C7              | 6.6 (21.5)                     | 6.7 (22)   | 4700000                        | 1500000    | 2600        | 2200     | 1000 B   | 5425 U  | 2140 U  | 399000    | 6300 B  |
| 01/05/2016           | B347C8              | 6.6 (21.5)                     | 6.7 (22)   | 5300000                        | 1500000    | 1700        | 2700     | 990 B    | 2225 B  | 2140 U  | 399000    | 8200 B  |
| 01/05/2016           | B347D3              | 7.3 (24)                       | 7.5 (24.5) | 4500000                        | 1300000    | 2000        | 1400 B   | 930 B    | 5425 U  | 2140 U  | 242000    | 5200 B  |
| 01/05/2016           | B347D9              | 8.1 (26.5)                     | 8.2 (27)   | 6100000                        | 1500000    | 3200        | 1600 B   | 820 B    | 5700 U  | 2355 U  | 150000    | 5700 B  |
| 01/05/2016           | B347F4              | 9.0 (29.5)                     | 9.1 (30)   | 4600000                        | 1300000    | 7600        | 1700 B   | 1200     | 1980 B  | 2355 U  | 92000     | 5000 B  |
| 01/05/2016           | B347F9              | 9.3 (30.5)                     | 9.4 (31)   | 6400000                        | 1600000    | 1400        | 3800     | 1100     | 5425 U  | 2120 U  | 205000    | 8300 B  |
| 01/05/2016           | B347H4              | 9.9 (32.5)                     | 10.7 (35)  | 7000000                        | 1300000    | 2600        | 2700     | 820 B    | 5970 U  | 2355 U  | 42900     | 8300 B  |
|                      |                     |                                |            |                                | Bor        | ehole C9581 |          |          |         |         |           |         |
| 04/19/2016           | B356F4 <sup>c</sup> | 0.0 (0)                        | 1.5 (5)    |                                | 1000000    |             |          |          |         |         | 172000    |         |
| 04/19/2016           | B356F5°             | 1.5 (5)                        | 3.0 (10)   |                                | 1700000    |             |          |          |         |         | 1230000   |         |
| 04/19/2016           | B356F9°             | 1.5 (5)                        | 3.0 (10)   |                                | 940000     |             |          |          |         |         | 16900     |         |
| 04/19/2016           | B356F7°             | 3.0 (10)                       | 4.6 (15)   |                                | 1300000    |             |          |          |         |         | 46000     |         |
| 04/19/2016           | B356F8°             |                                | 5.8 (19)   |                                | 740000     |             |          |          |         |         | 23000     |         |
| 01/07/2016           | B347J9              | 6.2 (20.5)                     | 6.4 (21)   | 5800000                        | 1400000    | 1200        | 4500     | 1200     | 8410 U  | 3050 U  | 20200     |         |
| 01/07/2016           | B347K5              | 7.0 (23)                       | 7.2 (23.5) | 5900000                        | 1300000    | 1600        | 5700     | 1400     | 8410 U  | 3190 U  | 20500     |         |

### Table A-3. Total Uranium, Metal, and Anion Results for the Post-Treatment Borehole Samples

SGW-59614, REV. 0

| Sampla     | Samplo              | Sampling<br>(m [f | g Interval<br>t] bgs) |         | Metals <sup>a</sup><br>(µg/kg) |              |          |          | An<br>(µg | ions <sup>b</sup><br>g/kg) |           |         |
|------------|---------------------|-------------------|-----------------------|---------|--------------------------------|--------------|----------|----------|-----------|----------------------------|-----------|---------|
| Date       | Number              | Тор               | Bottom                | Calcium | Phosphorus                     | Uranium      | Chloride | Fluoride | Nitrate   | Nitrite                    | Phosphate | Sulfate |
| 01/07/2016 | B347L0              | 7.8 (25.5)        | 7.9 (26)              | 5000000 | 1100000                        | 5300         | 6400     | 4600     | 7530 B    | 3120 U                     | 7050      |         |
| 01/07/2016 | B347L5              | 8.5 (28)          | 8.7 (28.5)            | 5500000 | 1700000                        | 4300         | 4400     | 2100     | 9300 U    | 3280 U                     | 304000    |         |
| 01/07/2016 | B347L6              | 8.5 (28)          | 8.7 (28.5)            | 5200000 | 1800000                        | 4400         | 3900     | 1400     | 8850 U    | 3220 U                     | 736000    |         |
| 01/07/2016 | B347M1              | 9.8 (32)          | 9.9 (32.5)            | 5600000 | 1700000                        | 2900         | 5500     | 2400     | 7970 U    | 3020 U                     | 399000    |         |
|            |                     |                   |                       |         | Boi                            | rehole C9582 |          |          |           |                            |           |         |
| 04/19/2016 | B356H0 <sup>c</sup> | 3.0 (10)          | 3.7 (12)              |         | 940000                         |              |          |          |           |                            | 16600     |         |
| 04/19/2016 | B356H1°             | 3.7 (12)          | 4.3 (14)              |         | 1200000                        |              |          |          |           |                            | 2240      |         |
| 04/19/2016 | B356H2 <sup>c</sup> | 4.3 (14)          | 4.4 (14.5)            |         | 1100000                        |              |          |          |           |                            | 2050      |         |
| 04/19/2016 | B356H3°             | 4.4 (14.5)        | 5.5 (18)              |         | 960000                         |              |          |          |           |                            | 9810      |         |
| 04/19/2016 | B356H4 <sup>c</sup> | 5.5 (18)          | 5.8 (19)              |         | 1200000                        |              |          |          |           |                            | 28800     |         |
| 04/19/2016 | B356H5°             | 5.8 (19)          | 6.1 (20)              |         | 1200000                        |              |          |          |           |                            | 55200     |         |
| 01/11/2016 | B347P1              | 6.2 (20.5)        | 6.4 (21)              | 6300000 | 1400000                        | 71000        | 7300     | 3400     | 3360 B    | 3120 U                     | 8590      |         |
| 01/11/2016 | B347P6              | 7.0 (23)          | 7.2 (23.5)            | 7000000 | 1000000                        | 100000 D     | 4000     | 19000    | 3280 B    | 2920 U                     | 22400     |         |
| 01/11/2016 | B347R2              | 7.8 (25.5)        | 7.9 (26)              | 6300000 | 1400000                        | 32000        | 6000     | 15000    | 3720 B    | 3610 U                     | 14100     |         |
| 01/11/2016 | B347R3              | 7.8 (25.5)        | 7.9 (26)              | 6200000 | 1400000                        | 31000        | 5200     | 11000    | 3190 B    | 3190 U                     | 9810      |         |
| 01/11/2016 | B347R8              | 9.0 (29.5)        | 9.1 (30)              | 5500000 | 2600000                        | 39000        | 3900     | 34000    | 4870 B    | 3610 U                     | 1230000   |         |
| 01/11/2016 | B347T8              | 10.1 (33)         | 10.2 (33.5)           | 5700000 | 1800000                        | 19000        | 2700     | 8500     | 4160 B    | 3220 U                     | 221000    |         |

Table A-3. Total Uranium, Metal, and Anion Results for the Post-Treatment Borehole Samples

a. EPA Method 6010 for calcium and phosphorus. EPA Method 6020 for uranium.

b. EPA Method 300.

A-6

c, Samples analyzed only for phosphorus and phosphate.

bgs = below ground surface

# **Supporting Information**

# **PNNL Reports**

This page intentionally left blank.





Proudly Operated by Battelle Since 1965

To: Randy Hermann

From: Michelle Snyder and Kirk Cantrell

Environmental Sciences Laboratory Energy and Environment Directorate, Pacific Northwest National Laboratory

Subject: Analytical Data Report of Samples Collected for the solubility testing of wells C8933, C8936 and C8938, sample delivery group (SDG) ESL150001, SAF F15-014.

This letter contains the following information for sample delivery group ESL150001

- Cover Sheet
- Narrative
- Analytical Results
- Quality Control

#### Introduction

Between January 8, 2015 and January 15, 2015 samples were received from the 300-FF5 OU for chemical analyses.

#### Analytical Results/Methodology

The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data.

#### **Quality Control**

The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan "Conducting Analytical Work in Support of Regulatory Programs" (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

#### Definitions

 Dup
 Duplicate

 RPD
 Relative Percent Difference

 NR
 No Recovery (percent recovery less than zero)

 ND
 Non-Detectable

 %REC
 Percent Recovery

#### Sample Receipt

Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis.

All samples were received with custody seals intact unless noted in the Case Narrative.

#### **Holding Times**

Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative.

#### Analytical Results

All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative.

#### **Case Narrative Report**

#### Labile Uranium Selective Extraction

The labile or adsorbed uranium extraction was performed on the <2 mm, air dried sediment samples. A solution containing 0.0144 mol/L of sodium bicarbonate (NaHCO<sub>3</sub>) and 0.0028 mol/L of sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) with a pH of approximately 9.45 was added to the sediment at a solid to solution ratio of 1 gram/2 mL, and allowed to agitate on an orbital shaker for 1 week.

#### **Sequential Extractions**

Four sequential extractions were performed on the <2mm, air dried sediment samples. The first extraction involved a weak acetic acid consisting of 1 mol/L sodium acetate with a final pH of approximately 5. The sample was agitated on an orbital shaker for 1 hour at a solid to solution ratio of 1 gram/2 mL. After 1 hour, the sample was centrifuged, the solution decanted and filtered (for ICP-MS and ICP-OES analysis), and the sample was weighed to determine the remaining residual solution prior to starting the next sequential extraction. The target uranium phase for this extraction is the adsorbed uranium and uranium associated with carbonate minerals. The second sequential extraction used a strong acetic acid ( concentrated glacial acetic acid). After 5 days contact time, the same centrifuge and decanting procedure was used. The target phase for the strong acetic acid is the strongly bound uranium. The third extraction used a solution consisting of 0.1 mol/L ammonium oxalate with 0.1 mol/L oxalic acid. After 1 hour of contact time, the samples were centrifuged, decanted, filtered and weighed. The target phase for the oxalate solution are the amorphous Fe, Al, Mn and Si oxides. The final nitric acid extraction involved 8 mol/L of nitric acid. The samples were transferred to a glass beaker with a stir bar and heated at 95°C for 2 hours on a hot plate. Samples were weighed after this step so the final volume could be determined. The target phases for the nitric acid include clays, crystalline oxides, and Fe, Al, and Mn uranium oxides.

#### **Column Leach Tests**

Four column leach tests were performed on the 300FF5 sediments. The leach tests for samples B30538 and B30546 were conducted using the <2 mm size fraction that had been air dried. Glass columns were used that were 1" in diameter and 6" in length. The other 2 leach tests were performed on columns that were left intact. Samples B30541 and B30543 were fitted with end caps and fittings that would allow the lexan liners to be hooked up to pumps for the column tests. Kloehn pumps were used to push a simulated groundwater solution (recipe in the table below) through the columns in an up-flow direction. At two times during the column testing, the flow was stopped for a period of 46 hours and 72 hours and then restarted to allow release kinetics to be determined from the increased uranium concentrations found immediately after the flow in the column resumes. Column effluent was collected using a fraction collector. Samples were weighed to calculate pore volume. At the completion of testing, 50 ppm of bromide (using sodium bromide) was added to the simulated groundwater and was pumped through all four columns (at the same rate used during the leach test) to aid in determining the column porosities.

| Reagent          | g/L                 |
|------------------|---------------------|
| CaCO3            | 0.1207              |
| MgSO4            | 0.06135             |
| NaHCO3           | 0.08695             |
| KCI              | 0.01154             |
| NaNO3            | 0.03995             |
| **pH was adjuste | ed to 7.3 using HCl |

#### Table 1. Recipe for simulated groundwater used in column tests.

#### Sediment Spectroscopy Analysis

Cryogenic time-resolved laser induced U(VI) fluorescence spectroscopic (TRLIFS) measurements of the uranium-bearing sediment samples were performed at near liquid helium temperature (LHeT,  $6 \pm 2$  °K) using methods described previously (Wang, Zachara et al. 2004; Wang, Zachara et al. 2005). In brief, sediment solids were placed inside a 2 mm × 4 mm x 25 mm fused quartz cuvette, sealed with a silicone stopper, further wrapped with parafilm and attached to the cold-finger of a Cryo Industries model RC-152 cryogenic workstation and cooled with helium vapors to lower the sample temperature. For spectral and lifetime measurements, the samples are excited at 415 nm using a Spectra-Physics Nd:YAG laser pumped Lasertechnik-GWU MOPO laser. The emitted light was collected at 85° to the excitation beam, dispersed through an Acton SpectroPro 300i double monochromator spectrograph, and detected with a thermoelectrically cooled Princeton Instruments PIMAX intensified CCD camera that was triggered by the delayed output of the laser pulse and controlled by the WinSpec data acquisition software. The photofluorescence decay curves were constructed by plotting the spectral intensity of a series of time-delayed fluorescence spectra as a function of the corresponding delay time. The emission spectra and decay data were analyzed using commercial software, IGOR<sup>®</sup>, from Wavematrix, Inc.

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied**, **or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The following analyses were performed on the following samples included in this report:

Metals Special Extract by ICP-OES Moisture Content pH of Waters By Electrode U Special Extract by ICP-MS U from Flow through column leach tests by ICP-MS Geologic Description

Spectroscopy

### SAMPLES ANALYZED IN THIS REPORT

| Sample No. | Laboratory ID | Matrix | Date Collected | Date Received |
|------------|---------------|--------|----------------|---------------|
| B304T7     | 1501009-01    | SOIL   | 12/31/14 08:35 | 1/8/15 09:30  |
| B304T8     | 1501009-02    | SOIL   | 12/31/14 08:35 | 1/8/15 09:30  |
| B304T9     | 1501009-03    | SOIL   | 12/31/14 08:35 | 1/8/15 09:30  |
| B304V1     | 1501009-04    | SOIL   | 12/31/14 08:35 | 1/8/15 09:30  |
| B304V3     | 1501009-05    | SOIL   | 12/31/14 09:11 | 1/8/15 09:30  |
| B304V4     | 1501009-06    | SOIL   | 12/31/14 09:11 | 1/8/15 09:30  |
| B304V6     | 1501009-07    | SOIL   | 12/31/14 09:11 | 1/8/15 09:30  |
| B304V7     | 1501009-08    | SOIL   | 12/31/14 10:40 | 1/8/15 09:30  |
| B304V8     | 1501009-09    | SOIL   | 12/31/14 10:40 | 1/8/15 09:30  |
| B304V9     | 1501009-10    | SOIL   | 12/31/14 10:40 | 1/8/15 09:30  |
| B304W1     | 1501009-11    | SOIL   | 12/31/14 10:40 | 1/8/15 09:30  |
| B304W2     | 1501009-12    | SOIL   | 12/31/14 11:40 | 1/8/15 09:30  |
| B304W3     | 1501009-13    | SOIL   | 12/31/14 11:40 | 1/8/15 09:30  |
| B304W4     | 1501009-14    | SOIL   | 12/31/14 11:40 | 1/8/15 09:30  |
| B304W7     | 1501009-15    | SOIL   | 12/31/14 11:40 | 1/8/15 09:30  |
| B304W8     | 1501009-16    | SOIL   | 12/31/14 13:00 | 1/8/15 09:30  |
| B304W9     | 1501009-17    | SOIL   | 12/31/14 13:00 | 1/8/15 09:30  |
| B304X0     | 1501009-18    | SOIL   | 12/31/14 13:00 | 1/8/15 09:30  |
| B304X2     | 1501009-19    | SOIL   | 12/31/14 13:00 | 1/8/15 09:30  |
| B304X5     | 1501009-20    | SOIL   | 12/31/14 13:40 | 1/8/15 09:30  |
| B304X7     | 1501009-21    | SOIL   | 12/31/14 13:40 | 1/8/15 09:30  |
| B304X8     | 1501009-22    | SOIL   | 1/6/15 09:05   | 1/8/15 09:30  |
| B304X9     | 1501009-23    | SOIL   | 1/6/15 09:05   | 1/8/15 09:30  |
| B304Y0     | 1501009-24    | SOIL   | 1/6/15 09:05   | 1/8/15 09:30  |
| B304Y3     | 1501009-25    | SOIL   | 1/6/15 09:05   | 1/8/15 09:30  |
| B304Y4     | 1501009-26    | SOIL   | 1/6/15 09:40   | 1/8/15 09:30  |
| B304Y5     | 1501009-27    | SOIL   | 1/6/15 09:40   | 1/8/15 09:30  |
| B304Y6     | 1501009-28    | SOIL   | 1/6/15 09:40   | 1/8/15 09:30  |
| B304Y8     | 1501009-29    | SOIL   | 1/6/15 09:40   | 1/8/15 09:30  |
| B30505     | 1501009-30    | SOIL   | 1/13/15 13:00  | 1/15/15 09:40 |
| B30506     | 1501009-31    | SOIL   | 1/13/15 13:00  | 1/15/15 09:40 |
| B30507     | 1501009-32    | SOIL   | 1/13/15 13:00  | 1/15/15 09:40 |
| B30509     | 1501009-33    | SOIL   | 1/13/15 13:00  | 1/15/15 09:40 |
| B30510     | 1501009-34    | SOIL   | 1/13/15 13:00  | 1/15/15 09:40 |
| B30511     | 1501009-35    | SOIL   | 1/13/15 13:30  | 1/15/15 09:40 |
| B30512     | 1501009-36    | SOIL   | 1/13/15 13:30  | 1/15/15 09:40 |
| B30515     | 1501009-37    | SOIL   | 1/13/15 13:30  | 1/15/15 09:40 |
| B30516     | 1501009-38    | SOIL   | 1/13/15 14:48  | 1/15/15 09:40 |
| B30517     | 1501009-39    | SOIL   | 1/13/15 14:48  | 1/15/15 09:40 |
| B30518     | 1501009-40    | SOIL   | 1/13/15 14:48  | 1/15/15 09:40 |
| B30520     | 1501009-41    | SOIL   | 1/13/15 14:48  | 1/15/15 09:40 |
| B30521     | 1501009-42    | SOIL   | 1/14/15 08:20  | 1/15/15 09:40 |
| B30522     | 1501009-43    | SOIL   | 1/14/15 08:20  | 1/15/15 09:40 |
| B30523     | 1501009-44    | SOIL   | 1/14/15 08:20  | 1/15/15 09:40 |
| B30525     | 1501009-45    | SOIL   | 1/14/15 08:20  | 1/15/15 09:40 |
| B30526     | 1501009-46    | SOIL   | 1/14/15 09:30  | 1/15/15 09:40 |

### SAMPLES ANALYZED IN THIS REPORT

| Sample No. | Laboratory ID | Matrix | Date Collected | Date Received |
|------------|---------------|--------|----------------|---------------|
| B30527     | 1501009-47    | SOIL   | 1/14/15 09:30  | 1/15/15 09:40 |
| B30528     | 1501009-48    | SOIL   | 1/14/15 09:30  | 1/15/15 09:40 |
| B30530     | 1501009-49    | SOIL   | 1/14/15 09:30  | 1/15/15 09:40 |
| B30531     | 1501009-50    | SOIL   | 1/14/15 10:20  | 1/15/15 09:40 |
| B30532     | 1501009-51    | SOIL   | 1/14/15 10:20  | 1/15/15 09:40 |
| B30533     | 1501009-52    | SOIL   | 1/14/15 10:20  | 1/15/15 09:40 |
| B30536     | 1501009-53    | SOIL   | 1/14/15 10:20  | 1/15/15 09:40 |
| B30537     | 1501009-54    | SOIL   | 1/14/15 11:30  | 1/15/15 09:40 |
| B30538     | 1501009-55    | SOIL   | 1/14/15 11:30  | 1/15/15 09:40 |
| B30539     | 1501009-56    | SOIL   | 1/14/15 11:30  | 1/15/15 09:40 |
| B30541     | 1501009-57    | SOIL   | 1/14/15 11:30  | 1/15/15 09:40 |
| B30542     | 1501009-58    | SOIL   | 1/14/15 12:30  | 1/15/15 09:40 |
| B30543     | 1501009-59    | SOIL   | 1/14/15 12:30  | 1/15/15 09:40 |
| B30544     | 1501009-60    | SOIL   | 1/14/15 12:30  | 1/15/15 09:40 |
| B30546     | 1501009-61    | SOIL   | 1/14/15 12:30  | 1/15/15 09:40 |
| B30547     | 1501009-62    | SOIL   | 1/14/15 13:20  | 1/15/15 09:40 |
| B30548     | 1501009-63    | SOIL   | 1/14/15 13:20  | 1/15/15 09:40 |
| B30549     | 1501009-64    | SOIL   | 1/14/15 13:20  | 1/15/15 09:40 |
| B30551     | 1501009-65    | SOIL   | 1/14/15 13:20  | 1/15/15 09:40 |
| B309C6     | 1501009-66    | SOIL   | 1/14/15 14:40  | 1/15/15 09:40 |
| B309C7     | 1501009-67    | SOIL   | 1/14/15 14:40  | 1/15/15 09:40 |
| B309C8     | 1501009-68    | SOIL   | 1/14/15 14:40  | 1/15/15 09:40 |
| B309D0     | 1501009-69    | SOIL   | 1/14/15 14:40  | 1/15/15 09:40 |
| B30555     | 1501009-70    | SOIL   | 1/8/15 10:19   | 1/13/15 08:50 |
| B30558     | 1501009-71    | SOIL   | 1/8/15 10:19   | 1/13/15 08:50 |
| B30559     | 1501009-72    | SOIL   | 1/8/15 11:00   | 1/13/15 08:50 |
| B30560     | 1501009-73    | SOIL   | 1/8/15 11:00   | 1/13/15 08:50 |
| B30561     | 1501009-74    | SOIL   | 1/8/15 11:00   | 1/13/15 08:50 |
| B30563     | 1501009-75    | SOIL   | 1/8/15 11:00   | 1/13/15 08:50 |
| B30566     | 1501009-76    | SOIL   | 1/8/15 11:30   | 1/13/15 08:50 |
| B30568     | 1501009-77    | SOIL   | 1/8/15 11:30   | 1/13/15 08:50 |
| B30569     | 1501009-78    | SOIL   | 1/8/15 13:10   | 1/13/15 08:50 |
| B30570     | 1501009-79    | SOIL   | 1/8/15 13:10   | 1/13/15 08:50 |
| B30571     | 1501009-80    | SOIL   | 1/8/15 13:10   | 1/13/15 08:50 |
| B30573     | 1501009-81    | SOIL   | 1/8/15 13:10   | 1/13/15 08:50 |
| B30574     | 1501009-82    | SOIL   | 1/8/15 13:35   | 1/13/15 08:50 |
| B30575     | 1501009-83    | SOIL   | 1/8/15 13:35   | 1/13/15 08:50 |
| B30576     | 1501009-84    | SOIL   | 1/8/15 13:35   | 1/13/15 08:50 |
| B30579     | 1501009-85    | SOIL   | 1/8/15 13:35   | 1/13/15 08:50 |
| B30580     | 1501009-86    | SOIL   | 1/12/15 08:20  | 1/13/15 08:50 |
| B30581     | 1501009-87    | SOIL   | 1/12/15 08:20  | 1/13/15 08:50 |
| B30582     | 1501009-88    | SOIL   | 1/12/15 08:20  | 1/13/15 08:50 |
| B30584     | 1501009-89    | SOIL   | 1/12/15 08:20  | 1/13/15 08:50 |
| B30587     | 1501009-90    | SOIL   | 1/12/15 08:40  | 1/13/15 08:50 |
| B30589     | 1501009-91    | SOIL   | 1/12/15 08:40  | 1/13/15 08:50 |
| B30590     | 1501009-92    | SOIL   | 1/12/15 10:00  | 1/13/15 08:50 |

### SAMPLES ANALYZED IN THIS REPORT

| Sample No. | Laboratory ID | Matrix | Date Collected | Date Received |
|------------|---------------|--------|----------------|---------------|
| B30591     | 1501009-93    | SOIL   | 1/12/15 10:00  | 1/13/15 08:50 |
| B30592     | 1501009-94    | SOIL   | 1/12/15 10:00  | 1/13/15 08:50 |
| B30594     | 1501009-95    | SOIL   | 1/12/15 10:00  | 1/13/15 08:50 |
| B30597     | 1501009-96    | SOIL   | 1/12/15 11:00  | 1/13/15 08:50 |
| B30599     | 1501009-97    | SOIL   | 1/12/15 11:00  | 1/13/15 08:50 |
| B309F2     | 1501009-98    | SOIL   | 1/12/15 12:50  | 1/13/15 08:50 |
| B309F3     | 1501009-99    | SOIL   | 1/12/15 12:50  | 1/13/15 08:50 |
| B309F5     | 1501009-AA    | SOIL   | 1/12/15 12:50  | 1/13/15 08:50 |

|                                              | Wet Chemistry         |         |     |          |         |  |  |  |  |  |
|----------------------------------------------|-----------------------|---------|-----|----------|---------|--|--|--|--|--|
| Moisture Content (% by Weight) by AGG-WC-001 |                       |         |     |          |         |  |  |  |  |  |
| Lab ID                                       | Client ID.            | Results | EQL | Analyzed | Batch   |  |  |  |  |  |
| 1501009-25                                   | B304Y3                | 5.00E0  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-27                                   | B304Y5                | 7.63E0  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-45                                   | B30525                | 8.44E0  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-55                                   | B30538                | 8.22E0  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-61                                   | B30546                | 1.47E1  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-91                                   | B30589                | 6.31E0  | N/A | 3/13/15  | 5B17006 |  |  |  |  |  |
| 1501009-AB                                   | B304Y3 <2mm air dried | 1.98E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |
| 1501009-AC                                   | B304Y5 <2mm air dried | 1.67E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |
| 1501009-AD                                   | B30525 <2mm air dried | 1.35E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |
| 1501009-AE                                   | B30538 <2mm air dried | 2.41E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |
| 1501009-AF                                   | B30546 <2mm air dried | 1.88E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |
| 1501009-AG                                   | B30589 <2mm air dried | 1.42E0  | N/A | 2/17/15  | 5B16005 |  |  |  |  |  |

| Wet Chemistry               |                       |         |     |          |         |  |  |  |
|-----------------------------|-----------------------|---------|-----|----------|---------|--|--|--|
| pH (pH Units) by AGG-pH-001 |                       |         |     |          |         |  |  |  |
| Lab ID                      | Client ID.            | Results | EQL | Analyzed | Batch   |  |  |  |
| 1501009-AB                  | B304Y3 <2mm air dried | 7.88E0  | N/A | 2/18/15  | 5B19003 |  |  |  |
| 1501009-AC                  | B304Y5 <2mm air dried | 7.95E0  | N/A | 2/18/15  | 5B19003 |  |  |  |
| 1501009-AD                  | B30525 <2mm air dried | 8.38E0  | N/A | 2/18/15  | 5B19003 |  |  |  |
| 1501009-AE                  | B30538 <2mm air dried | 7.42E0  | N/A | 2/18/15  | 5B19003 |  |  |  |
| 1501009-AF                  | B30546 <2mm air dried | 7.50E0  | N/A | 2/18/15  | 5B19003 |  |  |  |
| 1501009-AG                  | B30589 <2mm air dried | 7.97E0  | N/A | 2/18/15  | 5B19003 |  |  |  |

| LabNumber  | SampleName                  | Analyte   | final         | Units | EQL   |
|------------|-----------------------------|-----------|---------------|-------|-------|
|            |                             |           | concentration |       |       |
| 1502014-01 | B30/IV3 weak acetic acid    | Aluminum  | 3.14E±01      | 11α/α | 1650  |
| 1502014-01 | B304Y5 weak acetic acid     | Aluminum  | 2.92E+01      | 11g/g | 1650  |
| 1502014-02 | B30525 weak acetic acid     | Aluminum  | 4.42E+01      | 110/0 | 1650  |
| 1502014-04 | B30538 weak acetic acid     | Aluminum  | 5 36E+01      | 110/0 | 1650  |
| 1502014-05 | B30546 weak acetic acid     | Aluminum  | 4.08E+01      | 110/0 | 1650  |
| 1502014-07 | B30589 weak acetic acid     | Aluminum  | 3 10E+01      | 110/0 | 1650  |
| 1302014 07 | D50507 weak decire deld     | 7 Hummun  | 5.101-01      | ug/ 5 | 1050  |
| 1502014-08 | B304Y3 strong acetic acid   | Aluminum  | 1.10E+01      | ug/g  | 1650  |
| 1502014-09 | B304Y5 strong acetic acid   | Aluminum  | 8.63E+00      | ug/g  | 1650  |
| 1502014-10 | B30525 strong acetic acid   | Aluminum  | 1.80E+01      | ug/g  | 1650  |
| 1502014-11 | B30538 strong acetic acid   | Aluminum  | 3.66E+01      | ug/g  | 1650  |
| 1502014-12 | B30546 strong acetic acid   | Aluminum  | 1.69E+01      | ug/g  | 1650  |
| 1502014-14 | B30589 strong acetic acid   | Aluminum  | 1.23E+01      | ug/g  | 1650  |
|            |                             |           |               |       |       |
| 1502014-15 | B304Y3 oxalate              | Aluminum  | 6.95E+02      | ug/g  | 1650  |
| 1502014-16 | B304Y5 oxalate              | Aluminum  | 4.77E+02      | ug/g  | 1650  |
| 1502014-17 | B30525 oxalate              | Aluminum  | 7.63E+02      | ug/g  | 1650  |
| 1502014-18 | B30538 oxalate              | Aluminum  | 1.54E+03      | ug/g  | 1650  |
| 1502014-19 | B30546 oxalate              | Aluminum  | 8.97E+02      | ug/g  | 1650  |
| 1502014-21 | B30589 oxalate              | Aluminum  | 6.16E+02      | ug/g  | 1650  |
|            |                             |           |               |       |       |
| 1502014-22 | B304Y3 nitric acid          | Aluminum  | 2.85E+04      | ug/g  | 16500 |
| 1502014-23 | B304Y5 nitric acid          | Aluminum  | 1.62E+04      | ug/g  | 1650  |
| 1502014-24 | B30525 nitric acid          | Aluminum  | 1.77E+04      | ug/g  | 1650  |
| 1502014-25 | B30538 nitric acid          | Aluminum  | 4.51E+04      | ug/g  | 16500 |
| 1502014-26 | B30546 nitric acid          | Aluminum  | 2.59E+04      | ug/g  | 16500 |
| 1502014-28 | B30589 nitric acid          | Aluminum  | 1.43E+04      | ug/g  | 1650  |
|            |                             |           |               |       |       |
| 1502014-01 | B304Y3 weak acetic acid     | Calcium   | 1.60E+03      | ug/g  | 4900  |
| 1502014-02 | B304Y5 weak acetic acid     | Calcium   | 1.27E+03      | ug/g  | 4900  |
| 1502014-03 | B30525 weak acetic acid     | Calcium   | 2.00E+03      | ug/g  | 4900  |
| 1502014-04 | B30538 weak acetic acid     | Calcium   | 1.61E+03      | ug/g  | 4900  |
| 1502014-05 | B30546 weak acetic acid     | Calcium   | 1.39E+03      | ug/g  | 4900  |
| 1502014-07 | B30589 weak acetic acid     | Calcium   | 1.45E+03      | ug/g  | 4900  |
| 1502014 09 | D204W2 stress a sastia said | Calaina   | 2 705 02      |       | 4000  |
| 1502014-08 | B304 F3 strong acetic acid  | Calcium   | 2.70E+02      | ug/g  | 4900  |
| 1502014-09 | B30415 strong acetic acid   | Calcium   | 2.21E+02      | ug/g  | 4900  |
| 1502014-10 | B30525 strong acetic acid   | Calcium   | 3.95E+02      | ug/g  | 4900  |
| 1502014-11 | B30538 strong acetic acid   | Calcium   | 4.24E+02      | ug/g  | 4900  |
| 1502014-12 | B30346 strong acetic acid   | Calcium   | 2.31E+02      | ug/g  | 4900  |
| 1502014-14 | B30589 strong acetic acid   | Calcium   | 5.11E+02      | ug/g  | 4900  |
| 1502014 15 | B30/IV3 ovalate             | Calcium   | n/a           | 11α/α | 4900  |
| 1502014-15 | B304V5 ovalate              | Calcium   | n/a           | ug/g  | 4900  |
| 1502014-10 | B30525 oxalate              | Calcium   | n/a           | ug/g  | 4900  |
| 1502014-17 | B30538 oxalate              | Calcium   | n/a           | ug/g  | 4900  |
| 1502014-10 | B30546 oxalate              | Calcium   | n/a           | ug/g  | 4900  |
| 1502014-17 | B30589 oxalate              | Calcium   | n/a           | 11g/g | 4900  |
| 1502014-21 | D50507 Ordiac               | Calciulii | n/ a          | ug/g  | 4900  |
| 1502014-22 | B304Y3 nitric acid          | Calcium   | 1.19E+04      | ug/g  | 4900  |
| 1502014-23 | B304Y5 nitric acid          | Calcium   | 1.24E+04      | ug/g  | 4900  |
| 1502014-24 | B30525 nitric acid          | Calcium   | 1.14E+04      | ug/g  | 4900  |
| 1502014-25 | B30538 nitric acid          | Calcium   | 1.07E+04      | ug/g  | 4900  |
| 1502014-26 | B30546 nitric acid          | Calcium   | 1.30E+04      | ug/g  | 4900  |
| 1502014-28 | B30589 nitric acid          | Calcium   | 1.05E+04      | ug/g  | 4900  |

### Sequential Extraction-ICP-OES Results

| LabNumber  | SampleName                | Analyte   | final         | Units  | EQL   |
|------------|---------------------------|-----------|---------------|--------|-------|
|            |                           |           | concentration |        |       |
| 1502014-01 | B304Y3 weak acetic acid   | Iron      | 4.10E+00      | ug/g   | 1000  |
| 1502014-02 | B304Y5 weak acetic acid   | Iron      | 9.36E+00      | ug/g   | 1000  |
| 1502014-03 | B30525 weak acetic acid   | Iron      | 1.47E+01      | ug/g   | 1000  |
| 1502014-04 | B30538 weak acetic acid   | Iron      | 7.32E+00      | ug/g   | 1000  |
| 1502014-05 | B30546 weak acetic acid   | Iron      | 9.22E+00      | ug/g   | 1000  |
| 1502014-07 | B30589 weak acetic acid   | Iron      | 4.66E+01      | ug/g   | 1000  |
|            |                           |           |               |        |       |
| 1502014-08 | B304Y3 strong acetic acid | Iron      | n/a           | ug/g   | 1000  |
| 1502014-09 | B304Y5 strong acetic acid | Iron      | n/a           | ug/g   | 1000  |
| 1502014-10 | B30525 strong acetic acid | Iron      | 2.05E+01      | ug/g   | 1000  |
| 1502014-11 | B30538 strong acetic acid | Iron      | 4.44E+01      | ug/g   | 1000  |
| 1502014-12 | B30546 strong acetic acid | Iron      | 5.70E+01      | ug/g   | 1000  |
| 1502014-14 | B30589 strong acetic acid | Iron      | 7.79E+02      | ug/g   | 1000  |
|            |                           |           |               |        |       |
| 1502014-15 | B304Y3 oxalate            | Iron      | 9.05E+02      | ug/g   | 1000  |
| 1502014-16 | B304Y5 oxalate            | Iron      | 2.39E+03      | ug/g   | 1000  |
| 1502014-17 | B30525 oxalate            | Iron      | 1.54E+03      | ug/g   | 1000  |
| 1502014-18 | B30538 oxalate            | Iron      | 7.82E+02      | ug/g   | 1000  |
| 1502014-19 | B30546 oxalate            | Iron      | 1.45E+03      | ug/g   | 1000  |
| 1502014-21 | B30589 oxalate            | Iron      | 3.69E+03      | ug/g   | 1000  |
|            |                           |           |               |        |       |
| 1502014-22 | B304Y3 nitric acid        | Iron      | 6.32E+04      | ug/g   | 10000 |
| 1502014-23 | B304Y5 nitric acid        | Iron      | 5.45E+04      | ug/g   | 10000 |
| 1502014-24 | B30525 nitric acid        | Iron      | 5.34E+04      | ug/g   | 10000 |
| 1502014-25 | B30538 nitric acid        | Iron      | 5.42E+04      | ug/g   | 10000 |
| 1502014-26 | B30546 nitric acid        | Iron      | 6.52E+04      | ug/g   | 10000 |
| 1502014-28 | B30589 nitric acid        | Iron      | 5.21E+04      | ug/g   | 10000 |
|            |                           |           |               | ,      | 0.44  |
| 1502014-01 | B304Y3 weak acetic acid   | Manganese | 3.74E+00      | ug/g   | 941   |
| 1502014-02 | B304Y5 weak acetic acid   | Manganese | 7.34E+00      | ug/g   | 941   |
| 1502014-03 | B30525 weak acetic acid   | Manganese | 1.03E+01      | ug/g   | 941   |
| 1502014-04 | B30538 weak acetic acid   | Manganese | 9.90E+00      | ug/g   | 941   |
| 1502014-05 | B30546 weak acetic acid   | Manganese | 9.02E+00      | ug/g   | 941   |
| 1502014-07 | B30589 weak acetic acid   | Manganese | 2.70E+01      | ug/g   | 941   |
| 1502014 08 | P204V2 strong agotic agid | Manganasa | 1.71E+01      | 11g/g  | 041   |
| 1502014-08 | B30415 strong acetic acid | Manganese | 1.71E+01      | ug/g   | 941   |
| 1502014-09 | B30415 strong acetic acid | Manganese | 2.43L+01      | ug/g   | 041   |
| 1502014-10 | P30525 strong agotic acid | Manganese | 7.20E+01      | ug/g   | 941   |
| 1502014-11 | B30546 strong agetic acid | Manganese | 3.91E+01      | ug/g   | 941   |
| 1502014-12 | B30589 strong acetic acid | Manganese | 6.80E±01      | ug/g   | 941   |
| 1502014-14 | D30307 strong accile acid | Wanganese | 0.001101      | ug/g   | 741   |
| 1502014-15 | B304Y3 oxalate            | Manganese | 1.02E+02      | 110/g  | 941   |
| 1502014-16 | B304Y5 oxalate            | Manganese | 5 77E+01      | 110/0  | 941   |
| 1502014-17 | B30525 oxalate            | Manganese | 2.94E+01      | 110/0  | 941   |
| 1502014-18 | B30538 oxalate            | Manganese | 4.95E+01      | ug/g   | 941   |
| 1502014-19 | B30546 oxalate            | Manganese | 4.10E+01      | 110/0  | 941   |
| 1502014-21 | B30589 oxalate            | Manganese | 3.74E+01      | 11g/g  | 941   |
| 1002011 21 | Destery onunce            |           | 5.7.12101     | ~~B' B | 211   |
| 1502014-22 | B304Y3 nitric acid        | Manganese | 6.94E+02      | ug/g   | 941   |
| 1502014-23 | B304Y5 nitric acid        | Manganese | 6.22E+02      | ug/g   | 941   |
| 1502014-24 | B30525 nitric acid        | Manganese | 5.50E+02      | ug/g   | 941   |
| 1502014-25 | B30538 nitric acid        | Manganese | 6.49E+02      | ug/g   | 941   |
| 1502014-26 | B30546 nitric acid        | Manganese | 7.12E+02      | ug/g   | 941   |
| 1502014-28 | B30589 nitric acid        | Manganese | 6.38E+02      | ug/g   | 941   |
|            |                           |           |               |        |       |

| LabNumber  | SampleName                | Analyte     | final concentration | Units | EQL  |
|------------|---------------------------|-------------|---------------------|-------|------|
| 1502014-01 | B304Y3 weak acetic acid   | Uranium 238 | 1.31E+01            | ug/g  | 10.6 |
| 1502014-02 | B304Y5 weak acetic acid   | Uranium 238 | 5.98E+00            | ug/g  | 10.6 |
| 1502014-03 | B30525 weak acetic acid   | Uranium 238 | 1.28E+01            | ug/g  | 10.6 |
| 1502014-04 | B30538 weak acetic acid   | Uranium 238 | 5.38E+01            | ug/g  | 10.6 |
| 1502014-05 | B30546 weak acetic acid   | Uranium 238 | 6.78E+00            | ug/g  | 10.6 |
| 1502014-07 | B30589 weak acetic acid   | Uranium 238 | 2.96E+00            | ug/g  | 10.6 |
|            |                           |             |                     |       |      |
| 1502014-08 | B304Y3 strong acetic acid | Uranium 238 | 5.19E+00            | ug/g  | 10.6 |
| 1502014-09 | B304Y5 strong acetic acid | Uranium 238 | 2.93E+00            | ug/g  | 10.6 |
| 1502014-10 | B30525 strong acetic acid | Uranium 238 | 7.74E+00            | ug/g  | 10.6 |
| 1502014-11 | B30538 strong acetic acid | Uranium 238 | 2.41E+01            | ug/g  | 10.6 |
| 1502014-12 | B30546 strong acetic acid | Uranium 238 | 4.86E+00            | ug/g  | 10.6 |
| 1502014-14 | B30589 strong acetic acid | Uranium 238 | 1.28E+00            | ug/g  | 10.6 |
|            |                           |             |                     |       |      |
| 1502014-15 | B304Y3 oxalate            | Uranium 238 | 2.52E+00            | ug/g  | 10.6 |
| 1502014-16 | B304Y5 oxalate            | Uranium 238 | 1.57E+00            | ug/g  | 10.6 |
| 1502014-17 | B30525 oxalate            | Uranium 238 | 5.20E+00            | ug/g  | 10.6 |
| 1502014-18 | B30538 oxalate            | Uranium 238 | 1.31E+01            | ug/g  | 10.6 |
| 1502014-19 | B30546 oxalate            | Uranium 238 | 3.93E+00            | ug/g  | 10.6 |
| 1502014-21 | B30589 oxalate            | Uranium 238 | 8.44E-01            | ug/g  | 10.6 |
|            |                           |             |                     |       |      |
| 1502014-22 | B304Y3 nitric acid        | Uranium 238 | 4.99E+00            | ug/g  | 10.6 |
| 1502014-23 | B304Y5 nitric acid        | Uranium 238 | 4.18E+00            | ug/g  | 10.6 |
| 1502014-24 | B30525 nitric acid        | Uranium 238 | 3.19E+01            | ug/g  | 10.6 |
| 1502014-25 | B30538 nitric acid        | Uranium 238 | 3.48E+01            | ug/g  | 10.6 |
| 1502014-26 | B30546 nitric acid        | Uranium 238 | 1.55E+01            | ug/g  | 10.6 |
| 1502014-28 | B30589 nitric acid        | Uranium 238 | 1.76E+00            | ug/g  | 10.6 |

### Sequential Extraction-ICPMS Uranium Results

| CAS #      | Analyte               | Results  | Units    | EQL        | Analyzed | Batch   | Method           |
|------------|-----------------------|----------|----------|------------|----------|---------|------------------|
| Client ID. | B304Y3 <2mm air dried | La       | ıb ID:   | 1501009-AB |          |         |                  |
| 7429-90-5  | Aluminum              | <6.38E-1 | ug/g dry | 6.38E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 4.53E1   | ug/g dry | 3.08E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | <7.14E-1 | ug/g dry | 7.14E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.25E-1 | ug/g dry | 4.25E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| Client ID. | B304Y5 <2mm air dried | La       | ıb ID:   | 1501009-AC |          |         |                  |
| 7429-90-5  | Aluminum              | <6.35E-1 | ug/g dry | 6.35E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 2.84E1   | ug/g dry | 3.06E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | <7.11E-1 | ug/g dry | 7.11E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.23E-1 | ug/g dry | 4.23E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| Client ID. | B30525 <2mm air dried | La       | ıb ID:   | 1501009-AD |          |         |                  |
| 7429-90-5  | Aluminum              | 1.40E0   | ug/g dry | 6.33E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 8.34E0   | ug/g dry | 3.06E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | 1.58E0   | ug/g dry | 7.09E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.22E-1 | ug/g dry | 4.22E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| Client ID. | B30538 <2mm air dried | La       | ıb ID:   | 1501009-AE |          |         |                  |
| 7429-90-5  | Aluminum              | <6.40E-1 | ug/g dry | 6.40E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 5.91E1   | ug/g dry | 3.09E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | <7.16E-1 | ug/g dry | 7.16E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.26E-1 | ug/g dry | 4.26E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| Client ID. | B30546 <2mm air dried | La       | ıb ID:   | 1501009-AF |          |         |                  |
| 7429-90-5  | Aluminum              | <6.37E-1 | ug/g dry | 6.37E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 4.31E1   | ug/g dry | 3.07E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | <7.12E-1 | ug/g dry | 7.12E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.24E-1 | ug/g dry | 4.24E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| Client ID. | B30589 <2mm air dried | La       | ıb ID:   | 1501009-AG |          |         |                  |
| 7429-90-5  | Aluminum              | <6.34E-1 | ug/g dry | 6.34E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium               | 3.19E1   | ug/g dry | 3.06E0     | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron                  | <7.09E-1 | ug/g dry | 7.09E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese             | <4.22E-1 | ug/g dry | 4.22E-1    | 3/05/15  | 5C05003 | PNNL-AGG-ICP-AES |

# Total Metals by PNNL-AGG-ICP-AES/Special Extraction for Labile Uranium

| CAS #      | Analyte               | Results Units   | EQL        | Analyzed | Batch   | Method       |
|------------|-----------------------|-----------------|------------|----------|---------|--------------|
| Client ID. | B304Y3 <2mm air dried | Lab ID:         | 1501009-AB |          |         |              |
| U-238      | Uranium 238           | 7.89E0 ug/g dry | 3.27E-3    | 3/04/15  | 5C04003 | PNNL-AGG-415 |
| Client ID. | B304Y5 <2mm air dried | Lab ID:         | 1501009-AC |          |         |              |
| U-238      | Uranium 238           | 3.92E0 ug/g dry | 3.25E-3    | 3/04/15  | 5C04003 | PNNL-AGG-415 |
| Client ID. | B30525 <2mm air dried | Lab ID:         | 1501009-AD |          |         |              |
| U-238      | Uranium 238           | 7.05E0 ug/g dry | y 3.24E-3  | 3/04/15  | 5C04003 | PNNL-AGG-415 |
| Client ID. | B30538 <2mm air dried | Lab ID:         | 1501009-AE |          |         |              |
| U-238      | Uranium 238           | 1.20E1 ug/g dry | 3.28E-3    | 3/04/15  | 5C04003 | PNNL-AGG-415 |
| Client ID. | B30546 <2mm air dried | Lab ID:         | 1501009-AF |          |         |              |
| U-238      | Uranium 238           | 3.65E0 ug/g dry | 3.26E-3    | 3/04/15  | 5C04003 | PNNL-AGG-415 |
| Client ID. | B30589 <2mm air dried | Lab ID:         | 1501009-AG |          |         |              |
| U-238      | Uranium 238           | 1.12E0 ug/g dry | y 3.25E-3  | 3/04/15  | 5C04003 | PNNL-AGG-415 |

# Radionuclides by ICP-MS/Special Extraction for Labile Uranium

### **Particle Size Analysis**

| Lab ID     | Client ID | % clay | % silt | % sand | % gravel |
|------------|-----------|--------|--------|--------|----------|
| 1501009-25 | B304Y3    | 2.5    | 2.5    | 11     | 83       |
| 1501009-27 | B304Y5    | 3.8    | 7.2    | 25     | 62       |
| 1501009-45 | B30525    | 2.3    | 4.2    | 19     | 72       |
| 1501009-55 | B30538    | 5.9    | 3.3    | 6.7    | 83       |
| 1501009-57 | B30541    | 7.4    | 57     | 7.5    | 28       |
| 1501009-59 | B30543    | 2.1    | 3.0    | 29     | 65       |
| 1501009-61 | B30546    | 2.1    | 4.6    | 21     | 72       |
| 1501009-91 | B30589    | 4.6    | 7.8    | 25     | 61       |



300-55-5 Borehole Column Leaching Experiment Data

Figure 1. Uranium Concentration Versus Pore Volume and for Intact Core B30541 (estimated pore volume 345.0 mL, approximate flow rate 0.1519 pore volume per hour).

Table 2.Leachate Sample Pore and Uranium Concentration for Intact Core B30541 (estimated pore volume 345.0 mL, approximate flow rate<br/>0.1519 pore volume per hour).

| Pore Volume | Uranium (µg/L) | pH   | Note |
|-------------|----------------|------|------|
| 0.02        | 1190           | 8.31 |      |
| 0.07        | 1240           |      |      |
| 0.13        | 1420           | 8.35 |      |
| 0.18        | 1210           |      |      |
| 0.24        | 1290           | 8.41 |      |
| 0.30        | 1210           |      |      |
| 0.36        | 1270           | 8.37 |      |
| 0.42        | 1090           |      |      |
| 0.47        | 1190           | 8.38 |      |
| 0.53        | 1250           |      |      |
| 0.59        | 1280           | 8.34 |      |
| 0.64        | 1120           |      |      |
| 0.70        | 1160           | 8.41 |      |
| 0.76        | 1130           |      |      |

| 0.82  | 1050 | 8.38 |                   |
|-------|------|------|-------------------|
| 0.88  | 985  |      |                   |
| 0.94  | 891  | 8.32 |                   |
| 1.01  | 873  |      |                   |
| 1.16  | 867  | 8.47 |                   |
| 1.32  | 850  |      |                   |
| 1.48  | 816  |      |                   |
| 1.63  | 800  |      |                   |
| 1.79  | 853  | 8.30 |                   |
| 1.94  | 840  |      |                   |
| 2.10  | 734  |      |                   |
| 2.26  | 737  |      |                   |
| 2.42  | 720  | 8.29 |                   |
| 2.58  | 671  |      |                   |
| 2.75  | 667  |      |                   |
| 2.96  | 683  |      |                   |
| 3.35  | 552  | 8.31 |                   |
| 3.76  | 479  |      |                   |
| 4.16  | 494  |      |                   |
| 4.56  | 481  |      |                   |
| 4.97  | 461  | 8.24 |                   |
| 5.37  | 463  |      |                   |
| 5.78  | 367  |      |                   |
| 6.19  | 388  |      |                   |
| 6.60  | 369  | 8.29 |                   |
| 7.01  | 321  |      |                   |
| 7.41  | 340  |      |                   |
| 7.81  | 332  |      |                   |
| 8.21  | 340  | 8.08 |                   |
| 8.61  | 305  |      |                   |
| 9.02  | 319  |      |                   |
| 9.42  | 306  |      |                   |
| 9.82  | 311  | 8.31 |                   |
| 10.10 | 298  |      | 46 Hour Stop Flow |
| 10.18 | 322  | 8.29 |                   |
| 10.26 | 276  |      |                   |
| 10.34 | 296  | 8.22 |                   |
| 10.43 | 292  |      |                   |
| 10.49 | 550  | 8.37 |                   |
| 10.56 | 470  |      |                   |
| 10.64 | 432  | 8.31 |                   |
| 10.72 | 409  | 0.00 |                   |
| 10.80 | 396  | 8.29 |                   |
| 10.88 | 382  | 0    |                   |
| 10.96 | 381  | 8.31 |                   |
| 11.04 | 397  |      |                   |
| 11.20 | 348  | 8.26 |                   |

| 11.10 | 220 |      |                   |
|-------|-----|------|-------------------|
| 11.40 | 338 |      |                   |
| 11.61 | 322 |      |                   |
| 11.81 | 308 | 0.20 |                   |
| 12.01 | 300 | 8.28 |                   |
| 12.22 | 298 |      |                   |
| 12.42 | 297 |      |                   |
| 12.62 | 277 | 0.10 |                   |
| 12.82 | 285 | 8.19 |                   |
| 13.03 | 269 |      |                   |
| 13.43 | 276 |      |                   |
| 13.83 | 285 | 0.00 |                   |
| 14.24 | 275 | 8.30 |                   |
| 14.64 | 271 |      |                   |
| 15.03 | 271 |      |                   |
| 15.37 | 267 |      |                   |
| 15.77 | 259 | 8.20 |                   |
| 16.17 | 254 |      |                   |
| 16.57 | 243 |      |                   |
| 16.97 | 241 |      |                   |
| 17.37 | 246 | 8.12 |                   |
| 17.78 | 243 |      |                   |
| 18.18 | 230 |      |                   |
| 18.59 | 221 |      |                   |
| 18.99 | 216 | 8.15 |                   |
| 19.39 | 226 |      |                   |
| 19.80 | 213 |      |                   |
| 20.20 | 211 |      |                   |
| 20.60 | 204 | 8.15 |                   |
| 21.00 | 200 |      |                   |
| 21.41 | 199 | 8.12 |                   |
| 21.58 | 202 | 8.00 | 72 Hour Stop Flow |
| 21.62 | 319 |      |                   |
| 21.69 | 349 | 8.36 |                   |
| 21.77 | 339 |      |                   |
| 21.85 | 325 | 8.31 |                   |
| 21.93 | 311 |      |                   |
| 22.01 | 300 | 8.38 |                   |
| 22.09 | 297 |      |                   |
| 22.17 | 294 | 8.28 |                   |
| 22.25 | 285 |      |                   |
| 22.33 | 281 | 8.24 |                   |
| 22.41 | 279 |      |                   |
| 22.50 | 275 | 8.35 |                   |
| 22.58 | 274 |      |                   |
| 22.74 | 268 | 8.21 |                   |
| 22.94 | 268 |      |                   |
| 23.14 | 258 |      |                   |

| 23.34 | 263 |      |  |
|-------|-----|------|--|
| 23.53 | 270 | 8.12 |  |
| 23.73 | 256 |      |  |
| 23.93 | 248 |      |  |
| 24.13 | 263 |      |  |
| 24.33 | 238 | 8.13 |  |
| 24.73 | 243 |      |  |
| 25.13 | 244 |      |  |
| 25.53 | 241 |      |  |
| 25.93 | 235 | 8.15 |  |
| 26.33 | 230 |      |  |
| 26.73 | 221 |      |  |
| 27.13 | 223 |      |  |
| 27.53 | 224 | 8.20 |  |
| 27.94 | 241 |      |  |
| 28.34 | 219 |      |  |
| 28.74 | 234 |      |  |
| 29.14 | 246 | 8.16 |  |
| 29.54 | 254 |      |  |
| 29.94 | 244 |      |  |
| 30.34 | 227 | 8.17 |  |



Figure 2. Bromide Concentration Versus Pore Volume and for Intact Core B30541 (estimated pore volume 345.0 mL, approximate flow rate 0.1519 pore volume per hour).

| Pore Volume | Bromide (mg/L) | Note       |
|-------------|----------------|------------|
| 0.02        | 0.0            |            |
| 0.08        | 0.0            |            |
| 0.16        | 11.7           |            |
| 0.24        | 18.0           |            |
| 0.32        | 22.9           |            |
| 0.41        | 26.2           |            |
| 0.48        | 28.6           |            |
| 0.57        | 31.0           |            |
| 0.65        | 32.8           |            |
| 0.73        | 33.9           |            |
| 0.82        | 35.9           |            |
| 0.90        | 36.6           |            |
| 0.97        | 36.9           |            |
| 1.05        | 38.1           |            |
| 1.13        | 38.9           |            |
| 1.22        | 39.4           |            |
| 1.30        | 40.1           |            |
| 1.38        | 40.3           |            |
| 1.58        | 42.0           |            |
| 1.78        | 43.4           |            |
| 1.98        | 43.9           |            |
| 2.19        | 44.8           |            |
| 2.39        | 45.5           |            |
| 2.59        | 45.8           |            |
| 2.79        | 46.2           |            |
| 2.99        | 46.7           |            |
| 3.20        | 47.0           |            |
| 3.40        | 47.2           |            |
| 3.61        | 47.3           |            |
| 3.81        | 47.5           |            |
| 4.21        | 48.7           |            |
| 4.62        | 48.8           |            |
| 5.02        | 49.2           |            |
| 5.41        | 49.2           |            |
| 5.80        | 49.2           | No Bromide |
| 6.22        | 25.1           |            |
| 6.55        | 15.7           |            |
| 6.95        | 10.0           |            |
| 7.35        | 6.6            |            |
| 7.76        | 0.0            |            |

Table 3.Leachate Sample Pore Volume and Bromide Concentration for Intact Core B30541 (estimated pore volume 345.0 mL, approximate<br/>flow rate 0.1519 pore volume per hour).

| 8.17  | 0.0 |  |
|-------|-----|--|
| 8.56  | 0.0 |  |
| 8.96  | 0.0 |  |
| 9.35  | 0.0 |  |
| 9.75  | 0.0 |  |
| 10.14 | 0.0 |  |
| 10.53 | 0.0 |  |
| 10.93 | 0.0 |  |
| 11.31 | 0.0 |  |



Figure 3. Uranium Concentration Versus Pore Volume and for Intact Core B30543 (estimated pore volume 223.5 mL, approximate flow rate 0.2476 pore volume per hour).

Table 4.Leachate Sample Pore Volume and Uranium Concentration for Intact Core B30543 (estimated pore volume 223.5 mL, approximate<br/>flow rate 0.2476 pore volume per hour).

| Pore Volume | Uranium (µg/L) | pН   | Note |
|-------------|----------------|------|------|
| 0.04        | 447.00         | 8.38 |      |
| 0.14        | 465.00         |      |      |
| 0.23        | 515.00         | 8.33 |      |
| <br>0.33    | 433.00         |      |      |

| 0.43  | 461.00 | 8.32 |                   |
|-------|--------|------|-------------------|
| 0.52  | 441.00 |      |                   |
| 0.63  | 441.00 | 8.17 |                   |
| 0.74  | 433.00 |      |                   |
| 0.99  | 378.00 | 8.23 |                   |
| 1.24  | 378.00 |      |                   |
| 1.50  | 323.00 |      |                   |
| 1.75  | 300.00 | 8.20 |                   |
| 2.00  | 314.00 |      |                   |
| 2.26  | 301.00 |      |                   |
| 2.51  | 280.00 |      |                   |
| 2.77  | 276.00 | 8.16 |                   |
| 2.97  | 260.00 |      |                   |
| 3.17  | 249.00 |      |                   |
| 3.68  | 225.00 |      |                   |
| 4.19  | 212.00 | 8.16 |                   |
| 4.70  | 212.00 |      |                   |
| 5.21  | 209.00 |      |                   |
| 5.82  | 198.00 |      |                   |
| 6.45  | 186.00 | 8.16 |                   |
| 7.08  | 169.00 |      |                   |
| 7.72  | 167.00 |      |                   |
| 8.34  | 164.00 |      |                   |
| 8.98  | 144.00 | 8.22 |                   |
| 9.61  | 144.00 |      |                   |
| 10.24 | 143.00 |      |                   |
| 10.88 | 141.00 |      |                   |
| 11.50 | 133.00 | 8.15 |                   |
| 11.76 | 132.00 |      | 46 Hour Stop Flow |
| 11.89 | 159.00 | 8.22 |                   |
| 12.01 | 133.00 |      |                   |
| 12.13 | 131.00 | 8.19 |                   |
| 12.25 | 124.00 |      |                   |
| 12.38 | 118.00 | 8.26 |                   |
| 12.50 | 117.00 |      |                   |
| 12.62 | 113.00 | 8.29 |                   |
| 12.74 | 114.00 |      |                   |
| 13.05 | 124.00 | 8.11 |                   |
| 13.36 | 115.00 |      |                   |
| 13.67 | 120.00 |      |                   |
| 13.97 | 120.00 |      |                   |
| 14.28 | 118.00 | 8.12 |                   |
| 14.59 | 119.00 |      |                   |
| 15.21 | 118.00 |      |                   |
| 15.84 | 117.00 |      |                   |
| 16.46 | 116.00 | 8.14 |                   |
| 17.08 | 109.00 |      |                   |

| 17.70 | 107.00 |      |                   |
|-------|--------|------|-------------------|
| 18.32 | 111.00 |      |                   |
| 18.95 | 96.20  | 8.21 |                   |
| 19.57 | 101.00 |      |                   |
| 20.21 | 105.00 |      |                   |
| 20.84 | 106.00 |      |                   |
| 21.47 | 90.60  | 8.12 |                   |
| 22.10 | 87.80  |      |                   |
| 22.73 | 88.20  |      |                   |
| 23.35 | 87.40  | 8.13 |                   |
| 23.46 | 95.80  |      | 72 Hour Stop Flow |
| 23.57 | 136.00 | 8.29 |                   |
| 23.69 | 127.00 |      |                   |
| 23.82 | 119.00 | 8.23 |                   |
| 23.94 | 115.00 |      |                   |
| 24.07 | 112.00 | 8.22 |                   |
| 24.19 | 112.00 |      |                   |
| 24.31 | 105.00 | 8.24 |                   |
| 24.44 | 107.00 |      |                   |
| 24.56 | 108.00 | 8.26 |                   |
| 24.87 | 104.00 | 8.18 |                   |
| 25.18 | 103.00 |      |                   |
| 25.49 | 100.00 |      |                   |
| 25.80 | 96.40  |      |                   |
| 26.11 | 94.00  | 8.23 |                   |
| 26.42 | 97.90  |      |                   |
| 27.04 | 88.10  |      |                   |
| 27.66 | 90.80  |      |                   |
| 28.28 | 87.20  | 8.20 |                   |
| 28.91 | 90.00  | 8.14 |                   |
| 29.53 | 78.30  |      |                   |
| 30.16 | 79.50  |      |                   |
| 30.78 | 87.50  |      |                   |
| 31.38 | 85.90  | 8.13 |                   |
| 31.99 | 84.60  |      |                   |
| 32.60 | 83.60  |      |                   |
| 33.21 | 86.60  |      |                   |
| 33.81 | 78.70  | 8.19 |                   |



Figure 4. Bromide Concentration Versus Pore Volume and for Intact Core B30543 (estimated pore volume 223.5 mL, approximate flow rate 0.2476 pore volume per hour).

| Table 5. | Leachate Sample Pore Volume and Bromide Concentration for Intact Core B30543 (estimated pore volume 223.5 mL, approximate |
|----------|---------------------------------------------------------------------------------------------------------------------------|
|          | flow rate 0.2476 pore volume per hour).                                                                                   |

| Pore Volume | Bromide (mg/L) | Note |
|-------------|----------------|------|
| 0.05        | 0.0            |      |
| 0.17        | 18.5           |      |
| 0.30        | 26.2           |      |
| 0.42        | 30.2           |      |
| 0.55        | 32.7           |      |
| 0.67        | 34.5           |      |
| 0.80        | 36.8           |      |
| 0.92        | 38.0           |      |
| 1.05        | 39.3           |      |
| 1.17        | 40.0           |      |
| 1.30        | 40.9           |      |
| 1.42        | 41.8           |      |
| 1.55        | 42.4           |      |
| 1.67        | 42.9           |      |
| 1.80        | 43.6           |      |
| 1.93        | 44.1           |      |
| 2.05        | 44.5           |      |
| 2.18     | 44.8 |
|----------|------|
| 2.49     | 45.6 |
| 2.80     | 46.3 |
| 3.12     | 46.7 |
| 3.43     | 46.8 |
| 3.75     | 47.8 |
| 4.07     | 47.7 |
| 4.39     | 47.7 |
| 4.71     | 47.8 |
| 5.02     | 48.2 |
| 5.34     | 48.4 |
| 5.66     | 48.4 |
| 5.97     | 31.9 |
| 6.61     | 12.0 |
| 7.24     | 6.9  |
| 7.87     | 0.0  |
| <br>8.50 | 0.0  |
| 9.12     | 0.0  |
| <br>9.75 | 0.0  |
| 10.37    | 0.0  |
| 10.85    | 0.0  |



Figure 5. Uranium Concentration Versus Pore Volume and for Repacked (< 2mm) Column B30538 (estimated pore volume 28.65 mL, approximate flow rate 0.2193 pore volume per hour).

| Pore Volume | Uranium (µg/L) | pH   | Note |
|-------------|----------------|------|------|
| 0.10        | 47.2           |      |      |
| 0.27        |                | 7.72 |      |
| 0.44        | 69.1           |      |      |
| 0.79        | 77.0           |      |      |
| 0.96        |                | 7.69 |      |
| 1.13        | 75.3           |      |      |
| 1.47        | 92.3           |      |      |
| 1.64        |                | 7.77 |      |
| 1.81        | 116.0          |      |      |
| 2.16        | 161.0          |      |      |
| 2.33        |                | 8.00 |      |
| 2.50        | 204.0          |      |      |
| 2.85        | 244.0          |      |      |
| 3.02        |                | 8.04 |      |
| 3.19        | 268.0          |      |      |
| 3.53        | 290.0          |      |      |
| 3.70        |                | 8.20 |      |
| 3.88        | 309.0          |      |      |
| 4.22        | 298.0          |      |      |
| 4.39        |                | 8.19 |      |
| 5.08        |                | 8.09 |      |

Table 6.Leachate Sample Pore and Uranium Concentration for Repacked (< 2mm) Column from Core B30538 (estimated pore volume 28.65 mL, approximate flow rate 0.2193 pore volume per hour).</th>

| 5.76  |       | 8.08 |  |
|-------|-------|------|--|
| 5.92  | 353.0 |      |  |
| 6.43  |       | 8.04 |  |
| 7.11  |       | 8.02 |  |
| 7.62  | 327.0 |      |  |
| 7.79  |       | 8.13 |  |
| 8.47  |       | 8.26 |  |
| 9.15  |       | 8.12 |  |
| 9.31  | 361.0 |      |  |
| 9.83  |       | 8.06 |  |
| 10.51 |       | 8.16 |  |
| 11.17 | 368.0 | 8.20 |  |
| 11.83 |       | 8.25 |  |
| 12.49 |       | 8.17 |  |
| 12.65 | 384.0 |      |  |
| 13.14 |       | 8.22 |  |
| 13.80 |       | 8.06 |  |
| 14.29 | 372.0 |      |  |
| 14.46 |       | 8.27 |  |
| 14.62 |       | 8.21 |  |
| 15.10 |       | 8.23 |  |
| 15.90 | 392.0 |      |  |
| 16.37 |       | 8.23 |  |
| 17.01 |       | 8.12 |  |
| 17.48 | 387.0 |      |  |
| 17.64 |       | 8.11 |  |
| 18.28 |       | 7.98 |  |
| 18.92 |       | 8.14 |  |
| 19.08 | 407.0 |      |  |
| 19.55 |       | 8.10 |  |
| 20.20 |       | 8.07 |  |
| 20.68 | 387.0 |      |  |
| 20.84 |       | 8.07 |  |
| 21.48 |       | 8.07 |  |
| 22.12 |       | 8.06 |  |
| 22.28 | 393.0 |      |  |
| 22.76 |       | 8.06 |  |
| 23.40 |       | 8.22 |  |
| 23.89 | 400.0 |      |  |
| 24.05 |       | 8.03 |  |
| 24.69 |       | 8.08 |  |
| 25.33 |       | 8.08 |  |
| 25.49 | 411.0 |      |  |
| 25.92 |       | 8.02 |  |
| 26.55 |       | 8.07 |  |
| 27.02 | 420.0 |      |  |
| 27.18 |       | 8.01 |  |

| 27.80 |       | 8.10 |                   |
|-------|-------|------|-------------------|
| 28.42 |       | 8.21 |                   |
| 28.57 | 402.0 |      |                   |
| 29.04 |       | 8.11 |                   |
| 29.66 |       | 8.01 |                   |
| 30.01 | 405.0 |      | 46 Hour Stop Flow |
| 31.34 |       | 8.14 |                   |
| 31.49 | 430.0 |      |                   |
| 31.64 |       | 8.19 |                   |
| 31.78 | 432.0 |      |                   |
| 31.93 |       | 8.14 |                   |
| 32.08 | 444.0 |      |                   |
| 32.22 |       | 8.04 |                   |
| 32.37 | 444.0 |      |                   |
| 32.52 |       | 7.98 |                   |
| 32.67 | 440.0 |      |                   |
| 32.92 |       | 8.08 |                   |
| 33.07 | 389.0 |      |                   |
| 33.23 |       | 8.03 |                   |
| 33.38 | 388.0 |      |                   |
| 33.53 |       | 8.07 |                   |
| 33.68 | 399.0 |      |                   |
| 33.83 |       | 8.11 |                   |
| 33.99 | 397.0 |      |                   |
| 34.14 |       | 8.00 |                   |
| 34.29 | 413.0 |      |                   |
| 34.43 |       | 8.00 |                   |
| 34.58 | 398.0 |      |                   |
| 34.90 | 403.0 |      |                   |
| 35.04 |       | 8.24 |                   |
| 35.19 | 385.0 |      |                   |
| 35.66 |       | 8.05 |                   |
| 36.25 |       | 8.03 |                   |
| 36.56 | 390.0 |      |                   |
| 36.87 |       | 8.19 |                   |
| 37.49 |       | 8.16 |                   |
| 38.11 | 408.0 | 8.18 |                   |
| 38.71 |       | 8.20 |                   |
| 39.32 |       | 8.22 |                   |
| 39.63 | 403.0 |      |                   |
| 39.90 |       | 8.11 |                   |
| 40.19 |       | 8.16 |                   |
| 40.39 | 504.0 |      |                   |
| 40.71 |       | 8.06 |                   |
| 41.38 | 402.0 | 8.20 |                   |
| 42.06 |       | 8.07 |                   |
| 42.74 |       | 8.20 |                   |

| 43.08                                                                                                                                                                                                                                                 | 392.0                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 43.41                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.20                                                                                                                                                                                                                                                                                                            |                   |
| 44.09                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.23                                                                                                                                                                                                                                                                                                            |                   |
| 44.77                                                                                                                                                                                                                                                 | 391.0                                                                                                                               | 8.02                                                                                                                                                                                                                                                                                                            |                   |
| 45.43                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.12                                                                                                                                                                                                                                                                                                            |                   |
| 46.12                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.12                                                                                                                                                                                                                                                                                                            |                   |
| 46.46                                                                                                                                                                                                                                                 | 387.0                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                   |
| 46.80                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.02                                                                                                                                                                                                                                                                                                            |                   |
| 47.48                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.11                                                                                                                                                                                                                                                                                                            |                   |
| 48.16                                                                                                                                                                                                                                                 | 395.0                                                                                                                               | 8.27                                                                                                                                                                                                                                                                                                            |                   |
| 48.33                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.22                                                                                                                                                                                                                                                                                                            |                   |
| 49.15                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.23                                                                                                                                                                                                                                                                                                            |                   |
| 49.81                                                                                                                                                                                                                                                 | 419.0                                                                                                                               | 8.26                                                                                                                                                                                                                                                                                                            |                   |
| 50.48                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.17                                                                                                                                                                                                                                                                                                            |                   |
| 51.14                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.17                                                                                                                                                                                                                                                                                                            |                   |
| 51.47                                                                                                                                                                                                                                                 | 424.0                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                   |
| 51.79                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.19                                                                                                                                                                                                                                                                                                            |                   |
| 52.45                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.17                                                                                                                                                                                                                                                                                                            |                   |
| 53.10                                                                                                                                                                                                                                                 | 368.0                                                                                                                               | 8.11                                                                                                                                                                                                                                                                                                            |                   |
| 53.74                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.20                                                                                                                                                                                                                                                                                                            |                   |
| 54.39                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.13                                                                                                                                                                                                                                                                                                            |                   |
| 54.71                                                                                                                                                                                                                                                 | 403.0                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                   |
| 55.03                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.11                                                                                                                                                                                                                                                                                                            |                   |
| 55.66                                                                                                                                                                                                                                                 |                                                                                                                                     | 8.14                                                                                                                                                                                                                                                                                                            |                   |
|                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                   |
| 56.29                                                                                                                                                                                                                                                 | 415.0                                                                                                                               | 8.12                                                                                                                                                                                                                                                                                                            |                   |
| 56.29<br>56.92                                                                                                                                                                                                                                        | 415.0                                                                                                                               | 8.12<br>8.15                                                                                                                                                                                                                                                                                                    |                   |
| 56.29<br>56.92<br>57.42                                                                                                                                                                                                                               | 415.0<br>413.0                                                                                                                      | 8.12<br>8.15<br>8.05                                                                                                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72                                                                                                                                                                                                                      | 415.0<br>413.0<br>432.0                                                                                                             | 8.12<br>8.15<br>8.05<br>8.04                                                                                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02                                                                                                                                                                                                             | 415.0<br>413.0<br>432.0<br>432.0                                                                                                    | 8.12<br>8.15<br>8.05<br>8.04<br>8.22                                                                                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31                                                                                                                                                                                                    | 415.0<br>413.0<br>432.0<br>432.0<br>443.0                                                                                           | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13                                                                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60                                                                                                                                                                                           | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>459.0                                                                                  | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15                                                                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90                                                                                                                                                                                  | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>459.0<br>444.0                                                                         | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26                                                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19                                                                                                                                                                         | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>459.0<br>444.0<br>436.0                                                                | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18                                                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19<br>59.49                                                                                                                                                                | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0                                                       | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18                                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19<br>59.49<br>59.79                                                                                                                                                       | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>459.0<br>444.0<br>436.0<br>433.0<br>414.0                                              | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13                                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19<br>59.49<br>59.79<br>60.09                                                                                                                                              | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0                                     | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13<br>8.22                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19<br>59.49<br>59.49<br>59.79<br>60.09<br>60.39                                                                                                                            | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0                            | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13<br>8.22                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29<br>56.92<br>57.42<br>57.72<br>58.02<br>58.31<br>58.60<br>58.90<br>59.19<br>59.49<br>59.79<br>60.09<br>60.39<br>60.69                                                                                                                            | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0                   | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13<br>8.22<br>8.11                                                                                                                                                                                                            | 72 Hour Stop Flow |
| 56.29           56.92           57.42           57.72           58.02           58.31           58.60           58.90           59.19           59.49           59.79           60.09           60.69           61.00                                 | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0          | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.13<br>8.22<br>8.11                                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29           56.92           57.42           57.72           58.02           58.31           58.60           58.90           59.19           59.49           59.79           60.09           60.39           60.69           61.00           61.30 | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>4459.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0         | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13<br>8.22<br>8.11<br>8.22                                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29 $56.92$ $57.42$ $57.72$ $58.02$ $58.31$ $58.60$ $58.90$ $59.19$ $59.49$ $59.79$ $60.09$ $60.39$ $60.69$ $61.00$ $61.30$ $61.91$                                                                                                                 | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0          | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.18<br>8.13<br>8.22<br>8.11<br>8.23<br>8.23<br>8.25                                                                                                                                                                                    | 72 Hour Stop Flow |
| 56.29 $56.92$ $57.42$ $57.72$ $58.02$ $58.31$ $58.60$ $58.90$ $59.19$ $59.19$ $59.49$ $59.79$ $60.09$ $60.39$ $60.69$ $61.00$ $61.30$ $61.91$ $62.50$                                                                                                 | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0<br>376.0 | 8.12         8.15         8.05         8.04         8.22         8.13         8.15         8.26         8.18         8.13         8.13         8.13         8.13         8.22         8.13         8.23         8.23         8.25         8.21                                                                  | 72 Hour Stop Flow |
| $\begin{array}{c} 56.29\\ 56.92\\ 57.42\\ 57.72\\ 58.02\\ 58.31\\ 58.60\\ 58.90\\ 59.19\\ 59.49\\ 59.79\\ 60.09\\ 60.39\\ 60.69\\ 61.30\\ 61.30\\ 61.91\\ 62.50\\ 62.81\\ \end{array}$                                                                | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>459.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0<br>376.0 | 8.12         8.15         8.05         8.04         8.22         8.13         8.15         8.26         8.18         8.13         8.13         8.13         8.13         8.22         8.11         8.23         8.25         8.11                                                                               | 72 Hour Stop Flow |
| $\begin{array}{c} 56.29\\ 56.92\\ 57.42\\ 57.72\\ 58.02\\ 58.31\\ 58.60\\ 58.90\\ 59.19\\ 59.49\\ 59.79\\ 60.09\\ 60.39\\ 60.69\\ 61.00\\ 61.30\\ 61.91\\ 62.50\\ 62.81\\ 63.11\\ \end{array}$                                                        | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0<br>376.0 | 8.12<br>8.15<br>8.05<br>8.04<br>8.22<br>8.13<br>8.15<br>8.26<br>8.18<br>8.13<br>8.22<br>8.11<br>8.23<br>8.25<br>8.21<br>8.11<br>8.17                                                                                                                                                                            | 72 Hour Stop Flow |
| $\begin{array}{c} 56.29\\ 56.92\\ 57.42\\ 57.72\\ 58.02\\ 58.31\\ 58.60\\ 58.90\\ 59.19\\ 59.49\\ 59.79\\ 60.09\\ 60.39\\ 60.69\\ 61.00\\ 61.30\\ 61.91\\ 62.50\\ 62.81\\ 63.11\\ 63.41\\ \end{array}$                                                | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0<br>376.0 | 8.12         8.15         8.05         8.04         8.22         8.13         8.15         8.26         8.18         8.13         8.13         8.13         8.13         8.26         8.18         8.13         8.26         8.11         8.23         8.25         8.21         8.11         8.17         8.07 | 72 Hour Stop Flow |
| $\begin{array}{c} 56.29\\ 56.92\\ 57.42\\ 57.72\\ 58.02\\ 58.31\\ 58.60\\ 58.90\\ 59.19\\ 59.49\\ 59.79\\ 60.09\\ 60.39\\ 60.69\\ 61.30\\ 61.30\\ 61.91\\ 62.50\\ 62.81\\ 63.11\\ 63.41\\ 63.70\\ \end{array}$                                        | 415.0<br>413.0<br>432.0<br>432.0<br>443.0<br>443.0<br>444.0<br>436.0<br>433.0<br>414.0<br>424.0<br>408.0<br>412.0<br>366.0<br>376.0 | 8.12         8.15         8.05         8.04         8.22         8.13         8.15         8.26         8.18         8.13         8.13         8.13         8.13         8.22         8.11         8.23         8.25         8.21         8.11         8.17         8.07         8.07                           | 72 Hour Stop Flow |

| 64.31 $8.11$ $64.62$ $8.14$ $64.92$ $8.15$ $65.22$ $8.10$ $65.54$ $399.0$ $65.84$ $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 64.62 $8.14$ $64.92$ $8.15$ $65.22$ $8.10$ $65.54$ $399.0$ $65.84$ $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                |
| 64.92 $8.15$ $65.22$ $8.10$ $65.54$ $399.0$ $65.84$ $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                               |
| 65.22 $8.10$ $65.54$ $399.0$ $65.84$ $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                                              |
| 65.54 $399.0$ $65.84$ $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                                                             |
| 65.84 $8.18$ $66.44$ $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $7.92$ $68.84$ $8.14$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                                                                             |
| 66.44 $8.22$ $67.05$ $393.0$ $8.06$ $67.33$ $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $68.15$ $414.0$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67.33 $8.09$ $67.61$ $8.04$ $68.15$ $414.0$ $68.15$ $414.0$ $69.15$ $8.09$ $69.53$ $8.09$ $69.87$ $392.0$ $70.23$ $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.36$ $403.0$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$ $78.59$ $388.0$ $8.19$                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 |
| 70.23 $8.19$ $70.93$ $8.10$ $71.64$ $401.0$ $8.09$ $72.33$ $8.07$ $73.04$ $8.10$ $73.36$ $403.0$ $73.71$ $8.09$ $74.40$ $8.15$ $75.10$ $417.0$ $8.09$ $75.80$ $8.13$ $76.49$ $8.11$ $76.83$ $419.0$ $77.18$ $8.22$ $77.89$ $8.12$ $78.59$ $388.0$ $8.19$                                                                                                                                                                                              |
| 70.93       8.10         71.64       401.0       8.09         72.33       8.07         73.04       8.10         73.71       8.09         74.40       8.15         75.10       417.0       8.09         75.80       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                     |
| 71.64       401.0       8.09         72.33       8.07         73.04       8.10         73.36       403.0         73.71       8.09         74.40       8.15         75.10       417.0         8.09       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                |
| 72.33       8.07         73.04       8.10         73.36       403.0         73.71       8.09         74.40       8.15         75.10       417.0         8.09       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                  |
| 73.36       403.0         73.71       8.09         74.40       8.15         75.10       417.0       8.09         75.80       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                                                                                           |
| 73.30       403.0         73.71       8.09         74.40       8.15         75.10       417.0       8.09         75.80       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                                                                                           |
| 73.71       8.09         74.40       8.15         75.10       417.0       8.09         75.80       8.13         76.49       8.11         76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                                                                                                                     |
| 74.40     8.13       75.10     417.0       8.09       75.80       8.13       76.49       8.11       76.83       419.0       77.18       8.22       77.89       8.12       78.59       388.0       8.19                                                                                                                                                                                                                                                |
| 75.10     417.0     8.09       75.80     8.13       76.49     8.11       76.83     419.0       77.18     8.22       77.89     8.12       78.59     388.0     8.19                                                                                                                                                                                                                                                                                     |
| 75.80     8.15       76.49     8.11       76.83     419.0       77.18     8.22       77.89     8.12       78.59     388.0     8.19                                                                                                                                                                                                                                                                                                                    |
| 76.49     8.11       76.83     419.0       77.18     8.22       77.89     8.12       78.59     388.0     8.19                                                                                                                                                                                                                                                                                                                                         |
| 76.83       419.0         77.18       8.22         77.89       8.12         78.59       388.0       8.19                                                                                                                                                                                                                                                                                                                                              |
| 77.18     8.22       77.89     8.12       78.59     388.0     8.19                                                                                                                                                                                                                                                                                                                                                                                    |
| 77.89         8.12           78.59         388.0         8.19                                                                                                                                                                                                                                                                                                                                                                                         |
| 78 59 388 0 8 19                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 76.57 566.0 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 79.26 8.22                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 79.78 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80.12 401.0 8.11                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80.81 8.14                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81.50 8.08                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81.85 404.0                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 82.19 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 82.89 8.16                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 83.59 405.0 8.18                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 84.28 8.19                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84.97 8.07                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 85.31 398.0                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 85.65 8.15                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 86.33 8.16                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 87.01 402.0 8.08                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 87.69 8.13                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 88.20 8.08                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 88.54 414.0                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 88.88 8.05                                                                                                                                                                                                                                                                                                                                                                                                                                            |



**Figure 6.** Bromide Concentration Versus Pore Volume and for Repacked (< 2mm) Column B30538 (estimated pore volume 28.65 mL, approximate flow rate 0.2193 pore volume per hour).

| Table 7. | Leachate Sample Pore and Bromide Concentration for Repacked (< 2mm) Column from Core B30538 (estimated |
|----------|--------------------------------------------------------------------------------------------------------|
|          | pore volume 28.65 mL, approximate flow rate 0.2193 pore volume per hour).                              |

| Pore Volume | Bromide (mg/L) | Note |
|-------------|----------------|------|
| 0.10        | 0.0            |      |
| 0.27        | 0.0            |      |
| 0.43        | 0.0            |      |
| 0.59        | 0.0            |      |
| 0.75        | 0.0            |      |
| 0.92        | 14.4           |      |
| 1.08        | 31.2           |      |
| 1.25        | 41.9           |      |
| 1.41        | 46.4           |      |
| 1.57        | 48.2           |      |
| 1.74        | 49.3           |      |
| 1.90        | 49.4           |      |
| 2.07        | 49.7           |      |

| 2.23                                                                                                                            | 49.9                                                                                             |            |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|
| 2.39                                                                                                                            | 49.8                                                                                             |            |
| 2.56                                                                                                                            | 50.0                                                                                             |            |
| 2.72                                                                                                                            | 50.0                                                                                             |            |
| 2.89                                                                                                                            | 49.9                                                                                             |            |
| 3.05                                                                                                                            | 49.6                                                                                             |            |
| 3.21                                                                                                                            | 49.8                                                                                             |            |
| 3.38                                                                                                                            | 50.0                                                                                             |            |
| 3.54                                                                                                                            | 50.0                                                                                             |            |
| 3.70                                                                                                                            | 49.7                                                                                             |            |
| 3.86                                                                                                                            | 50.2                                                                                             |            |
| 4.02                                                                                                                            | 49.8                                                                                             |            |
| 4.19                                                                                                                            | 50.1                                                                                             |            |
| 4.35                                                                                                                            | 49.6                                                                                             |            |
| 4.52                                                                                                                            | 49.9                                                                                             |            |
| 4.68                                                                                                                            | 49.7                                                                                             |            |
| 4.84                                                                                                                            | 49.9                                                                                             |            |
|                                                                                                                                 |                                                                                                  |            |
| 5.87                                                                                                                            | 50.5                                                                                             | No Bromide |
| 5.87<br>6.19                                                                                                                    | 50.5<br>50.8                                                                                     | No Bromide |
| 5.87<br>6.19<br>6.50                                                                                                            | 50.5<br>50.8<br>42.6                                                                             | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82                                                                                                    | 50.5<br>50.8<br>42.6<br>14.1                                                                     | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14                                                                                            | 50.5<br>50.8<br>42.6<br>14.1<br>0.0                                                              | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45                                                                                    | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0                                                       | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77                                                                            | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0                                                | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08                                                                    | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40                                                            | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                    | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72                                                    | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0             | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03                                            | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03<br>9.36                                    | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03<br>9.36<br>9.67                            | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03<br>9.36<br>9.67<br>10.46                   | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03<br>9.36<br>9.36<br>9.67<br>10.46<br>11.24  | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |
| 5.87<br>6.19<br>6.50<br>6.82<br>7.14<br>7.45<br>7.77<br>8.08<br>8.40<br>8.72<br>9.03<br>9.36<br>9.67<br>10.46<br>11.24<br>12.82 | 50.5<br>50.8<br>42.6<br>14.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | No Bromide |



Figure 7. Uranium Concentration Versus Pore Volume and for Repacked (< 2mm) Column B30546 (estimated pore volume 24.50 mL, approximate flow rate 0.3581 pore volume per hour).

**Table 8.**Leachate Sample Pore and Uranium Concentration for Repacked (< 2mm) Column from Core B30546 (estimated pore volume 24.50 mL, approximate flow rate 0.3581 pore volume per hour).</th>

| Pore Volume | Uranium (µg/L) | pН   | Note |
|-------------|----------------|------|------|
| 0.2         | 10.1           |      |      |
| 0.4         |                | 8.08 |      |
| 0.7         | 19.5           |      |      |
| 1.2         | 48.7           |      |      |
| 1.5         |                | 8.14 |      |
| 1.7         | 77             |      |      |
| 2.2         | 90             |      |      |
| 2.5         |                | 7.98 |      |
| 2.8         | 94.1           |      |      |
| 3.3         | 95.9           |      |      |
| 3.5         |                | 8.23 |      |
| 3.8         | 92.2           |      |      |
| 4.3         | 96.8           |      |      |
| 4.6         |                | 8.17 |      |
| 4.9         | 95.4           |      |      |

| 5.6  |      | 8.25 |  |
|------|------|------|--|
| 6.7  |      | 8.18 |  |
| 7.8  | 97.6 | 8.09 |  |
| 8.8  |      | 8.02 |  |
| 9.9  |      | 8.12 |  |
| 10.5 | 99.7 |      |  |
| 11.0 |      | 8.14 |  |
| 12.1 |      | 8.15 |  |
| 13.2 | 96.7 | 8.16 |  |
| 14.3 |      | 8.3  |  |
| 15.4 |      | 8.18 |  |
| 16.0 | 95.2 |      |  |
| 16.6 |      | 8.15 |  |
| 17.7 |      | 8.21 |  |
| 18.8 | 100  | 8.26 |  |
| 19.9 |      | 8.21 |  |
| 21.0 |      | 8.19 |  |
| 21.6 | 98.1 |      |  |
| 22.1 |      | 8.26 |  |
| 23.3 |      | 8.22 |  |
| 24.4 | 93.5 | 8.16 |  |
| 25.5 |      | 8.08 |  |
| 26.7 |      | 8.17 |  |
| 27.2 | 97.7 |      |  |
| 27.8 |      | 8.2  |  |
| 29.0 |      | 8.22 |  |
| 30.1 | 102  | 8.19 |  |
| 31.3 |      | 8.14 |  |
| 32.4 |      | 8.19 |  |
| 33.0 | 97.2 |      |  |
| 33.6 |      | 8.19 |  |
| 34.8 |      | 8.15 |  |
| 35.9 | 96.9 | 8.05 |  |
| 37.1 |      | 8.18 |  |
| 38.3 |      | 8.16 |  |
| 38.8 | 96.6 |      |  |
| 39.4 |      | 8.17 |  |
| 40.6 |      | 8.08 |  |
| 41.8 | 93.8 | 8.19 |  |
| 43.0 |      | 8.05 |  |
| 44.2 |      | 8.16 |  |
| 44.8 | 96.9 |      |  |
| 45.4 |      | 8.16 |  |
| 46.6 |      | 8.16 |  |
| 47.8 | 94.2 | 8.19 |  |

| 49.0 |      | 8.17 |                   |
|------|------|------|-------------------|
| 50.2 |      | 8.2  |                   |
| 50.8 | 91.7 |      |                   |
| 51.4 |      | 8.18 |                   |
| 52.3 | 107  |      | 46 Hour Stop Flow |
| 54.8 |      | 8.15 |                   |
| 55.1 | 94.6 |      |                   |
| 55.4 |      | 8.25 |                   |
| 55.7 | 93.4 |      |                   |
| 56.0 |      | 8.22 |                   |
| 56.3 | 87.4 |      |                   |
| 56.7 |      | 8.18 |                   |
| 57.0 | 90.8 |      |                   |
| 57.3 |      | 8.08 |                   |
| 57.6 | 82.6 |      |                   |
| 57.9 |      | 8.18 |                   |
| 58.2 | 86.5 |      |                   |
| 58.5 |      | 8.21 |                   |
| 58.8 | 85.5 |      |                   |
| 59.1 |      | 8.17 |                   |
| 59.7 |      | 8.06 |                   |
| 60.4 |      | 8.14 |                   |
| 61.3 |      | 8.11 |                   |
| 61.9 | 84   |      |                   |
| 62.5 |      | 8.1  |                   |
| 63.7 |      | 8.16 |                   |
| 64.9 | 85.6 | 8.15 |                   |
| 66.1 |      | 8.07 |                   |
| 67.4 |      | 8.08 |                   |
| 68.0 | 91.3 |      |                   |
| 68.6 |      | 8.2  |                   |
| 69.8 |      | 8.2  |                   |
| 71.0 | 85.3 | 8.16 |                   |
| 72.2 |      | 8.14 |                   |
| 73.4 |      | 8.07 |                   |
| 74.0 | 88   |      |                   |
| 74.6 |      | 8.09 |                   |
| 75.6 | 91.3 | 8.12 |                   |
| 76.0 |      | 8.2  |                   |
| 76.5 | 86.6 |      |                   |
| 77.0 |      | 8.13 |                   |
| 78.0 |      | 8.17 |                   |
| 79.0 | 83.2 | 8.21 |                   |
| 80.0 |      | 8.18 |                   |

| 80.9                                                                                            |                                              | 8.18                                                                                        |                   |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|
| 81.4                                                                                            | 84.6                                         |                                                                                             |                   |
| 81.9                                                                                            |                                              | 8.21                                                                                        |                   |
| 83.0                                                                                            |                                              | 8.15                                                                                        |                   |
| 84.0                                                                                            | 80.1                                         | 8.19                                                                                        |                   |
| 84.6                                                                                            |                                              | 8.16                                                                                        |                   |
| 85.6                                                                                            |                                              | 8.16                                                                                        |                   |
| 86.7                                                                                            | 84.5                                         | 8.15                                                                                        |                   |
| 87.7                                                                                            |                                              | 8.16                                                                                        |                   |
| 88.8                                                                                            |                                              | 8.12                                                                                        |                   |
| 89.3                                                                                            | 84                                           |                                                                                             |                   |
| 89.9                                                                                            |                                              | 8.09                                                                                        |                   |
| 91.0                                                                                            |                                              | 8.06                                                                                        |                   |
| 92.1                                                                                            | 83.5                                         | 8.15                                                                                        |                   |
| 93.2                                                                                            |                                              | 8.08                                                                                        |                   |
| 94.3                                                                                            |                                              | 8.04                                                                                        |                   |
| 94.9                                                                                            | 80                                           |                                                                                             |                   |
| 95.5                                                                                            |                                              | 8.19                                                                                        |                   |
| 96.6                                                                                            |                                              | 8.15                                                                                        |                   |
| 97.8                                                                                            | 82.9                                         | 8.08                                                                                        |                   |
| 98.9                                                                                            |                                              | 8.13                                                                                        |                   |
| 100.1                                                                                           |                                              | 8.19                                                                                        |                   |
| 100.7                                                                                           | 88.2                                         |                                                                                             |                   |
| 101.2                                                                                           | 91.5                                         | 8.14                                                                                        |                   |
| 101.8                                                                                           | 94.1                                         | 8.16                                                                                        | 72 Hour Stop Flow |
| 102.4                                                                                           | 95.3                                         | 8.13                                                                                        |                   |
| 103.0                                                                                           | 94.8                                         | 8.05                                                                                        |                   |
| 103.6                                                                                           | 95.2                                         | 8.11                                                                                        |                   |
| 104.2                                                                                           | 89                                           | 8.16                                                                                        |                   |
| 104.8                                                                                           | 88.5                                         | 8.08                                                                                        |                   |
| 105.4                                                                                           | 95 Q                                         | 0.00                                                                                        |                   |
| 106.0                                                                                           | 85.8                                         | 8.08                                                                                        |                   |
|                                                                                                 | 86.3                                         | 8.08                                                                                        |                   |
| 106.6                                                                                           | 86.3<br>82.6                                 | 8.08<br>8.12<br>8.1                                                                         |                   |
| 106.6<br>107.9                                                                                  | 86.3<br>82.6                                 | 8.08<br>8.12<br>8.1<br>8.16                                                                 |                   |
| 106.6<br>107.9<br>109.1                                                                         | 85.8<br>86.3<br>82.6                         | 8.08<br>8.12<br>8.1<br>8.16<br>8.19                                                         |                   |
| 106.6<br>107.9<br>109.1<br>109.7                                                                | 85.8<br>86.3<br>82.6<br>78.2                 | 8.08<br>8.12<br>8.1<br>8.16<br>8.19                                                         |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3                                                       | 85.8<br>86.3<br>82.6<br>78.2                 | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08                                                 |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6                                              | 85.8<br>86.3<br>82.6<br>78.2                 | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18                                         |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6<br>112.8                                     | 85.8<br>86.3<br>82.6<br>78.2<br>91.9         | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18<br>8.06                                 |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6<br>112.8<br>114.1                            | 85.8<br>86.3<br>82.6<br>78.2<br>91.9         | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18<br>8.06<br>8.18                         |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6<br>112.8<br>114.1<br>115.3                   | 85.8<br>86.3<br>82.6<br>78.2<br>91.9         | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18<br>8.06<br>8.18<br>8.18<br>8.18         |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6<br>112.8<br>114.1<br>115.3<br>116.0          | 83.8<br>86.3<br>82.6<br>78.2<br>91.9<br>95.4 | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18<br>8.06<br>8.18<br>8.18<br>8.18         |                   |
| 106.6<br>107.9<br>109.1<br>109.7<br>110.3<br>111.6<br>112.8<br>114.1<br>115.3<br>116.0<br>116.6 | 85.8<br>86.3<br>82.6<br>78.2<br>91.9<br>95.4 | 8.08<br>8.12<br>8.1<br>8.16<br>8.19<br>8.08<br>8.18<br>8.06<br>8.18<br>8.18<br>8.18<br>8.12 |                   |

| 119.1 | 92.6 | 8.13 |  |
|-------|------|------|--|
| 120.4 |      | 8.05 |  |
| 121.6 |      | 8.11 |  |
| 121.9 | 92.6 |      |  |
| 122.1 |      | 8.09 |  |
| 122.6 |      | 8.19 |  |
| 123.6 |      | 8.12 |  |
| 124.4 | 91.1 | 8.08 |  |
| 125.3 |      | 8.22 |  |
| 126.3 |      | 8.24 |  |
| 126.8 | 97.6 |      |  |
| 127.3 |      | 8.2  |  |
| 128.3 |      | 8.15 |  |
| 129.3 | 98.8 | 8.19 |  |
| 130.3 |      | 8.16 |  |
| 131.3 |      | 8.13 |  |
| 131.8 | 99.1 |      |  |
| 132.3 |      | 8.14 |  |
| 133.3 |      | 8.19 |  |
| 134.4 | 97.6 | 8.11 |  |
| 135.4 |      | 8.16 |  |
| 136.4 |      | 8.18 |  |
| 137.0 | 98.8 |      |  |
| 137.5 |      | 8.25 |  |
| 138.5 |      | 8.13 |  |
| 139.6 | 95.6 | 8.18 |  |
| 140.6 |      | 8.13 |  |
| 141.7 |      | 8.14 |  |
| 142.2 | 97.4 |      |  |
| 142.7 |      | 8.15 |  |
| 143.8 |      | 8.16 |  |
| 144.9 | 94.4 | 8.18 |  |
| 145.9 |      | 8.25 |  |
| 147.0 |      | 8.08 |  |
| 147.6 | 99.7 |      |  |
| 148.1 |      | 8.14 |  |
| 149.2 |      | 8.2  |  |
| 150.3 | 104  | 8.25 |  |
| 151.5 |      | 8.2  |  |
| 152.6 |      | 8.22 |  |
| 153.2 | 99.4 |      |  |
| 153.7 |      | 8.22 |  |
| 154.2 |      | 8.25 |  |



Figure 8. Bromide Concentration Versus Pore Volume and for Repacked (< 2mm) Column B30546 (estimated pore volume 24.50 mL, approximate flow rate 0.3581 pore volume per hour).

Table 9.Leachate Sample Pore and Bromide Concentration for Repacked (< 2mm) Column from Core B30546 (estimated pore volume 24.50 mL, approximate flow rate 0.3581 pore volume per hour).</th>

| Pore Volume | Bromide (mg/L) | Note |
|-------------|----------------|------|
| 0.27        | 0.0            |      |
| 0.55        | 0.0            |      |
| 0.79        | 0.0            |      |
| 1.06        | 31.7           |      |
| 1.34        | 46.4           |      |
| 1.62        | 50.0           |      |
| 1.89        | 57.8           |      |
| 2.09        | 49.7           |      |
| 2.37        | 51.4           |      |
| 2.65        | 51.2           |      |
| 2.93        | 51.7           |      |
| 3.10        | 49.9           |      |
| 3.23        | 49.9           |      |
| 3.49        | 50.6           |      |
| 3.80        | 48.9           |      |

| 4.40  | 50.2 |            |
|-------|------|------------|
| 4.61  | 49.8 |            |
| 4.86  | 50.0 |            |
| 5.28  | 49.7 |            |
| 5.82  | 50.8 |            |
| 5.96  | 49.7 |            |
| 6.24  | 50.3 |            |
| 6.31  | 49.7 |            |
| 6.60  | 50.3 |            |
| 8.50  | 54.1 | No Bromide |
| 8.98  | 23.5 |            |
| 9.48  | 0.0  |            |
| 10.00 | 0.0  |            |
| 10.50 | 0.0  |            |
| 11.02 | 0.0  |            |
| 11.53 | 0.0  |            |
| 11.97 | 0.0  |            |
| 12.49 | 0.0  |            |
| 12.98 | 0.0  |            |
| 14.16 | 0.0  |            |
| 16.65 | 0.0  |            |
| 19.26 | 0.0  |            |
| 21.87 | 0.0  |            |
| 23.72 | 0.0  |            |

## Wet Chemistry - Quality Control Environmental Science Laboratory

| Analyte                           | Result      | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-----------------------------------|-------------|--------------------|----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch 5B19003 - 1:1 Water Extract | (pH_EC_Alk) |                    |          |                |                  |             |                |       |              |       |
| Blank (5B19003-BLK1)              |             |                    |          | Prepared a     | & Analyzed       | l: 02/18/15 |                |       |              |       |
| pH                                | 5.05E0      | N/A                | pH Units |                |                  |             |                |       |              |       |
| Duplicate (5B19003-DUP1)          | Sou         | rce: 1501009       | 9-AF     | Prepared a     | & Analyzed       | l: 02/18/15 |                |       |              |       |
| pH                                | 7.46E0      | N/A                | pH Units |                | 7.50E0           |             |                | 0.535 | 35           |       |

| Total Metals by PNNL-AGG-ICP-AES/Special Extract - Quality Control |
|--------------------------------------------------------------------|
| Environmental Science Laboratory                                   |

| Analyte                         | Result      | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|-------------|--------------------|----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch 5C05003 - Special Extract | (ICP/ICPMS) |                    |          |                |                  |             |                |       |              |       |
| Blank (5C05003-BLK1)            |             |                    |          | Prepared &     | & Analyzed       | l: 03/05/15 | 5              |       |              |       |
| Aluminum                        | <3.12E-1    | 3.12E-1            | ug/g wet |                |                  |             |                |       |              |       |
| Calcium                         | <1.51E0     | 1.51E0             |          |                |                  |             |                |       |              |       |
| Iron                            | <3.50E-1    | 3.50E-1            |          |                |                  |             |                |       |              |       |
| Manganese                       | <2.08E-1    | 2.08E-1            |          |                |                  |             |                |       |              |       |
| LCS (5C05003-BS1)               |             |                    |          | Prepared &     | & Analyzed       | l: 03/05/15 | 5              |       |              |       |
| Aluminum                        | 6.64E0      | 3.12E-1            | ug/g wet | 7.50E0         |                  | 88.6        | 80-120         |       |              |       |
| Calcium                         | 7.25E0      | 1.51E0             |          | 7.50E0         |                  | 96.7        | 80-120         |       |              |       |
| Iron                            | 7.26E0      | 3.50E-1            |          | 7.50E0         |                  | 96.9        | 80-120         |       |              |       |
| Manganese                       | 7.36E0      | 2.08E-1            | "        | 7.50E0         |                  | 98.2        | 80-120         |       |              |       |
| Duplicate (5C05003-DUP1)        | Sou         | rce: 1501009       | )-AF     | Prepared &     | & Analyzed       | l: 03/05/15 | 5              |       |              |       |
| Aluminum                        | <6.37E-1    | 6.37E-1            | ug/g dry |                | ND               |             |                |       | 35           |       |
| Calcium                         | 4.34E1      | 3.07E0             |          |                | 4.31E1           |             |                | 0.849 | 35           |       |
| Iron                            | <7.12E-1    | 7.12E-1            |          |                | ND               |             |                |       | 35           |       |
| Manganese                       | <4.24E-1    | 4.24E-1            | "        |                | ND               |             |                |       | 35           |       |
| Post Spike (5C05003-PS1)        | Sou         | rce: 1501009       | )-AG     | Prepared &     | & Analyzed       | 1: 03/05/15 | 5              |       |              |       |
| Aluminum                        | 4.64E2      | N/A                | ug/L     | 5.00E2         | 1.05E1           | 90.6        | 75-125         |       |              |       |
| Calcium                         | 2.10E3      | N/A                |          | 5.00E2         | 1.57E3           | 106         | 75-125         |       |              |       |
| Iron                            | 5.13E2      | N/A                |          | 5.00E2         | 9.95E0           | 101         | 75-125         |       |              |       |
| Manganese                       | 2.52E2      | N/A                |          | 2.50E2         | 1.92E-1          | 101         | 75-125         |       |              |       |

# Radionuclides by ICP-MS/Special Extraction - Quality Control Environmental Science Laboratory

| Analyte                           | Result     | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-----------------------------------|------------|--------------------|----------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch 5C04003 - Special Extract ( | ICP/ICPMS) |                    |          |                |                  |             |                |      |              |       |
| Blank (5C04003-BLK1)              |            |                    |          | Prepared:      | 03/02/15         | Analyzed:   | 03/04/15       |      |              |       |
| Uranium 238                       | <1.60E-3   | 1.60E-3            | ug/g wet |                |                  |             |                |      |              |       |
| Duplicate (5C04003-DUP1)          | Sour       | ce: 1501009        | -AF      | Prepared:      | 03/02/15         | Analyzed:   | 03/04/15       |      |              |       |
| Uranium 238                       | 3.56E0     | 3.26E-3            | ug/g dry |                | 3.65E0           |             |                | 2.59 | 35           |       |
| Post Spike (5C04003-PS1)          | Sour       | ce: 1501009        | -AG      | Prepared &     | & Analyze        | d: 03/04/15 | i              |      |              |       |
| Uranium 238                       | 6.38E0     | N/A                | ug/L     | 1.00E0         | 5.53E0           | 85.4        | 75-125         |      |              |       |

### **Sequential Extractions-Quality Control**

#### **Duplicates**

| LabNumber  | SampleName                    | Analyte     | Result   | RPD  | RPD   |
|------------|-------------------------------|-------------|----------|------|-------|
|            |                               |             | ug/g     | %    | Limit |
| 1502014-06 | B30546 DUP weak acetic acid   | Aluminum    | 3.54E+01 | 14%  | 35    |
| 1502014-13 | B30546 DUP strong acetic acid | Aluminum    | 1.44E+01 | 16%  | 35    |
| 1502014-20 | B30546 DUP oxalate            | Aluminum    | 9.03E+02 | 1%   | 35    |
| 1502014-27 | B30546 DUP nitric acid        | Aluminum    | 1.92E+04 | 40%  | 35    |
| 1502014-06 | B30546 DUP weak acetic acid   | Calcium     | 1.36E+03 | 2%   | 35    |
| 1502014-13 | B30546 DUP strong acetic acid | Calcium     | 2.27E+02 | 2%   | 35    |
| 1502014-27 | B30546 DUP nitric acid        | Calcium     | 1.15E+04 | 23%  | 35    |
| 1502014-06 | B30546 DUP weak acetic acid   | Iron        | 7.54E+00 | 20%  | 35    |
| 1502014-13 | B30546 DUP strong acetic acid | Iron        | 1.69E+01 | 108% | 35    |
| 1502014-20 | B30546 DUP oxalate            | Iron        | 1.34E+03 | 8%   | 35    |
| 1502014-27 | B30546 DUP nitric acid        | Iron        | 5.81E+04 | 22%  | 35    |
| 1502014-06 | B30546 DUP weak acetic acid   | Manganese   | 7.54E+00 | 18%  | 35    |
| 1502014-13 | B30546 DUP strong acetic acid | Manganese   | 3.22E+01 | 19%  | 35    |
| 1502014-20 | B30546 DUP oxalate            | Manganese   | 3.86E+01 | 6%   | 35    |
| 1502014-27 | B30546 DUP nitric acid        | Manganese   | 6.24E+02 | 24%  | 35    |
| 1502014-06 | B30546 DUP weak acetic acid   | Uranium 238 | 6.72E+00 | 1%   | 35    |
| 1502014-13 | B30546 DUP strong acetic acid | Uranium 238 | 4.97E+00 | 2%   | 35    |
| 1502014-20 | B30546 DUP oxalate            | Uranium 238 | 3.51E+00 | 11%  | 35    |
| 1502014-27 | B30546 DUP nitric acid        | Uranium 238 | 1.28E+01 | 30%  | 35    |

\*Note: duplicate analysis failed for aluminum in nitric acid and iron in strong acetic acid.

#### **Blank Spikes**

| LabNumber  | SampleName     | npleName Analyte Result |          | EQL      | % REC | % REC  |
|------------|----------------|-------------------------|----------|----------|-------|--------|
|            |                |                         | ug/L     |          |       | Limits |
| 1502014-29 | Weak Acid BS   | Aluminum                | ND       | 1.65E+03 | n/a   | 80-120 |
| 1502014-30 | Strong Acid BS | Aluminum                | 6.61E+03 | 1.65E+03 | 113   | 80-120 |
| 1502014-31 | Oxalate BS     | Aluminum                | 4.82E+03 | 1.65E+03 | 156   | 80-120 |
| 1502014-32 | Nitric BS      | Aluminum                | 9.68E+03 | 1.65E+03 | 138   | 80-120 |
| 1502014-29 | Weak Acid BS   | Calcium                 | 7.19E+03 | 4.90E+03 | 104   | 80-120 |
| 1502014-30 | Strong Acid BS | Calcium                 | 8.43E+03 | 4.90E+03 | 89    | 80-120 |
| 1502014-31 | Oxalate BS     | Calcium                 | 9.02E+03 | 4.90E+03 | 83    | 80-120 |
| 1502014-32 | Nitric BS      | Calcium                 | 1.75E+04 | 4.90E+03 | 76    | 80-120 |
| 1502014-29 | Weak Acid BS   | Iron                    | 5.28E+03 | 1.00E+03 | 142   | 80-120 |
| 1502014-30 | Strong Acid BS | Iron                    | 7.35E+03 | 1.00E+03 | 102   | 80-120 |
| 1502014-31 | Oxalate BS     | Iron                    | 7.50E+03 | 1.00E+03 | 100   | 80-120 |
| 1502014-32 | Nitric BS      | Iron                    | 1.39E+04 | 1.00E+03 | 96    | 80-120 |
| 1502014-29 | Weak Acid BS   | Manganese               | 5.29E+03 | 9.41E+02 | 142   | 80-120 |
| 1502014-30 | Strong Acid BS | Manganese               | 7.11E+03 | 9.41E+02 | 105   | 80-120 |
| 1502014-31 | Oxalate BS     | Manganese               | 7.23E+03 | 9.41E+02 | 104   | 80-120 |
| 1502014-32 | Nitric BS      | Manganese               | 1.11E+04 | 9.41E+02 | 120   | 80-120 |

Note: BS analysis failed for aluminum (weak acid, oxalate and nitric acid). Aluminum data may be suspect. Calcium, iron and manganese fail for the weak acid. Recoveries for these are high.

#### SGW-59614, REV. 0

### Spectroscopy Results

All sediment samples displayed similar fluorescence spectra with vibronic band positions located at  $500\pm2$  nm,  $519\pm$  nm and  $540\pm2$  nm, respectively, with the exception of sample 30589 which showed a single spectral maximum at 535 nm (Figure 1 and Table 1). There is a general trend that higher spectral intensity appears to correlate with higher uranium concentration in the sediment. The vibronic band spacings ranged from 665 cm<sup>-1</sup> for sample 30525 to 798 cm<sup>-1</sup> for sample 30546 (Table 1). Time resolved spectra for delay times up to 1700 µs showed little change for all sample (Figure 2) except sample 30525. For the latter, a better-resolved spectral pattern emerged at longer delay times with peak positions at 482 nm, 501 nm, 521 nm, 544 nm and 568 nm, respectively, and the peak spacing increased to 810 cm<sup>-1</sup> (Figure 3). In the opposite, all other samples, the spectra became even less resolved. All fluorescence decays requires two exponential functions to fit (Figure 4). It was interesting to note that while samples 30538 and 30525 possess the highest uranium concentration, their fluorescence lifetimes happened to be the shortest. Possibly, due to the shallower depth of these samples and likely association with more concentrated waste solutions, fluorescence quenchers, such as transition metal ions (e.g. Cu<sup>2+</sup>), were present at higher concentrations. These quenchers were in the vicinity of the U(VI) ions, leading to more effective quenching of the U(VI) fluorescence.

Although an exact match of the fluorescence spectra of the present sediment samples with the spectra of published spectra of known crystalline U(VI) compounds could not be found, the small peak spacing values (Typically  $< 800 \text{ cm}^{-1}$ ; Table 1) and the red-shifted spectra maxima (sample 30589), suggested that the primary spectral component could be associated with either silicates or oxyhydroxides (Wang, Zachara et al. 2008), or as adsorbates in minerals such as calcium carbonate or quartz (Wang, Zachara et al. 2005; Wang, Zachara et al. 2011; Ilton, Wang et al. 2012). The type of red-shifted spectra are almost exclusively shown by most uranyloxyhydroxide minerals such as meta-schoepite, schoepite and becquerelite (see Figure 5 for meta-schoepite for example). As uranium concentration in sample 30589 was only 4 ppm, precipitation of uranyloxyhydroxide is unlikely. A possible explanation will be that uranyl ion was incorporated into other metal oxide minerals, resulting a U(VI) coordination environment that resembles that of typical uranyloxyhydroxide. The featureless spectra of samples 304Y3, 304Y5, 30538 and 30546 observed at longer delay times possibly had the same spectral origin as sample 30589.

Both of the evolution of the time-resolved fluorescence spectra and the presence of two fluorescence lifetime components indicated that a minimum of two U(VI) coordination. For sample 30525, the vibronic band positions of the minor spectral component seen at long delay times are consistent with those observed for uranyl ion incorporated into aragonite (Reeder, Nugent et al. 2000; Reeder, Elzinga et al. 2004; Wang, Zachara et al. 2005), a calcium carbonate mineral. This is consistent with the site mineralogy where minor fractions of calcium carbonate are present (Zachara, Brown et al. 2007). As aragonite often co-exists with calcite, it could be that the main spectral component (except sample 30589) was due to uranyl ion incorporated into calcite mineral. In fact, the stead-state fluorescence spectra resemble closely to that of uranyl incorporated into calcite (Reeder, Nugent et al. 2000; Reeder, Elzinga et al. 2005) although the overall spectral positions red-shifted about 5 nm. As quartz is a major mineralogical component at the Hanford site and it is a strong uranyl ion adsorbent (Qafoku, Zachara et al. 2005; Wang, Zachara et al. 2011; Ilton, Wang et al. 2012), it could be that such red-shift of the spectra included contributions of uranyl ion adsorbed to fine quartz particles in the sediment.

Because uranium in these sediments is either incorporated into other mineral solids or adsorbed into quartz or other sediment particles, which are often present as agglomerated of finer particles, it is expected that the desorption of uranium ions will be controlled by the dissolution of the solids as well as the nature and extent of the porosity of the particle agglomerates.

| Sample | Depth | Core ID  | U Conc. | Peak Positions (nm) | Maximum              | Lifetime | Band                |
|--------|-------|----------|---------|---------------------|----------------------|----------|---------------------|
| ID     | (ft)  |          | (ppm)   |                     | Intensity            | ( □s)    | Spacing             |
|        |       |          |         |                     |                      |          | (cm <sup>-1</sup> ) |
| 304Y3  | 27    | C8933 I- | 8180    | 499.9, 519.1, 540.7 | 9.61×10 <sup>6</sup> | 1683±145 | 756                 |
|        |       | 007A     |         |                     |                      | 177±12   |                     |
| 304Y5  | 31    | C8933 I- | 7130    | 518.5, 537.7        | 6.11×10 <sup>6</sup> | 2658±167 | 688                 |
|        |       | 008A     |         |                     |                      | 173±24   |                     |
| 30589  | 25    | C8938 I- | 4390    | 535.3               | $4.40 \times 10^{6}$ | 2755±755 | -                   |
|        |       | 007A     |         |                     |                      | 174±37   |                     |
| 30525  | 19    | C8936 I- | 34800   | 502.1, 519.4, 538.0 | 1.37×10 <sup>8</sup> | 303±24   | 665                 |
|        |       | 004A     |         |                     |                      | 79±11    |                     |
| 30538  | 27    | C8936 I- | 41400   | 498.5, 519.1, 538.3 | $1.82 \times 10^7$   | 501±4    | 741                 |
|        |       | 007A     |         |                     |                      | 113±1    |                     |
| 30546  | 30    | C8936 I- | 20800   | 498.5, 519.1, 541.5 | 4.33×10 <sup>6</sup> | 1334±74  | 798                 |
|        |       | 008A     |         |                     |                      | 155±14   |                     |

Table 10. Spectral characteristics of U(VI) in sediment samples



Figure 9. LHeT Fluorescence spectra of U-bearing sediments.  $\lambda_{ex} = 415$  nm. For clarity of comparison, the spectra were normalized and offset along the Y-axis.



Figure 10. Time-resolved LHeT Fluorescence spectra of sample 304Y5. The delay times (in  $\mu$ s) are indicated on the right side of the spectra. All spectra were normalized to the same maximum intensity and were offset along the Y-axis for clarity.  $\lambda_{ex} = 415$  nm.



Figure 11. Time-resolved LHeT Fluorescence spectra of sample 30525. The delay times (in  $\mu$ s) are indicated on the right side of the spectra. All spectra were normalized to the same maximum intensity and were offset along the Y-axis for clarity.  $\lambda_{ex} = 415$  nm.



Figure 12. Representative Fluorescence decay curces and corresponding data fittings with double exponential functions.  $\lambda_{ex} = 415$  nm.



Figure 13. LheT fluorescence spectra of selected known samples. All spectra were normalized to the same maximum intensity and were offset along the Y-axis for clarity.  $\lambda_{ex} = 415$  nm.

### References

Ilton, E. S., Z. Wang, J.-F. Boily, O. Qafoku, K. M. Rosso and S. C. Smith (2012). "The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO2." Environ. Sci. Technol. 46(12): 6604-6611.

Qafoku, N. P., J. M. Zachara and C. Liu (2005). "Uranium(VI) desorption from long-term contaminated sediments." Geochim. Cosmochim. Acta 69(10): A470-A470.

Reeder, R., M. Nugent, G. Lamble, C. D. Tait and D. E. Morris (2000). "Uranyl incorporation into calcite and aragonite: XAFS and fluorescence studies." Environ. Sci. Technol. 34(4): 638-644.

Reeder, R. J., E. J. Elzinga, C. D. Tait, K. D. Rector, R. J. Donohoe and D. E. Morris (2004). "Site-specific incorporation of uranyl carbonate species at the calcite surface." Geochim. Cosmochim. Acta 68(23): 4799-4808.

Wang, Z., J. Zachara, J.-F. Boily, Y. X. Xia, C. T. Resch, D. Moore and C. Liu (2011). "Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study." Geochim. Cosmochim. Acta 75(10): 2965–2979.

Wang, Z., J. M. Zachara, P. L. Gassman, C. Liu, O. Qafoku and J. G. Catalano (2005). "Fluorescence spectroscopy of U(VI)-silicate and U(VI)-contaminated Hanford sediment." Geochim. Cosmochim. Acta 69(6): 1391-1403.

Wang, Z., J. M. Zachara, C. Liu, P. L. Gassman, A. R. Felmy and S. B. Clark (2008). "A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals." Radiochim. Acta 96(9-11): 591-598.

Wang, Z., J. M. Zachara, J. P. McKinely and S. C. Smith (2005). "Cryogenic Laser Induced U(VI) Fluorescence Studies of a U(VI) Substituted Natural Calcite: Implications to U(VI) Speciation in Contaminated Hanford Sediments." Environ. Sci. Technol. 39: 2651-2659.

Wang, Z., J. M. Zachara, W. Yantasee, P. L. Gassman, C. X. Liu and A. G. Joly (2004). "Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters." Environ. Sci. Technol. 38(21): 5591-5597.

Zachara, J. M., C. Brown, J. Christensen, E. Dresel, S. Kelly, C. Liu, J. McKinley and W. Um (2007). A Site-Wide Perspective on Uranium Geochemistry at the Hanford Site. Richland, WA, Pacific Northwest National Laboratory.

| Pacif<br>Nation | ic Nort<br>al Lab | thwest<br>oratory | (    | co   | RE      | 1/29/2015 Sheet  |                                                                                                 |                                    |                   |  |  |  |  |
|-----------------|-------------------|-------------------|------|------|---------|------------------|-------------------------------------------------------------------------------------------------|------------------------------------|-------------------|--|--|--|--|
| Logg            | ed by             | George            | La   | र्डा |         |                  | Henro V. Hart D                                                                                 | rilling Contractor                 |                   |  |  |  |  |
| Revie           | wed t             | by J              |      |      | Print   |                  | Date D                                                                                          | Driller                            |                   |  |  |  |  |
| Litho           | logic             | Class. Sch        | eme  | Fa   | X-/W    | PUTILOETH        | Procedure D9TB1-99-GUL-DI Rev 0 D                                                               | rill Method SPLITS                 | ON W/LEXAN LINERS |  |  |  |  |
| DEPTH           |                   | SAMPLES           | MOIS | GRA  | PHIC 10 | G                |                                                                                                 |                                    |                   |  |  |  |  |
| (++)            | TYPE              | ID NILMARER       | TURE | c    | 7 5     | G (particle size | distribution, sorting, mineralogy, roundness, color, reaction to HCl, maximum grain size, conso | e, consolidation, structure, etc.) |                   |  |  |  |  |
| 105             | C                 | 1501007-1         | D    |      |         | C8933-IA         | OID BOTTOM OF SAMPLE LINER SAMPLE IS 2                                                          | 0% FILL                            | C8933-IDDID       |  |  |  |  |
|                 |                   | B30417            |      |      |         | BROVEN (         | OBBLE SANDY GRAVEL 90% GRAVEL UPTO:                                                             | 23cm. 10%                          | BORTOW            |  |  |  |  |
|                 |                   |                   |      |      |         | Sand             | mostly course & matram. 314/2 OUVE ARDA                                                         | SAMPLE IS                          | PUCE              |  |  |  |  |
|                 |                   |                   |      |      |         | DRY Wa           | the m conjugation. Weak reaction to 107-HCS.                                                    | Exavelis                           |                   |  |  |  |  |
|                 |                   |                   |      |      |         | 90% Basa         | It some quartzite z acanitie. Sond is 50% busatt                                                | ic. 50% folse.                     |                   |  |  |  |  |
| 11.D            | C                 | 1501009-02        | D    |      |         | Bottom of        | CARE IMP. SILLY SANDY CRAVEL. 7590 Enquel W                                                     | Dto > 3.5 cm.                      | C8939-I001C       |  |  |  |  |
|                 |                   | 330418            |      |      |         | 20% SA           | nd, mostly coase to very coause: 5% sut, Col                                                    | or's mostly                        | BOTTOM            |  |  |  |  |
|                 |                   |                   | 1    |      |         | 584/1, d         | evil arga, with a band and scattered clumps of :                                                | SYE/1 whiteh                       |                   |  |  |  |  |
|                 |                   |                   |      |      |         | Sitt to U        | any fine sound, Reaction 13 weak to the book das                                                | te assal and                       |                   |  |  |  |  |
|                 |                   |                   |      |      |         | whiteh m         | stend. Grand is 90% basalt one quartizite a                                                     | last. Sand 73                      | •                 |  |  |  |  |
|                 |                   |                   |      |      |         | 60% 60%          | Saffic, 40% folsic (augustatie?). Westing to uncen                                              | restel. Drg                        |                   |  |  |  |  |
| 11-115          | G                 | B30479            | D    |      |         | SANDY E          | BAVEL, 60% Brand, uplo \$3 cm. 35% SAND,                                                        | 25% SILT.                          | (4933-IOOIB       |  |  |  |  |
|                 |                   |                   |      |      |         | Gravelis         | roundelto subrounder, 20% baselt, 15% Ruartz                                                    | He, 5% growith.                    | WHOLE SAMPLE      |  |  |  |  |
|                 |                   |                   |      |      |         | Sand'is          | mostly coause to matian, mostly besilitic (7020), "                                             | 3090 folsic.                       |                   |  |  |  |  |
|                 |                   |                   |      |      | _       | Color 73         | 514/1, dark group, Scample TS dry, with no reaction                                             | tottal. No                         |                   |  |  |  |  |
|                 | -                 |                   | -    |      | _       | cementat         | สภา                                                                                             |                                    |                   |  |  |  |  |
| 12.0            | C                 | B304VI            | D    |      |         | SANDY E          | DAVEL, 35% Gravel uptortan, 60% SAND, 5%                                                        | 6 515.                             | C8933-IDOIA       |  |  |  |  |
|                 |                   |                   |      |      |         | Sand's           | mostly medium to course. Gravel is round to subor                                               | and 60%                            | 50% FULL, BOTTOM  |  |  |  |  |
|                 |                   |                   |      |      | _       | basattic,        | 40% folse (quast= Re, granite). Sand 73 80% bosch                                               | 10,20% felsic.                     |                   |  |  |  |  |
|                 |                   |                   |      |      |         | Sample           | 13 motor to dry. Color 2.59 4/2, durk gray brown. M                                             | Vo reaction to                     |                   |  |  |  |  |
|                 |                   |                   |      |      |         | HCI. NI          | comentation.                                                                                    | 0                                  |                   |  |  |  |  |
| BO              | C                 | R30413            | D    |      |         | SANSON C         | RAVEL. BOTO GRAVEL. 20% Sand, trace of sitt. G                                                  | racel upto 73cm,                   | C8933-1202C       |  |  |  |  |
|                 |                   |                   |      | +-+  | _       | Ronnfigh         | to subrounded where unbroken, lots of broken da                                                 | ists as seen                       | BOTTOM            |  |  |  |  |
|                 |                   |                   |      | +    |         | P40 in 5         | emple above, Gravel 73 780% bisatt. Sud 73 60%                                                  | basiltic, 402                      |                   |  |  |  |  |
|                 |                   |                   |      |      |         | mation           | 16971y crarsets metrum. Color 15 258 412, Rank go                                               | regish brown.                      |                   |  |  |  |  |
|                 |                   |                   |      | +    | _       | Pry to MA        | st, Weak reaction to HCL. No comentation.                                                       |                                    |                   |  |  |  |  |
|                 |                   |                   |      | ++   |         | Noz: R           | INSORE INFOF CHINAGE STEVENT - DELIANT                                                          | 1.17                               |                   |  |  |  |  |
|                 |                   |                   | 1    | ++   |         | SAMDIA           | FINIDS WERE SWITCHALL SIEVEN 10 REMOVE                                                          | -2111-2)                           |                   |  |  |  |  |
|                 |                   |                   | -    | +    |         | SHULL            | DIE NAIN WITH THINKSES                                                                          |                                    |                   |  |  |  |  |
|                 | 1                 |                   | -    | I.   | 1 1     |                  |                                                                                                 |                                    |                   |  |  |  |  |

A-63

2006/DCL/FORMS/CoreLog/001 (006/09)

| Pacit<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory                     | (             | col         | RE      | LOG                  | Boring/Well No CB933<br>Location 331/170 Cove Oppining                                              | Depth 13 - 16.1 ff Da<br>Project 300-FF-5 0        | te <u>1/2015</u> Sheet                  |
|-----------------|--------------------|----------------------------------------|---------------|-------------|---------|----------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| Logg            | ed by              | George                                 | Las           | st          | Diret   |                      | Acore Last                                                                                          | Drilling Contractor                                |                                         |
| Revie           | wed                | by                                     |               |             | Fish    |                      | Date                                                                                                | Driller                                            |                                         |
| Litho           | logic              | Class. Sch                             | eme           | FOL         | K/L     | ENTWORTH             | Procedure DTB1-B9-GUL-01                                                                            | Rev O Drill Method SPLST                           | SPOON N/LEXANN LINERS                   |
| DEPTH<br>でナ)    | TYPE               | SAMPLES<br>ID NUMBER                   | MOIS-<br>TURE | GRAP<br>C Z |         | G (particle size     | LITHOLOGIC DESCRIPTION<br>a distribution, sorting, mineralogy, roundness, color, reaction to HCl, m | aximum grain size, cansolidation, structure, etc.) | COMMENTS                                |
| 3-135           | G                  | B304V4                                 | D-M           |             |         | SMODY GR             | WEL, 80% Gravel, 20% SAMD, Trace                                                                    | atsur, Gravel ranges with                          | C8933-I002B                             |
|                 |                    |                                        |               |             |         | 72,5 cm              | (broken), where wobroken gravel is rou                                                              | ndel to subarry, 2020                              | WHOLE SAMPLE                            |
|                 |                    |                                        |               |             |         | basalt, 20           | 20 Folgic (Including guest zite). Sand                                                              | Ts mostly course to vary                           |                                         |
|                 |                    |                                        |               |             |         | Charse 5             | Topo busatic 50% felsic les quaste                                                                  | Fe) Sumple TS docto motot.                         |                                         |
|                 |                    |                                        |               |             |         | Calar T3             | 545/1. grey. No reading to the au                                                                   | I De committer, Some                               |                                         |
|                 |                    |                                        |               |             |         | Very fore            | Gruf.                                                                                               |                                                    |                                         |
| 40              | C                  | B304V6                                 | D-M           |             |         | SANDY FE             | WEL, 80% Gravel, 202 SAND TO                                                                        | up of sitt. Grevel ranges to                       | C8933-1002A                             |
|                 |                    |                                        |               |             |         | >3cmbb               | rstan), rounded to subcounted where                                                                 | enproken, 80% Freettic.                            | Babling Somple is                       |
|                 |                    |                                        |               |             |         | 202 felet            | lea quarter Sink is mostly your                                                                     | course to metrum some                              | 302 F.M.                                |
|                 |                    |                                        |               |             |         | Vern Fore            | saul to oft Saul 73 702 besett ford                                                                 | angular The de motor relat                         | 1011                                    |
|                 |                    |                                        |               |             |         | 16 7.5X/4            | 12 otris and Norresta + HO of                                                                       | and de                                             |                                         |
| 4.6             | C                  | B304V7                                 | D.M           |             |         | SANDY A              | HATEL 80% Frayel 20% sand the                                                                       | ce of sitt Bravel remote                           | Z8933-1003D                             |
|                 |                    | 000                                    | 1             |             | ++      | 24 cm (              | cell on undal Sand IS mother wall                                                                   | consultance let att                                | Bittom Fall.                            |
|                 |                    |                                        |               |             |         | Sand ic s            | 32 backtor 50% falter Dry to uset                                                                   | alar 2 2.58 5/1 1002                               |                                         |
|                 |                    |                                        |               |             | 1-+     | Not use              | ale carter & HEL No converte                                                                        | Color is civily, genj                              |                                         |
| 5.1             | C                  | B3A4VB                                 | Dm            |             |         | SAUDY G              | PAUFL 809 Grevel 209. Soud the                                                                      | confatt Gravel rapagesta                           | 18933-10030                             |
|                 |                    | 0101.0                                 | 2.1           |             | +-+     | 74.5                 | Kubraulal 759 built 309 fater                                                                       | Suitz mostly course 657                            | Both Ell.                               |
|                 |                    |                                        |               | 1           | 11      | Bucht 4              | 2 flore Daily and Calor 21                                                                          | SYALL dely and No and                              | s contraits                             |
|                 |                    |                                        |               | 1           | ++      | 1 Hri                | No pase by to moisi, cold is 2.                                                                     | ( T) acit gieg, in least                           |                                         |
| 51.15L          | G                  | 33/14/9                                | IZM           | 1           | ++      | SANDY C              | PATTER LOG Canal 457 Sulling                                                                        | Soft Brand sugarta                                 | (4933-1003B                             |
| 11 ICAL         |                    | 270707                                 | 1             |             | +-+     | 2                    | BIVES. OUT ONLOUR, 100 POWA, THAT                                                                   | an sin church anger a                              | MODEL CAMPIE                            |
|                 |                    | ······································ |               |             |         | Gara la              | ennagen to subrounded where unitally                                                                | 7.7 4 2030010, 700                                 | THE SHITCE                              |
|                 |                    |                                        |               | 1+          | ++      | Super Cul            | grantene), una is mostly course.                                                                    | 2 25 21/2 Alite Artis                              |                                         |
|                 |                    |                                        | -             | ++-         | ++      | Nongen               | + He N AND NOT I LOW                                                                                | > LISI 4/2 OINE GIEG.                              |                                         |
| V 1             | 1                  | 331/11/1                               | D-M           |             |         | SAND C               | AND RAD COMMUNICATION                                                                               | a faith for la att.                                | (9923-10A3A                             |
| 1011            | 1                  | - WINI                                 | T             |             | ++      | STUDY SI             | Frankly Stranger CV & Jone 14                                                                       | Revelated is mozily                                | BATTOM 109 EUL                          |
|                 | -                  |                                        |               |             | 1       | medering 9           | the poppie, thinges to Temphare hubber                                                              | and Pourse is supposed.                            | LOI WILL GUE FULLI                      |
|                 |                    |                                        |               |             |         | 15                   | to to to to sic involves ight ce                                                                    | in the ringer rip up diet                          |                                         |
| _               |                    |                                        |               |             | ++      | is me th             | Warrow Trover 13 (10) 113, Par yer                                                                  | Lang 55 Ali and                                    |                                         |
|                 |                    |                                        |               |             |         | N- CONTA             | the formation out in a                                                                              | to or is cive TII, place grees.                    |                                         |
|                 | 1                  |                                        | W = Wat       | M - M.      | nist CL | = Slightly Moist D = | In 1011-10-1000 10 play april. NA COMY                                                              | n or tern                                          | 2004 /DCL /EORNE /Carol og /001 (004 /0 |

| Paci<br>Nation | fic Nor<br>nal Lat | thwest<br>poratory | (         | C  | OF      | RE     | L     | OG                                                                      | Boring/W            | ell No                         | C 893          | 3<br>re Oper    | price          |         | Depth<br>Proj | ject 2     | - 19.5<br>500-FI | ∯ Date<br>=-5 pu | 1/28/2017     | Sho<br>3 0       | eet                                                                                                              |
|----------------|--------------------|--------------------|-----------|----|---------|--------|-------|-------------------------------------------------------------------------|---------------------|--------------------------------|----------------|-----------------|----------------|---------|---------------|------------|------------------|------------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------|
| Logg           | ed by              | General            | 2 Las     | t  | -       |        |       |                                                                         |                     | lin                            | el La          | A               |                |         |               | Drilli     | ing Cor          | tractor          |               |                  |                                                                                                                  |
| Revie          | wed                | by                 |           |    |         | Print  |       | ali anda yayan a                                                        | 6                   | rey                            | Ser.           |                 | Date           |         |               | Drille     | er               |                  |               |                  |                                                                                                                  |
| Litho          | logic              | Class. Sch         | eme       | F  | SW      | Pin    | en7   | WORTH                                                                   |                     | Sign                           | Procedure      | D7781-9         | 9-6V2-01       | Re      | VO            | Drill      | Metho            | SPLITS           | 2001 w/       | LEXINHN          | PORS                                                                                                             |
| DEPTH          | -                  | SAMPLES            | MOIS      | 10 | GRAPH   | IC LOG | G     |                                                                         |                     |                                |                | ITHOLOGIC I     | ESCRIPTION     |         |               |            |                  |                  | 1.            |                  |                                                                                                                  |
| (町.)           | TYPE               | ID NUMBER          | TURE      | 1  | z       | SC     | G     | (particle size                                                          | distribution, so    | rting, mine                    | eralogy, round | ness, color, re | action to HCl, | maximum | grain size, o | consolidat | ion, struct      | ure, etc.)       |               | COMMENTS         |                                                                                                                  |
| 17.6           | C                  | B304W2             | mp        |    | -       | -      | <     | SANDYER                                                                 | AVEL B              | 020 GT                         | avel 30        | 20 Spery        | 2, traco       | afst    | H. Gr         | uplu       | 5to>             | 2 cm             | C8933         | -I004D           | )                                                                                                                |
|                |                    |                    | -         | T  |         |        | 1     | (booken).                                                               | Subrone             | elel u                         | shave w        | biska           | 1: 1020        | basa    | Ano. 40       | 250        | lar.             | Sand             | Bottom,       | Full             |                                                                                                                  |
|                |                    |                    |           |    |         |        |       | is mostly                                                               | 1 coarse            | . 50%                          | basalt         | 5870f           | STE. Dr.       | do M    | DA. CO        | dorts      | \$ 2,51          | 24/1.            | 5             |                  |                                                                                                                  |
|                | 1                  |                    |           |    |         |        |       | dark aves                                                               | , No re             | ector.                         | ntofic         | . No            | emonts         | tion.   | ,             |            |                  | • >              |               |                  |                                                                                                                  |
| 1/29           | VZOL               | 5                  | +         |    |         |        |       | 0                                                                       | 5                   | -                              |                |                 |                |         |               |            |                  |                  |               |                  |                                                                                                                  |
| n.5            | C                  | B304W3             | m-D       |    |         |        | N     | SANDY GI                                                                | AVEL. 8             | 30% (                          | Grupl,         | 2070 5          | upl. Gr        | aveli   | ismost        | Sy for     | reter            | 1. Fore          | C8933-        | -1004C           |                                                                                                                  |
|                |                    |                    |           |    |         |        | 1     | pebble, r                                                               | un up               | 1072                           | 2,5 cm.        | Sand            | 12 mos         | Hy V.C  | - 2 Coa       | vse.       | Gray             | elts             | Bolom         | , Full           | and the second |
|                |                    |                    |           |    |         |        | 1     | Subprovde                                                               | 2 to com            | udal,                          | 60%            | basalt          | - 402-         | Felsic  | , San         | dis        | 75% 8            | asolt,           |               |                  |                                                                                                                  |
|                |                    |                    |           |    |         |        | 1     | 2520 martin                                                             | peo han             | 5 50m                          | e Ringld       | ( 1655)         | Dryto          | MOTO    | . Color       | 152        | 513              | 2, 100           |               |                  |                                                                                                                  |
|                |                    |                    |           |    |         |        |       | dark man                                                                | sh boor             | . No                           | rention        | DH of           | Nore           | words   | bon           |            |                  |                  |               |                  |                                                                                                                  |
| 17,5-          | G                  | 3304W4             | M-D       |    |         |        | 1     | SANJON GE                                                               | ANEL.               | 4020                           | GRAVE          | ,602            | Sand.          | Grav    | ielis n       | 70310      | Fine             | to               | CB933         | -1004B           |                                                                                                                  |
| 1B             |                    |                    | -         |    | 1       |        | 11    | Very time                                                               | pebbley             | rang                           | na upte        | 15m             | M. ROAT        | dto     | subra         | sund       | ,7020            | besalt,          | WHOLE         | Samplie          |                                                                                                                  |
|                |                    |                    |           | _  | 1       |        | i     | 30%- 5015                                                               | ic. Same            | 273 1                          | mostly         | course          | to very        | CORTS   | e, sub        | angus      | gr. 6            | BZ6              |               |                  |                                                                                                                  |
|                |                    |                    |           | _  | -       |        |       | bisatter,                                                               | 40% fels            | AC.                            | morst 4        | > dry           | Color          | 15 2,5  | 5/3/1,1       | VEDYC      | lark             | groef.           |               |                  |                                                                                                                  |
|                |                    |                    |           | 1  |         |        | -     | No reasts                                                               | ntofic              | L.N                            | O COM          | endati          | m.             |         |               |            |                  |                  | 100000        | 1.1.000          |                                                                                                                  |
| 18,5           | C                  | 1304107            | m-D       | 2  | +       |        | Y.3   | SANDY GI                                                                | SAVEL.              | 65%                            | GRADER         | , 35%           | Sand,          | Gran    | el rang       | ses up     | 24070            | tim,             | (8733         | - 1004A          |                                                                                                                  |
|                | -                  |                    |           | -  |         |        | -     | broken. 5                                                               | abround             | de wh                          | pre und        | rakon.          | 7090 00        | salt,   | 30200         | elst       | . Mor            | 57-70            | Bettom        | 160/0 F          | all,                                                                                                             |
|                |                    |                    |           | +  | 1       |        |       | dry, 25                                                                 | 3/1, ver            | y davy                         | grey.          | Sand 7          | 3 most         | y very  | course        | to n       | redour           | A.               |               |                  |                                                                                                                  |
| -0-            |                    |                    |           | +  |         |        |       | Subangula                                                               | W, 6070             | basa                           | H, 40%         | testa           | , No           | reach   | on to         | Hel.       | Dec              | ewenter          | 1.0000        | HATO             |                                                                                                                  |
| 14.5           | C                  | 8304W8             | M·D       | 4  |         |        | -     | SANDL GR                                                                | ZAVEL.              | 15%                            | Gravel,        | 25705           | and, tr        | ace 6   | talt.         | Cont       | ans :            | mabe             | C8933         | -1005V           |                                                                                                                  |
|                |                    |                    |           | +  |         |        |       | clasts of                                                               | Krydd -             | sands                          | stone (2.      | 5173,           | Pale ye        | low, a  | ind 10%       | K 6/3      | 3, bra           | wn/.             | Bottom        | 1 Tull           |                                                                                                                  |
|                |                    |                    |           | +  |         |        |       | Graves M                                                                | inges up            | 1073                           | 30 mm          | subrou          | where, as      | have 1  | upbroke       | n,70       | 20000            | saft,            |               |                  | alas da se da s  |
|                |                    |                    | _         | +  |         | ++     | +     | 20 10 101                                                               | Sic mal             | uding                          | Krydle         | a ripy          | 2 Chasts       | -ver    | ydear         | Torpar     | a), K            | Pup              |               |                  | Non-Street Street                                                                                                |
|                |                    |                    | · · · · · | +  |         |        | +     | 18                                                                      | habit sh            | mals                           | rale yelle     | w) to           | weak bi        | TANA)   | rentim        | 1 TOI      | ALL.             | Zank 13          |               |                  |                                                                                                                  |
|                |                    |                    |           | +  |         | ++     | -     | mpsily ve                                                               | my coarse           | 90 0                           | reation        | -SXD (ma        | War, 61        | 0 1     | 5417,41       | r pt       | 91921            | La               |               |                  |                                                                                                                  |
|                |                    |                    |           | +  |         |        | +     | PRATER                                                                  | DO MUL.             | Samp                           | 10.15 16       | and cou         | nparte         | Kywing  | n mease       | VARC       | compr            | A PAL            |               |                  |                                                                                                                  |
|                |                    |                    |           | +  |         | ++     |       |                                                                         | The state is a sub- | and a set of the second second |                |                 |                |         |               |            |                  |                  |               |                  |                                                                                                                  |
|                |                    |                    |           | +  |         | ++     |       | er og verfagt og den ander ege skanser og skal bete forsære i sære orde |                     |                                |                |                 |                |         |               |            |                  |                  |               |                  |                                                                                                                  |
|                | 1                  |                    |           | -  |         | -      | -     |                                                                         |                     |                                |                | -               |                |         |               |            |                  |                  |               |                  |                                                                                                                  |
| -              |                    | 1                  | W - Wei   |    | I - Mai | LA CH  | 1 - 6 | It-Labo Mates D -                                                       | Day                 |                                |                |                 |                |         |               | -          |                  |                  | 2006 /001 /50 | PMS /forel on /0 | 01 (006/0                                                                                                        |

| Pacif<br>Nation | ic Nor<br>al Lat | thwest<br>boratory | (      | cc     | R     | EI      | OG                    | Boring/We                                      | 331/176 CO               | 3<br>re Openning                | Depth<br>Pro | 19.5- 22.5A Date                                                                  | 1/29/2015 Sheet<br><u>4</u> of <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------|--------------------|--------|--------|-------|---------|-----------------------|------------------------------------------------|--------------------------|---------------------------------|--------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logg            | ed by            | Geora              | e L    | as     | 4     |         |                       |                                                | Acoue V. La              | of                              |              | Drilling Contractor                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Revie           | wed              | by                 |        | -      | Pr    | int     |                       |                                                | 3670                     | Date                            |              | Driller                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Litho           | loaic            | Class, Sch         | eme    | Fo     | WI    | Mie     | atesta                |                                                | Procedure                | DATE 1-99-GVL-DI                | Rev Ø        | Drill Method SPLITS                                                               | CON KU/LERAND LINDRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.000           |                  | CAMPLEC            | Lugic  | CD     | ADHIC | 100     |                       |                                                |                          |                                 |              |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UEPIN (FT)      | TVDC             | ID NUMPER          | TURE   | C      | 7 0   | 100     | (particle size        | distribution, sort                             | tina, mineraloay, roundn | consolidation, structure, etc.) | COMMENTS     |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 200             | C                | B304W19            | m-D    | 1      | L .   | 5 0     | SANDY A               | DAM                                            | 709 - Erestel 3          | P- Sand traine                  | fatt. Grav   | al terrene ante                                                                   | C893-10050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ED IV           | L                | 270141             | 11-5   |        | +     | -       | 77500                 | Romand the                                     | comment 70               | 2 best 22 for                   | RIP. San     | 8 22 matty your                                                                   | Bottom Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                  |                    | -      |        |       |         | 120mm                 | Conge 10                                       | and when the             | abanalar la                     | 7. Levelt 4  | 2 Star                                                                            | terprist run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                  |                    |        |        | -     | +       | marth                 | In 1F                                          | 22/ years de             | al any mar, wo                  | at dit       | CI llass another                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                  |                    |        |        | -+    | -       | 1100171 10            | ango cru                                       | dal very de              | vegrag. No th                   | action to 1  | 121. very company                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20-             | G                | B2n4XA             | m.D    |        | +     | +       | SALDY A               | Ethal                                          | 359 Surgeral             | 659 Saul to                     | re feit      | Errord matte                                                                      | (8933-1005B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 705             | 4                | 1 Dino             | T      |        | +     |         | Finle da              | 1000 Ann                                       | mobile rent              | sucto 200                       | wheremat     | reban Raudelts                                                                    | white samelo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00,0            |                  |                    | -      |        | -     |         | Cubersie              | lead the                                       | To beent 4               | of apro 20 min                  | dine occa    | and Rivedd                                                                        | ande somt C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                  |                    |        |        | +     | +       | Ringula               | An/10-                                         | 254/2                    | 12 - H well work                | brans state  | trans reaction to                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        |        | -+    |         | NCI Sa                | aliz m                                         | Ale Vac 670              | ingri garowisi                  | i april 2    | show 159                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                  |                    | -      |        |       |         | houth                 | 359 50                                         | ing very cour            | De to ceas se, o                | 7 54 2/1     | Subary way, 60 th                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | -      |       | +       | Na mada               | 2010 19h                                       | SIC: MOISILO             | VIG. COURTS                     | 2, DI DI VE  | y dan grey.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21              | C                | B2NIND             | J-m    |        |       | +       | SANDY C               | PART 1                                         | 059 Canton               | I LACTER AND                    | HARE CAR     | E) 259 SAND                                                                       | CA933-TD/15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 61              | 2                | UNING              | Ju-D   |        | -     | +       | GROUD D               | MONTEL.                                        | DD ID GICHVE             | File lines)                     | 9x9abier     | 12 102 Enfric                                                                     | Battom 90% EULI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | -      |       |         | binner in             | June 1                                         | LLL FORM                 | al L submanied                  | el ushare    | unberton. S                                                                       | thin, to o have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | 1      |       |         | DIRSEAB               | y may c                                        | Solley Durp              | The The has                     | 1+ 209.5     | Low subauchlar                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | +      |       |         | 1 men                 | y LONS >4                                      | 2 3h Vary Los            | delle aquest h                  | WVI LOP      | sanda da Hel                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | -      |       | -       | 1005100               | A Local                                        | 1 72, 129                | nork of barsh D                 | DUDA: YP.    | Call in it in it                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 215             | G                | DZN4X5             | D      | +      | 1     |         | CONVAN                | CAND                                           | 250 Grand                | 759 Carl G                      | revel taves  | the > 20mm where                                                                  | (8933- TOOLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2810            | 4                | 200110             |        |        | T     |         | BETNEW                | Culture .                                      | LO STADA                 | alt 202 Islar                   | bud ange     | quarter ( and                                                                     | whole Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. 44           |                  |                    |        | -      |       |         | mostly                | - ATUMA                                        | 2, 00 pp                 | for 402 heads                   | Cincidenty   | dur Courses                                                                       | Wryte and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                  |                    |        |        |       | 1       | 101 25                | V4/1 dai                                       | V ADAU BOTHE             | shipt alm al                    | c, susang    | have Weak reader                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | +      | ++    | -       | L HCL N               | 1 4 1, 6101                                    | Ling rown                | zign color man                  | ye tim a     | and the call of                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22-             | 11               | B304×7             | M-D    | )      | 11    |         | GANDY AS              | AUFI                                           | 457 Frand                | 55% Send Gr                     | nool renior  | toz25mm, braken                                                                   | C19733-JOD6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27.5            | 1                |                    |        |        |       |         | 509 ha                | alto 56                                        | 7 folst su               | actualed Sand                   | Piz prote    | control ranging from                                                              | Bottom, B520 Fure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | -                |                    | -      | -      |       |         | NYMU CAR              | and there                                      | fine moth.               | Meditum man                     | we to eat    | angulas holp for                                                                  | section of the sectio |
|                 | -                |                    |        |        | 11    | 1       | 400 ma                | to break                                       | ). Morat da              | Ara. 2.5Y=11                    | Vora last    | areurzh booun.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | 1      |       | -       | No really             | m Cours                                        | raded weakly             | remmented.                      | rayanac      | ging the second                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | +      | ++    | 1       | The I taken           | in long                                        | and con production       |                                 |              |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    |        | -      |       | -       |                       | and the local day is not seen and sector to be |                          | . *                             |              | anar manti daga dagat una tarahir i Watashinganan mani galigi jartiya madan tarah |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                  |                    | W - We | t, M - | Mois  | t, SM - | - Slightly Moist, D - | Dry                                            |                          |                                 |              |                                                                                   | 2006/DCL/FORMS/CoreLog/001 (006/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Pacit<br>Nation | ic Nor<br>al Lab | thwest<br>boratory                    | (       | C        | ORI     | EL   | OG                 | Boring/We            | ell No (     | 28933<br>/170 Cor | e Openni         | mg           | Depth<br>Pro     | 25.4-27.4<br>ject 320-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H Date     | 1/29/2015     | Sheet 5 of 6                                                                                                     |
|-----------------|------------------|---------------------------------------|---------|----------|---------|------|--------------------|----------------------|--------------|-------------------|------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------------------------------------------------------------------------------------------------------------|
| Loga            | ed by            | Gentle                                | o la    | 5        | F       | _    |                    |                      | Alon         | eV. Kat           | 2                |              |                  | Drilling Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tractor    |               |                                                                                                                  |
| Revie           | wed              | by                                    |         | -        | Pric    |      |                    |                      | any          | Bion              |                  | Date         |                  | Driller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |                                                                                                                  |
| Litho           | ogie             | Class Sab                             | omo     | T        | 1) 1    |      | h                  |                      | Sign         | Torona Desor      | 761-99           | W-AL         | Rev A            | Drill Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STATS      | Don unti      | PKALL I IN PPK                                                                                                   |
| Liuio           | ogic             | Class. Sch                            | eme     | 10       | 1K/1    | Sen  | Tuborin .          |                      |              | Incedure 2        | 1101-11-0        | 50201        |                  | Dim method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | T TON OF L    |                                                                                                                  |
| DEPTH           |                  | SAMPLES                               | MOIS-   | G        | RAPHIC  | LOG  | location at        | disation and         | Atura minora | UTH<br>LITH       | OLOGIC DESCR     | IPTION       | terms and also   | annalt dation at such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | una ata l  |               | OMMENTS                                                                                                          |
| 141             | TYPE             | ID NUMBER                             | TUKE    | C        | ZS      | G    | (particle siz      | te distribution, sor | rang, minero | alogy, roundness  | , color, reactio | n io nci, ma | kinon grom size, | consolidation, siruci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ure, erc.j | 10000         | 7 4070                                                                                                           |
| 25,9            | C                | B304X8                                | W       | -        |         | +    | SADDE GE           | GAVEL. 8             | 010 Gra      | wel, 20%          | Sand,            | Grave)       | in mostly        | j medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12         | CB733-        | 10010                                                                                                            |
|                 |                  |                                       | -       | $\vdash$ | +       | -    | vory time          | Pebble, SH           | coround      | ded, BOI          | v basalo         | 105, 262     | o telste.        | Sand 13 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ary        | Dottom, Fr    | u)]                                                                                                              |
|                 |                  |                                       |         | ┢        | ++      | +    | sorted in          | ostly cours          | se, sub      | sangular,         | 502 2            | ESGINTC.     | DD20 tolst       | de town .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10         |               |                                                                                                                  |
|                 |                  |                                       |         | +        |         | +    | morst, 2           | ,513/1 V4            | eoy day      | 1× gray's         | h brow           | L. No        | reaction t       | o Mili Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | proces,    |               |                                                                                                                  |
| 7/ /1           | 0                | DONIND                                | 1.1     | +        | +       | +-   | weakly ce          | 2mm guted            | 2 00         | 0 (               | 0 100            | C I          | 50 . 1           | 1-11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \          | 19922-        | TAATC                                                                                                            |
| 16,4            | L                | 030777                                | W       |          | ++-     |      | SILTY, SAN         | JDY BRAVE            | Les De       | 16 Grave          | 1,1520           | Tava         | 26 Mua           | LSH + Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) . I_     | THI I         | 100/0                                                                                                            |
|                 |                  |                                       |         | -        | ++      |      | SiH/day            | Sppears 7            | 13 00 10     | r noawe           | Sorrib           | Dons, E      | I G Kin          | 101113h, 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 613,       | porom, t      |                                                                                                                  |
|                 |                  |                                       |         | +        | +++     | +    | Ingut yet          | lowish br            | aun.         | Gravel 13         | mostly           | Metrus       | n of thes        | abblefsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | somely     |               |                                                                                                                  |
|                 |                  |                                       |         | ┢        | +       |      | 80% 2              | asathic, Z           | ploter       | SIC. SA           | FI FI            | mosh         | 1 course         | B Very coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee,        |               |                                                                                                                  |
|                 |                  |                                       |         | +        | + +-    |      | Subangu            | Mar; 50%             | Dasal-       | AC, DOLO          | telsic,          | Watt         | s morst,         | 2.583/1, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vy dank    |               |                                                                                                                  |
|                 |                  |                                       |         | +-       | +-+-    | +    | graytsh.           | brown,               | NOM          | action 9          | 3 HU.            | Jample       | T3 comp          | acted and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | weakly     |               |                                                                                                                  |
| 214             | C                | Double                                | 1.1     | +        | +-+-    |      | cenner             | itcel.               |              |                   | 1.50             | c 1          | -20 0            | 1 1 . 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | C002-7        | 5-70                                                                                                             |
| 26.4-           | 6                | B30410                                | W       | +        |         |      | SILLY SAN          | JOH GRAD             | EL, 8        | DTO GRAS          | 101,157          | - Sana       | , 5% mud         | (SAIT+Clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | LUBS          | 1015                                                                                                             |
| 26.9            |                  |                                       |         | -        |         |      | Stonple            | e was ha             | urgen 2      | ter dur           | ng pree          | toas ra      | of And don       | extup 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nin -      | whole sa      | mple                                                                                                             |
|                 |                  | · · · · · · · · · · · · · · · · · · · |         | +        | +-+     |      | seds to            | - wrantur            | ando         | 355350            | mud co           | AS ALL       | clasts: L        | PROEL TS M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 20       |               |                                                                                                                  |
|                 |                  |                                       | +       | -        | ++      |      | tine to v          | eryene p             | apple, ri    | anging to         | 212 MM           | 1, Subi      | counded,         | 10 ho basas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t,2012     |               |                                                                                                                  |
|                 |                  |                                       |         | +        | +-+-    |      | telste w           | The some c           | lests 1      | ooking lik        | e ripus          | 0453         | of Kingole       | d that have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deen       |               |                                                                                                                  |
|                 |                  |                                       |         | +-       |         |      | roughed            | OF. SAK              | Dist         | mostly ca         | assieto          | Very a       | arse, sur        | congwar, oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10         |               |                                                                                                                  |
|                 |                  |                                       |         | +        | ++      |      | basatt :           | latticutt -          | to see       | with coa          | mg of n          | nad),        | 20%; fels        | TCI XMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le rs      |               | and the second |
| 210             |                  | TRault/-                              | 1 sto   | +        | +       |      | wat. N             | o reaction           | to tol       | Le NP (           | ewender          | Dr ad        | DKS.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ר בתפנות      | TATA                                                                                                             |
| 20.7-           | C                | 020413                                | NU      | 4        | ++      |      | SIETY SING         | DY LIZAVE            | L. 70%       | Staver,           | 1 le san         | 4, 210 n     | nad. OKA         | USL KANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | apto       | 1000-1        | Dorn t                                                                                                           |
| 1.4             |                  |                                       |         | +        | ++      |      | 1 mm, I            | the to               | Supren       | map, BP           | Lo masal         | 1 Seams      | triable-b        | okingp), Zi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to feise   | WITBLE C      | at royen out                                                                                                     |
|                 |                  |                                       |         |          | +-+     |      | Ixemping           | at least pre         | e hight      | capied yo         | note fla         | ST. SAI      | op poorly        | Torted mostly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | coarsets   | ora- oral     | t-mag orien                                                                                                      |
|                 |                  |                                       |         | +        | +       | -    | Very COARS         | e, anguran 9         | D SUDAM      | gwar, be          | a basarti        | C,416 to     | 19C. MULL        | 259 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Donunes TI | wer nigh      | MARYWE                                                                                                           |
|                 | -                |                                       |         | +        |         |      | by lenges          | moung                | one ~        | (mm think         | ~ 40 m           | n long 1     | P J W/           | Burger in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fair la    |               |                                                                                                                  |
|                 |                  |                                       |         | +        | +-+     |      | 15 1DTK-6/2        | ght brou             | unish ar     | all with          | weak to          | norcal       | mm mmin          | ran song                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AN ANY     |               |                                                                                                                  |
|                 |                  |                                       |         | +        |         |      | now with I         | MORALY LOHI          | 07 01        | 12, ught          | yeg mos          | ly man a     | sverm). No       | I lacation To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I'MI       |               |                                                                                                                  |
|                 |                  |                                       |         | +        | -+-+    |      | Jumple G           | nows sign            | 5 pg We      | ene cem           | emmert           | n-agle       | marking ans      | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                                                                                                                  |
|                 |                  |                                       |         | -        |         |      | +                  |                      |              |                   |                  |              |                  | and a second sec |            |               |                                                                                                                  |
|                 |                  |                                       | W = Wet | + M      | - Moist | CH - | Slightly Maist D = | Dry                  |              |                   |                  |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2006/DCL/FORM | S/CoreLog/001 (006/                                                                                              |

| Pacit<br>Nation | fic Nor<br>nal Lal | thwest<br>boratory | (                | col  | REI      | LOG                 | Boring/We                             | 331/          | 175 Core 1         | Spenning            | Depth<br>Pro           | 29 - 31 H Data<br>oject 300-FF-5 c | 1/29/2015     | Sheet 6 of 6           |
|-----------------|--------------------|--------------------|------------------|------|----------|---------------------|---------------------------------------|---------------|--------------------|---------------------|------------------------|------------------------------------|---------------|------------------------|
| Logg            | ed by              | George             | La               | st   |          |                     |                                       | how           | eV. fat            |                     |                        | Drilling Contractor                |               |                        |
| Revie           | wed                | by                 |                  |      | Print    |                     |                                       | 47            | Sign - Cr          | Date                |                        | Driller                            |               |                        |
| Litho           | logic              | Class. Sch         | eme              | Folk | ) Went   | fuorth              |                                       | Pr            | ocedure D97        | 81-97-GV2-2         | Bev 6                  | Drill Method SPL                   | TSPOOL        | LEXING LINERS)         |
| DEPTH           |                    | SAMPLES            | MOIS-            | GRAP | HIC LOG  |                     |                                       |               | LITHOLO            | GIC DESCRIPTION     |                        |                                    |               |                        |
| (FT)            | TYPE               | ID NUMBER          | TURE             | CZ   | SG       | (particle size      | distribution, sort                    | ting, mineral | ogy, roundness, co | lor, reaction to HC | l, maximum grain size, | consolidation, structure, etc.)    |               | COMMENTS               |
| 215             | C                  | B304Y4             | W                |      |          | SILTY SAND          | ERAVEL                                | Grav          | el 852, Su         | ind 1820,           | Silt 29, (mul          | ). Gravel is motion                | L8933-        | TODED                  |
|                 |                    |                    |                  |      |          | to the pol          | ble, suba                             | suched        | , 65% 00           | Saltic, 35          | ? felsic. St           | UD is peaky sorted                 | Bottom,       | 60% for).              |
|                 |                    |                    |                  |      |          | mostly con          | rse, suba                             | ngular,       | 602 basel          | Az 4025 for         | elsic. Sample          | R wet 513/2,                       | ,             |                        |
|                 | _                  |                    | -                |      |          | darkoliv            | Egrey. 1                              | Jo real       | for to k           | Pottel. C           | monoted and            | l weakly computed.                 |               |                        |
| 29,5-           | Ċ                  | B30415             | KOD              |      |          | SILTY SIN           | DY GTANE                              | 2. Gra        | vel 7020, 5        | myd 25%             | , Mud 52. Gr           | avel ranges to 30                  | 68933-        | 10086                  |
| 30              |                    |                    |                  |      |          | cm, subra           | ushed to r                            | ounder        | 2,60% b            | sattic, 4P          | 20 felse. So           | und is mostly                      | whole co      | re hyplast             |
|                 |                    |                    |                  |      |          | coarse, su          | bangular,                             | 56266         | manthe, 50         | To felsic.          | 1000 30% 1             | of core is more                    | mtray, u      | as wet, dried          |
|                 |                    |                    |                  |      |          | muglin any          | d weak t                              | o modar       | dely com           | montrel.            | Sample 73 no           | w dry. ColorTZ                     | overnigh      | J                      |
|                 |                    |                    |                  |      |          | 516/2, to           | int dive                              | grees.        | No reaction        | 1 to #11.           | Weak to no             | cementation.                       |               |                        |
| 30-             | G                  | B30416             | W-M              |      | 1        | SANDY &             | RAVEL                                 | GRave         | 1 80%, Sa          | nd=2070-            | trace of sitt.         | Gravel mostly                      | C8933.        | -IOOBB                 |
| 30,5            |                    |                    |                  |      |          | medium p            | ebble, ran                            | ges upt       | 073cm              | sebrou              | ndel. 7020             | basett, 30% Felsez.                | whole so      | mple.                  |
|                 |                    |                    |                  |      |          | SAND IS I           | nostly car                            | orse, S       | ubangular          | , 30% )             | esettic, 5820f         | BAC. Sumple 13                     |               |                        |
|                 |                    |                    | -                |      |          | most (prol          | subly organs                          | Ay wet)       | , 2.593/1          | very dar            | Kgray. No              | reaction to HC(,                   |               |                        |
|                 |                    |                    |                  |      |          | Unconsolid          | edes-no                               | comm          | sutation a         | sburous,            |                        |                                    |               |                        |
| 31              | C                  | B30418             |                  |      |          | SANDY E             | SRAVEL.                               | 7520          | Gravel, 2          | 5% Sand             | trace of SH            | Chiased by                         | C8933-        | 7008A                  |
|                 |                    |                    |                  |      |          | large brok          | en plasts                             | of bis        | elt & 1 qu         | astante (p          | sple). Grave           | a ranges to 73cm                   | , Bottom,     |                        |
|                 |                    |                    |                  |      |          | Subround            | Led, 70%                              | basat         | +, 307 of al       | TC (e.a. a.         | writzite). 5           | and is mestly                      |               |                        |
|                 |                    |                    |                  |      |          | CBUTSE, S           | nbangula                              | 5, 507        | a busatt,          | 5020 fols           | TC. Sample             | 13 morst to weti                   |               |                        |
|                 |                    |                    |                  | 1    |          | 2,513/1,            | very devik                            | grage         | No read            | on to the           | C. No come             | wasson.                            |               |                        |
|                 |                    |                    |                  |      |          |                     | 0                                     | 0 5           |                    |                     |                        |                                    |               |                        |
|                 | -                  |                    | -                |      |          | 1                   |                                       |               |                    |                     |                        |                                    |               |                        |
| _               |                    |                    |                  |      |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    |                  |      |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    | -                |      |          | -                   |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    |                  |      |          |                     | Contraction of Contraction Statements |               |                    |                     |                        | -                                  |               |                        |
|                 | -                  |                    |                  |      |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    |                  |      |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    |                  |      |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 | -                  |                    |                  | 11   |          |                     |                                       |               |                    |                     |                        |                                    |               |                        |
|                 |                    |                    |                  |      | 1        | ch Lil Harre        |                                       |               |                    |                     |                        |                                    | 000/ /00 /000 |                        |
|                 |                    |                    | $W = W \alpha I$ |      | ALC: SMI | - Mightly Mojet D - | linv                                  |               |                    |                     |                        |                                    | 7006/001/608  | MS/LOREIOG/UNI LUDA/UY |

7

| Paci<br>Natio        | fic Nor<br>nal Lal | rthwest<br>boratory                                       | (    | c  | DR     | ΕL   | OG            | Borin                              | tion 33         | CB9=           | 36<br>Core De                            | eaning                                        |                    | Depth<br>Pro                             | 6.5-1<br>ject                | 3.5        | Date                                     | 1/30/204 | 5    | Sheet         |
|----------------------|--------------------|-----------------------------------------------------------|------|----|--------|------|---------------|------------------------------------|-----------------|----------------|------------------------------------------|-----------------------------------------------|--------------------|------------------------------------------|------------------------------|------------|------------------------------------------|----------|------|---------------|
| Loga                 | ed by              | George                                                    | Las  | t  |        |      |               |                                    | How             | ne Vil         | int                                      |                                               |                    |                                          | Drillin                      | g Cont     | tractor                                  |          |      |               |
| Revie                | ewed               | by                                                        |      |    | Prin   | ni   |               |                                    | 0               | (Sight         |                                          | Date                                          |                    |                                          | Driller                      |            |                                          |          |      |               |
| Litho                | logic              | Class. Sch                                                | eme  | Fo | ULL    | Dero | twooth        |                                    | Sign            | Procedu        | re DITBI                                 | -99-EV2-                                      | D) Re              | v O                                      | Drill N                      | lethod     |                                          |          |      |               |
| DEPTH                |                    | SAMPLES                                                   | MOIS | G  | RAPHIC | LOG  |               |                                    |                 |                | LITHOLOGIC                               | DESCRIPTION                                   |                    |                                          |                              |            |                                          | CAMMENTS |      |               |
| (FT)                 | TYPE               | ID NUMBER                                                 | TURE | C  | ZS     | G    | (particle siz | e distributi                       | on, sorting, mi | neralogy, rour | idness, color,                           | reaction to HC                                | l, maximun         | n grain size, d                          | consolidatio                 | n, structu | re, etc.)                                |          |      |               |
| 10.5                 | C                  | B30505                                                    | m    | 1  |        | -    | SANDY G       | ZAVE                               | 70200           | vavel 3        | The sand                                 | 1. trace of                                   | f sitt.            | Graves                                   | Panao                        | < to7      | Bom.                                     |          |      |               |
|                      |                    |                                                           |      |    |        |      | Subcoond      | ul b                               | 02 basa         | Arc 402.       | felor .                                  | Sand 13                                       | most               | y coass                                  | etom                         | + Inev     | 72.                                      | Bottom   | 4-8  | 2 Full.       |
|                      |                    |                                                           |      |    |        |      | subangula     | r. 307                             | lo basath       | 70% f          | PLATE I                                  | noist.                                        | 2,543              | A. ver                                   | e dark                       | anusis     | h brown                                  |          | 1    |               |
|                      |                    |                                                           |      | T  |        |      | weak to str   | ma ve                              | artion to       | HCI. NO        | ceman                                    | lation.                                       |                    | 1                                        | -                            | 23         |                                          |          |      |               |
| 11.0                 | Ċ                  | 830506                                                    | m    | T  |        | 1    | GRAVELY       | SAND                               | 25%             | arada 7        | 590 Sar                                  | 1. trace p                                    | fsth,              | Gravel                                   | PROAPE                       | +2.        | Sem.                                     | C8936    | -IC  | olc           |
| in the second second |                    |                                                           | 1    |    |        | 1    | round to      | Subre                              | and b           | 07. ba.        | satter 4                                 | \$ 2ofel ST                                   | C. Sev             | \$73 D                                   | nother                       | netra      | m.                                       | Bottom.  | Full |               |
|                      |                    |                                                           |      | 1  | T      | 1    | Subanaila     | r 302                              | besalt          | c. 702-1       | elsir.                                   | Moral.                                        | 2.5%               | +12. da                                  | xX Ara                       | dich !     | 0000                                     | ,        |      |               |
|                      |                    | The Background of the Internet of Landscore and Landscore |      | 1  |        | 1    | West rea      | dens                               | L this          | No cem         | entites                                  | hain Sendado Stania                           | alte anni an air a | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | Jul                          | 3          | e producer                               |          |      |               |
| 11.0-                | B                  | 830507                                                    | m    |    | 1      |      | GERVELLY      | SAND                               | . 25%           | myd            | . 57. V-                                 | ru Porarso                                    | Soud               | DZ LAR                                   | rse Sen                      | 1,40       | 2                                        | C8936    | -10  | OLB           |
| 11.5                 |                    |                                                           |      | 1  | 11     |      | moltun        | enul 15                            | n. Fra          | 52 55          | 7. Van for                               | a south                                       | torce              | of sit                                   | Grav                         | ATE        | mase                                     | whole    | Same | sle. Previos) |
| 11.                  |                    |                                                           | -    | 1  |        |      | to 2 com      | RANNY                              | loli            | ut men         | 1 500                                    | 2 breat                                       | 50                 | fals                                     | Allen                        | as Sa      | AR                                       | spiralt  | 1PM  | ave some      |
|                      |                    |                                                           | -    | -  | 11     | 1    | 757 50        | 50.7                               | 57. Sign        | the see        | pana.                                    | an M                                          | 05                 | 25VA                                     | Z. And                       | L Ana      | steh                                     | 62mm-    | Sarn | rantium knows |
|                      |                    |                                                           |      | 1  | TT     | 1    | brocom        | 1Nont                              | FARCT           | d WI           | No rou                                   | madd                                          | 0.                 | and i it                                 | -,                           | - gra      | 3.20                                     |          | 101  | C. C.         |
| 12 0                 | C                  | B31509                                                    | m    | +  |        | 1    | SAUDY A       | TATEL                              | 359             | p wal          | 59. 1                                    | do se                                         | 8.59               | IBASED                                   | cont 3                       | 27_ m      | odiam                                    | C8936.   | -Ian | 1A            |
| . 20 10              |                    |                                                           | 1    | -  | +++    |      | 157 Br        | 52                                 | Pury Finp       | 57 40#         | Gravel                                   | ran pl                                        | 4 40               | m row                                    | retas                        | when       | ind                                      | BOTION.  | 757  | , full,       |
|                      |                    |                                                           |      | +  | 1      | 1    | where is      | halve                              | 569             | bester         | 560.1                                    | der S                                         | tond P             | cabor                                    | -autor                       | 603        | -Falazz                                  | - winder | 100  |               |
|                      | 1                  |                                                           |      |    | ++-    |      | 409 b         | - 119-                             | More            | 1 254          | 2/1 101                                  | dark a                                        | der en             | brand                                    | 115008                       | rent       | 1920                                     | -        |      |               |
|                      | 1                  |                                                           |      | +  | 11     | -    | to tori       | A)~ C                              | ma sadad        | - e.vv         | gipter                                   | ) rusk yo                                     | agizh              | LA 2X.DY 34                              | UPENE                        |            | 110-1                                    |          |      |               |
| 120                  | C                  | B3650                                                     | m    | -  | 1      | 1    | SANDY C       | PACIET                             | 559             | actual         | 4592 0                                   | and 50                                        | 2000               | Grand                                    | 8 marca                      | - vot      | 5 Sam                                    | 19936    |      | NORD          |
| 1210                 |                    | 0-000                                                     |      | +  | TT     |      | En Longand    | lel 51                             | 7 becak         | 500-           | Elde .                                   | SUNPER                                        | mart               | la mala                                  | NI GU                        | pone.      | Jac                                      | Bottom,  | 959  | FRIL          |
|                      |                    |                                                           | -    | -  | 11     |      | 709 Lle       | 7 2.07                             | - hull          | marc           | 7 75                                     | 13/2                                          | Jama &             | S.S. an                                  | arn, 28                      | min        | ause,                                    | CHEMI    | CAL  | COPR?         |
|                      | -                  |                                                           |      | -  | 11     | +    | iseas ca      | 4 7 1A                             | A Dri           | c. IIVIS       | P A                                      | 1 1/4,1                                       | 29 a               | Mo to Cord                               | MIST 2                       | 1 Wollic   |                                          | Cr/Lyli  | 01.0 | VUSE -        |
| 13.5                 | C                  | B30511                                                    | m    | +  | 11     |      | SANDY G       | ZAVE)                              | 507             | angental /     | Langer Langer                            | in comp                                       | 2) 707             | Cank +                                   | Trup +                       | Forth      | Grupp)                                   | r 8931   | -Ic  | 020           |
|                      | -                  | 1                                                         | 1    | -  | 11     | 1    | range to      | 770                                | n (barke        | J. File 1      | TOW. SI                                  | barral                                        | 0 9040             | Dassit                                   | (b9150)                      | bin        | Stre)                                    | Borton   | 1,50 | LL            |
|                      |                    |                                                           |      | 1  |        | 1    | Sond is       | moth                               | melitia         | Trande         | Gatel                                    | Subanc                                        | Ser 1              | 0% folg                                  | 12 402                       | bert       | Pro                                      |          | 1.   |               |
|                      |                    |                                                           |      | -  |        |      | mossi         | 25421                              | 1 Jon da        | V Areal        | No ro                                    | Agent                                         | TAC)               | Comp                                     | thed                         | wall       | u                                        |          |      |               |
|                      |                    |                                                           |      | -  |        | 1    | remente       | )                                  | TAR BAR         | gregi          |                                          | ap tort                                       | 0 10               |                                          | when and a                   |            | ,                                        |          |      |               |
|                      |                    |                                                           | 1    | 1  |        | -    |               |                                    |                 |                | a ta yanga ta di myo danis matana olar a | ter tilleniger som till stadet af ocksår, ska |                    |                                          | Million and an and an        |            | anna harde ar construction and all cross |          |      |               |
|                      |                    |                                                           |      | T  |        |      |               |                                    |                 |                | Al                                       |                                               |                    |                                          | alterer di faitar militation |            |                                          |          |      |               |
|                      |                    |                                                           |      | -  | 11     | 1    |               | Note and approximate for the first |                 |                |                                          |                                               |                    |                                          |                              |            | a areas areas and any straight           |          |      |               |
| _                    | -                  |                                                           |      | _  | -      | -    |               |                                    |                 |                |                                          |                                               | -                  |                                          |                              |            |                                          |          |      |               |

W = Wet, M = Moist, SM = Slightly Moist, D = Dry

2006/DCL/FORMS/CoreLog/001 (006/09)

| Pacit<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory                       | (     | co   | REI     | OG            | Boring/Well N<br>Location | No C8936<br>331/170 Com | Openning                  | Depth <u>/</u><br>Pro | 3.5 - 17.0 Date                 | 1/30/2015   | Sheet<br>2 of 8     |
|-----------------|--------------------|------------------------------------------|-------|------|---------|---------------|---------------------------|-------------------------|---------------------------|-----------------------|---------------------------------|-------------|---------------------|
| Logg            | ed by              | George                                   | 149   | F    |         | ·······       | hear                      | sel Lest                | 9                         |                       | Drilling Contractor             |             |                     |
| Revie           | wed                | by                                       |       |      | Print   |               | Carre                     | and the second          | Date                      |                       | Driller                         |             |                     |
| Litho           | logic              | Class, Sch                               | eme   | Fall | Anne    | temth         | Sign                      | Procedure               | 81-99-1NL-01              | Rev O                 | Drill Method                    |             |                     |
| DCOTU           | - gio              | CAMPIEC                                  | Luoir | CDA  | PHICIOC |               |                           | 11710                   |                           |                       |                                 | 1           |                     |
| (Pr)            | TYPE               | The Surance                              | TURE  | C    | 7 5 6   | (particle siz | ze distribution, sorting, | mineraloay, roundness,  | color, reaction to HCl, m | aximum arain size.    | consolidation, structure, etc.) | . 0         | OMMENTS             |
| 12.5-           | G                  | B30512                                   | m.D   | -    | 2 3 0   | SUTO SAN      | H LOATA -                 | 157 Crost 2             | 09.5.0 50                 | Lest Com              | 2 frances                       | 1931-7      | Top2B               |
| 14.12           | 9                  | UNU.2                                    | III V |      |         | 7.5.1         | how have a sub            | rended 509              | Sector 507                | folor Sa              | ul mine mathe                   | uthah en    | n ble brabak        |
| niv             |                    |                                          |       |      |         | fono and      | handler lot               | 2 Labor 1509            | brecht T                  | the tawn wat          | 7.584/1.                        | solide the  | Pulare sone         |
|                 |                    |                                          |       |      |         | Anot are      | No No FRAN                | end the P               | To reason                 | to the                |                                 | 42.m.M.     |                     |
|                 |                    | n an |       |      |         | - serie ge    | g                         | Center Contract         |                           | - total De for ton    |                                 | CARMICAN    | LODER?              |
| 145             | C                  | B30515                                   | m-D   |      |         | SILTY SAN     | DY BRAVEL                 | with some L             | bleast ash                | possent, 6            | opla Gravel,                    | C8936-7     | 0027                |
|                 |                    |                                          |       |      |         | 3520 50       | ul, 52 sett.              | Gravel same             | supto 6rm                 | Junbroken             | ) rounded,                      | Bottom,     | 2020 Fall           |
|                 |                    |                                          |       |      |         | 8020 30       | sather Ibrase             | d by cobble)            | 20% 50/20                 | - Sand ma             | sty fore, sat-                  | ,           |                     |
|                 |                    |                                          |       |      |         | anglular,     | 70% felse, 7              | world sorted.           | 54/1, date                | grey/mors             | D. Tephretz                     |             |                     |
|                 |                    |                                          | -     |      |         | Very for      | sound to sitt             | STRE, Augula            | to subaux                 | ular. Day             | 5/8/2, white                    |             |                     |
|                 |                    |                                          |       |      |         | no seal       | tonto Her.                | MuHitthe S              | and has to                | enterand              | ton to ACI.                     |             | ······              |
|                 |                    |                                          |       |      |         | No cem        | anton.                    |                         |                           |                       |                                 |             |                     |
| 15,5            | C                  | B30516                                   | m-y   |      | _       | SHELY SAM     | STOY GRAVE                | . 60% Grave             | el, 30% Surd              | 1, 102 sitt.          | Gravel ranges                   | CB936-      | I003D               |
|                 |                    |                                          |       |      |         | Po Zem        | (Anbroken), r             | ounded. 705             | a basator, 3              | ezatelst.             | Sand is georly                  | BOTTOM, 7   | FRIL                |
|                 |                    |                                          | _     |      |         | Sorted ,      | nostly-me,                | 65% fetsic, 4           | 070 Desawarc,             | subargula             | 5. MORT TO TRY                  | CHEMICAN    | DORS                |
|                 |                    |                                          | -     | ++   |         | 514/1,d       | axk green v               | verk reaction           | to the con                | utaded, w             | eate to no competent            |             | F. O.               |
| 16.0            | C                  | \$30311                                  | 10)   |      |         | SILLY SA      | JOY BRAVEL.               | 6020 Grave              | 1,30% 2001                | 6,10% STH.            | Gravel runges to                | 68736-      | 10030               |
|                 |                    |                                          |       |      |         | >2cm D        | noken), round             | led to subvar           | & where and               | DKen, 8010            | Busathe 2720                    | Bottom,     | over fun,           |
|                 |                    |                                          |       | +    |         | telsice s     | Sand T3 most              | lytime, suba            | ingular, our le           | alla telsic, a        | to to DASANOTC.                 | CHEIDIG     | L DUDIC:            |
|                 |                    |                                          | +     |      |         | 11121411      | 141, Oack                 | gray wear               | - reaction to             | TILL. Com             | pacted, weak to                 |             |                     |
| 160-            | G                  | B30519                                   | m     |      |         | SILTY SA      | IDY GRAVES                | 109 Engl                | 20 Sall                   | MP. CHI I             | I coul reases                   | C.8936-     | IN3B                |
| 16,5            | 4                  | 1                                        |       |      |         | to 2 cm       | lunbrations r.            | and to subm             | 200 200 1                 | Die Fri C             | 2 falt Sport                    | whole 400   | mole some <2m       |
|                 |                    |                                          |       |      |         | insorty       | sorted mostly             | Ane suba                | aular haga.               | folgec. 40%           | basiltic, morst.                | 200 Raich T | emoved.             |
|                 |                    |                                          |       |      |         | 58411,0       | ask aray, w               | eak yeaching            | J. HCL. No                | comentate             | 17)                             | Jacourt .   |                     |
| 17.0            | C                  | B30520                                   | m-T   | 2    |         | SILTY SA      | DY GRAVEL.                | 80% Gaure               | l. 15% Sand               | 52 Sut. 1             | ravel ranges to                 | C8936-J     | DO3A                |
|                 |                    |                                          |       |      |         | 2.5 cm/b      | den), Subcom              | nd, 50% basal           | tre, 502 fetrali          | ore Ringeld of        | ast-10 R. 6/6, brown            | h Borrom,   | 70% full-           |
|                 |                    |                                          |       |      |         | yollow, So    | ie where (tophic          | at no times.            | Sankis pool               | septed in             | osty frey morsity               |             |                     |
|                 |                    |                                          |       |      |         | Ary. 544      | 1, dask gren              | . No reaction           | to HCl, comp              | went went             | ty commented                    |             |                     |
|                 |                    |                                          |       |      |         | 0             | 0.0                       |                         |                           | -                     |                                 |             | e /e 1 /003 /004 /0 |

| Pacif<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory | (      | c    | OR      | EL    | OG                 | Boring/We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 331/1           | 8936<br>20 Core (                      | Franky          | Depth<br>Pro                                                                    | 18- 21,1<br>Dject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                                  | 2/2/2015                               | Sheet<br>3 of 8       |
|-----------------|--------------------|--------------------|--------|------|---------|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|-----------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----------------------|
| Loga            | ed by              | George             | 100    | ł    |         |       |                    | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hingh           | 1 Jart                                 |                 |                                                                                 | Drilling Contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | actor                                 |                                        |                       |
| Revie           | wed                | by                 | . en a |      | Pri     | int   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mage            | Sign                                   | Date            |                                                                                 | Driller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                     |                                        |                       |
| Litho           | logic              | Class Sch          | ama    | T.   | 12. J   | ine . | P                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sign            | cedure D97                             | 1-99-01-01      | Rev A                                                                           | Drill Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                       |
| LIUIO           | logic              | Class. Sch         | lenie  | 10   | W/      | Wer   | un un on h         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIO             | cedule <u>prie</u>                     | 1-77-6VL-DI     |                                                                                 | Dim method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                        |                       |
| DEPTH           |                    | SAMPLES            | MOIS-  | G    | KAPHIC  | LUG   | Inarticle cir      | a distribution court                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ting minarda    | LITHOLOG                               | SIC DESCRIPTION | navimum arain siza                                                              | consolidation structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | etr.)                                 |                                        | MMENTS                |
| 100             | TYPE               | ID NUMBER          | TURE   | C    | ZS      | G     | (particle siz      | e distribution, sor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ning, mineralog | gy, roundness, con                     |                 |                                                                                 | consolidation, structure,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6ic.)                                 | 00071 -                                | There                 |
| 18.0            | E                  | 330521             | 101-50 | +    |         |       | SHETY SAN          | DIGRAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30%             | Gravel, Ol                             | Do Scord        | 26512 6                                                                         | revel ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                    | C8736-                                 | 10040                 |
|                 |                    |                    |        |      | +       |       | 20 mm S            | ibrouder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tovourse        | extwhere                               | unbroken)       | BP/o Daso                                                                       | MAC, 20 10 tols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                                    | Borrom, 5                              | 010 Full              |
|                 |                    |                    |        | +    |         | +     | SANR TS O          | 10 Sty ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | trun to t       | me, subk                               | ngulao, 609     | 2 total, 40                                                                     | to Desarric B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DENST                                 | ······································ |                       |
|                 |                    |                    |        | +    |         |       | te day colo        | sr 2.51 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, Mark         | gray. Wea                              | X reaction      | totil. Um                                                                       | consoli Notes, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b                                     |                                        |                       |
| 100             | 0                  | Barm               | m to   | +    | +       |       | cementat           | ATA .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 759             | C P                                    |                 | = = = = = =                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -d-                                   | 100001                                 | Toode                 |
| 18.2            | L                  | D70512             | 1-2    |      | ++      |       | SILTY SITU         | DT GRAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. 130          | 5 BORAVEL;                             | 10 to Sank,     | 0/0>11. (                                                                       | sraver range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up 10                                 | LD/76-                                 |                       |
|                 |                    |                    |        | +    | ++-     |       | DI-DCM             | broken),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Towney          | (42 Suprou                             | ud where a      | novoken, o                                                                      | Te De SATIC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/20                                  | Do Mom, +                              | w11,                  |
|                 |                    |                    |        | -    | +-+-    |       | tors cleg          | QUEST ENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | granse          | nonte). 74                             | ne is mos       | thy convert                                                                     | o very coerse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | Same Ol                                |                       |
|                 |                    |                    |        | +    | ++      |       | Subangul           | ur, DD/ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PASONTEC,       | 56/2 tels                              | C. MOIST OC     | 201°15 2,01                                                                     | 4/1, Rask grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y                                     | ,                                      |                       |
|                 |                    |                    |        | +    | +       |       | Weakto             | no reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n to AC         | 1. Weak                                | cen man         | on, Lots                                                                        | et reck dost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tren                                  |                                        |                       |
| 10 5            |                    | 22.500             |        | +    |         |       | breakingo          | f cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 7 0 1                                  | 75 2. 1         | -10 (11)                                                                        | ~ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 10001 7                                | an AR                 |
| 18,0-           | 6                  | \$30523            | m      | +    | +-+-    |       | SILTY SPI          | JDY GRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EL. 607         | a Graver,                              | 50% Sound       | 1276 SIT.                                                                       | Gravel Trages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                    | 11-00706-1                             | 1045                  |
| 19.D            |                    |                    |        | +    | +-+-    |       | >2cm (br           | sken), sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ranked          | where nut                              | worken, 50      | To Desalt                                                                       | c, 50% tast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | whole sking                            | PIC, Previoos         |
|                 |                    |                    |        |      | ++-     |       | Frind is i         | 2001 y soit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | el most         | y coerse, 5                            | when gular,     | 6020 12/570                                                                     | , 402 madet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.                                   | served to                              | remore-some           |
|                 |                    |                    |        | +    | +       |       | maist color        | 152,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +/1, dark       | orky. No                               | 6000mg          | a HC, ung                                                                       | msolt kiek h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                     | 62mm.                                  | Some paper.           |
|                 | -                  | 2205-5             |        |      | +       |       | sign of            | comentati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.             | -60 1                                  | 2.5.6           | 112 172 1                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                     | (musky/                                | easthy)               |
| 17.0-           | C                  | 050525             | D      | -    | +-+-    |       | SILTY SA           | NDY GRAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AEL. T          | 5% brave                               | , 20 % mm       | R, STRSitt                                                                      | Gravel range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 42                                  | 0720-                                  | 1004 #                |
| 19,5            |                    |                    |        |      | 1.      |       | 27.cm              | roken), 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bang Su         | bround to                              | cound wh        | we un brok                                                                      | er, 75% bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stor                                  | what cove                              | landoutin             |
|                 |                    |                    |        | +    | ++      |       | 25% 20             | Releig. gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mostor          | Are). Sind                             | is Fool         | x server, m                                                                     | othy coarse,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Sample th                              | my & aviel bod        |
| -               |                    |                    |        | -    |         |       | Subangula          | x, 62206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196, 196,       | 402 felsi                              | C. Dry cal      | or 15 2516                                                                      | 1, gray. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | weakond.                               |                       |
|                 |                    | 729. 5-1           | -      |      |         |       | Featron +          | 3 HCL. We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | akly cer        | nented.                                |                 |                                                                                 | 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 10001 -                                |                       |
| 21.1            | C                  | 510726             | 112-5  | 4    | ++      |       | SILTY SAT          | DY GRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL. E           | 50% Grad                               | 45% Ser         | 2, 5% SH,                                                                       | Gravel upto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | agant de la camp polo y que arabien a | 10756-2                                | 605D                  |
|                 |                    |                    | _      |      | +-+     | _     | >25cm1             | broken) ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gular to        | Supangula                              | (baren)         | 4070 Dush                                                                       | ATC, 60% telsic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | botom of co                            | re, 90% Full          |
|                 |                    |                    |        | +    | ++      |       | aupeste            | querzade).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sandis          | poorly 521                             | ter mostly      | meterum to                                                                      | tine, subau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gular,                                |                                        |                       |
|                 |                    |                    |        | -    |         | -     | 7070 10/91         | 2,30% but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solution of     | Volat 93 Ary                           | E010193 2       | 51411, dock                                                                     | gray weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                        |                       |
|                 |                    |                    |        |      | +-+     |       | reaction-          | DAG. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le obvisn       | 5 comment                              | win.            | and in its standardistic of basis' strain basis and strain the and the stars of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                       |
|                 |                    |                    |        | +    | ++      |       |                    | and where where the same is a pair in (or the surprise to same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | an ar an internet and a sale again and |                 | n na jaa maanaanan katar kata ar maanaanin na kataraka<br>Y                     | Martin and an exception of the second s |                                       |                                        |                       |
|                 |                    |                    |        | -    | +++     |       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                 | ar a th a a a 11 m a 1 a daile                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                       |
|                 |                    |                    |        | -    |         |       |                    | and and address of the state of |                 |                                        |                 | ,<br>                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                       |
|                 | 1                  |                    | W-Wa   | + 14 | - Maist | CH-   | Slightly Maint D - | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                        |                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 2006 /DCI /EODING                      | /Carolog /001 (006 /0 |
| Reviewe<br>Litholog | ed by _<br>gic Clas |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Litholog<br>DEPTH   | gic Clas            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | Print   | Date                                                                                                        | Driller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| DEPTH               |                     | ss. Sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | me    | Folk  | /we     | intworth Procedure DATES-99-GUL-a Rev D                                                                     | Drill Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
| (FT ) TV            | SAMP                | LES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOIS- | GRAPH | IIC LOG | LITHOLOGIC DESCRIPTION                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMMENTS                                                                                                         |
| 11 1.1 11           | YPE ID              | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TURE  | CZ    | SG      | (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCl, maximum grain size, co | onsolidation, structure, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMMENTS                                                                                                         |
| 21.6 C              | BB                  | 0527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m     |       |         | SILTY SANDY GRADEL. 75% Gravel, 20% Sand, 5% SILT (SH+                                                      | cky). Some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C8936-ID056                                                                                                      |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | riptons/class of sitt to chey (251 5/3, tight site of ive brown), c                                         | pating gravel fond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom of core, fo                                                                                               |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | clasts, Gravel upto 2 cm, trounded to subvound, 70% ma                                                      | fic (basethe), 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | felsor (e.g. quartzite), Sand is poorly sorted, mostly med                                                  | nen, subangular,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | 1       | 6020-felse, 4020 matic (Dasattic). Morst color 13 2,583/1, V                                                | erydorkgray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | Weak reation to HCI. Comparted, weakly converted.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| 21,10- 6            | a 33                | 30528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m     |       |         | SILTY SANDY GRAVEL. BOTO Gravel, 15% Sand, 5% sittleta                                                      | day). Gravel 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8936, ID05B                                                                                                     |
| 22,1                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | mostly fine people, ranges up to 2 cro, rounded to subar                                                    | 19 upr, 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | whole sample, pre                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | baselt, 40% foise, occasional class of semi consplided                                                      | command folk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | served to remove ?                                                                                               |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | send (Rmodd?), Sandis poorly sorted mostly coarse.                                                          | Subaysular, 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4220m.                                                                                                           |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | felsic, 50% motor (basel Hiz), Morst color 13 3/2, very day                                                 | rkannish brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | No reaction to HCL, Some weakly computed clods.                                                             | 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |
| 22.6 0              | C B3                | 36536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m     |       |         | SILTY SANDY SPANEL, 75% Gravel, 15% Sand, 10% ST                                                            | (+ day). Grave)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8936-1005A.                                                                                                     |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | up to >4 cm (broken), round to subround where upbroken                                                      | 70% breathic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottom of core, Be                                                                                               |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | (mate), 30% felse, Sand is poorly sorted mostly med                                                         | ium to fine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | full.                                                                                                            |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | 1       | unantar to supanaular. 60% mater. 40% folsic. 51/tu/c/a                                                     | men concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | i     |         | In matrix (258 5/3, Dato Dive brown), costing clasts. No                                                    | to weak reation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | 40 HCL. Consacted's weekly commented                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| 237 0               | C 33                | 0531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m     | 1     |         | SILTY SANDY GRAVEL. 50% Gravel, 45% Sand, 52,5                                                              | ilt. Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C8936-I006D                                                                                                      |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | ranges noto > 2.5 cm (proten), angular to subsacued (broken).                                               | 50% moticlen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bottom pt core, new                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | basert), 50% for (eg. ougstate). Sand months metrug to                                                      | Fore, subanquilar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f.11?                                                                                                            |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | 1       | 70% felsic, 30% more moret coor 3 2.58 4/1. dark area. 1                                                    | Weak to no reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | to HCI. Some what compated as convention sourcies,                                                          | a a construction de la const |                                                                                                                  |
| 24.2 0              | C 33                | 0532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m     |       |         | SHET SANDY GRAVEL. 809, Gravel ( brased by broken cobb)                                                     | le), 15% Sand,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C8936-JOD6C                                                                                                      |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | 520 Silt. Gravel ranges upto 77 cm (broken), angularto                                                      | subanatar (broken)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom of core, full                                                                                             |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | 75% matic (biased by broken busit cobble). Sund is morely                                                   | Sorter mostly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |         | Fine, Subangular, 70% felse, 30% mater, Morst Noris 2                                                       | 514/1, dark areu,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |
|                     |                     | A DECIMAL OF A DEC |       |       |         | No constant all c all hat a prove and all                                                                   | a una ala o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |

A-72

| Pacif<br>Nation | ic Nor<br>al Lat | thwest<br>boratory                    | (     | co   | RE    | EL | OG             | Boring/Well N          | 10 <u>C 8936</u><br>31/170 core | e openning        | Depth _2<br>Pro                                                                   | 24,2-27.7 Date<br>ject        | 2/2/2015      | Sheet          |
|-----------------|------------------|---------------------------------------|-------|------|-------|----|----------------|------------------------|---------------------------------|-------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------|----------------|
| Logg            | ed by            | Georg                                 | e l   | ast  | -     |    |                | di                     | ouse V. trat                    |                   |                                                                                   | Drilling Contractor           |               |                |
| Revie           | wed              | by                                    |       |      | Print |    |                | 0                      | y sign                          | Date              |                                                                                   | Driller                       |               |                |
| Litho           | logic            | Class. Sch                            | eme   | Fol  | k/    | We | entworth       | Sign                   | Procedure DS                    | TB1-99-GVL-0      | Rev 0                                                                             | Drill Method                  |               |                |
| DEPTH           | TYPE             | SAMPLES                               | MOIS- | GRAP |       | OG | (narticle size | distribution sorting r | UTILI<br>Arenhauor voolprenim   | LOGIC DESCRIPTION | navimum arain size (                                                              | ransalidation structure etc.) | COM           | IMENTS         |
| 24.2-           | G                | B30533                                | M     |      |       | G  | SITTY SAM      | DY CPAYE               | 5P70 Grade                      | 45% Sand          | 52 <h b<="" td=""><td>Child Fankan with</td><td>C 8936 - I</td><td>OBLAR</td></h> | Child Fankan with             | C 8936 - I    | OBLAR          |
| 247             | _                | 00000                                 | ,     |      |       |    | 27 cm liter    | tonleiton              | - P-P where a                   | wherefor 5        | 2. mat 10                                                                         | a breat 502                   | whole same    | 6 previous     |
|                 |                  |                                       |       |      |       |    | folso lea      | aucetzila)             | Sand is ma                      | stle ranses       | to modium.                                                                        | subenavlar.                   | served to exi | rat some       |
|                 |                  |                                       |       |      |       |    | 60% fotor      | 452 matt               | . most color                    | 13 2.513/         | , yesu dark                                                                       | aver. No readon               | <2mm.         |                |
|                 |                  | • • • • • • • • • • • • • • • • • • • |       |      | 1     |    | to the N       | abutaus sta            | ins of comp                     | station.          | 1 Juni Jean P                                                                     | Jæj                           |               |                |
| 25,2            | C                | B30536                                | m     |      | 1     |    | SANDY (P       | AVEL BO                | 20 avrille 20                   | 20 Sound to       | ale of sitt.                                                                      | Gravel upto                   | C8936-I       | 006A           |
|                 |                  |                                       |       |      | 1     |    | 2 con land     | counded 55             | 20 matic, 50                    | 2 felsic, S       | and is Door                                                                       | In sorted mostly              | Bottomofco    | ve, 752        |
|                 |                  |                                       |       |      | 1     |    | meating to     | course sw              | bangular, 60                    | 2 mate. 40        | 20febic. ma                                                                       | sist coloris                  | Full.         |                |
|                 |                  |                                       |       |      |       |    | 2.543/1.1      | eru davkara            | u. No read                      | on to HU.         | Compaded /                                                                        | weakly commanded.             |               |                |
| 26.7            | C                | B30537                                | m     |      |       |    | SILTY SAN      | UDY GRAVET             | . 80% arm                       | el. 15% Scord     | 2, 5% 51+(-                                                                       | tolay), Gravel                | C8936-IO      | DTD            |
|                 |                  |                                       |       |      |       |    | usto > 2D      | mm (broken             | ), anoulier to                  | subrounded        | 2. 707, mp                                                                        | ficlea, basett).              | Bottomofc     | ore. 60%       |
|                 |                  |                                       |       |      |       |    | 302 felsi      | IC (E.g. quarta        | zite), Sand                     | 15000 (14 50      | ited most                                                                         | ly medium to                  | Full.         |                |
|                 |                  |                                       |       |      |       |    | Fine, Sub      | pasquar. 6.            | 0% felsic, 4                    | Domatic. (        | buous incr                                                                        | east consactivation           |               |                |
|                 |                  |                                       |       |      | _     |    | of mud ls      | TH++ clay)in.          | sand motion;                    | nodules (2,5      | 16/3, title h                                                                     | ight yellowish brown)         |               |                |
|                 |                  | -                                     |       |      |       | -  | No repetit     | n to HCI. Ye           | cy compade                      | & and wear        | ly comment                                                                        | rel.                          |               |                |
| 27.2            | C                | B30538                                | m-W   |      | _     |    | SILTY SAT      | VDY GRAVEL             | - 70% are                       | Nel, 25 905       | and, 57051                                                                        | H(tolay). Gravel              | C8936-I       | DOTC           |
|                 |                  |                                       |       |      |       | 1  | ranges up to   | s 2 cm, rou            | und to subrou                   | ind where u       | nbroken, 6                                                                        | espimaticleg.                 | Bottomota     | ore. Full.     |
|                 |                  |                                       | -     |      |       |    | basalt, 4.     | 070 felsic le          | g. quastzite).                  | Sand most         | y coarse, sy                                                                      | bangular, 75%                 |               |                |
|                 |                  | -                                     |       |      | -     |    | felsic, 25     | 20 mater 5             | 54 + cley acoa                  | tronally conc     | entrated In                                                                       | negules (2.516B)              | ,             |                |
|                 |                  |                                       |       |      | _     | -  | light yello    | witch brown)           | No reaction                     | n, to HCI. 1      | loon compad                                                                       | cd, weakly                    |               |                |
|                 |                  | 00                                    |       |      |       | -  | Cennente       | d. Moist to n          | of color 2,5                    | 14/2, dark gr     | wish brown.                                                                       |                               |               |                |
| 27.2-           | 6                | 830539                                | m-w   |      |       | 1  | SITY SAN       | DY GRAVEL              | . Ste graves                    | .104 sand, 10     | To SH (+clau                                                                      | ), Gravel runges into         | (8736-1       | 001B           |
| 27.7            |                  |                                       |       |      |       | -  | 23cm (3)       | coken) subro           | und where un                    | broken, 70%       | basaltic (m                                                                       | 10trz), 30% to 15rc           | Hohde Stemp   | le, previously |
|                 |                  |                                       |       | ++   |       | +  | leg, repres    | h argilite).           | Sand is poorly                  | sorted, mos       | tytine, sub                                                                       | angular, 70% telac,           | Serven to ex  | vot some       |
|                 |                  |                                       |       |      |       | -  | 2070 Matri     | C. Silt + dry 1        | set dissemina                   | ted but also      | concentrate                                                                       | Apr nodules (2.586/4          | - 2mm M       | Tart).         |
|                 |                  |                                       |       |      |       | +  | light yenou    | BA DOWA                | Drerall motor                   | to wer many       | CONTE 2.51                                                                        | 1/2, dore gray ish            |               |                |
|                 |                  |                                       |       |      |       | -  | prenzn, NI     | e reaction to          | TVI, Weakly                     | z cemmente        | ł                                                                                 |                               |               |                |
|                 |                  |                                       | +     |      |       | +  |                |                        |                                 |                   |                                                                                   |                               |               |                |
|                 |                  |                                       |       |      |       | -  |                |                        |                                 |                   |                                                                                   |                               |               |                |

| Paci<br>Natio | fic Nor<br>nal Lai | thwest<br>boratory | (     | cc | DRE     | LOG      | Boring/Well No (8936<br>Location 331/170 Core           | OPENNITER I                     | Depth <u>24</u><br>Proje | 3.2-30.7 Dat<br>ect           | e 2/2/2015  | Sheet           |
|---------------|--------------------|--------------------|-------|----|---------|----------|---------------------------------------------------------|---------------------------------|--------------------------|-------------------------------|-------------|-----------------|
| Logg          | ed by              | George             | Lad   | +  |         |          | April V. Just                                           |                                 |                          | Drilling Contractor           |             |                 |
| Revie         | ewed               | by                 |       |    | Print   |          | Charles Start                                           | Date                            |                          | Driller                       |             |                 |
| Litho         | logic              | Class. Sch         | eme   | Fo | St /w   | entworth | Stor<br>Procedure D91                                   | 81-99-611-01 Rev                | VD                       | Drill Method                  |             |                 |
| DEDTU         |                    | SAMPLES            | MOIS  | GR | APHICIC | ng       |                                                         |                                 |                          |                               | T           |                 |
| (FT)          | TYPE               | THE STARED         | TURE  | C  | 7 5     | G (parti | e size distribution, sorting, mineralogy, roundness, co | lor, reaction to HCl, maximum a | arain size, co           | nsolidation, structure, etc.) | . 0         | OMMENTS         |
| 19.1          | C                  | B30541             | m     | -  | 2 3     | CRAVES!  | Y SANDY MUD 207, Garas                                  | 30% Sind 50%                    | medicit                  | Heren Bausol                  | 18936-T     | NOTA, 80% FU    |
| ~~, -         |                    | 2.0- 11            | 1     |    |         | upt >    | 30 mm (broken), bis the sab                             | mul where unbed                 | Scon . So                | nd mostly media               | BOTTON OT   | E CARE DAUY.    |
|               |                    |                    |       |    |         |          | alar 50% motor 50% fokis                                | Mud ranges To                   | calar f                  | INYRS/2.                      | NO POKI     | NG ARMAND       |
|               |                    |                    |       |    |         | Drawts   | brown to 10485/3 brown.                                 | Model sit but s                 | mede                     | 4. firm constan               | a.          |                 |
|               |                    |                    |       |    |         | No rea   | An HCL. Compated weat                                   | y connected.                    |                          |                               | 94          |                 |
| 29,2          | C                  | B30542             | M-W   |    |         | SULTY S  | ANDY GRAVEL. 60% Gravel                                 | 359, Sund, 5% 5                 | SiH. Gr                  | wel upto 2,5cm                | C8936-I     | 008D            |
|               |                    |                    |       |    |         | round    | > subvound, 70% mate lea, 1                             | rosalt). 302 felsic             | cler.R.                  | rangemonte).                  | BOTTOM P    | F CORE, FULL,   |
|               |                    |                    |       |    |         | Sandi    | s poorly sorted, mostly course.                         | to medium, suba                 | ngular,                  | 50% matr, 50%                 |             |                 |
|               |                    |                    |       |    |         | folsic.  | Sitt is well/evenly dostrouted in                       | matrix moist to                 | owet c                   | br 73 2.5/3/                  |             |                 |
|               |                    |                    |       |    |         | Von da   | rk arren. No reaction to HCI.                           | comparted, we                   | akly ce                  | monented.                     | •           |                 |
| 29.7          | C                  | B30543             | W     |    |         | SILTY C  | ANDY GRAVEL. 75% Grave                                  | 1 (based by cob                 | shel to                  | 2 Sand, 5-10%                 | C8936-1     | DOBC. &         |
|               |                    |                    |       |    |         | silt. G  | muel up to > 5,5 cm (broken                             | , round to subr                 | round.                   | 75% basaltic                  | Bottom of   | core only -     |
|               |                    |                    |       |    |         | (martic) | , 25% folsic. Sand mostly                               | coave tome                      | drem,                    | subangular,                   | no pokin    | Garound.        |
|               |                    |                    |       |    |         | 60%      | matic, 40% felsic. Sitt is eve                          | my dostributed in               | in motion                | x. Wet color is               |             | 4               |
|               |                    |                    |       |    |         | 2.543    | 1, very davk gray. No re                                | action to HCI. 1                | Lonpas                   | teland                        |             |                 |
|               |                    |                    |       |    |         | weak     | cemmented.                                              |                                 | 1                        |                               |             |                 |
| 29.7-         | 6                  | B30544             | W     |    |         | SILTY    | SANDY GRAVEL, 80% GRAV                                  | rel, 15-20% Sand                | 10-5%                    | Sitt. Gravel                  | C8936-      | 1008B.          |
| 30.2          |                    |                    |       |    |         | ranges   | upto ~ 15 mm (unbroken), rou                            | nded to subrou                  | ind, 75                  | 520 moticleg,                 | whole s     | ample, preaross |
|               |                    |                    | _     | -  |         | basal    | 1, 25% felsiz (eq. quartzite                            | es. Sand poorly                 | sorted                   | mostly medium                 | , served to | extract some    |
|               |                    |                    |       |    |         | suban    | war, 60% mate, 40% felsic                               | . Wet color 2,5)                | Y3/1, Ve                 | ry dark gray.                 | <20nm m     | rocords         |
|               |                    | 0                  |       |    |         | No re    | action to HEL. weakly cemi                              | newted.                         |                          |                               |             |                 |
| 30,7          | C                  | B30546             | m-W   | -  |         | SILTY    | SANDY GRAVEL. 45% Grav                                  | el, 45% Sund,                   | 157251                   | H(+clay);                     | C8936-      | LOOBA,          |
|               |                    |                    |       |    |         | Groved   | up to 3,5 cm (un broken), su                            | brounded, 60%                   | matic                    | 40% telse                     | Bottom of   | core. 75%       |
|               | -                  |                    | -     | -  |         | Cinchud  | ing some triable sond stone                             | 10YR4/3, brown, m               | most Mk                  | ely Ringold                   | Full.       |                 |
|               |                    |                    | · · · | 1. |         | ripup    | chafty), Sand is mostly med                             | oun, subangular                 | r, 60%                   | telsic, 90% motic             | Later re    | topen and       |
|               |                    |                    |       | -  |         | relet co | w T3 2.58 3/1, very dark gray.                          | Sitt + cleg is mos              | stly tox                 | entrated the                  | protures    | taken;          |
|               |                    |                    | +     | -  | +       | nodules  | forbooks, 2.57 5/3, light slive                         | brown, hay form G               | migtite                  | ensy. No readion              |             |                 |
|               |                    |                    |       |    | ļ       | +7 HC    | comparted and weakly con                                | nmended,                        |                          | -                             |             |                 |
|               |                    |                    |       |    |         |          | -                                                       |                                 |                          |                               |             |                 |
|               |                    |                    |       | 1  | 1 1     | 1 1      |                                                         |                                 |                          |                               |             |                 |

| Paci<br>Natio | fic Nor<br>nal La | thwest<br>boratory |               | cc | DR        | E     | LOG            | Boring/Well No <u>C8936</u><br>Location <u>331/170 0</u> | pre openoing                                                        | Proje                      | 2.5 - 34.0 Date<br>ct        | 2/3/2015    | Sheet<br>7 of 8                       |
|---------------|-------------------|--------------------|---------------|----|-----------|-------|----------------|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------|-------------|---------------------------------------|
| Logg          | ed by             | Geor               | RP L          | as | +         |       |                | dinne V. Le                                              | f                                                                   |                            | Drilling Contractor          |             |                                       |
| Revie         | ewed              | by                 | )-            |    | ,         | Print |                | Unit Distant                                             | Date                                                                |                            | Driller                      |             |                                       |
| Litho         | logic             | Class. Sch         | eme           | Fo | The,      | We    | entrouth       | Procedur                                                 | e DTTB1-99-GVL-01 Rev                                               | ٥                          | Drill Method                 |             |                                       |
| DEPTH<br>(FT) | TYPE              | SAMPLES            | MOIS-<br>TURE | GR | APHI<br>7 | C LOG | (particle size | ize distribution, sorting, mineralogy, roun              | LITHOLOGIC DESCRIPTION<br>Iness, color, reaction to HCl, maximum an | rain size, con             | solidation, structure, etc.) |             | DMMENTS                               |
| 37.5          | C                 | B30547             | W             |    | -         |       | SILTY SAN      | JDY GEAVEL 807. Gravel                                   | 127, Sand 83, 54/td                                                 | a) Gr                      | avel mostly                  | C8936-IC    | 09D.                                  |
| 2615          |                   |                    |               |    |           |       | mating but     | fine people max usto ?                                   | Dem/howlend subraund                                                | Lushere                    | unbroken 70%                 | Bottom of a | DUR MRANJU                            |
|               |                   |                    |               |    |           |       | maticlea       | baseH1 302 foxic lea                                     | red availite I masked by                                            | altra                      | vertral Sand                 | fw).        |                                       |
|               |                   |                    |               |    |           |       | is portly s    | souted and non-discript.                                 | sebanaulor. 657. Felse.                                             | 402 m                      | ATT. Sitt+day                |             |                                       |
|               | ·                 |                    |               |    |           |       | costs all      | dasts. Wet color 2.                                      | 5/3/1, voridavk aray                                                | 1. Weal                    | c commentation,              |             |                                       |
|               |                   |                    |               |    |           |       | No reaction    | on to HCL.                                               |                                                                     | 2                          |                              |             |                                       |
| 33,0          | C                 | B30548             | W             |    |           |       | SILTY SAN      | NOY GRAVEL. BOGARD                                       | vel, 15% Save, 5% sift                                              | (+clag)                    | Errovel ranges               | C8936-IO    | 09C,                                  |
|               |                   |                    |               |    |           |       | to72cm,        | , round to subround,                                     | 15% motic (e.g. baselt                                              | 1) 25%                     | ofelsicles.                  | Bottom of   | core, ful.                            |
|               |                   |                    |               |    |           |       | dioprite).     | Sand poorly sorted, n                                    | restly medium, subrow                                               | H- Suba                    | angular, 60%                 |             | · · · · · · · · · · · · · · · · · · · |
|               |                   |                    |               |    |           |       | matic, 40%     | 2 febsic. some mud(s                                     | ittery) in pads, 2.5                                                | 96/3,                      | light yellowish              |             |                                       |
|               |                   |                    |               |    |           |       | brown, W       | Jet color of over all m                                  | HAX 13 2.544/11 darl                                                | k gray                     | No reaction                  |             |                                       |
|               | -                 |                    |               |    | -+        |       | to HCL C       | compated and weak!                                       | s commontel.                                                        |                            |                              |             |                                       |
| 33,0-         | G                 | B30549             | W             |    |           |       | SILTY SAN      | NDY GRAVEL, BOTO F                                       | ravel, 15% Sand, 5%                                                 | Sitt. Gr                   | rivel is mostly              | C8936-1     | 209B.                                 |
| 3.5           |                   |                    |               |    |           |       | fine to ver    | my fine peoble, ranges u                                 | ptp 15 mm, subrowy                                                  | A, 809                     | lo meticleg.                 | whole sa    | mple, previous                        |
|               |                   |                    |               |    |           |       | basant), 2     | 20% feltic leg. compe                                    | ungillite, occusional cho                                           | prs of                     | moderately                   | ly solver + | o retrieve sran                       |
|               |                   |                    |               |    |           |       | Cemmonte       | ed sendstone - Kingold r                                 | pup dasts (\$ 10426/                                                | 4, gello                   | wish brown)                  | <2mm m      | eertel.                               |
|               |                   |                    |               |    |           |       | with some      | 2 striday matrix, Sand                                   | is poorly sorted, most                                              | thy cool                   | rse, Subangalar              |             |                                       |
|               |                   |                    | +             |    | -         |       | 605 +0-510     | 1C, 40 6 matric. SIN+CV                                  | y coats all clests. No                                              | (lalorn                    | v to Tal.                    |             |                                       |
| 34 1          | 1                 | B30551             | W             | -  |           |       | SITY SA        | AND CROUTT 709                                           | and 259 and 50                                                      | -14/20                     | and C and                    | 108936-7    | [mag                                  |
| 01.0          |                   | 1070001            |               | -  |           |       | France da      | 3 3 m echanidel                                          | 109 mateles back                                                    | 1 /var 1                   | Sharlon                      | hattant     | mo (mpiz                              |
|               |                   |                    | -             |    |           |       | Autor          | e Soul i mother                                          | Sum subanaular 70                                                   | 9. Lolen                   | 202 matri                    | 809 fill    |                                       |
|               |                   |                    |               |    |           |       | Wet color      | T3 2/5/4/1, dark area                                    | Silt/chen well distance                                             | et Nosta                   | sall class                   | U- HU VWA   |                                       |
|               |                   |                    |               |    |           |       | No reading     | on to HQ. Weakly remn                                    | ion ted                                                             | the property of the second | WI: 0.114121                 |             |                                       |
|               |                   |                    |               |    |           |       |                | and the internet of the                                  | Man Bar Bar Bar an              | -                          |                              |             |                                       |
|               |                   |                    |               |    |           |       |                |                                                          |                                                                     |                            |                              |             |                                       |
|               |                   |                    |               |    |           |       |                |                                                          |                                                                     |                            |                              |             |                                       |
|               |                   |                    |               |    |           |       |                |                                                          |                                                                     |                            |                              |             |                                       |
|               |                   |                    |               |    | -         |       |                |                                                          |                                                                     | *                          |                              |             |                                       |
|               |                   |                    |               |    |           |       |                |                                                          |                                                                     |                            |                              |             |                                       |

| Paci<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory                           | (     | COF   | RE      | LOG              | Boring/Well No<br>Location 33 | CB936                   | penning                  | Depth<br>Pro                                     | 34,7-36.2 Date                  | 2/3/2015   | Sheet<br>8 of 8   |
|----------------|--------------------|----------------------------------------------|-------|-------|---------|------------------|-------------------------------|-------------------------|--------------------------|--------------------------------------------------|---------------------------------|------------|-------------------|
| Logg           | ed by              | George                                       | La    | st    |         |                  | A                             | Ence V. Hast            | i v                      |                                                  | Drilling Contractor             |            |                   |
| Revie          | wed                | by                                           |       |       | Print   |                  |                               | sign U TU               | Date                     |                                                  | Driller                         |            |                   |
| Litho          | logic              | Class. Sch                                   | eme   | Folk  | / We    | entwooth         | Sign                          | Procedure D9T           | 81-99-GVL-01             | Rev Ø                                            | Drill Method                    |            |                   |
| DEPTH          |                    | SAMPLES                                      | MOIS- | GRAPH | IIC LOG |                  |                               | LITHOLO                 | GIC DESCRIPTION          |                                                  |                                 |            |                   |
| (17)           | TYPE               | ID NUMBER                                    | TURE  | CZ    | SG      | ; (particle size | e distribution, sorting, mi   | neralogy, roundness, co | or, reaction to HCl, max | imum grain size,                                 | consolidation, structure, etc.) | , u        | ID                |
| 34,7           | C                  | B309C6                                       | W     |       |         | SANDY 6          | RAVEL. 60                     | 20 Gravel, 40           | 2 Sand, G                | revel is a                                       | nostly fine to                  | C8936      | E CONTINGENCY     |
|                |                    |                                              |       |       |         | very fine F      | pebble rounges                | upto > 2.50             | m (broken),              | wound                                            | led where unbroken,             | BOTTOM D   | FLORE,            |
|                | _                  |                                              |       |       |         | 60% mate         | clegiberatt).                 | 403 felsic les          | 3. quartzite)            | , Sand is                                        | mostly coarse to                | CORE 50    | POFULL            |
|                |                    |                                              |       |       |         | medium, F        | populy sorted, 1              | 65% felse, =            | 35% mate, 5              | ubangul                                          | er, Wot cobris                  |            |                   |
|                |                    |                                              |       |       |         | 2.583/1,1        | very derk gray.               | No reaction             | to HCL. Con              | pacted,                                          | weakly commented.               |            |                   |
| 5,2            | C                  | B309C7                                       | W     |       |         | SILTY SAN        | DY GRAVEL, 1                  | 30% Gravel,             | 35% Sand, 3              | 520 SILT .                                       | Gavel nugesto                   | CB936-IC   | INTINGENCY-IC     |
|                |                    |                                              |       |       |         | 3 cm (sub        | pround), most                 | y fine to Her           | sine pebble,             | 7572 met                                         | releg, basett),                 | BOTTOMO    | FCORE!            |
|                |                    |                                              | -     |       |         | 2570 felsio      | c (e.g. yellow)               | Drown angilling         | e, white anad            | tate) So                                         | ind is poorly sold,             | CORE 15 1  | FULL.             |
|                |                    |                                              |       | i     |         | mostly coar      | satofine, suba                | rugular, 5520           | marc, 50%-               | Felsic, Sol                                      | t covers al dass.               |            |                   |
|                |                    | a an and a same main garter findingsong mora |       |       | 1       | wet color        | 23 2.5Y3/1,1                  | Very dark br            | EN. No reach             | on to Hel                                        | . Compacted,                    |            |                   |
|                |                    |                                              |       |       |         | weakly co        | emmented,                     |                         | -                        |                                                  |                                 |            |                   |
| 35.2-          | G                  | 33D9CB                                       | W     |       |         | SHETT SAN        | UDY GRAVEL                    | 4020 grand,             | 552 Sand, 5              | 520 STH. G                                       | mavel is mostly                 | C8736-100x | TINGENCY IB       |
| 35,7           |                    |                                              |       |       |         | fire to ver      | the pobble, i                 | anges to 18             | mm, round 3              | asubro                                           | und, 70% matre                  | whole sam  | ple, previously   |
|                |                    |                                              |       |       |         | leg basat        | f), 30% talsic                | (yellow brow            | n availthe), s           | Sand is                                          | mostly course to                | seiver to  | Recover Some      |
|                |                    |                                              |       |       |         | medrum, 51       | 52 matric, 50%.               | febsic. Wet             | coloriz 2.5Y             | 3/1, Very                                        | derkgray. No                    | LZmm m     | dovid.            |
|                |                    | 0                                            |       |       |         | readint          | HCI. Weakly                   | commented,              |                          |                                                  |                                 | Ameri T    |                   |
| 36.2           | C                  | R304DD                                       | W     | 1     |         | SILLY SAN        | ODY GRAVEL.                   | 65% grave               | , 35% Sand,              | 57, Sitt. (                                      | Sravel ranges up to             | (8)36-40   | atingency 1A      |
|                |                    | 1                                            |       |       |         | 3.5 cm, rp       | und to subrou                 | und, 60% mot            | Ac leg, basalt           | ), 4020-tels                                     | ic (e.g. grand i orthg)         | Battom of  | core, Coreis      |
|                |                    |                                              |       |       |         | Sand is pe       | sorly sorted,                 | mostly coars            | eto medium               | 1 subarg                                         | ular, 60% telestc,              | 70% Full.  |                   |
|                |                    |                                              |       |       |         | 4020 magi        | Z. SH LOCAS                   | all clasts. N           | o reaction to            | HCL. Con                                         | mpacted, weakly                 |            |                   |
|                |                    |                                              |       |       |         | cemmente         | ed. Wet color                 | ~ 2.544/1, do           | irk gray,                | the Busides Price I is their following of the    |                                 |            |                   |
|                |                    |                                              |       |       | ++-     |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          |                                                  |                                 |            |                   |
|                |                    |                                              |       |       | +       |                  |                               |                         |                          | anna a shin Taqaqina ayo goo yo waxay a ay ay ay |                                 |            |                   |
|                |                    |                                              |       |       |         |                  |                               |                         |                          | -                                                |                                 |            |                   |
|                |                    |                                              | -     | 1     | 11      |                  |                               |                         |                          |                                                  |                                 |            | 10 1000 1000 1000 |

| Paci<br>Natio | fic Nor<br>nal La | rthwest<br>boratory | (    | cc  | DR    | EI   | LOG           | Boring/Well No CB9                      | 38<br>Lore Opening                 | Depth<br>Pro       | 16.1 - 13.8 Date<br>Dject       | 2 <u>3/2015</u> Sheet<br>1 of 7 |
|---------------|-------------------|---------------------|------|-----|-------|------|---------------|-----------------------------------------|------------------------------------|--------------------|---------------------------------|---------------------------------|
| Logg          | ed by             | Georg               | P.L. | ast | F     |      |               | Semely                                  | hat                                |                    | Drilling Contractor             |                                 |
| Revie         | ewed              | by                  | -    |     | Pn    | nt - |               | 5                                       | Date                               |                    | Driller                         |                                 |
| Litho         | logic             | Class. Sch          | eme  | Fol | k/u   | Jen  | twoth         | Proced                                  | ure D9781-99-61-01                 | Rev D              | Drill Method                    |                                 |
| DEPTH         |                   | SAMPLES             | MOIS | GR  | APHIC | LOG  |               |                                         | LITHOLOGIC DESCRIPTION             |                    |                                 |                                 |
| (87.)         | TYPE              | ID NUMBER           | TURE | C   | ZS    | G    | (particle siz | e distribution, sorting, mineralogy, ro | undness, color, reaction to HCl, m | aximum grain size, | consolidation, structure, etc.) | COMMENTS                        |
| 10.1-         | G                 | B30555              | D-M  |     |       |      | SILTY SAN     | ODY GRAVEL. 30%                         | Sraved, 100% Swerd.                | 10% Sitt. 6        | travel ranges upto              | C8938, I-001B                   |
| 10.6          |                   |                     |      |     |       |      | 2cm (brok     | cen), subround to sul                   | paugular, 50% mati                 | c, 507, fels)      | z. Sand poorly                  | whole sample, previously        |
|               |                   |                     |      |     |       |      | sorted, m     | ostly fine to very fi                   | ne, subangular to                  | subround           | , 50% mate, 50%                 | served to recover some          |
|               |                   |                     |      |     |       |      | felsic. D.    | noto moist color 13 2.                  | 54 5/1, gray, Wee                  | e to strong        | reaction to HCL.                | <2 mm material.                 |
|               |                   |                     |      |     |       | -    | No cemen      | dation obvious.                         |                                    |                    |                                 | Oder-carthy?                    |
| 11.1          | C                 | B30558              | D-m  |     |       |      | SLIGHTLY      | SILTY GRAVELLY SAN                      | D. 1520 Gravel,                    | 5% V.C. Soud       | 1520 E. Soud, 202               | C8938, I-DOIA                   |
|               |                   |                     |      |     |       | 1    | mostrom       | Sand, 20% Fine She                      | 2070 Vf. Sen                       | d, 15205           | itt, Gravel                     | Bottom of core. Coreis          |
|               |                   |                     | -    |     |       | 1    | ranges u      | p to 15 mm, Sx bange                    | var to subround                    | ,602 moto          | 2,40% felsiz, Send              | 80% Full                        |
|               |                   |                     |      |     |       |      | poorly soi    | ted, subangular, 50                     | Stamfre, 5020 fels                 | rc. sitt pa        | Hides cover most                |                                 |
|               | L                 |                     |      |     |       |      | dasts, D      | ry to moist color is                    | 2.54 5/1, gray. 4                  | leak to str        | ong reaction to                 |                                 |
|               |                   |                     | L    |     |       | 1    | HCI. No a     | brious cementation                      | , Very soft consist                | ancy.              | 0                               |                                 |
| 12.8          | C                 | B30559              | m-x  |     |       | -    | SANDY G       | RAVEL, 70% Grave                        | (biased by quarty                  | ste coble),        | 30% Sand, touce                 | C2938, I-002D                   |
|               |                   |                     | 1    |     |       | -    | of sitt. Gr   | avel ranges to > 6 c                    | m (quartzite cobble                | e, broken)         | , subround to                   | Bottom ot core. Core            |
|               |                   |                     |      |     |       |      | roundwha      | reunbroken, 752, tok                    | Sic (brased by gaa                 | rtzite cob         | ble), 25% matic,                | 15952 Enll.                     |
|               |                   |                     |      | -   |       |      | Sand is       | mostly medium, sk                       | bungular, 60% n                    | natic, 407         | otelsic, moist                  |                                 |
|               |                   |                     |      |     |       |      | color 2.5     | 13/1, very dark gray.                   | No reaction to t                   | tcl. Com           | pacted and                      |                                 |
|               |                   |                     |      |     |       |      | weeklyc       | emmented,                               |                                    | - 20 10            |                                 | 100000                          |
| 13,3          | C                 | 830560              | m    |     |       | +    | SILTY SAN     | IDY GRAVEL 70% G                        | pravel, 25% Sound,                 | 5205it. (          | Sravel ranges to                | C8938, 1-002L                   |
|               |                   |                     |      |     |       |      | 76 cm, r      | ound to subround,                       | 6020 telsic (biased                | by quarts          | the colde, 40%                  | Bottom of core.                 |
|               |                   |                     | · ·  |     |       |      | matic, Sav    | nd is mostly media                      | m to fine, subang                  | war, 60%           | matic, 4020 relsic.             |                                 |
|               |                   |                     |      | -   |       |      | Cobble is 1   | cented with a very Pl                   | de brown LLOYR 7F                  | 3), mudy, w        | enkly commented                 |                                 |
|               |                   |                     |      | -   |       |      | Sandstone     | , which preaks up not                   | o clods (Riggold i                 | p-up chast)        | , strong reaction to            |                                 |
|               |                   |                     |      | -   |       |      | HU. Norm      | al matrix 13 weak to                    | no reaction to Hay                 | mosst cold         | 15 13 2.514/1, dark             |                                 |
| 10.0          | G                 | BROFIL              |      | -   |       |      | gray. Con     | spaced and weak                         | Ly compented.                      | 50 .41             | M. I. A                         | 100920 T-AADB                   |
| 12.5-         | 0                 | 00006               |      | -   |       | +.   | C THE DAN     | C NIL 4020 G                            | ravel, 25% Sand                    | SUSIF.             | Gravel mostly                   | 1010, +0020,                    |
| 12,6          |                   |                     |      | -   |       | +    | time to ve    | righne people, ranges 7                 | D>Dmm (broken),                    | Dozomatin          | CLINDOD                         | entral & maniple, prestonsily   |
|               | -                 |                     |      | +-  |       |      | quartite)     | Subramplek whore an                     | vorden, occasional                 | class of you       | Noin LOTLOD, Very               | Deried to remove some 22mm      |
|               |                   |                     |      | -   |       |      | yme prown/    | Strong reaction total.                  | acra is mostly medit               | in tothe, s        | ubanguna, DDLo                  | menerran                        |
|               |                   |                     |      | -   |       |      | Ha com        | e clate weekly as                       | 200 512, Very allork               | yourse and         | on, weak coontanto              |                                 |
|               | -                 |                     | -    | _   | 1 1   | 1    | inci jom      | c nons nearly cem                       | nowiear                            |                    |                                 |                                 |

A-77

| Paci<br>Natio | fic Nor<br>nal La | rthwest<br>boratory | (     | C   | OF   | E     | LOG            | Boring/We           | 331/170             | 38<br>Core Opennin        | Der                     | pth <u>14</u><br>Projec | <u>;3-)7,3</u> Date<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/4/2015    | Sheet<br>of     |
|---------------|-------------------|---------------------|-------|-----|------|-------|----------------|---------------------|---------------------|---------------------------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| Logg          | ed by             | George              | Las   | t   |      |       |                |                     | Alexar V.           | hat                       |                         |                         | orilling Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |
| Revi          | ewed              | by                  |       |     |      | Print |                |                     | 56                  | Di                        | ate                     |                         | riller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                 |
| Litho         | logic             | Class Sch           | eme   | E   | JUL  | Print | durath         |                     | Proced              | ure D9781-99-GVL          | DI Bey Q                | TO D                    | rill Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                 |
|               | l                 | CAMPUTC             | Lucia |     | DADU | CLOC  |                |                     |                     |                           |                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                 |
| DEPTH (FT)    | TVOC              | SAMPLES             | MUIS- | H   | T    | CLUG  | (narticle size | a distribution sort | tina mineraloav rou | undress color reaction to | UN<br>HCL maximum araia | n size consc            | lidation structure etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DMMENTS         |
| 1/1 2         | IYPE              | BZA512              | m and | + t | 1    | 30    | Saute (        | CANT 12             | E9 Could            |                           | P                       | 3                       | and the state of t | C 2928 T-   | -0020           |
| 14.5          | C                 | 050065              | 11    | +   | ++   |       | SANDIGI        | KINDEL, I           | 709                 | Glorana. Grad             | 2 ranges To             | s Jem                   | round to sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B.A.S       | 5002H           |
|               |                   |                     |       | +   | ++   |       | ristend whe    | Pre unbroks         | A dl                | hencleg. Deser            | 1, 2040 tolsiz          | Zleg.ş                  | wple querizile).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P.D         | LOIR, DUID      |
|               |                   |                     |       | ╈   | + +  |       | Jana 1590      | 4/1 112             | a mostly m          | math 1                    | may, 504                | 25421                   | 2 you dout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tall        |                 |
|               |                   |                     | -     | +   |      |       | mace of s      | N ( localize        | to used             | states to Hrl             | 1 montes                | 0 100                   | Hurganmasted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                 |
| 14.5-         | G                 | BBASHA              | m-D   |     | 1    |       | SUTV GP        | ALFILY S.           | AND 25              | 2 Englal Ino?             | Sand 15                 | 7. Sitt                 | Gravel vanage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 8938 T    | -DD3B           |
| 15            |                   | 200000              | 1     | 1   | 11   |       | 10-to 210-     | m (broken)          | vaund to            | sobraul under             | re unborton             | 10 Sind                 | l Doorly Sorted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | whole saw   | ple previously  |
|               |                   |                     |       | 1   | 11   |       | mostly coo     | rse to for          | e.subanan           | ar. 502 moto              | . 50% folis             | C. Boy                  | NR 13 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | served to a | publes some     |
|               |                   |                     |       | 1   | 1    |       | moticlea       | basatt).50          | Sotelsicles         | anastate). Si             | H covers all            | 1 clast                 | s. moist to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 2mm ma    | terind. Some    |
|               |                   |                     |       | T   |      |       | John color     | 73 2,544/           | 1 dark are          | an. No to wea             | k reaction to           | atid.                   | No obvious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bdor:       |                 |
|               |                   |                     |       |     |      |       | comentation    | m.                  |                     | 3                         |                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |
| 15,5          | C                 | B30568              | m-D   |     | 1    |       | SILTY SAN      | DY GRAV             | EL. 70%             | Gravel (biased)           | by a next zi            | te rob                  | ble), 25% Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8738,I     | -003A           |
|               |                   |                     |       |     |      | -     | 52 514, 1      | perhaps s           | some volcassi       | ic ash (tephra)           | chating so              | meg                     | ravel class.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bottomof    | core. 75% foll. |
|               |                   |                     |       |     | 1    |       | Gravel range   | pes up to           | >5.5cm (2           | roken), 80%, 5            | elsic (Diase            | days                    | quartzite cobble)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                 |
|               |                   |                     |       |     |      | 1     | ZBO notic      | . Sand p            | ourly sorted        | mostly med                | un, subm                | ngular,                 | 60% folgic, 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |
|               |                   |                     |       |     | 1    |       | mate. Mor      | # to dry.           | color more          | s from 2,516/1            | gray to 2:              | 514/2,                  | dark gray 3h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                 |
|               |                   |                     |       |     | 1    |       | brown. We      | ak reading          | m to bd.            | Compacted, SI             | me dark c               | ladsa                   | re weakly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                 |
|               |                   |                     |       | 1   |      |       | commented,     |                     |                     |                           |                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |
| 16.8          | C                 | B30569              | M-D   | +   |      |       | SILTY SAI      | NDY GRAY            | VEL. 70%            | Gravel, 25%               | and, 5% S               | Sitt. Gr                | revel ounges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8938, -    | I-004)          |
|               |                   |                     | · ·   | +   | -    |       | to 4 cm (n     | nbroken),           | round to            | Subround, 60              | o maticle.g             | j. Susal                | +1,40% telsiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bottom of   | pre. 406 tull.  |
|               |                   |                     |       |     |      |       | leg quart      | erte), San          | d is paorl          | y sorted may              | the medium              | tothe                   | , subangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Note: Ston  | 12 adjust       |
|               |                   |                     |       | -   | +    |       | to subrow      | md, 6020            | matic, 402          | otelst. monst             | todry colo              | or 2.51                 | 3/1, Verry dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | depths to   | account for     |
| 170           |                   | 27057               | -     | -   | +    |       | gray. We       | ak reactor          | m to the li         | compacted.                | weakly ce               | ment                    | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Core reco   | ieny.           |
| 11.3          | C                 | 01 2000             | m     | +   | +-   |       | SILLY SAN      | UN GRAVE            | 55%                 | o Gravel, 40%             | Jana, 5%                | SATT. L                 | ravel runges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10730,1     | -004C           |
|               | -                 |                     |       | +   |      |       | UPTO 21.50     | m broken            | 1), SUD CONY        | to where unbr             | ken optom               | Datte le                | B. DWSAN9), 5010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domon of    | core falli      |
|               | -                 |                     |       | +   |      | -     | Teletele.g.    | quar 1302),         | ZUNAIS M            | nosily meatur             | 1 Slebangu              | lar, D                  | - 1 0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                 |
|               |                   |                     | +     | +   |      | -     | TEGIC, SIH     | covers m            | ost class.          | weak reaction             | on to till.             | comp                    | PRIMERY, NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                 |
|               | 1                 |                     |       | +   |      | -     | pivious (      | emmente             | i nair              |                           |                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |
|               |                   |                     | 1     | 1   |      |       |                |                     |                     |                           |                         |                         | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                 |

\*

W = Wet, M = Moist, SM = Slightly Moist, D = Dry

| Pacif<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory |      | С   | DF    | RE           | LOG                | Boring/Well No C8938<br>Location 331/170 Drawing                   | Depth<br>Pro             | 17.3 - 20.2 Date                | 2/4/2015 Sheet<br>2/5/2015 3 of 7 |
|-----------------|--------------------|--------------------|------|-----|-------|--------------|--------------------|--------------------------------------------------------------------|--------------------------|---------------------------------|-----------------------------------|
| Logg            | ed by              | Georgy             | e La | 151 | -     |              |                    | George V. Lust                                                     |                          | Drilling Contractor             |                                   |
| Revie           | wed                | by                 |      |     |       | Print        |                    | Da                                                                 | te                       | Driller                         |                                   |
| Litho           | logic              | Class. Sch         | eme  | To  | 2/    | Print<br>LUG | whowth             | Procedure D9781-97-51                                              | DI Revoto                | Drill Method                    |                                   |
| DEPTH           |                    | SAMPLES            | MOIS | G   | RAPHI | IC LOO       | ;                  |                                                                    | N                        |                                 |                                   |
| FT.)            | TYPE               | ID NUMBER          | TURE | C   | 2     | S (          | (particle size     | e distribution, sorting, mineralogy, roundness, color, reaction to | ICI, maximum grain size, | consolidation, structure, etc.) | COMMENTS                          |
| 7,3-            | G                  | B30571             | m    |     |       |              | SILTY SAN          | DI GRAVEL, 70% Fravel, 25% Sand                                    | 52,514 Bra               | 1ex Panaes to                   | C8938 I-004B                      |
| 7.8             |                    |                    |      |     |       |              | 2cm/bro            | ken), subrounded where unbroken                                    | 5020 moter (             | ea. baselt) 552                 | whole sample previously           |
|                 |                    |                    |      |     |       |              | mon feks           | clea augotate weakly commented                                     | uellowish san            | estone untermo                  | served to recover some            |
|                 |                    |                    |      |     |       |              | reactional         | HCI-RINGH NEWP Clasts), Sand 1.                                    | mostly med               | ium tofice.                     | <2mm material for                 |
|                 |                    |                    |      |     |       |              | subamant           | 2r, 56% matric, 50% felse, silt reat                               | s all clasts.            | Stoms reaction                  | urantom analyses.                 |
|                 |                    |                    |      |     |       |              | to Hel, n          | 10151 robris 2.514/2, dark availis                                 | h brown, No              | obvious comment.                | 0                                 |
| 8.3             | С                  | 330573             | m    |     |       |              | SILTY SAN          | DY GRAVEL 70% Gravel, 252, S                                       | end, 52, silt.           | Gravel ranges                   | C893B, I004A                      |
|                 |                    |                    |      |     |       |              | upto 3cm           | 1 (broken), rounded to subround                                    | Lwhere unbr              | oken, 60% matric                | Batom of core. 70%                |
|                 |                    |                    |      |     | 1     |              | (e.g. basa         | +), 4020 folsic (eq, quartzite), Sand                              | is mostly m              | edium to fine,                  | fall                              |
|                 |                    |                    |      |     |       |              | angular.           | to subangular, 6020 febsic, 4020 n                                 | refic. Moist             | color 13 2.5/3/2,               |                                   |
|                 |                    |                    |      |     |       |              | very da            | 's grantsh brown. No reaction +                                    | , HC). Some              | dods are                        |                                   |
|                 |                    |                    |      |     |       |              | weakly c           | emmented.                                                          |                          |                                 |                                   |
| 2/5/            | 201                | -                  |      |     |       |              |                    |                                                                    |                          |                                 |                                   |
| 19.2            | C                  | B30574             | M    |     | 1     |              | SILLY SAN          | DY GRAVEL 7020 Gravel, 25% Sov                                     | d, 5%, STH (+cla         | 4). Gravel ranges               | C2938, I-005D                     |
|                 |                    |                    |      |     |       |              | up to 2.5          | cm, subround, 70% matic (eq. baset)                                | ) 30% folio (P           | q. quartzite).                  | Bottom of core. 95%               |
|                 |                    |                    |      |     |       |              | Sand is g          | porly sorted, mostly medium, 50%,                                  | refic, 50% fels          | sic. Silt+ class seems          | 60% full,                         |
|                 |                    |                    |      |     | -     |              | concentrati        | In places and costs some gravel, c                                 | losts, moist a           | oloris 2.583/1,                 |                                   |
|                 |                    |                    |      |     |       |              | Very Rark          | grey. Some clayey/sitty clumps a                                   | re needly ce             | minerded. Compacted             |                                   |
|                 |                    | -                  |      | -   |       |              | No reaction        | - 75 ACI.                                                          | · · ·                    |                                 | C893B, 7-005C.                    |
| 19.7            | C                  | B30575             | M    | _   |       | _            | SILT SAN           | DY GRAVEL 7020 GRAVEL, 25% Sau                                     | 2,5% SH. G               | ravel rawges upto               | Bottomofcore. full.               |
|                 |                    |                    |      |     |       |              | >3cm (b            | oken), round to subvound where                                     | unboken, 50              | 2 maticleg, baselt)             | some odor.                        |
|                 |                    |                    |      | -   | 1     |              | 502 Fels           | c (e.g. quartzite, argillite). Sand                                | 13 poorly sort           | ed, mostly med.,                |                                   |
|                 |                    |                    |      | _   |       |              | Subangul           | ir, 50% felsic, 50% matic. Morat u                                 | lor 15 2.514/1           | dork gray. No                   | -                                 |
| 0.0             | -                  | 0000               |      | -   |       |              | reaction           | taticl. compaded. No obvious a                                     | emmeentation             |                                 | 10.00                             |
| 19,7-           | G                  | 1330576            | M    | -   |       | 1            | SILTY SI           | NDY GRAVEL, 359, Gravel, 55%                                       | Sand, 10% Si             | H. Gravel mostly                | C0930, I-DOSC.                    |
| 20.2            | -                  |                    |      | -   |       |              | veryfine           | pebble, ranges up to ~12mm (broke                                  | n), subargula            | r to subround, 70%              | whole sample, provous             |
|                 |                    |                    |      | -   |       |              | maticleg           | resett), 30% felore (e.g. quartzite), Sa                           | nd mostly firm           | e to medium, sub-               | served to recover some            |
|                 |                    |                    |      | -   | -     |              | angular,           | 50% matric, 50% felsic. sit carers me                              | st clasts, mor           | st color 93 2.583/1,            | <2 mm material. Some              |
|                 |                    |                    |      |     |       |              | Verydar            | gray, weak reaction to HCI. No                                     | obvious cea              | meutatin.                       | ador,                             |
|                 | -                  |                    | W    |     | 1     | 1            | - Chalaka Hartan D | Deer                                                               |                          |                                 |                                   |

| Paci<br>Natio | fic Nor<br>nal La | rthwest<br>boratory | (      | C  | OR    | RE    | LOG            | Boring/We            | ell No <u>C8938</u><br>331/170 ce | me openning                   | Depth<br>Pro          | 20.7 - 23.0 Date                | 2/5/2015    | Sheet<br><u>4</u> of 7 |
|---------------|-------------------|---------------------|--------|----|-------|-------|----------------|----------------------|-----------------------------------|-------------------------------|-----------------------|---------------------------------|-------------|------------------------|
| Logg          | ed by             | George              | La     | 15 | F     |       |                |                      | Menul - X                         | est                           |                       | Drilling Contractor             |             |                        |
| Revie         | ewed              | by                  |        |    |       | Print |                |                      | Sign Sign 10                      | Date                          |                       | Driller                         |             |                        |
| Litho         | logic             | Class. Sch          | eme    | FZ | Jk/   | Wer   | streath        |                      | Procedure                         | DAL-09-GVL-D                  | Rev O                 | Drill Method                    |             |                        |
| DEPTH         |                   | SAMPLES             | MOIS   | G  | RAPHI | C LOG |                |                      |                                   | HOLOGIC DESCRIPTION           |                       |                                 | 1           |                        |
| (17.)         | TYPE              | ID NUMBER           | TURE   | C  | Z     | SG    | (particle size | ze distribution, sor | rting, mineralogy, roundne        | ss, color, reaction to HCl, i | maximum grain size, o | consolidation, structure, etc.) | . 0         | DMMENTS                |
| 20.7          | C                 | BB0579              | M      |    |       |       | SILTY SA       | NDY GRAV             | EL. 502 Grave                     | el, 45% Sand                  | . 59, StH. G          | ravel ranges upto               | (8938.      | 1005A                  |
|               |                   |                     |        |    |       |       | 72,5cm         | broken), s           | subround whi                      | ere unbroken,                 | 7020 matrel           | eq. besatt, 30%                 | Bottomof    | ore, 40%               |
|               |                   |                     |        | -  |       | -     | feisicleg.     | quartzite            | e, granodiante)                   | Sand mois                     | the medium            | to fine, Subangular,            | fall. Some  | cdor.                  |
|               |                   |                     |        | -  |       |       | 56% mati       | c, 5+20fele          | Sic. Silt covers                  | most clasts. n                | Noist color           | 13 2.584/1, dark                |             |                        |
|               |                   |                     |        | -  | +     |       | gray, W        | leak to st           | trong reaction "                  | o HCI. No ob                  | wous cem              | entation or                     |             |                        |
| 715           | 10                | DZASQA              | Mul    | +  |       |       | structure.     | The contr            | 1 700 1                           | LICEC I                       | 1.9 CI1/1.1           | 1.10 10                         | 10020       | TARIT                  |
| 61.0          | L                 | B20 200             | 1-1-10 | -  | +-+   |       | DILL JUIC      | UT GRAVE             | EL. 1070 Grau                     | 10/ 10% Sand                  | 1016 514 (+0          | lay), Gravelis                  | C0100,      | 1-000D,                |
|               |                   |                     |        | +  | 11    |       | mosilyn        | TAT TO YEAN          | The perde n                       | 30 files 10                   | cm, subrou            | Sand is raina where             | E.M         | Care, really           |
|               |                   |                     |        | t  | -     |       | ented a        | fly cours            | The leng, bushing                 | SPIOTEISIC (ED                | 5.2. Solor            | Savia 15 poorig                 | · WIL       |                        |
|               |                   |                     |        | -  | 1     |       | all dasts      | and binds            | sthem to ach                      | evin clodes. (u               | peat us Com           | mented, most -                  |             |                        |
|               |                   |                     |        |    | 1     |       | wet color      | · 13 2.543           | 3/1. very dark                    | aray. No to                   | weak real             | shon to HCI.                    |             |                        |
| 22.0          | C                 | B305B1              | M-W    |    |       |       | SILTY SA       | HODY GRAV            | VEL. 95% BM                       | yel (biased by                | basatt cobe           | ohe occupying                   | C8938;      | I-006C                 |
| -             |                   |                     |        |    | 1     |       | entire bot     | tom of cor           | e Imer) 5% -                      | sand, 520 STH                 | (tday), Vis           | shal examination                | Bottomo     | fcore. Over            |
|               |                   |                     |        |    |       |       | -through a     | ere mer              | indictates res                    | + of core is                  | SILTY SOND            | & GRAVEL. Color                 | full - base | It cobble,             |
|               |                   |                     |        |    |       |       | 13 3 2,5       | 5Y 3/1 to            | 2.5/ 2.5/1, Ve                    | ry dark grey                  | to black (b           | resed by basalt                 |             |                        |
| 20.0          |                   | 82.540              |        | +  |       |       | cobble). N     | b readfor            | n to HCL. Com                     | pacted. Bre                   | satticable?           | >7cm (broken),                  |             |                        |
| 22.0.         | G                 | D30582              | 17)    | +  | -     |       | SILTY SAK      | DIDY GRAV            | VEL. 80% Gr                       | ivel, 1590 Sa                 | nd, 5%, Silt.         | Gravelis mostly                 | C8938, -    | 1-006 B                |
| 140           |                   |                     |        | +  | ++    |       | time to VI     | ery the pe           | ebble, ranges                     | apto 120m,                    | Subangula             | r to subround.                  | whole sem   | ple. meurously         |
|               |                   |                     |        | +- | +     |       | 1270 m4        | arcleg, on           | 25elt), 2570 te                   | isic leg quai                 | Tate, claye           | (FO 1 759                       | Lo man      | Femore some            |
|               |                   |                     |        | -  |       |       | fair t         | Dated all            | ~ 75Y3/1 NO                       | anim to time, -               | + Hick                | 125475/1 No                     | - a min 11  | uncriar.               |
|               | -                 |                     |        | +  | +     | 1     | reaction       | to Hr1. 5            | long clauge bo                    | ulas/clode a                  | ve upatte             | Countration                     |             |                        |
| 23.0          | C                 | B30584              | m      | T  |       |       | SILTY S        | ANDY GRA             | AVFL 7025G                        | ravel, 20% So                 | end. 10% Sil          | H. Gravel ranges                | C8938, I    | -006A.                 |
|               |                   |                     |        |    |       |       | 40+072         | 5 cm (bro            | sken), angular                    | (broken). 60%                 | 20 maticlea           | basalt), 40%                    | Bottom of   | core. 80%              |
|               |                   |                     |        |    |       |       | felsocleg      | pink qua             | otzite), Sand                     | 15 poorly sa                  | ted mostly            | fine, Subangulari               | fall.       |                        |
| -             |                   |                     |        |    | -     |       | 60% ma         | Arc, 40% f           | Felsic, No rea                    | Aton to HCL.                  | Compaded.             | moist color is                  |             |                        |
|               |                   |                     |        | -  |       |       | 2.584/1,       | darkgray             | J                                 |                               |                       |                                 |             |                        |
|               |                   |                     |        | +  |       |       |                |                      |                                   |                               | -                     |                                 |             |                        |
| _             |                   |                     |        |    | 1 1   |       |                |                      |                                   |                               |                       |                                 |             |                        |

| Paci<br>Nation | fic Nor<br>nal La | rthwest<br>boratory | (      | С             | OR     | EI   | LOG            | Boring/W         | ell No <u>(89</u><br>331/170 | 38<br>Core Ope | enning        | Depth<br>Pro     | 25.0 - 28.4 Dat<br>ject         | e 2/5/2015       | Sheet              |
|----------------|-------------------|---------------------|--------|---------------|--------|------|----------------|------------------|------------------------------|----------------|---------------|------------------|---------------------------------|------------------|--------------------|
| Logg           | ed by             | Geovar              | La     | 5             | t      |      |                |                  | Lune V.                      | hat            |               |                  | Drilling Contractor             |                  |                    |
| Revie          | wed               | by                  |        |               | P      | rint |                | C                | s and s                      | 4              | Date          |                  | Driller                         |                  |                    |
| Litho          | logic             | Class Sch           | eme    | F             | A      | 1111 | extunth        |                  | Proced                       | ture TOTBI-S   | 19-6VL-01     | Bev O            | Drill Method                    |                  |                    |
|                | logic             | CANDLES             | Lucie  | $\frac{r}{r}$ | DADUIC | 100  | -              |                  |                              |                |               |                  |                                 | T                |                    |
| DEPTH          | TUDE              | SAMPLES             | MOIS   | H             |        | 100  | Inarticle size | distribution sor | rtina mineraloav ra          | LITHOLOGIC D   | SCRIPTION     | ximum arain size | ronsolidation structure etc.)   |                  | OMMENTS            |
| 750            | ITPE              | ID NUMBER           | M      | +             | - 1    | 5 6  | SITTI CAN'T    | DATE             | -750 (                       |                | C 1 14        | 9 51+ C          | (consentation, sinectore, etc.) | 10920 T-         | ANTR.              |
| 23,0-          | 9                 | 100001              | 11     | +             | ++     | -    | SILLY SHAL     | FDKAVEL          | 10400ra                      | ver, 15/0      | and it        | 18 511.61        | aver mosty                      | C0100,1          | diamondu           |
| 25,5           |                   |                     |        | +             | +-+-   | +    | medium to 1    | entine pe        | abole, ranges                | supto 12n      | m suba        | angular to       | subrainaed                      | whole sau        | upie, preurously   |
|                |                   |                     |        | +             | ++     |      | many bros      | en clasts        | 5, 10 (s ma                  | icleg. Das     | (1+), 301     | latersic le      | g.quarizite),                   | Servento         | Cover some         |
|                |                   |                     |        | ╀             | ++-    |      | Pana most      | Hier C           | to medoum                    | 1, Subangu     | 100,051       | omatic, 40       | to foisic. NO                   | -2mm ma          | terrai to wan-     |
|                |                   |                     |        | ┢             | +      | +-   | reaction 4     | april -          | osme wear                    | ely ceanna     | migd cla      | as, mors         | Color 15 2,01                   | num analy        | 17,                |
| 75 5           |                   | 820500              | mp     | +-            |        |      | SIT VERY 6     | ark gr           | 29.                          | C . 1 1        | -DCI          | en rall          | C                               | 10938            | T                  |
| 20.00          | C                 | 1000007             | 11-1   | +             |        |      | ALLY SHI       | IVE GADU         | BL. 20070                    | bravel, 1      | 220 Jana      | 1065111          | Graverranges                    | (0/00)           | t- whole           |
| 26.0           |                   |                     |        | +             |        | +-   | up to F 30     | morok            | (many)                       | prokencla      | STS, FDWM     | + TI             | ound whose un-                  | Core and         | do is sample       |
|                |                   |                     |        | +             |        |      | broken, bel    | 16 para          | 1976, 40%                    | monbasalt      | (cuorne,      | quartzite,       | granitic), Sana                 | Way tell         | ipon, ariea,       |
|                |                   |                     |        | +             |        |      | is poorly      | sorted, 1        | nostly me                    | ATUM TO I      | me, sub       | angular,         | and stam or de                  | (90%0 10         | 1]-1{nev-).        |
|                |                   |                     |        | +             |        |      | telsic. m      | oistear          | y color is                   | 2.515/1        | gray. N       | b reaction       | , some clopes                   |                  |                    |
| 11             | -                 | 222500              |        | +             | +-+-   |      | weaklyc        | ennerto          | A. NO OD                     | vious stru     | chare.        | A.1 F            | -11 0 1                         | 100000           | T-ANOD             |
| 27.4           | C                 | 530570              | 11     | +             |        |      | SILLY SAN      | DECKIN           | EL. 15%                      | Gravel, 2      | DTo San       | d, trace of      | SIT. Gravel                     | 10120            | I UUOU             |
|                |                   |                     |        |               |        | -+   | ranges to      | 730m             | broken), re                  | nud to si      | ibround u     | onore undu       | BEAU, TOLO DASAM                | C DETERMOS       | core. This         |
|                |                   |                     |        | +             | +-+    |      | 6070 non       | basalt           | E.G. OLOVITE                 | quarzi         | re), or lol   | olo matel        | basalt, aibrito),               |                  |                    |
|                |                   |                     |        | +             | +-+-   |      | 14020 tolste   | (quartz)         | tel arginista                | e). Sand       | mestix        | COUVER           | to medium,                      |                  |                    |
|                |                   |                     |        | +             | +-+-   |      | Subangala      | s, 00 20 1       | matic, 407                   | o to isic, 1   | loist con     | or 15 25         | 3/1 jVery dark                  |                  |                    |
| 170            |                   | Partol              | he con | +             |        |      | Gray No        | reaction         | to HCL. C                    | mpacter        | L. Weak       | ly cenne         | entrepl.                        | 00000            | TANGO              |
| 21,7           | C                 | 530591              | 111-40 | +             | +++    |      | SILLY SAI      | OVI GRA          | NEL. 10%                     | Stravel, 3     | 010 DRW       | d, traces        | t sitt (localized               | (8720,-          | FODDC.             |
|                |                   |                     |        |               |        |      | along wal      | l of liner)      | Gravel r                     | anges to       | 2 cm (br      | oken) ron        | nd to subround                  | borrom of        | core. Fall.        |
|                |                   |                     |        | +             |        |      | whore un       | broken,          | Dolo motio                   | eleg, basa     | it, diorite   | ), 50% te        | isic len. brown                 |                  |                    |
|                |                   |                     |        | +             | +-+-   |      | quarterte,     | realishar        | gillite). S                  | and is m       | setty co      | arse, the        | t il sorred,                    |                  |                    |
|                |                   |                     |        | +             | +-+-   | +-   | Subangula      | TO SUD           | round, 007                   | email, 452     | o to isic. II | IDISI TO WOR     | Color 15 2,094/1,               |                  |                    |
| 000            | G                 | BOAFOA              | trat   | +             |        | -    | CUTY EN        | NO GEACT         | TONTO HU.                    | Compacted      | , weath       | 1 cemment        | c. lo l                         | 10920 T          | MAR                |
| 201            | a                 | 310012              | VV     | +             |        |      | DILLY JUN      | 6 GKAN           | 12. 1070                     | bravel, 2      | olo Day       | a, 010 >11       | T. Graver TS MOST               | whale and        | De Provende        |
| 20,4           |                   |                     |        | +             |        |      | the toven      | the pob          | ble, ranges                  | upto 16n       | in, subri     | ounded,          | 10/0 motic, 30/0                | conside the      | Provousy Sources   |
|                |                   |                     | +      | +             |        |      | TOISTC. Jan    | 115 most         | Ing coarse to                | very coars     | e, torry us   | en sorted        | SILT COATS Some                 | 67               | to bl              |
|                |                   |                     |        | +             | -+-+-  |      | ELASTS, hold   | p hading         | mon toget                    | new bith       | Notsoure,     | Janais SU        | No manter To Subrowny           | 1 - L mm mge     | itrion.            |
|                |                   |                     |        | +             |        |      | No de maric,   | LO COURSE.       | inpisi to wor                | CUP 19 21      | VI 2/1, Very  | danc gricy.      | No reaction pull.               |                  |                    |
|                |                   |                     | -      |               | 11     | 1    | IND TO WED     | e cemme          | ovion.                       |                |               |                  |                                 | 000/ /00/ /00010 | 10 1 1001 1001 100 |

2006/DCL/FORMS/CoreLog/001 (006/09)

A-81

| Paci<br>Natio | fic Nor<br>nal La | rthwest<br>boratory |         | C    | OR      | EI      | LOG                   | Boring/We            | ell No <u>C</u> 893<br>331/170 | B<br>Core Openning     | Depth<br>Pr        | 28.9 - 32.2 Da                | te 2/5/2015   | Sheet<br>6 of 7       |
|---------------|-------------------|---------------------|---------|------|---------|---------|-----------------------|----------------------|--------------------------------|------------------------|--------------------|-------------------------------|---------------|-----------------------|
| Logo          | ed by             | George              | La      | 5    | -       |         |                       |                      | Kingo V. J                     | lest                   | -                  | Drilling Contractor           |               |                       |
| Revie         | wed               | by K                |         | -    | P       | fine    |                       |                      | aninger of                     | Date                   |                    | Driller                       |               |                       |
| Litho         | logic             | Class Sol           | ama     | 5    | JUL     | 12.0.0  | turneth               |                      | Brocedu                        | DTB1-09-CI/1-0         | Rev D              | Drill Method                  |               | der ter time ter ti   |
| Lino          | logic             | Class. Sci          | lenie   | 12   | 3141    | Ner     | Incin                 |                      | FIOCEUM                        | STO XI BOLD            |                    |                               | T             |                       |
| DEPTH         |                   | SAMPLES             | MOIS-   | G    | SRAPHIC | CLOG    | In anticle site       | e distribution com   | tine mineralesu roun           | LITHOLOGIC DESCRIPTION | mavimum araia siza | concolidation structure atr.) |               | OMMENTS               |
| (FT.)         | TYPE              | ID NUMBER           | IUKE    | 10   | Z       | SG      | (particle st          | te distribution, sor | ming, mineralogy, roun         |                        | Maximum gram size  |                               | 10020 T       | 009 N                 |
| 28.7          | C                 | B30574              | W       | ┝    | + +     |         | SILLY SKA             | INT GRAVE            | L. 1020 Gra                    | vel, 20 40 sand        | 10205117(+         | clay; ). Graves               | CB738, 1      | -000A                 |
|               |                   |                     |         | ┝    | ++      | +       | Tanges to             | 73cm (D              | noten , roun                   | d 48 subvaria          | where unbr         | oken, 6020 milite             | To mottom of  | CORE, BOLD            |
|               |                   |                     |         | +    | +-+     | -       | 40% +215              | C CORED              | horst mua),                    | Jana is poorly         | sotted, non        | ascopt, subarguar             | tul           |                       |
|               |                   |                     |         | +    |         |         | 6070mas               | C, AD/stel           | STC (coared u                  | orn mud, Impl          | SITTERY)C          | s 1101 A - A                  | 0             |                       |
|               |                   |                     |         | +    | ++      |         | Wet colo              | ris Lipt             | 411, dark gr                   | ay. No color           | date               | TO ALL. Company               | R.            |                       |
| 20.0          | G                 | DOAF07              | 11.1    | +    | ++      |         | SUTU C                | LIDY CDA             | THE CASE (                     | wear commen            | 1 50 244           | tata 7 Courd &                | 10930 -       | T-MAR                 |
| 2912          | 9                 | 030371              | W       | +    | +++     |         | SILLY J               | NUT GAN              | NCL. 0060                      | movel, 1010 >ler       | a, 0705101 [       | Telay:), Graveris             | CDIDB,        | Do Douted             |
| 29.1          |                   |                     | +       | +    |         |         | mosily th             | etovary+             | me people                      | anges up to a          | cm, subro          | una; 60 16 marc               | convidto a    | HODE, Prevoay         |
|               |                   |                     |         | +    | +-+     |         | 302500                | AC (COAred           | a word ma                      | 15 / to to 1 1         | String Source      | dist tolow                    | 27 min        | adaid                 |
|               |                   |                     |         | +    | +++     |         | Subangen              | ar 60 to n           | Nanc, 4010 to                  | E 2 SVALL              | h mult, my         | 12 sin tolay                  | -2 mm 1       | nga er ign .          |
|               |                   |                     |         | +    | ++      |         | coars an              | 1 1) (1              | Wer color 1                    | SZIST TIL MAY          | ing gray, in       | ver sumple has                |               |                       |
| 20.0          | 0                 | B20599              | ind.    | +    | +++     |         | SUTV SA               | IN CDUE              | T QOT L                        | Commonsaria            | 59 514/4-1         | and Grandel canoor            | 10928 7       | -MA9A                 |
| 30,2          | L                 | 070011              | VV      | +    | +++     | 1       | unter lla             | UN GRAVE             | -L OUGDI                       | 707 - 12 2             | A falstr la        | and ithered                   | both of       | 807-5.11              |
|               |                   |                     |         | +    | ++      |         | Sand'                 | round                | p supronna                     | TO TO MATIC, SC        | 749,000            | 352 folie lanto               | 2 SHORTLDI    | CDIE , DUID I WI      |
|               |                   |                     |         | +    | +-+     |         | -torn Bp              | mid la               | rea, mosily co                 | de all det             | lalat calor        | 5- 2543/1 VADI                | 1             |                       |
|               |                   |                     | +       | +    | ++      |         | d male a              | 1. inalisi           | HICKUP CO                      | a contract t           | LOEI LOOT          | tel bit as ability            | ×             |                       |
|               |                   |                     | -       | +    | ++      | 1       | Camento               | ay, wen a            | ample 1451                     | 10 Televori 10 Th      | 11 Compa           | into the porter               | 5             |                       |
| 217           | C                 | B3NAF7              | Int     | +    | 1       |         | SANDY &               | PAUEL 75             | 57 Gravel 7                    | 57 Sand tor            | of all a           | muel property                 | C8938 T       | -ENNTINGENNY IC       |
| 21.1          | -                 | ADDON A             |         | +    | 11      |         | 5 cm pa               | undedet              | subrand , 2                    | 60% faler / hic        | cod Luver          | u conce acina-                | bottom of     | care Joz              |
| -             |                   |                     |         | +    | ++      |         | dente                 | political S          | and is mad                     | Hu ragine and          | Danaillar la       | of mater A D foli             | E             | erc, wep              |
|               |                   |                     | -       | +    |         | -       | watcolo               | - 7.5Y               | 12.5/1 black                   | hist somolo !          | NAS no real        | tim to HCL                    | L, Vel        |                       |
|               |                   |                     |         | +    | +++     | 1       | Compact               | ed but no            | obvinus sta                    | as of comment          | nother             |                               |               |                       |
| 317           | G                 | B309F3              | W       | 1    |         |         | SILTY SP              | NDYGPI               | AVEI 457                       | Gravel 409             | Sand 5% si         | H(tclan?). Grand              | C8938, I-     | CONTINGENCY IB        |
| 32.2          | -                 |                     | 1       | 1    | 11      |         | is mostly             | for to ve            | ry fine pebbly                 | mainanot               | 72 17 mm. Su       | Banaularto                    | bottomof      | to whole              |
|               |                   |                     | 1       | 1    | 11      |         | Subroun               | 2.70% m              | atic. 30% fele                 | re (coated with        | mud) Sand          | d'is provin sorted.           | sample,       | prestously            |
|               |                   |                     |         | T    |         |         | mestly c              | parseto              | medium, sub                    | ungular, 65%           | matic, 357         | sfelsic, must sitt +          | served to     | precover some         |
|               |                   |                     |         | T    |         |         | clay) cont            | all dasts            | . Wet color                    | 15 2.54 3/1, Veru      | dark gray,         | Wet sample has                | C2mm m        | noterral.             |
|               | 1                 |                     |         | T    | 1       |         | no reaction           | n. to HCL.           | No obvious                     | comentation.           | Judi               |                               |               |                       |
|               |                   |                     |         |      |         | 1       |                       | and a second second  | and the second second second   |                        |                    |                               |               |                       |
|               |                   |                     | W = Wet | t, M | - Mois  | t, SM - | - Slightly Moist, D - | Dry                  |                                |                        |                    |                               | 2006/DCL/FORM | S/CoreLog/001 (006/09 |

| Paci<br>Nation         | fic Nort<br>nal Lab | thwest<br>poratory         | (             | cc     | R          | EI        | OG                                          |                                             | Bori        | ing/We                                        | ell No<br>33                                    | 1/170                                          | 13/8<br>) Co                                   | re Og                      | reuni                       | ng                                         | _ D                                       | epth_<br>Pro                    | 32;<br>ject                                     | 7                   |                                       | Date               | 2/5/   | 2015           | 7        | Sheet<br>of 7 |
|------------------------|---------------------|----------------------------|---------------|--------|------------|-----------|---------------------------------------------|---------------------------------------------|-------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------|-----------------------------|--------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------------|---------------------|---------------------------------------|--------------------|--------|----------------|----------|---------------|
| Logg<br>Revie<br>Litho | ed by<br>ewed l     | George<br>by<br>Class. Sch | eme           | Fd     | +          | in<br>Wei | Awo                                         | rth                                         |             |                                               | All                                             | Proce                                          | dure                                           | A<br>1781-9                | <br>79-631                  | ate                                        | Rev                                       | 0                               | Drill<br>Drill<br>Drill                         | ing C<br>er<br>Meth | ontra                                 | ctor               |        |                |          |               |
| DEPTH<br>(FT)          | TYPE                | SAMPLES                    | MOIS-<br>TURE | GR     | APHIC<br>7 | LOG       | (p                                          | article siz                                 | ze distribu | ution, sor                                    | rting, mir                                      | neralogy, i                                    | LITH                                           | OLOGIC C                   | ESCRIPTI<br>action to       | ON<br>HCl, max                             | imum gro                                  | ain size,                       | consolida                                       | tion, str           | ucture, e                             | tr.)               |        | 0              | OMMENTS  |               |
| 32.7                   |                     |                            |               |        |            |           | SILT<br>rang<br>JoZe<br>med<br>(sit-<br>Sam | y SA<br>yes u<br>met<br>sum<br>tolog<br>ple | NDY G       | SRAV<br>74.<br>2025<br>Pang<br>ts al<br>10 re | EL Com (<br>felsion<br>ular<br>Il cla<br>eachta | 102 (<br>brok<br>(cor<br>, 607<br>sts.<br>m to | Svave<br>en), v<br>sted<br>sma<br>luet<br>Hcl, | L, 25<br>Com<br>Com<br>Com | sta<br>mud<br>so to<br>pact | Sand<br>Subra<br>). Se<br>iglsic<br>2,5Y = | 52<br>sund<br>ind<br>(co<br>3/1, v<br>Wea | sitt<br>wher<br>parry<br>stal o | (t cla<br>e un<br>ly se<br>oith<br>dark<br>(ens | norde               | Grav,<br>Ven<br>d. m.<br>U. m.<br>Wey | el<br>ostly<br>wet |        | 78,1-0<br>m of |          |               |
|                        |                     |                            | W = We        | t. M - | Mois       | t, SM     | - Slightly I                                | Moist, D .                                  | Dry         |                                               |                                                 |                                                |                                                |                            |                             |                                            |                                           |                                 |                                                 |                     |                                       |                    | 2006/0 | L/FORM         | S/CoreLo | a/001 (00/    |

Photographs from borehole C8933



























































#### Photographs of Borehole C8936
























































































### Photographs from Borehole C8938

























































This page intentionally left blank.





Proudly Operated by Battelle Since 1965

To: Randy Hermann

From: Michelle Snyder and George Last

Environmental Sciences Laboratory Energy and Environment Directorate, Pacific Northwest National Laboratory

Subject: Analytical Data Report of Samples Collected for the solubility testing of wells C8940 and C9451, sample delivery group (SDG) ESL150001, SAF F15-014.

This letter contains the following information for sample delivery group ESL150001

- Cover Sheet
- Narrative
- Analytical Results
- Quality Control

### Introduction

On July 16, 2015 samples were received from the 300-FF5 OU for chemical analyses.

### Analytical Results/Methodology

The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data.

#### **Quality Control**

The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan "Conducting Analytical Work in Support of Regulatory Programs" (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

#### Definitions

| Dup  | Duplicate                                     |
|------|-----------------------------------------------|
| RPD  | Relative Percent Difference                   |
| NR   | No Recovery (percent recovery less than zero) |
| ND   | Non-Detectable                                |
| %REC | Percent Recovery                              |

#### Sample Receipt

Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis.

All samples were received with custody seals intact unless noted in the Case Narrative.

#### **Holding Times**

Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative.

#### **Analytical Results**

All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative.

#### Labile Uranium Selective Extraction

The labile or weakly adsorbed (easily removed) uranium extraction was performed on the <2 mm, air dried sediment samples. A solution containing 0.0144 mol/L of sodium bicarbonate (NaHCO<sub>3</sub>) and 0.0028 mol/L of sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) with a pH of approximately 9.45 was added to the sediment at a solid to solution ratio of 1 gram/2 mL, and allowed to agitate on an orbital shaker for 1 week.

#### **Sequential Extractions**

Four sequential extractions were performed on the <2mm, air dried sediment samples. The first extraction involved a weak acetic acid consisting of 1 mol/L sodium acetate with a final pH of approximately 5. The sample was agitated on an orbital shaker for 1 hour at a solid to solution ratio of 1 gram/2 mL. After 1 hour, the sample was centrifuged, the solution decanted and filtered (for ICP-MS and ICP-OES analysis), and the sample was weighed to determine the remaining residual solution prior to starting the next sequential extraction. The target uranium phase for this extraction is the adsorbed uranium and uranium associated with carbonate minerals. The second sequential extraction used a strong acetic acid (concentrated glacial acetic acid). After 5 days contact time, the same centrifuge and decanting procedure was used. The target phase for the strong acetic acid is the strongly bound uranium. The third extraction used a solution consisting of 0.1 mol/L ammonium oxalate with 0.1 mol/L oxalic acid. After 1 hour of contact time, the samples were centrifuged, decanted, filtered and weighed. The target phase for the oxalate solution are the amorphous Fe, Al, Mn and Si oxides. The final nitric acid extraction involved 8 mol/L of nitric acid. The samples were transferred to a glass beaker with a stir bar and heated at 95°C for 2 hours on a hot plate. Samples were weighed after this step so the final volume could be determined. The target phases for the nitric acid include clays, crystalline oxides, and Fe, Al, and Mn uranium oxides.

### **Case Narrative Report**

Hold Time:

No discrepancies noted.

#### **Preparation Blank (PB):**

The preparation blank recovery for the weak acetic acid extract (sample ID 1510007-06) had calcium >EQL for ICP-OES Vadose-NP. The PB concentration is <5% of the lowest measured concentration in the samples. There should be no impact to data as reported.

The preparation blank recovery for the nitric acid extract (sample ID 1510007-27) had calcium >EQL for ICP-OES Vadose-NP. The PB concentration is <5% of the lowest measured concentration in the samples. There should be no impact to data as reported.

The preparation blank recovery for the nitric acid extract (sample ID 1510007-27) had iron >EQL for ICP-OES Vadose-NP. The PB concentration is <5% of the lowest measured concentration in the samples. There should be no impact to data as reported.

#### **Duplicate (DUP):**

No discrepancies noted.

#### Laboratory Control Samples (LCS):

The preparation blank recovery (150%) for the weak acetic acid extract (sample ID 1510007-06) was outside acceptable limits (80-120%) for ICP-OES Vadose-NP. Aluminum associated with the weak acetic extractions were not reported.

### Post Spike (PS):

No discrepancies noted.

The following analyses were performed on the following samples included in this report:

Geologic Description Metals Special Extract by ICPOES Moisture Content Particle Size Analysis pH of Water by Electrode Sequential Extracts U Special Extract by ICPMS

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied**, **or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

| Laboratory ID | Sample No. | Borehole<br>ID |
|---------------|------------|----------------|
| 1508009-01    | B31MY0     | C8940          |
| 1508009-02    | B31MY1     | C8940          |
| 1508009-03    | B31MY2     | C8940          |
| 1508009-04    | B31MY4     | C8940          |
| 1508009-05    | B31MY6     | C8940          |
| 1508009-06    | B31MY7     | C8940          |
| 1508009-07    | B31N00     | C8940          |
| 1508009-08    | B31N03     | C8940          |
| 1508009-09    | B31N05     | C8940          |
| 1508009-10    | B31N13     | C8940          |
| 1508009-11    | B31N19     | C8940          |
| 1508009-12    | B31N22     | C8940          |
| 1508009-13    | B31N23     | C8940          |
| 1508009-14    | B31N24     | C8940          |
| 1508009-15    | B31N26     | C8940          |
| 1508009-16    | B31N27     | C8940          |
| 1508009-17    | B31N28     | C8940          |
| 1508009-18    | B31N29     | C8940          |
| 1508009-19    | B31N31     | C8940          |
| 1508009-20    | B31N33     | C8940          |
| 1508009-21    | B31N34     | C8940          |
| 1508009-22    | B31N62     | C9451          |
| 1508009-23    | B31N63     | C9451          |
| 1508009-24    | B31N64     | C9451          |
| 1508009-25    | B31N66     | C9451          |
| 1508009-26    | B31N69     | C9451          |
| 1508009-27    | B31N71     | C9451          |
| 1508009-28    | B31N72     | C9451          |
| 1508009-29    | B31N73     | C9451          |
| 1508009-30    | B31N74     | C9451          |
| 1508009-31    | B31N77     | C9451          |
| 1508009-32    | B31N78     | C9451          |
| 1508009-33    | B31N79     | C9451          |
| 1508009-34    | B31N80     | C9451          |
| 1508009-35    | B31N82     | C9451          |
| 1508009-36    | B31N84     | C9451          |
| 1508009-37    | B31N85     | C9451          |
| 1508009-38    | B31N87     | C9451          |
| 1508009-39    | B31N90     | C9451          |
| 1508009-40    | B31N96     | C9451          |
| 1508009-41    | B31NB0     | C9451          |
| 1508009-42    | B31NB1     | C9451          |
| 1508009-43    | B31NB3     | C9451          |
| 1500000 44    | B31NB6     | C9451          |

## Sediment Samples Received from Boreholes C8940 and C9451

Note: Samples in italics selected for analyses (personal communication from Randy Herman via email dated 8/19/2015)

|            | Wet Chemistry                                |         |     |          |         |  |  |  |  |  |
|------------|----------------------------------------------|---------|-----|----------|---------|--|--|--|--|--|
| Moisture C | Moisture Content (% by Weight) by AGG-WC-001 |         |     |          |         |  |  |  |  |  |
| Lab ID     | Client ID.                                   | Results | EQL | Analyzed | Batch   |  |  |  |  |  |
| 1508009-18 | B31N29                                       | 4.87E0  | N/A | 10/19/15 | 5H19004 |  |  |  |  |  |
| 1508009-37 | B31N85                                       | 1.46E1  | N/A | 10/19/15 | 5H19004 |  |  |  |  |  |
| 1508009-40 | B31N96                                       | 9.54E0  | N/A | 10/19/15 | 5H19004 |  |  |  |  |  |
| 1508009-42 | B31NB1                                       | 7.07E0  | N/A | 10/19/15 | 5H19004 |  |  |  |  |  |
| 1508009-45 | B31N29 <2mm                                  | 1.97E0  | N/A | 9/17/15  | 5I11001 |  |  |  |  |  |
| 1508009-46 | B31N85 <2mm                                  | 1.88E0  | N/A | 9/17/15  | 5I11001 |  |  |  |  |  |
| 1508009-47 | B31N96 <2mm                                  | 1.78E0  | N/A | 9/17/15  | 5I11001 |  |  |  |  |  |
| 1508009-48 | B31NB1 <2mm                                  | 1.76E0  | N/A | 9/17/15  | 5I11001 |  |  |  |  |  |

|            | Wet Chemistry               |         |     |          |         |  |  |  |  |
|------------|-----------------------------|---------|-----|----------|---------|--|--|--|--|
| pH (pH Uni | pH (pH Units) by AGG-pH-001 |         |     |          |         |  |  |  |  |
| Lab ID     | Client ID.                  | Results | EQL | Analyzed | Batch   |  |  |  |  |
| 1508009-45 | B31N29 <2mm                 | 8.10E0  | N/A | 9/22/15  | 5I22001 |  |  |  |  |
| 1508009-46 | B31N85 <2mm                 | 7.74E0  | N/A | 9/22/15  | 5I22001 |  |  |  |  |
| 1508009-47 | B31N96 <2mm                 | 7.83E0  | N/A | 9/22/15  | 5I22001 |  |  |  |  |
| 1508009-48 | B31NB1 <2mm                 | 7.78E0  | N/A | 9/22/15  | 5I22001 |  |  |  |  |

| CAS #      | Analyte     | Results  | Units    | EQL        | Analyzed | Batch   | Method           |
|------------|-------------|----------|----------|------------|----------|---------|------------------|
| Client ID. | B31N29 <2mm | L        | ıb ID:   | 1508009-45 |          |         |                  |
| 7429-90-5  | Aluminum    | 2.08E0   | ug/g dry | 1.27E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium     | 1.80E1   | ug/g dry | 6.13E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron        | <1.42E0  | ug/g dry | 1.42E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese   | <8.47E-1 | ug/g dry | 8.47E-1    | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| Client ID. | B31N85 <2mm | La       | ıb ID:   | 1508009-46 |          |         |                  |
| 7429-90-5  | Aluminum    | 2.28E0   | ug/g dry | 1.26E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium     | 2.95E1   | ug/g dry | 6.09E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron        | 6.43E1   | ug/g dry | 1.41E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese   | <8.42E-1 | ug/g dry | 8.42E-1    | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| Client ID. | B31N96 <2mm | La       | ıb ID:   | 1508009-47 |          |         |                  |
| 7429-90-5  | Aluminum    | 2.14E0   | ug/g dry | 1.27E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium     | 3.11E1   | ug/g dry | 6.13E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron        | <1.42E0  | ug/g dry | 1.42E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese   | <8.47E-1 | ug/g dry | 8.47E-1    | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| Client ID. | B31NB1 <2mm | La       | ıb ID:   | 1508009-48 |          |         |                  |
| 7429-90-5  | Aluminum    | 1.87E0   | ug/g dry | 1.27E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7440-70-2  | Calcium     | 2.24E1   | ug/g dry | 6.11E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-89-6  | Iron        | <1.42E0  | ug/g dry | 1.42E0     | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |
| 7439-96-5  | Manganese   | <8.44E-1 | ug/g dry | 8.44E-1    | 10/15/15 | 5J15012 | PNNL-AGG-ICP-AES |

# Total Metals by PNNL-ESL-ICP-OES/Special Extract

| CAS #      | Analyte     | Results Units EQL       | Analyzed | Batch   | Method         |
|------------|-------------|-------------------------|----------|---------|----------------|
| Client ID. | B31N29 <2mm | Lab ID: 1508009-45      |          |         |                |
| U-238      | Uranium 238 | 2.20E0 ug/g dry 1.44E-2 | 10/15/15 | 5J14001 | PNNL-ESL-ICPMS |
| Client ID. | B31N85 <2mm | Lab ID: 1508009-46      |          |         |                |
| U-238      | Uranium 238 | 3.86E0 ug/g dry 1.43E-2 | 10/15/15 | 5J14001 | PNNL-ESL-ICPMS |
| Client ID. | B31N96 <2mm | Lab ID: 1508009-47      |          |         |                |
| U-238      | Uranium 238 | 4.06E0 ug/g dry 1.44E-2 | 10/15/15 | 5J14001 | PNNL-ESL-ICPMS |
| Client ID. | B31NB1 <2mm | Lab ID: 1508009-48      |          |         |                |
| U-238      | Uranium 238 | 4.10E0 ug/g dry 1.44E-2 | 10/15/15 | 5J14001 | PNNL-ESL-ICPMS |

# **Radionuclides by ICP-MS/Special Extraction**

# **Total Metals by PNNL-ESL-ICP-OES/Sequential Extractions**

| LabNumber  | SampleName                | Analyte  | Final<br>Concentration | Units    | EQL  | Analyzed   |
|------------|---------------------------|----------|------------------------|----------|------|------------|
|            |                           |          |                        |          |      |            |
| 1510007-08 | B31N29 strong acetic acid | Aluminum | 3.82E+01               | ug/g dry | 3.94 | 11/10/2015 |
| 1510007-09 | B31N85 strong acetic acid | Aluminum | 1.54E+01               | ug/g dry | 3.93 | 11/10/2015 |
| 1510007-10 | B31N96 strong acetic acid | Aluminum | 1.62E+01               | ug/g dry | 3.82 | 11/10/2015 |
| 1510007-11 | B31NB1 strong acetic acid | Aluminum | 1.85E+01               | ug/g dry | 3.95 | 11/10/2015 |
|            |                           |          |                        |          |      |            |
| 1510007-15 | B31N29 oxalate            | Aluminum | 1.12E+03               | ug/g dry | 4.17 | 11/10/2015 |
| 1510007-16 | B31N85 oxalate            | Aluminum | 6.66E+02               | ug/g dry | 4.23 | 11/10/2015 |
| 1510007-17 | B31N96 oxalate            | Aluminum | 6.36E+02               | ug/g dry | 4.18 | 11/10/2015 |
| 1510007-18 | B31NB1 oxalate            | Aluminum | 6.62E+02               | ug/g dry | 4.17 | 11/10/2015 |
| /=/        |                           |          |                        |          |      |            |
| 1510007-22 | B31N29 nitric acid        | Aluminum | 9.21E+03               | ug/g dry | 32.4 | 11/10/2015 |
| 1510007-23 | B31N85 nitric acid        | Aluminum | 8.31E+03               | ug/g dry | 29.7 | 11/10/2015 |
| 1510007-24 | B31N96 nitric acid        | Aluminum | 8.10E+03               | ug/g dry | 31.0 | 11/10/2015 |
| 1510007-25 | B31NB1 nitric acid        | Aluminum | 8.34E+03               | ug/g dry | 28.0 | 11/10/2015 |
| 4540007.04 |                           |          | 4 705 00               |          | 0.05 | 44/40/0045 |
| 1510007-01 | B31N29 Weak acetic acid   | Calcium  | 1.76E+03               | ug/g dry | 6.85 | 11/10/2015 |
| 1510007-02 | B31N85 weak acetic acid   | Calcium  | 1.59E+03               | ug/g dry | 0.88 | 11/10/2015 |
| 1510007-03 | B31N96 weak acetic acid   | Calcium  | 1.78E+03               | ug/g dry | 0.83 | 11/10/2015 |
| 1510007-04 | B31NB1 weak acetic acid   | Calcium  | 1.68E+03               | ug/g ary | 6.81 | 11/10/2015 |
| 4540007.00 | P21N20 atrong postic paid | Calaium  | 2 655 . 02             | ua/a dru | 0.00 | 11/10/2015 |
| 1510007-08 | B31N29 Strong acetic acid | Calcium  | 3.00E+02               | ug/g dry | 0.02 | 11/10/2015 |
| 1510007-09 | B31N65 Strong acetic acid | Calcium  | 2.34E+02               | ug/g dry | 0.01 | 11/10/2015 |
| 1510007-10 | B31N96 Strong acetic acid | Calcium  | 4.30E+02               | ug/g dry | 1.10 | 11/10/2015 |
| 1510007-11 | B3TNBT strong acetic acid | Calcium  | 2.92E+02               | ug/g ary | 8.04 | 11/10/2015 |
| 1510007-15 | B31N29 oxalate            | Calcium  | ND                     | ug/g dry | 8.48 | 11/10/2015 |
| 1510007-16 | B31N85 oxalate            | Calcium  | ND                     | ug/g dry | 8.61 | 11/10/2015 |
| 1510007-17 | B31N96 oxalate            | Calcium  | ND                     | ug/g dry | 8.51 | 11/10/2015 |
| 1510007-18 | B31NB1 oxalate            | Calcium  | ND                     | ug/g dry | 8.49 | 11/10/2015 |
|            |                           |          |                        |          |      |            |
| 1510007-22 | B31N29 nitric acid        | Calcium  | 5.40E+03               | ug/g dry | 6.60 | 11/10/2015 |
| 1510007-23 | B31N85 nitric acid        | Calcium  | 5.34E+03               | ug/g dry | 6.04 | 11/10/2015 |
| 1510007-24 | B31N96 nitric acid        | Calcium  | 6.11E+03               | ug/g dry | 6.32 | 11/10/2015 |
| 1510007-25 | B31NB1 nitric acid        | Calcium  | 5.66E+03               | ug/g dry | 5.71 | 11/10/2015 |
|            |                           |          |                        |          |      |            |
| 1510007-01 | B31N29 weak acetic acid   | Iron     | 6.56E+00               | ug/g dry | 2.04 | 11/10/2015 |
| 1510007-02 | B31N85 weak acetic acid   | Iron     | 7.37E+00               | ug/g dry | 2.05 | 11/10/2015 |
| 1510007-03 | B31N96 weak acetic acid   | Iron     | 1.05E+01               | ug/g dry | 2.03 | 11/10/2015 |
| 1510007-04 | B31NB1 weak acetic acid   | Iron     | 1.45E+01               | ug/g dry | 2.03 | 11/10/2015 |
|            |                           |          |                        |          |      |            |
| 1510007-08 | B31N29 strong acetic acid | Iron     | ND                     | ug/g dry | 2.39 | 11/10/2015 |
| 1510007-09 | B31N85 strong acetic acid | Iron     | ND                     | ug/g dry | 2.38 | 11/10/2015 |
| 1510007-10 | B31N96 strong acetic acid | Iron     | 4.96E+00               | ug/g dry | 2.32 | 11/10/2015 |
| 1510007-11 | B31NB1 strong acetic acid | Iron     | 9.74E+00               | ug/g dry | 2.39 | 11/10/2015 |
|            |                           |          |                        |          |      |            |
| 1510007-15 | B31N29 oxalate            | Iron     | 1.91E+03               | ug/g dry | 2.52 | 11/10/2015 |
| 1510007-16 | B31N85 oxalate            | Iron     | 2.54E+03               | ug/g dry | 2.56 | 11/10/2015 |
| 1510007-17 | B31N96 oxalate            | Iron     | 3.37E+03               | ug/g dry | 2.53 | 11/10/2015 |
| 1510007-18 | B31NB1 oxalate            | Iron     | 2.93E+03               | ug/g dry | 2.53 | 11/10/2015 |

| LabNumber  | SampleName                | Analyte   | Final<br>Concentration | Units    | EQL   | Analyzed   |
|------------|---------------------------|-----------|------------------------|----------|-------|------------|
| 1510007-22 | B31N29 nitric acid        | Iron      | 2 49F+04               | ua/a drv | 19.6  | 11/10/2015 |
| 1510007-23 | B31N85 nitric acid        | Iron      | 2.37E+04               | ug/g dry | 18.0  | 11/10/2015 |
| 1510007-24 | B31N96 nitric acid        | Iron      | 2.35E+04               | ug/g dry | 18.8  | 11/10/2015 |
| 1510007-25 | B31NB1 nitric acid        | Iron      | 2.33E+04               | ug/g dry | 17.0  | 11/10/2015 |
| 1510007-01 | B31N29 weak acetic acid   | Manganese | 7.64E+00               | ug/g dry | 0.487 | 11/10/2015 |
| 1510007-02 | B31N85 weak acetic acid   | Manganese | 7.23E+00               | ug/g dry | 0.489 | 11/10/2015 |
| 1510007-03 | B31N96 weak acetic acid   | Manganese | 1.47E+01               | ug/g dry | 0.486 | 11/10/2015 |
| 1510007-04 | B31NB1 weak acetic acid   | Manganese | 1.89E+01               | ug/g dry | 0.484 | 11/10/2015 |
| 1510007-08 | B31N29 strong acetic acid | Manganese | 2.58E+01               | ug/g dry | 0.570 | 11/10/2015 |
| 1510007-09 | B31N85 strong acetic acid | Manganese | 2.05E+01               | ug/g dry | 0.570 | 11/10/2015 |
| 1510007-10 | B31N96 strong acetic acid | Manganese | 4.61E+01               | ug/g dry | 0.554 | 11/10/2015 |
| 1510007-11 | B31NB1 strong acetic acid | Manganese | 5.70E+01               | ug/g dry | 0.572 | 11/10/2015 |
| 1510007-15 | B31N29 oxalate            | Manganese | 8.18E+01               | ug/g dry | 0.603 | 11/10/2015 |
| 1510007-16 | B31N85 oxalate            | Manganese | 7.74E+01               | ug/g dry | 0.613 | 11/10/2015 |
| 1510007-17 | B31N96 oxalate            | Manganese | 7.72E+01               | ug/g dry | 0.605 | 11/10/2015 |
| 1510007-18 | B31NB1 oxalate            | Manganese | 7.88E+01               | ug/g dry | 0.604 | 11/10/2015 |
| 1510007-22 | B31N29 nitric acid        | Manganese | 3.22E+02               | ug/g dry | 0.469 | 11/10/2015 |
| 1510007-23 | B31N85 nitric acid        | Manganese | 2.86E+02               | ug/g dry | 0.430 | 11/10/2015 |
| 1510007-24 | B31N96 nitric acid        | Manganese | 3.05E+02               | ug/g dry | 0.449 | 11/10/2015 |
| 1510007-25 | B31NB1 nitric acid        | Manganese | 3.01E+02               | ug/g dry | 0.406 | 11/10/2015 |

# Radionuclides by PNNL-ESL-ICPMS/Sequential Extraction

| LabNumber  | SampleName                | Analyte     | Final<br>Concentration | Units | EQL       | Analyzed   |
|------------|---------------------------|-------------|------------------------|-------|-----------|------------|
|            |                           |             |                        |       |           |            |
| 1510007-01 | B31N29 weak acetic acid   | Uranium 238 | 5.38E+00               | ug/g  | 0.0144666 | 10/15/2015 |
| 1510007-02 | B31N85 weak acetic acid   | Uranium 238 | 4.54E+00               | ug/g  | 0.0145341 | 10/15/2015 |
| 1510007-03 | B31N96 weak acetic acid   | Uranium 238 | 4.43E+00               | ug/g  | 0.014439  | 10/15/2015 |
| 1510007-04 | B31NB1 weak acetic acid   | Uranium 238 | 5.07E+00               | ug/g  | 0.0143882 | 10/15/2015 |
| 1510007-08 | B31N29 strong acetic acid | Uranium 238 | 2.93E+00               | ug/g  | 0.0169411 | 10/15/2015 |
| 1510007-09 | B31N85 strong acetic acid | Uranium 238 | 2.74E+00               | ug/g  | 0.0169308 | 10/15/2015 |
| 1510007-10 | B31N96 strong acetic acid | Uranium 238 | 3.13E+00               | ug/g  | 0.0164499 | 10/15/2015 |
| 1510007-11 | B31NB1 strong acetic acid | Uranium 238 | 3.42E+00               | ug/g  | 0.016992  | 10/15/2015 |
| 1510007-15 | B31N29 oxalate            | Uranium 238 | 2.88E+00               | ug/g  | 0.0179262 | 10/15/2015 |
| 1510007-16 | B31N85 oxalate            | Uranium 238 | 3.95E+00               | ug/g  | 0.0181983 | 10/15/2015 |
| 1510007-17 | B31N96 oxalate            | Uranium 238 | 3.75E+00               | ug/g  | 0.0179792 | 10/15/2015 |
| 1510007-18 | B31NB1 oxalate            | Uranium 238 | 3.71E+00               | ug/g  | 0.0179341 | 10/15/2015 |
| 1510007-22 | B31N29 nitric acid        | Uranium 238 | 4.34E+00               | ug/g  | 0.01394   | 10/15/2015 |
| 1510007-23 | B31N85 nitric acid        | Uranium 238 | 2.61E+00               | ug/g  | 0.0127643 | 10/15/2015 |
| 1510007-24 | B31N96 nitric acid        | Uranium 238 | 2.82E+00               | ug/g  | 0.0133459 | 10/15/2015 |
| 1510007-25 | B31NB1 nitric acid        | Uranium 238 | 3.54E+00               | ug/g  | 0.0120668 | 10/15/2015 |
|            |                           |             |                        |       |           |            |

| ſ |            |           |        |        |        | %      |
|---|------------|-----------|--------|--------|--------|--------|
|   | Lab ID     | Client ID | % clay | % silt | % sand | gravel |
|   | 1508009-18 | B31N29    | 3.9    | 4.2    | 30     | 60     |
| ſ | 1508009-37 | B31N85    | 8.9    | 8.6    | 54     | 26     |
| ſ | 1508009-40 | B31N96    | 5.1    | 6.6    | 26     | 60     |
|   | 1508009-42 | B31NB1    | 5.7    | 6.3    | 21     | 66     |

## Particle Size Analysis/Combination ASTM D422-63 (2mm sieve separation) and HORIBA Laser-Scatter Particle Size Analyzer









## Wet Chemistry - Quality Control Environmental Science Laboratory

| Analyte                                       | Result | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-----------------------------------------------|--------|--------------------|----------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Batch 5I22001 - 1:1 Water Extract (pH_EC_Alk) |        |                    |          |                |                  |             |                |      |              |       |
| Blank (5I22001-BLK1)                          |        |                    |          | Prepared &     | & Analyzed       | 1: 09/22/15 |                |      |              |       |
| pH                                            | 5.73E0 | N/A                | pH Units |                |                  |             |                |      |              |       |
| Duplicate (5I22001-DUP1)                      | Sou    | rce: 1508009       | 9-45     | Prepared &     | & Analyzed       | 1: 09/22/15 |                |      |              |       |
| pH                                            | 7.74E0 | N/A                | pH Units |                | 8.10E0           |             |                | 4.55 | 35           |       |

## Total Metals by PNNL-AGG-ICP-AES/Special Extract - Quality Control Environmental Science Laboratory

| Angleta                         | Popult      | Reporting    | Unito    | Spike      | Source     | % DEC      | %REC   | DDD  | RPD<br>Limit | Notos |
|---------------------------------|-------------|--------------|----------|------------|------------|------------|--------|------|--------------|-------|
| Analyte                         | Kesuit      | Linnt        | Ullits   | Level      | Kesult     | %KEC       | Linits | KFD  | LIIIII       | Notes |
| Batch 5J15012 - Special Extract | (ICP/ICPMS) |              |          |            |            |            |        |      |              |       |
| Blank (5J15012-BLK1)            |             |              |          | Prepared & | & Analyzed | : 10/15/15 | i      |      |              |       |
| Aluminum                        | <1.56E-1    | 1.56E-1      | ug/g wet |            |            |            |        |      |              |       |
| Calcium                         | <7.54E-1    | 7.54E-1      |          |            |            |            |        |      |              |       |
| Iron                            | <1.75E-1    | 1.75E-1      |          |            |            |            |        |      |              |       |
| Manganese                       | <1.04E-1    | 1.04E-1      | "        |            |            |            |        |      |              |       |
| LCS (5J15012-BS1)               |             |              |          | Prepared & | & Analyzed | : 10/15/15 | i      |      |              |       |
| Aluminum                        | 8.05E0      | 1.56E-1      | ug/g wet | 7.50E0     |            | 107        | 80-120 |      |              |       |
| Calcium                         | 7.84E0      | 7.54E-1      |          | 7.50E0     |            | 105        | 80-120 |      |              |       |
| Iron                            | 7.08E0      | 1.75E-1      |          | 7.50E0     |            | 94.4       | 80-120 |      |              |       |
| Manganese                       | 7.72E0      | 1.04E-1      |          | 7.50E0     |            | 103        | 80-120 |      |              |       |
| Duplicate (5J15012-DUP1)        | Sou         | rce: 1508009 | 9-46     | Prepared & | & Analyzed | : 10/15/15 | i      |      |              |       |
| Aluminum                        | <1.27E0     | 1.27E0       | ug/g dry |            | 2.28E0     |            |        |      | 35           |       |
| Calcium                         | 4.10E1      | 6.14E0       |          |            | 2.95E1     |            |        | 32.5 | 35           |       |
| Iron                            | <1.42E0     | 1.42E0       |          |            | 6.43E1     |            |        |      | 35           |       |
| Manganese                       | <8.48E-1    | 8.48E-1      |          |            | ND         |            |        |      | 35           |       |
| Post Spike (5J15012-PS1)        | Sou         | rce: 1508009 | 9-48     | Prepared & | & Analyzed | : 10/15/15 | i      |      |              |       |
| Aluminum                        | 5.23E2      | N/A          | ug/L     | 5.00E2     | 4.62E1     | 95.3       | 75-125 |      |              |       |
| Calcium                         | 1.09E3      | N/A          |          | 5.00E2     | 5.53E2     | 108        | 75-125 |      |              |       |
| Iron                            | 4.92E2      | N/A          |          | 5.00E2     | ND         | 100        | 75-125 |      |              |       |
| Manganese                       | 2.59E2      | N/A          |          | 2.50E2     | 7.73E-1    | 103        | 75-125 |      |              |       |

## Radionuclides by ICP-MS/Special Extraction - Quality Control

## **Environmental Science Laboratory**

| Analyte                                 | Result   | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-----------------------------------------|----------|--------------------|----------|----------------|------------------|-----------|----------------|------|--------------|-------|
| Batch 5J14001 - Special Extract (ICP/IC | CPMS)    |                    |          |                |                  |           |                |      |              |       |
| Blank (5J14001-BLK1)                    |          |                    |          | Prepared:      | 09/29/15         | Analyzed: | 10/15/15       |      |              |       |
| Uranium 238                             | <7.10E-3 | 7.10E-3            | ug/g wet |                |                  |           |                |      |              |       |
| LCS (5J14001-BS1)                       |          |                    |          | Prepared:      | 09/29/15         | Analyzed: | 10/15/15       |      |              |       |
| Uranium 238                             | <7.10E-3 | 7.10E-3            | ug/g wet |                |                  |           | 80-120         |      |              |       |
| Duplicate (5J14001-DUP1)                | Sour     | rce: 1508009       | 9-46     | Prepared:      | 09/29/15         | Analyzed: | 10/15/15       |      |              |       |
| Uranium 238                             | 4.17E0   | 1.45E-2            | ug/g dry |                | 3.86E0           |           |                | 7.71 | 35           |       |
| Post Spike (5J14001-PS1)                | Sour     | rce: 1508009       | 9-46     | Prepared:      | 10/14/15         | Analyzed: | 10/15/15       |      |              |       |
| Uranium 238                             | 2.91E0   | N/A                | ug/L     | 1.00E0         | 1.91E0           | 100       | 75-125         |      |              |       |

# Sequential Extractions-Quality Control

# Duplicates

|            |         |                        |             |               | RPD |       |        |            |
|------------|---------|------------------------|-------------|---------------|-----|-------|--------|------------|
| LabNumber  | SampleN | lame                   | Analyte     | final results | (%) | RPD   | EQL    | Analyzed   |
|            |         |                        |             | ug/g          |     | Limit | ug/g   |            |
| 1510007-12 | B31N85  | DUP strong acetic acid | Aluminum    | 1.47E+01      | 5%  | 35    | 3.82   | 11/10/2015 |
| 1510007-19 | B31N85  | DUP oxalate            | Aluminum    | 6.43E+02      | 4%  | 35    | 4.26   | 11/10/2015 |
| 1510007-26 | B31N85  | DUP nitric acid        | Aluminum    | 8.16E+03      | 2%  | 35    | 32.2   | 11/10/2015 |
| 1510007-05 | B31N85  | DUP weak acetic acid   | Calcium     | 1.57E+03      | 2%  | 35    | 6.82   | 11/10/2015 |
| 1510007-12 | B31N85  | DUP strong acetic acid | Calcium     | 2.02E+02      | 14% | 35    | 7.78   | 11/10/2015 |
| 1510007-19 | B31N85  | DUP oxalate            | Calcium     | ND            | ND  | 35    | 8.68   | 11/10/2015 |
| 1510007-26 | B31N85  | DUP nitric acid        | Calcium     | 5.35E+03      | 0%  | 35    | 6.56   | 11/10/2015 |
| 1510007-05 | B31N85  | DUP weak acetic acid   | Iron        | 6.74E+00      | 9%  | 35    | 2.03   | 11/10/2015 |
| 1510007-12 | B31N85  | DUP strong acetic acid | Iron        | ND            | ND  | 35    | 2.31   | 11/10/2015 |
| 1510007-19 | B31N85  | DUP oxalate            | Iron        | 2.51E+03      | 1%  | 35    | 2.58   | 11/10/2015 |
| 1510007-26 | B31N85  | DUP nitric acid        | Iron        | 2.34E+04      | 1%  | 35    | 19.5   | 11/10/2015 |
| 1510007-05 | B31N85  | DUP weak acetic acid   | Manganese   | 7.06E+00      | 2%  | 35    | 0.485  | 11/10/2015 |
| 1510007-12 | B31N85  | DUP strong acetic acid | Manganese   | 2.38E+01      | 15% | 35    | 0.553  | 11/10/2015 |
| 1510007-19 | B31N85  | DUP oxalate            | Manganese   | 6.92E+01      | 11% | 35    | 0.618  | 11/10/2015 |
| 1510007-26 | B31N85  | DUP nitric acid        | Manganese   | 2.91E+02      | 2%  | 35    | 0.467  | 11/10/2015 |
| 1510007-05 | B31N85  | DUP weak acetic acid   | Uranium 238 | 4.10E+00      | 10% | 35    | 0.0144 | 10/15/2015 |
| 1510007-12 | B31N85  | DUP strong acetic acid | Uranium 238 | 2.52E+00      | 8%  | 35    | 0.0164 | 10/15/2015 |
| 1510007-19 | B31N85  | DUP oxalate            | Uranium 238 | 3.75E+00      | 5%  | 35    | 0.0183 | 10/15/2015 |
| 1510007-26 | B31N85  | DUP nitric acid        | Uranium 238 | 2.56E+00      | 2%  | 35    | 0.0139 | 10/15/2015 |

# **Blank Spikes**

|            |                                |           |          |      | %        |        |
|------------|--------------------------------|-----------|----------|------|----------|--------|
| LabNumber  | SampleName                     | Analyte   | Result   | EQL  | recovery | % REC  |
|            |                                |           | ug/L     | ug/L |          | Limits |
|            |                                |           |          |      |          |        |
| 1510007-14 | Blank Spike strong acetic acid | Aluminum  | 4.32E+03 | 329  | 86       | 80-120 |
| 1510007-21 | Blank Spike oxalate            | Aluminum  | 5.41E+03 | 1650 | 108      | 80-120 |
| 1510007-28 | Blank Spike nitric acid        | Aluminum  | 5.79E+03 | 329  | 87       | 80-120 |
|            |                                |           |          |      |          | 80-120 |
| 1510007-07 | Blank Spike weak acetic acid   | Calcium   | 5.42E+03 | 672  | 108      | 80-120 |
| 1510007-14 | Blank Spike strong acetic acid | Calcium   | 5.43E+03 | 672  | 109      | 80-120 |
| 1510007-21 | Blank Spike oxalate            | Calcium   | 4.14E+03 | 672  | 83       | 80-120 |
| 1510007-28 | Blank Spike nitric acid        | Calcium   | 7.39E+03 | 672  | 112      | 80-120 |
|            |                                |           |          |      |          | 80-120 |
| 1510007-07 | Blank Spike weak acetic acid   | Iron      | 4.42E+03 | 200  | 88       | 80-120 |
| 1510007-14 | Blank Spike strong acetic acid | Iron      | 5.10E+03 | 200  | 102      | 80-120 |
| 1510007-21 | Blank Spike oxalate            | Iron      | 4.75E+03 | 200  | 95       | 80-120 |
| 1510007-28 | Blank Spike nitric acid        | Iron      | 6.64E+03 | 200  | 100      | 80-120 |
|            |                                |           |          |      |          | 80-120 |
| 1510007-07 | Blank Spike weak acetic acid   | Manganese | 4.73E+03 | 47.9 | 95       | 80-120 |
| 1510007-14 | Blank Spike strong acetic acid | Manganese | 5.26E+03 | 47.9 | 105      | 80-120 |
| 1510007-21 | Blank Spike oxalate            | Manganese | 4.87E+03 | 47.9 | 97       | 80-120 |
| 1510007-28 | Blank Spike nitric acid        | Manganese | 6.48E+03 | 47.9 | 98       | 80-120 |

# **Preparation Blanks**

| LabNumber  | SampleName                    | Analyte     | Result   | EQL  | Analyzed   |
|------------|-------------------------------|-------------|----------|------|------------|
|            |                               |             | ug/L     | ug/L |            |
| 1510007-13 | Prep blank strong acetic acid | Aluminum    | ND       | 329  | 11/10/2015 |
| 1510007-20 | Prep blank oxalate            | Aluminum    | ND       | 329  | 11/10/2015 |
| 1510007-27 | Prep blank nitric acid        | Aluminum    | ND       | 329  | 11/10/2015 |
| 1510007-06 | Prep blank weak acetic acid   | Calcium     | 1.07E+03 | 672  | 11/10/2015 |
| 1510007-13 | Prep blank strong acetic acid | Calcium     | ND       | 672  | 11/10/2015 |
| 1510007-20 | Prep blank oxalate            | Calcium     | ND       | 672  | 11/10/2015 |
| 1510007-27 | Prep blank nitric acid        | Calcium     | 9.18E+02 | 672  | 11/10/2015 |
| 1510007-06 | Prep blank weak acetic acid   | Iron        | ND       | 200  | 11/10/2015 |
| 1510007-13 | Prep blank strong acetic acid | Iron        | ND       | 200  | 11/10/2015 |
| 1510007-20 | Prep blank oxalate            | Iron        | ND       | 200  | 11/10/2015 |
| 1510007-27 | Prep blank nitric acid        | Iron        | 5.64E+02 | 200  | 11/10/2015 |
| 1510007-06 | Prep blank weak acetic acid   | Manganese   | ND       | 47.9 | 11/10/2015 |
| 1510007-13 | Prep blank strong acetic acid | Manganese   | ND       | 47.9 | 11/10/2015 |
| 1510007-20 | Prep blank oxalate            | Manganese   | ND       | 47.9 | 11/10/2015 |
| 1510007-27 | Prep blank nitric acid        | Manganese   | ND       | 47.9 | 11/10/2015 |
| 1510007-06 | Prep blank weak acetic acid   | Uranium 238 | ND       | 672  | 10/15/2015 |
| 1510007-13 | Prep blank strong acetic acid | Uranium 238 | ND       | 672  | 10/15/2015 |
| 1510007-20 | Prep blank oxalate            | Uranium 238 | ND       | 672  | 10/15/2015 |
| 1510007-27 | Prep blank nitric acid        | Uranium 238 | ND       | 672  | 10/15/2015 |

|       | nal Lab | oratory    | S             | AM        |        | E                | LOG           | Boring/         | n <u>3</u> ac | C 8940                  |                                 | _                         | Depth             | 28,5 -         | -29.0<br>00-FF-5   | Date <u>8/19</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/2015 | Sheet    | 1    |
|-------|---------|------------|---------------|-----------|--------|------------------|---------------|-----------------|---------------|-------------------------|---------------------------------|---------------------------|-------------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------|
| Logg  | ed by   | Georg      | eV.           | Las       | Print  |                  |               | -               | be            | age Vin Ha              | at                              |                           |                   | Drillin        | g Contract         | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | _    |
| Revie | ewed    | by         |               | TA        | Pile   |                  | 1.            |                 | Sign          |                         | ALL THE                         | Date_                     | - 1               | Drille         | r                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | _    |
| Litho | logic   | Class. Sch | eme           | 1214      | /w     | atte             | with          |                 |               | Procedure               | WAL-ESL                         | Geology                   | Rev               | Drill N        | lethod             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |          | _    |
| DEPTH |         | HEIS       | MOIS-<br>TURE | GRA       | PHIC L | .0G              | (particle siz | e distribution, | sorting, mine | LII<br>eraloay, roundne | HOLOGIC DES<br>is, color, react | CRIPTION<br>ion to HCl, m | aximum arain size | , consolidatio | n, structure, etc. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0     | MMENTS   |      |
| 29.5  | TYPE    | ID NUMBER  | 345           | C         | ZS     | G                | etH C 1       | C.              | MED           |                         | 4 17                            | 1 1                       | -57               | c 0 .          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | i all is | 1    |
| 20.0  | 9       | D DINZT    | 00            | Zh        | Pro    | d                | Dilly Sand    | y bravel        | . 75          | D FLI                   | CD D L                          | in, mak                   | 1 1 1 1 1         | Sana, M        | nostly Ver         | y STAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b samp | 12. 1211 | tee. |
|       |         |            |               | DB        | 00     | 0                | Grand in      | David an        | em i          | Desil 7                 | reg. >                          | ane in                    | NA JASA,          | L              | m.                 | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          | _    |
|       |         |            |               | 50        | 10     | 5                | with min      | d. San          | d TVE M       | atty bas                | altre                           | Nove                      | thank H           | () in          | E ON CIS           | and and a second |        |          |      |
| •     |         |            |               | P.        | 50     | D.S              | Color lup     | 1 5 2.5         | X41           | Corr at                 | y a d a lare                    | te is 2                   | 585/3/w           | 4).            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | -    |
| 29.0  |         |            |               | -0        | 1.2    | 0                |               |                 |               |                         | the sector                      |                           | 1200              |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       | _       |            |               |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       | -       |            |               | $\square$ | -      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               | $\vdash$  | +      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       | -       |            | -             | $\vdash$  | +      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | _    |
|       | -       |            |               | +         | +      | $\left  \right $ |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
| -     |         |            |               | +         | +      | $\mathbb{H}$     |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
| -     |         |            |               | +         | +      | +                |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           | 1      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           | 1      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            | _             |           |        |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           | -      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | _    |
|       |         |            |               |           | -      | $\square$        |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | _    |
|       |         |            |               |           | -      | $\vdash$         |               |                 |               |                         |                                 |                           |                   |                |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |      |
|       |         |            |               |           | -      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |
|       |         |            |               |           | -      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | _    |
|       | -       |            |               |           | +      |                  |               |                 |               |                         |                                 |                           |                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |      |

| Pacif<br>Nation | fic Nor<br>nal Lat | thwest<br>boratory   | E<br>S | BOF<br>AM | PLE                                      | IOLE<br>LOG                                        | Boring/Well No C                                                                   | 1451                                                                      | Depth<br>Pro                                                    | 21.0 - 29.0 Date<br>oject <u>300-77-5</u>                                    | e 8/19/2015          | Sheet   |
|-----------------|--------------------|----------------------|--------|-----------|------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|---------|
| Logg            | ed by              | George               | Y.     | 145       | Print                                    |                                                    | Jung                                                                               | 2 Start                                                                   | te                                                              | Drilling Contractor                                                          |                      |         |
| Litho           | logic              | Class. Scho          | eme    | Folk      | Print                                    | stepsth                                            | sign Pro                                                                           | cedure TAN-EL-Con                                                         | Rev )                                                           | Drill Method                                                                 |                      |         |
| TOTU            |                    | SAMPLES              | MOIC   | GRAP      | HIC LOG                                  |                                                    |                                                                                    |                                                                           | <u> </u>                                                        |                                                                              |                      |         |
| FT)             | TYPE               | HELS<br>ID NUMBER    | TURE   | C Z       | S G                                      | (particle siz                                      | ze distribution, sorting, mineralog                                                | y, roundness, color, reaction to                                          | ICI, maximum grain size,                                        | consolidation, structure, etc.)                                              |                      | MMENTS  |
| 21.0            | 6                  | B31N85<br>21.0-21.5' | W      | 1.0       | 0                                        | Gravelly, S<br>(broken).<br>Gravellie<br>4/2, wet. | Silty, Sand. 20%<br>Sand TS reposily v<br>5 90% baselfic, si<br>Grovel's sand crai | Gravel, 70% Som<br>erg coasse to mi<br>abrowned where<br>led with mud, so | d, 10% Mul. 6<br>201000. Send<br>unbroken. G<br>ne with a third | To vel noto 2 cm<br>TS 608 baseltic.<br>plovis 2.584/142<br>Eru 1-2 mm) nud. | Erab soon<br>17725.  | ple N/2 |
| 1,5             |                    |                      |        | -0        | 0.2                                      | No reacto                                          | ento Hci                                                                           |                                                                           |                                                                 |                                                                              |                      |         |
|                 | 0                  | B31N96<br>:265-27'   | W      | 200       |                                          | Sitty Sand<br>rounded -<br>1009- bron<br>2.544/1/  | y Gravel, 80% 5<br>to subsound, Ja<br>allic. Some myd<br>wet), Clests are          | ravel, 10% sand,<br>pasatic Sand<br>balls (mudie sand<br>roal d with mus  | 1070 mud. Gr<br>s mostly per.<br>) an artifart of<br>No reachon | avelis upto 3cm,<br>1 coarse to malian<br>duriling? Coloris<br>a to 1K!      | Grabsonni<br>litter. | pen 2   |
| 7.0             |                    | 4                    |        | QC        | 07                                       |                                                    |                                                                                    |                                                                           |                                                                 |                                                                              |                      |         |
| 85              | G                  | B31NB1<br>28.5-29    | W,     | 0.0.000   | 10 00 01 01 01 01 01 01 01 01 01 01 01 0 | 51Hz, Sar<br>mostr, fin<br>Sand is<br>2.594)1(4:   | Nu Gravel 75%<br>e hvery the pebb<br>mostly mostly ver<br>pet). Clasts are a       | Gravel. 15% Sand,<br>Je, subspanded,<br>y coarse to med<br>with mud.      | 139 mul. Gra<br>where upbrokes<br>wor. 60% bas<br>No reaction 4 | x-1 uplo 3cm,<br>n, 70% baselt.<br>Sh. Colon'is<br>p HCl.                    | Solt sams<br>Jiter.  | Ne~V2   |
| 7.0             |                    |                      |        |           |                                          |                                                    |                                                                                    |                                                                           |                                                                 |                                                                              |                      |         |

| Paci<br>Natio | fic Nort<br>nal Lab         | thwest<br>poratory | S    | BO<br>AN | RE    | EHC<br>E             | OLE<br>LOG                                                    | Boring/We                                   | BAD Area                                                                      |                                                                             | Depth<br>Pr                                                             | 28.5-29.0 Dat<br>oject 300-77-5                                       | e <u>8/19/2015</u> | Sheet  |
|---------------|-----------------------------|--------------------|------|----------|-------|----------------------|---------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|
| Logg          | ed by                       | Georg              | eV.  | Las      | Print |                      |                                                               |                                             | Sunge Vin J                                                                   | Date                                                                        |                                                                         | Drilling Contractor                                                   |                    |        |
| Litho         | logic                       | Class. Sch         | eme  | Falk     | JWI   | artic                | with                                                          |                                             | Procedure                                                                     | PHIL-ESL-Geolo                                                              | Rev )                                                                   | Drill Method                                                          |                    |        |
| DEPTH         | A SAMPLES MOIS- GRAPHIC LOG |                    |      |          | L     | THOLOGIC DESCRIPTION |                                                               |                                             | COMMENTE                                                                      |                                                                             |                                                                         |                                                                       |                    |        |
| (PT)          | TYPE                        | ID NUMBER          | TURE | c        | zs    | G                    | (particle size                                                | e distribution, sort                        | ing, mineralogy, roundn                                                       | ess, color, reaction to HC                                                  | l, maximum grain size                                                   | , consolidation, structure, etc.)                                     |                    | mmLATS |
| 29.0          |                             | 831N29             |      |          |       |                      | Silty Sand<br>Coause to<br>Bravel is<br>With MA<br>Color (wet | y Gravel.<br>nounded-<br>d. Sand<br>d. Sand | 75° Gravel,<br>n, 10% sitt +<br>to subround,<br>ins mestly be<br>4/1. Coor of | upte Ecm, b<br>cley. Spore<br>where un br<br>saltre. No v<br>r ut clasts is | oken. 15%<br>mud dath, u<br>oken, 80%<br>reaction to He<br>2.575/3 live | Sand, mostly viry<br>pl 1 m.<br>baselt but crate<br>cl. Lasse,<br>+). | Grib senf          |        |
|               |                             |                    |      |          |       |                      |                                                               |                                             |                                                                               |                                                                             |                                                                         |                                                                       |                    |        |


## Photographs of C8940 and C9451 sediments







| J.R. Aguianto<br>J.R. Aguianto<br>EST NO.<br>ED TO<br>mmental Sci<br>poss<br>*<br>*<br>Conc<br>mmental Sci | MPRC                                                                                                                                                   | TODAK, D                                                                                                                                                                          | TELEPHONE NO.                                                                                                   | PROJECT COORDINATOR                |                                          |                      |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------------|
| EST NO.                                                                                                    | NO                                                                                                                                                     |                                                                                                                                                                                   | 376-6427                                                                                                        | TODAK, D                           | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| EET NO.<br>ED TO<br>onmental Sci<br>POSS<br>= *Conc<br>= Conc                                              |                                                                                                                                                        | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investig                                                                                                                           | ttion - Soils                                                                                                   | <b>SAF NO.</b><br>F15-014          |                                          | 30 Days / 30<br>Days |
| ED TO<br>onmental Sci<br>*Cor<br>*Cor<br>*Cor                                                              | NA                                                                                                                                                     | HAF- N-SO7-33/                                                                                                                                                                    | L 10,00 - 10.5                                                                                                  | <b>COA</b><br>303492               | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| * FOSS                                                                                                     | ences Laboratory                                                                                                                                       | OFFSITE PROPERTY NO. 04                                                                                                                                                           | H2 NIA                                                                                                          | BILL OF LADING/AIR BILL            | vo. N/A                                  |                      |
| E E                                                                                                        | <b>IBLE SAMPLE HAZARDS/ REMARKS</b><br>tains Radioactive Material at                                                                                   | PRESERVATION                                                                                                                                                                      | None                                                                                                            |                                    |                                          |                      |
| Coor                                                                                                       | entrations that are not be regulated for<br>portation per 49 CFR/IATA Dangerous                                                                        | HOLDING TIME                                                                                                                                                                      | 6 Months                                                                                                        |                                    |                                          |                      |
| DOE                                                                                                        | is Regulations but are not releasable per<br>Order 458.1.                                                                                              | TYPE OF CONTAINER                                                                                                                                                                 | Split Spoon<br>Line                                                                                             |                                    |                                          |                      |
| nent                                                                                                       |                                                                                                                                                        | NO. OF CONTAINER(S)                                                                                                                                                               | 1                                                                                                               |                                    |                                          |                      |
| ation                                                                                                      |                                                                                                                                                        | VOLUME                                                                                                                                                                            | 1000g                                                                                                           |                                    |                                          |                      |
| SPEC<br>N/A                                                                                                | IAL HANDLING AND/OR STORAGE                                                                                                                            | SAMPLE ANALYSIS                                                                                                                                                                   | Generic<br>Testing (No<br>CAS);                                                                                 |                                    |                                          |                      |
| SAMPLE NO.                                                                                                 | MATRIX*                                                                                                                                                | SAMPLE DATE SAMPLE TIM                                                                                                                                                            |                                                                                                                 |                                    |                                          |                      |
| 0,                                                                                                         | Soil                                                                                                                                                   | 7-13-15 080S                                                                                                                                                                      | 7                                                                                                               |                                    |                                          |                      |
| LOF POSSES<br>MULSHED BY/R<br>MULSHED BY/R<br>BIGGS PARA<br>BIGGS PARA<br>RUISHED BY/R<br>RUISHED BY/R     | EMOVED FROM JUL 1 3 2015 FITME<br>EMOVED FROM JUL 1 6 2015 74-<br>PMOVED FROM JUL 1 6 2015 78-<br>EMOVED FROM JUL 1 6 2015 78-<br>EMOVED FROM DATE/THE | SIGN   PRINT NAMES<br>RECEIVED BY/STORED IN<br>S SSLA H <sup>1</sup> /<br>REGELEBAUS<br>CHPRC<br>CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JUL 1 3 2012 PATE/THME<br>JUL 1 3 2013 )415<br>JUL 1 6 2015 OT4S<br>JUL 1 6 2015 OT4S<br>DATE/THME<br>DATE/THME | PECIAL INSTRUCTIONS<br>TRVL-15-097 |                                          |                      |
| DUISHED BY/F                                                                                               | LEMOVED FROM DATE/TIME<br>EMOVED FROM DATE/TIME                                                                                                        | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN                                                                                                                                    | DATE/TIME<br>DATE/TIME                                                                                          |                                    |                                          |                      |
| VALUEV                                                                                                     | RECEIVED BY                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                 |                                    |                                          |                      |
| ECTION                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                 |                                    |                                          | ATE/TIME             |
| NOITION<br>POSITION                                                                                        | DISPOSAL METHOD                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                 | IISPOSED BY                        |                                          | ATE/TIME             |
| TED ON 7                                                                                                   | /8/2015                                                                                                                                                | FSR ID = FSR                                                                                                                                                                      | 230 TR                                                                                                          | VI NIIM = TRVI -15-09              | 7                                        | A-6003-618 (R        |

| ILLECTOR<br>J.R. Aguilian<br>MPLING LOCATIO<br>9940772001C                            |                                                                                                                                                        | COMPANY CONTACT                                                                                                                                             | TELEPHONE NO.                                                                 | HORITAGE TO BE THE THE          |                                           |                      |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------|
| MPLING LOCATIO                                                                        | CMPRC                                                                                                                                                  | TODAK, D                                                                                                                                                    | 376-6427                                                                      | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                             | DATA<br>TURNAROUNI   |
| E CHEST NO.                                                                           | 2                                                                                                                                                      | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigal                                                                                                   | ion - Soils                                                                   | SAF NO.<br>F15-014              | AIR QUALITY                               | 30 Days / 30<br>Days |
| TPPED TO                                                                              | NIA                                                                                                                                                    | FIELD LOGBOOK NO.                                                                                                                                           | 2 10, 50 - 11.00                                                              | <b>COA</b><br>303492            | METHOD OF SHIPMENT<br>GOVERINMENT VEHICLE | ORIGINA              |
| vironmental Scie                                                                      | nces Laboratory                                                                                                                                        | OFFSITE PROPERTY NO. N                                                                                                                                      | A.                                                                            | BILL OF LADING/AIR BILL N       | o.<br>N/A                                 |                      |
| IRIX* POSSI                                                                           | 3LE SAMPLE HAZARDS/ REMARKS<br>Inter Radioactive Material at                                                                                           | PRESERVATION                                                                                                                                                | None                                                                          |                                 |                                           |                      |
| Drum concer<br>lids concer<br>transpo                                                 | itrations that are not be regulated for<br>ortation per 49 CFR/IATA Dangerous                                                                          | HOLDING TIME                                                                                                                                                | 6 Months                                                                      |                                 |                                           |                      |
| ds Goods Identification                                                               | Regulations but are not releasable per<br>rder 458.1.                                                                                                  | TYPE OF CONTAINER                                                                                                                                           | Split Spoon<br>Liner                                                          |                                 |                                           |                      |
| oil<br>Sediment                                                                       |                                                                                                                                                        | NO. OF CONTAINER(S)                                                                                                                                         | •1                                                                            |                                 |                                           |                      |
| Tissue<br>/egetation<br>Water                                                         | 1                                                                                                                                                      | VOLUME                                                                                                                                                      | 1000g                                                                         |                                 |                                           |                      |
| -Wipe SPECL                                                                           | AL HANDLING AND/OR STORAGE                                                                                                                             | SAMPLE ANALYSIS                                                                                                                                             | Generic<br>Testing (No<br>CUS);                                               |                                 |                                           |                      |
| SAMPLE NO.                                                                            | MATRIX*                                                                                                                                                | SAMPLE DATE SAMPLE TIME                                                                                                                                     | でもいたが                                                                         |                                 |                                           |                      |
| 1MY1                                                                                  | SOIL                                                                                                                                                   | 7-13-15 0805                                                                                                                                                | )                                                                             |                                 |                                           |                      |
| ATN OF POSSESS                                                                        | NO                                                                                                                                                     | SIGN/ PRINT NAMES                                                                                                                                           |                                                                               | SPECIAL INSTRUCTIONS            |                                           | ł                    |
| LINQUISHED BY/RE<br>LINQUISHED BY/RE<br>LINQUISHED BY/RE<br>LINQUISHED BY/RE<br>CHPRC | HOVED FROM JUL 1 3 2013 1411 S<br>HOVED FROM JUL 1 3 2013 1411 S<br>HOVED FROM JUL 1 6 2015 OF<br>STULET JUL 1 6 2015 OF<br>HOVED FROM JUL 1 6 2015 OF | RECEIVED BY/STORED IN<br>SSU BY<br>REGEVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JUL 13 2015 1415<br>JUL 13 2015 1415<br>JUL 16 984Ertime<br>JUL 16 9015 09:30 | TRVL-15-097                     |                                           |                      |
| LINQUISHED BY/RE                                                                      | MOVED FROM DATE/TIME                                                                                                                                   | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                     |                                 |                                           |                      |
| LINQUISHED BY/RE                                                                      | MOVED FROM DATE/TIME                                                                                                                                   | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                     |                                 |                                           |                      |
| LINQUISHED BY/RE                                                                      | MOVED FROM DATE/TIME                                                                                                                                   | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                     |                                 |                                           |                      |
| LABORATORY<br>SECTION                                                                 | RECEIVED BY                                                                                                                                            |                                                                                                                                                             |                                                                               | חדוב                            | 10                                        | NTE/TIME             |
| FINAL SAMPLE<br>DISPOSITION                                                           | DISPOSAL METHOD                                                                                                                                        |                                                                                                                                                             |                                                                               | DISPOSED BY                     | đ                                         | ATE/TIME             |
| BINTED ON 71                                                                          | 8/3015                                                                                                                                                 |                                                                                                                                                             |                                                                               | VI NIM - TRVI 15 CO             |                                           | A-6003-618 (R        |

| CH2MHill Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sau Remediation Company                                                                                                                             | CHAIN                                                                                                                                                                               | OF CUSTODY/SAMPLE ANALYSIS R                                                                                         | equest                          | F15-014-192                              | PAGE 1 OF 1          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------|
| CTOR<br>C. Aguilar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     | COMPANY CONTACT<br>TODAK, D                                                                                                                                                         | TELEPHONE NO.<br>376-6427                                                                                            | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| ING LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                     | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investiga                                                                                                                            | ation - Soils                                                                                                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| EST NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                  | FIELD LOGBOOK NO.                                                                                                                                                                   | ACTUAL SAMPLE DEPTH<br>11, 00' - 11, 50'                                                                             | <b>COA</b><br>303492            | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| D TO<br>nmental Scienc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es Laboratory                                                                                                                                       | OFFSITE PROPERTY NO.                                                                                                                                                                | NA P                                                                                                                 | BILL OF LADING/AIR BILL N       | NA                                       |                      |
| POSSIBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E SAMPLE HAZARDS/ REMARKS                                                                                                                           | PRESERVATION                                                                                                                                                                        | None                                                                                                                 |                                 |                                          | 7                    |
| -contain<br>concentr.<br>transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s kauloacuve matenal at<br>ations that are not be regulated for<br>ation per 49 CFR/IATA Dangerous                                                  | HOLDING TIME                                                                                                                                                                        | 6 Months                                                                                                             |                                 |                                          |                      |
| Goods R<br>DOE Ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | egulations but are not releasable per<br>er 458.1.                                                                                                  | TYPE OF CONTAINER                                                                                                                                                                   | G/P                                                                                                                  |                                 | X                                        |                      |
| lent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | NO. OF CONTAINER(S)                                                                                                                                                                 | 1                                                                                                                    |                                 |                                          |                      |
| tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | VOLUME                                                                                                                                                                              | 11                                                                                                                   |                                 | •                                        |                      |
| SPECIAL<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HANDLING AND/OR STORAGE                                                                                                                             | SAMPLE ANALYSIS                                                                                                                                                                     | Generic<br>Testing (No<br>CuS);                                                                                      |                                 |                                          |                      |
| AMPLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MATRIX*                                                                                                                                             | SAMPLE DATE SAMPLE TIM                                                                                                                                                              | E **/* 1.5.4.2.5                                                                                                     |                                 |                                          | ·                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil                                                                                                                                                | 7-13-15 0805                                                                                                                                                                        | 7                                                                                                                    |                                 |                                          |                      |
| DF POSSESSIG<br>ISBNE BY/REMIC<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>AudulantCHPRO<br>Audula | N<br>WED FROM JJL 1 3 2005 1415<br>WED FROM JJL 1 6 2015 074<br>WED FROM JJL 1 6 2015 074<br>WED FROM JJL 1 6 2015 074<br>WED FROM JJL 1 6 2015 074 | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>SSL # 1<br>SSL # 1<br>B.E. BRDG95<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JUL 1 3 2015 DATE/TIME<br>JUL 1 3 2015 DATE/TIME<br>JUL 1 6 2005 0745<br>JUL 1 6 2005 0745<br>DATE/TIME<br>DATE/TIME | FEIAL INSTRUCTIONS              |                                          |                      |
| UISHED BY/REMC<br>UISHED BY/REMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DVED FROM DATE/TIME<br>DVED FROM DATE/TIME                                                                                                          | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN                                                                                                                                      | DATE/TIME<br>DATE/TIME                                                                                               |                                 |                                          |                      |
| RATORY R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ECEIVED BY                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                      | 314                             |                                          | DATE/TIME            |
| C SAMPLE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISPOSAL METHOD                                                                                                                                      |                                                                                                                                                                                     | a                                                                                                                    | ISPOSED BY                      | •                                        | DATE/TIME            |
| TED ON 7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /2015                                                                                                                                               | FSR ID = FSR:                                                                                                                                                                       | 232 TRI                                                                                                              | /L NUM = TRVL-15-09             | 2                                        | A-6003-618 (REV 2    |

| CH2MHill P                                                       | olateau Remediation Company                                                                                         | CHAIN                                                               | <b>DF CUSTODY/SAMPLE ANALYSIS RI</b>     | QUEST                              | F15-014-194                              | PAGE 1 OF 1          |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------------------------------|----------------------|
| OLLECTOR                                                         | Munic HPRC                                                                                                          | COMPANY CONTACT<br>TODAK, D                                         | <b>TELEPHONE NO.</b><br>376-6427         | PROJECT COORDINATOR<br>TODAK, D    | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| AMPLING LOCATI<br>C8940, I-001A                                  | NO                                                                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigat           | ion - Soils                              | <b>SAF NO.</b><br>F15-014          |                                          | 30 Days / 30<br>Days |
| CE CHEST NO.                                                     | NIA                                                                                                                 | FIELD LOGBOOK NO.<br>H NF - N - SU7 - 33                            | ACTUAL SAMPLE DEPTH                      | <b>COA</b><br>303492               | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| HIPPED TO<br>Environmental Sci                                   | iences Laboratory                                                                                                   | OFFSITE PROPERTY NO.                                                | N/A                                      | BILL OF LADING/AIR BILL P          | N.N.A                                    |                      |
| ATRIX* POSS                                                      | IBLE SAMPLE HAZARDS/ REMARKS                                                                                        | PRESERVATION                                                        | None                                     |                                    |                                          | -                    |
| JL=Drum *Col<br>Jquids conc                                      | ntains Radioactive Material at<br>centrations that are not be regulated for<br>sportation per 49 CFR/IATA Dangerous | HOLDING TIME                                                        | 6 Months                                 |                                    |                                          |                      |
| Solids Good                                                      | ds Regulations but are not releasable per<br>Order 458.1.                                                           | TYPE OF CONTAINER                                                   | Split Spoon<br>Liner                     |                                    |                                          |                      |
| s= Soil<br>SE = Sediment                                         |                                                                                                                     | NO. OF CONTAINER(S)                                                 | -1                                       |                                    |                                          |                      |
| r=Tissue<br>/=Vegetation<br>N=Water                              |                                                                                                                     | VOLUME                                                              | 1000g                                    |                                    |                                          |                      |
| vi=wipe SPEC (=Other N/A                                         | IAL HANDLING AND/OR STORAGE                                                                                         | SAMPLE ANALYSIS                                                     | Generic<br>Testing (No<br>CuS);          |                                    |                                          |                      |
| SAMPLE NO                                                        | . MATRIX*                                                                                                           | SAMPLE DATE SAMPLE TIME                                             | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                    |                                          |                      |
| 331MY4                                                           | SOIL                                                                                                                | 7-13-15 0805                                                        | 7                                        |                                    |                                          |                      |
| CHAIN OF POSSES<br>RELINQUISHED BY/R                             | SEION<br>EMOVED FROM 1 3 2015 1415<br>MATETTIME<br>DATETTIME                                                        | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>BEFETVED BY/STORED IN | JUL 1 3 2015 DATE/TIME                   | PECIAL INSTRUCTIONS<br>FRVL-15-097 |                                          |                      |
| SSU-1<br>RELENTING<br>B.E. Briggs<br>B.E. Briggs<br>ReLINQUISHER | TEMOVED FROM JUL 1 6 2015 074<br>EMOVED FROM DATE/TIME                                                              | S BIE BRIGGS AND                | JUL 1.6 2014 OT45                        |                                    |                                          |                      |
| RELINQUISHED BY/F                                                | TEMOVED FROM DATE/TIME                                                                                              | RECEIVED BY/STORED IN                                               | DATE/TIME                                |                                    |                                          |                      |
| RELINQUISHED BY/F                                                | TEMOVED FROM DATE/TIME                                                                                              | RECEIVED BY/STORED IN                                               | DATE/TIME                                |                                    |                                          |                      |
| RELINQUISHED BY/F                                                | REMOVED FROM DATE/TIME                                                                                              | RECEIVED BY/STORED IN                                               | DATE/TIME                                |                                    |                                          |                      |
| LABORATORY<br>SECTION                                            | RECEIVED BY                                                                                                         |                                                                     | F                                        | TLE                                |                                          | DATE/TIME            |
| FINAL SAMPLE                                                     | DISPOSAL METHOD                                                                                                     |                                                                     | 0                                        | (SPOSED BY                         |                                          | DATE/TIME            |

A-6003-618 (REV 2)

TRVL NUM = TRVL-15-097

FSR ID = FSR233

PRINTED ON 7/8/2015

| CH2                                                          | 2MHill Plateau                                                                           | Remediation Company                                              |                                   | CHAIN C             | OF CUST                     | MPLE ANALYSIS R     | EQUEST                          | F15-014-196        |        | PAGE 1 OF 1          |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|---------------------|---------------------------------|--------------------|--------|----------------------|
| COLLECTOR                                                    | Aguilan/CHPRC                                                                            |                                                                  | COMPANY CONT<br>TODAK, D          | TACT                | -                           | <b>NE NO.</b><br>27 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE         | 8H     | DATA<br>TURNAROUND   |
| SAMPLING<br>C8940, I-00                                      | LOCATION<br>2C                                                                           |                                                                  | 9ROJECT DESIG<br>300-FF-5 Post RC | NATION              | ion - Soils                 |                     | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        |        | 30 Days / 30<br>Days |
| ICE CHEST                                                    | NO.                                                                                      | N/A                                                              | FIELD LOGBOON                     | (NO.<br>507-33/2    | 4                           | SAMPLE DEPTH        | COA<br>303492                   | GOVERNMENT V       | EHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme                                      | D<br>ntal Sciences                                                                       | Laboratory                                                       | OFFSITE PROPE                     | RTY NO. N           | /A                          |                     | BILL OF LADING/AIR BILL         | <sup>NO.</sup> N/A |        |                      |
| MATRIX*                                                      | POSSIBLE S                                                                               | SAMPLE HAZARDS/ REMARKS                                          | PRESER                            | VATION              | None                        |                     |                                 |                    |        |                      |
| DL=Drum<br>Liquids<br>DS≖Drum<br>Solids<br>L=Liquid<br>O=Oil | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                  | HOLDIN                            |                     | 6 Month                     |                     |                                 |                    |        |                      |
|                                                              | DOE Order                                                                                | Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                   | TYPE OF CONTAINER   |                             |                     |                                 |                    |        |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue                            |                                                                                          |                                                                  |                                   | NO. OF CONTAINER(S) |                             | 1                   |                                 |                    |        |                      |
| V=Vegetation<br>W=Water                                      | SPECIAL HANDLING AND/OR STORAGE                                                          |                                                                  | VOLUME                            |                     | 1000g                       |                     |                                 |                    |        |                      |
| X=Other                                                      |                                                                                          |                                                                  | SAMPLE #                          | ANALYSIS            | Generic<br>Testing<br>CAS}; |                     |                                 |                    |        | ·                    |
| SAM                                                          | PLE NO.                                                                                  | MATRIX*                                                          | SAMPLE DATE                       | SAMPLE TIME         | 1233                        |                     |                                 |                    |        |                      |
| B31MY6                                                       |                                                                                          | SOIL                                                             | 7-13-15                           | 0830                | L                           |                     |                                 |                    |        |                      |

| CHAIN OF POSSESSION                         | SIGN/ PRINT               | NAMES                       | SPECIAL INSTRUCTIONS   |                   |
|---------------------------------------------|---------------------------|-----------------------------|------------------------|-------------------|
| RELINQUISHED BY/REMOVED EROM                | 3 2015 1415 SSU           | JUL 1 3 2015                | TRVL-15-097            |                   |
| RELESSIGNED BY/REMOVED FROM                 | 1 6 2015 0745 RECEIVED BY | STORED IN JUL 16 2015       | 0745                   |                   |
| B.E. Briggs Removed FROM JUL<br>CHPRC       | 1 BATE TIME RECEIVED BY/  | STORED IN SUMAL JUL 1 6 201 | FITTIME                |                   |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME RECEIVED BY/    | STORED IN DATE              | /TIME                  |                   |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME RECEIVED BY/    | STORED IN DATE              | E/TIME                 |                   |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME RECEIVED BY/    | STORED IN DATE              | E/TIME                 |                   |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME RECEIVED BY/    | STORED IN DATE              | E/TIME                 |                   |
| LABORATORY RECEIVED BY<br>SECTION           |                           |                             | ΠΤΙΕ                   | DATE/TIME         |
| FINAL SAMPLE DISPOSAL METHOD<br>DISPOSITION |                           |                             | DISPOSED BY            | DATE/TIME         |
| PRINTED ON 5/26/2015                        | FSR                       | ID = FSR235                 | TRVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| PRINTED ON 5                | /26/2015        |            | FSR ID = FSR236                 | т                  | RVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |
|-----------------------------|-----------------|------------|---------------------------------|--------------------|-----------------------|-------------------|
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |            |                                 |                    | DISPOSED BY           | DATE/TIME         |
| LABORATORY<br>SECTION       | RECEIVED BY     |            |                                 |                    | TITLE                 | DATE/TIME         |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME  | RECEIVED BY/STORED IN           | DATE/TIME          |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME  | RECEIVED BY/STORED IN           | DATE/TIME          |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME  | RECEIVED BY/STORED IN           | DATE/TIME          |                       |                   |
| RELINQUISHED BY/R           | EMOVEDARON      | DATE/TIME  | RECEIVED BY/STORED IN           | DATE/TIME          |                       |                   |
| B.E. Briggs                 | JUL 16          | 2015 09:20 | RECEIVED BY/STORED IN O         | JUL 1 6 7015 MA-30 |                       |                   |
| RELINQUISHED BY/R           | SUL 16          | 2015 0745  | B.E. Briggs                     | JUL 1 6 2015 0745  | -                     |                   |
| J.R. Aguilar/CED            | HOVED FROM      | 2015 1415  | RECEIVED BY/STORED IN<br>SSU 出) | JUL 1 3 2015 1415  | 1KAF-12-0A1           |                   |
| CHAIN OF POSSES             | SION            |            | SIGN/ PRINT NAMES               |                    | SPECIAL INSTRUCTIONS  |                   |

| CH2                           | 2MHill Platea                                                                                                                                                                                                                                                                                                    | u Remediation Company                                                                                                      |                         | CHAIN C                        | OF CUSTOD                       | Y/SAMPLE ANALYSIS R   | EQUEST                          | F15-014-197        | PAGE 1 OF 1          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|---------------------------------|-----------------------|---------------------------------|--------------------|----------------------|
| COLLECTOR                     | R. Aquiller Chil                                                                                                                                                                                                                                                                                                 | RC                                                                                                                         | COMPANY CON<br>TODAK, D | ТАСТ                           | TEL<br>3                        | EPHONE NO.<br>76-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C8940, I-002    | LOCATION<br>2B                                                                                                                                                                                                                                                                                                   |                                                                                                                            | PROJECT DESIG           | GNATION<br>OD Field Investigat | ion - Soils                     |                       | <b>SAF NO.</b><br>F15-014       |                    | 30 Days / 30<br>Days |
| ICE CHEST                     | NO.                                                                                                                                                                                                                                                                                                              | N1/A                                                                                                                       | FIELD LOGBOO            | K NO.                          | ACT                             | TUAL SAMPLE DEPTH     | COA                             | METHOD OF SHIPMENT |                      |
|                               |                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                        | HNF.SOT                 | -33/2                          | 1                               | 3,50-14,00            | 303492                          | GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environme       | o<br>Intal Science                                                                                                                                                                                                                                                                                               | s Laboratory                                                                                                               | OFFSITE PROPI           | ERTY NO. N/A                   |                                 |                       | BILL OF LADING/AIR BILL         | NO.<br>N/A         |                      |
| MATRIX*<br>A=Air              | vironmental Sciences Laboratory       RIX*     POSSIBLE SAMPLE HAZARDS/ REMAR       ir     *Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerou<br>(Goods Regulations but are not releasable<br>DOE Order 458.1.       ioil     Sediment | SAMPLE HAZARDS/ REMARKS<br>Radioactive Material at                                                                         | PRESER                  | VATION                         | None                            |                       |                                 |                    |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentrat<br>transporta                                                                                                                                                                                                                                                                                         | tions that are not be regulated for tion per 49 CFR/IATA Dangerous                                                         | HOLDI                   |                                | 6 Months                        |                       |                                 |                    |                      |
| Solids<br>L=Liquid            | Goods Reg<br>DOE Orde                                                                                                                                                                                                                                                                                            | cods Regulations but are not releasable per<br>DE Order 458.1.     TYPE OF CONTAINER     G       NO. OF CONTAINER(S)     1 |                         | G/P                            |                                 |                       |                                 |                    |                      |
| S=Soil<br>SE=Sediment         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                         | NO. OF CONTAINER(S)            |                                 |                       |                                 |                    |                      |
| V=Vegetation<br>W=Water       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | VOI                     | UME                            | 1L                              |                       |                                 | A                  |                      |
| WI=Wipe<br>X=Other            | SPECIAL H                                                                                                                                                                                                                                                                                                        | SPECIAL HANDLING AND/OR STORAGE<br>N/A                                                                                     |                         | ANALYSIS                       | Generic<br>Testing {No<br>CAS}; |                       |                                 |                    |                      |
| SAM                           | PLE NO.                                                                                                                                                                                                                                                                                                          | MATRIX*                                                                                                                    | SAMPLE DATE             | SAMPLE TIME                    |                                 | C                     |                                 |                    |                      |
| B31MY7                        |                                                                                                                                                                                                                                                                                                                  | SOIL                                                                                                                       | 7-13-15                 | 0830                           | 4                               |                       |                                 |                    |                      |

|                             | 126/201E                      | ECD TD - ECD220                | TOW NUM - TOWL 15 007 | 4-6003-618 (PEV                       |
|-----------------------------|-------------------------------|--------------------------------|-----------------------|---------------------------------------|
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD               |                                | DISPOSED BY           | DATE/TIME                             |
| LABORATORY<br>SECTION       | RECEIVED BY                   |                                | TITLE                 | DATE/TIME                             |
| RELINQUISHED BY/F           | EMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN DAT      | E/TIME                |                                       |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN DAT      | E/TIME                |                                       |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN DAT      | E/TIME                |                                       |
| CHPRC RELINQUISHED BY/R     | EMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN DAT      | E/TIME                |                                       |
| RELINQUISHED BY             | EMOVED FROM JUL 1 BATERTIME   | RECEIVED BY/STORED IN JUL 1 62 | IDME<br>15 na - 20    |                                       |
| SSU-1                       | IUL 1 6 2015074               | SCHPRC BARTIEN JUL 16 201      | D745                  |                                       |
| RELINQUISHED BY/R           | EMOVED FROM JUL 1 3 2015 TIME | SSUAI JUL 1 3205               | 141S                  | · · · · · · · · · · · · · · · · · · · |
| CHAIN OF POSSES             | SION                          | SIGN/ PRINT NAMES              | SPECIAL INSTRUCTIONS  |                                       |

| CH2                                                                                                                                  | MHill Platea           | Remediation Company                                                                                                                                                    |                                   | CHAIN O                        | F CUST                      | ODY/SAMPLE ANALYSIS RE                | QUEST                  |               | F15-0 |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------|---------------------------------------|------------------------|---------------|-------|
| COLLECTOR<br>J.R. Ag                                                                                                                 | ullar/CHPRC            |                                                                                                                                                                        | COMPANY CONT<br>TODAK, D          | FACT                           | -                           | <b>TELEPHONE NO.</b><br>376-6427      | PROJECT CO<br>TODAK, D | OORDINATOR    | PRIC  |
| SAMPLING I<br>C8940, I-002                                                                                                           | LOCATION<br>2A         |                                                                                                                                                                        | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigati | ion - Soils                 | 5                                     | SAF NO.<br>F15-014     |               | AIR   |
| ICE CHEST                                                                                                                            | NO. N                  | IA                                                                                                                                                                     | FIELD LOGBOON                     | (NO.<br>507.33)                | ÷ (                         | ACTUAL SAMPLE DEPTH<br>14.00'- 14.50' | COA<br>303492          | •             | GOVE  |
| SHIPPED TO<br>Environme                                                                                                              | )<br>ntal Sciences     | Laboratory                                                                                                                                                             | OFFSITE PROPE                     | RTY NO. N                      | /A                          |                                       | BILL OF LA             | DING/AIR BILL | N/A   |
| MATRIX*<br>A=Air                                                                                                                     | POSSIBLE<br>*Contains  | SAMPLE HAZARDS/ REMARKS                                                                                                                                                | PRESER                            | VATION                         | None                        |                                       |                        |               |       |
| A=Air<br>DL=Drum<br>Liquids<br>DS=Drum<br>Solids<br>L=Lquid<br>Q=Oll<br>S=Soil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water | concentrati            | ons that are not be regulated for<br>ion per 49 CFR/IATA Dangerous                                                                                                     | HOLDIN                            |                                | 6 Month                     | S                                     |                        |               |       |
|                                                                                                                                      | Goods Reg<br>DOE Order | Goods Regulations but are not releasable per<br>DOE Order 458.1.     TYPE OF CONTAINER     Split Spoon<br>Liner       NO. OF CONTAINER(S)     1       VOLUME     1000g |                                   | ONTAINER                       | Split Spoon<br>Liner        |                                       |                        |               |       |
|                                                                                                                                      |                        |                                                                                                                                                                        |                                   | NO. OF CONTAINER(S)            |                             |                                       |                        |               |       |
|                                                                                                                                      |                        |                                                                                                                                                                        |                                   |                                |                             |                                       |                        |               |       |
| WI=Wipe<br>X=Other                                                                                                                   | SPECIAL H<br>N/A       | ANDLING AND/OR STORAGE                                                                                                                                                 | SAMPLE A                          | ANALYSIS                       | Generic<br>Testing<br>CAS}; | (No                                   |                        |               |       |
| SAM                                                                                                                                  | PLE NO.                | MATRIX*.                                                                                                                                                               | SAMPLE DATE                       | SAMPLE TIME                    | 机动                          |                                       |                        |               |       |
| B31N00                                                                                                                               |                        | SOIL                                                                                                                                                                   | 7-13-15                           | 0830                           | L                           |                                       |                        |               |       |

F15-014-200

PRICE CODE

AIR QUALITY

METHOD OF SHIPMENT

GOVERNMENT VEHICLE

8H

PAGE 1 OF 1

DATA TURNAROUND

30 Days / 30 Days

ORIGINAL

| CH2                                                                                                                | MHill Plateau                                                                            | Remediation Company                                              |                                   | CHAIN C                                                      | OF CUSTO                      | OY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-203                              | PAGE 1 OF 1          |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------------|----------------------|--|--|
| COLLECTOR<br>J.R.                                                                                                  | Aguiler/CHPR6                                                                            |                                                                  | COMPANY CONT<br>TODAK, D          | ACT                                                          | ٦                             | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |  |  |
| SAMPLING I<br>C8940, I-003                                                                                         | OCATION<br>BB                                                                            |                                                                  | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>D Field Investigat                                 | ion - Soils                   |                          | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |  |  |
| ICE CHEST I                                                                                                        | NO.                                                                                      | N/A                                                              | FIELD LOGBOOK                     | (NO.<br>507-33/2                                             | 2 1                           | TUAL SAMPLE DEPTH        | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |  |  |
| SHIPPED TO<br>Environme                                                                                            | )<br>ntal Sciences L                                                                     | Laboratory                                                       | OFFSITE PROPE                     | RTY NO. N                                                    | /A                            |                          | BILL OF LADING/AIR BILL         | N/N/A                                    |                      |  |  |
| MATRIX*<br>A=Air                                                                                                   | POSSIBLE S                                                                               | AMPLE HAZARDS/ REMARKS                                           | PRESER                            | VATION                                                       | None                          |                          |                                 |                                          |                      |  |  |
| DL=Drum<br>Liquids<br>DS=Drum                                                                                      | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                  | HOLDIN                            | G TIME                                                       | 6 Month                       |                          |                                 |                                          |                      |  |  |
| DS=Drum<br>Solids<br>L=Liquid<br>O=Oil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other | Goods Regul<br>DOE Order 4                                                               | Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                   | ulations but are not releasable per 458.1. TYPE OF CONTAINER |                               | ONTAINER                 | G/P                             |                                          |                      |  |  |
|                                                                                                                    |                                                                                          |                                                                  |                                   | NO. OF CONTAINER(S)                                          |                               |                          |                                 |                                          |                      |  |  |
|                                                                                                                    | SPECIAL HANDLING AND/OR STORAGE                                                          |                                                                  | VOLUME                            |                                                              | 1L                            |                          | ,                               |                                          |                      |  |  |
|                                                                                                                    |                                                                                          |                                                                  | SAMPLE A                          | NALYSIS                                                      | Generic<br>Testing {<br>CAS}; |                          |                                 |                                          |                      |  |  |
| SAM                                                                                                                | PLE NO.                                                                                  | MATRIX*                                                          | SAMPLE DATE                       | SAMPLE TIME                                                  | -14                           | 5.2<br>3.5               |                                 |                                          |                      |  |  |
| B31N03                                                                                                             |                                                                                          | SOIL                                                             | 7-13-15                           | 0908                                                         | -                             |                          |                                 |                                          |                      |  |  |

| CHAIN OF POSSESS                          | SION            |               | SIGN/ PRINT NAMES                               | SPI               | CIAL INSTRUCTIONS   |                   |
|-------------------------------------------|-----------------|---------------|-------------------------------------------------|-------------------|---------------------|-------------------|
| J.R. Aguiler/CHPRE                        | DUL-            | 1 3 ZUIS 1415 | RECEIVED BY/STORED IN<br>SSU # 1 JUL            | 1 3 2015 1415     | {VL-15-09/          |                   |
| SSU-1                                     | EMOVED FROM     | 1 6 2015 0745 | CHPRC CHPRC JUL                                 | 16 2015 0745      |                     |                   |
| RELINQUISHED BY A<br>B.E. Briggs<br>CHPAC | Sugar JUL       | 1 6 7015 9.30 | RECEIVED BY/STORED IN<br>U. Snyder (M. Snyder J | UL 1 6 2015 09:30 |                     |                   |
| RELINQUISHED BY/R                         |                 | DATE/TIME     | RECEIVED BY/STORED IN                           | DATE/TIME         |                     |                   |
| RELINQUISHED BY/RI                        | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                           | DATE/TIME         |                     |                   |
| RELINQUISHED BY/R                         | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                           | DATE/TIME         |                     |                   |
| LABORATORY<br>SECTION                     | RECEIVED BY     |               |                                                 | ТІТ               | LE                  | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION               | DISPOSAL METHOD |               |                                                 | DIS               | POSED BY            | DATE/TIME         |
| PRINTED ON 5                              | /26/2015        |               | FSR ID = FSR241                                 | TRV               | L NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| CH2                               | MHill Plateau                                                               | Remediation Company                                              |                                                              | CHAIN O     | F CUST                               | SAMPLE ANALYSIS R       | EQUEST                          | F15-014-205  |        | PAGE 1 OF 1          |
|-----------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-------------|--------------------------------------|-------------------------|---------------------------------|--------------|--------|----------------------|
| COLLECTOR                         | J.R. Aguilan/CHPRC<br>MPLING LOCATION<br>3940, I-003A<br>E CHEST NO.<br>N/A |                                                                  | COMPANY CONT<br>TODAK, D                                     | TACT        | <b>TELEPHONE NO.</b><br>376-6427     |                         | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H     | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C8940, I-003        |                                                                             |                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |             |                                      |                         | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |        | 30 Days / 30<br>Days |
| ICE CHEST                         |                                                                             |                                                                  | FIELD LOGBOOK NO.<br>14 NF- N-807-33/2                       |             | ACTUAL SAMPLE DEPTH<br>16.50 - 17.00 |                         | COA<br>303492                   | GOVERNMENT V | EHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme           | HIPPED TO<br>Environmental Sciences Laboratory                              |                                                                  | OFFSITE PROPERTY NO.                                         |             |                                      | BILL OF LADING/AIR BILL | NO.<br>N/A                      |              |        |                      |
| MATRIX*<br>A=Air                  | ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS                                     |                                                                  | PRESERVATION                                                 |             | None                                 |                         |                                 |              |        |                      |
| Liquids<br>DS=Drum                | concentratio<br>transportatio                                               | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME<br>TYPE OF CONTAINER<br>NO. OF CONTAINER(S)     |             | 6 Monti                              |                         |                                 |              |        |                      |
| Solids<br>L=Llquid<br>O=Óil       | Goods Regul<br>DOE Order 4                                                  | lations but are not releasable per<br>458.1.                     |                                                              |             | Split Sp<br>Liner                    | _                       |                                 |              |        |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                             |                                                                  |                                                              |             | 1                                    |                         |                                 |              |        |                      |
| V=Vegetation<br>W=Water           |                                                                             |                                                                  | VOL                                                          | UME         | 1000g                                |                         |                                 |              |        |                      |
| WI=WIPe<br>X≖Other                | SPECIAL HA                                                                  | NDLING AND/OR STORAGE                                            | SAMPLE A                                                     | ANALYSIS    | Generic<br>Testing<br>CAS};          |                         |                                 |              |        |                      |
| SAM                               | PLE NO.                                                                     | MATRIX*                                                          | SAMPLE DATE                                                  | SAMPLE TIME |                                      |                         |                                 |              |        |                      |
| B31N05                            | - set - au se au                                                            | SOIL                                                             | 7-13-15                                                      | 0912        |                                      |                         |                                 |              |        |                      |

| PRINTED ON 5                | 5/26/2015       |                  | FSR ID = FSR242             | T                | RVL NUM = TRVL-15-097 | A-6003-618 (REV 2) |
|-----------------------------|-----------------|------------------|-----------------------------|------------------|-----------------------|--------------------|
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                  |                             |                  | DISPOSED BY           | DATE/TIME          |
| LABORATORY<br>SECTION       | RECEIVED BY     |                  |                             |                  | TITLE                 | DATE/TIME          |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME        | RECEIVED BY/STORED IN       | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME        | RECEIVED BY/STORED IN       | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME        | RECEIVED BY/STORED IN       | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | REMOVED TROM    | DATE/TIME        | RECEIVED BY/STORED IN       | DATE/TIME        |                       |                    |
| RELINQUISHED BY             | MEMOYED FROM    | UL 1 6 2015 09-2 | RECEIVED BY/STORED IN       | 1 1 6 2015 NO.30 |                       |                    |
| SSU-1                       | EMOVED FROM     | JL 1 6 2015 0745 | B.E. Briggs BY/STORED IN JU | L 1 6 2015 0745  |                       |                    |
| J.R. Aguilar/CHPRC          | STATES          | -1 3 2013 1415   | SSU#1 JUL 1                 | 32015 1415       |                       |                    |
| CHAIN OF POSSES             | STON            |                  | SIGN/ PRINT NAMES           |                  | TRVL-15-097           |                    |

| CH2                               | CH2MHill Plateau Remediation Company<br>ECTOR<br>J.R. Agullar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | CHAIN                                                  | OF CUST                     | ODY/SAMPLE ANALYSIS R                                                                                           | EQUEST                             | F15-014-213                              | PAGE 1 OF 1        |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|--------------------|
| COLLECTOR                         | gullar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | COMPANY CONTACT<br>TODAK, D                            |                             | <b>TELEPHONE NO.</b><br>376-6427                                                                                | PROJECT COORDINATOR<br>TODAK, D    | PRICE CODE 8H                            | DATA<br>TURNAROUND |
| SAMPLING L                        | NG LOCATION<br>I-005B<br>EST NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | PROJECT DESIGNATION                                    |                             | a a construction de la construction | SAF NO.                            | AIR QUALITY                              | 30 Days / 30       |
| C8940, I-005                      | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 300-FF-5 Post ROD Field Investiga                      | ation - Soi                 | Is                                                                                                              | F15-014                            |                                          | Uays               |
| CE CHEST N                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | FIELD LOGBOOK NO.<br>14NF-N-SU7-33/                    | 2                           | ACTUAL SAMPLE DEPTH                                                                                             | COA<br>303492                      | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA            |
| HIPPED TO<br>Environmer           | (PPED TO<br>vironmental Sciences Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | OFFSITE PROPERTY NO. N/A                               |                             |                                                                                                                 | BILL OF LADING/AIR BILL            | ۳A                                       |                    |
| A=Air                             | POSSIBLE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE HAZARDS/ REMARKS | PRESERVATION                                           | None                        |                                                                                                                 |                                    |                                          |                    |
| )L=Drum<br>Liquids<br>DS=Drum     | =Drum<br>quids<br>S=Drum<br>Sids<br>Solids<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid |                         | HOLDING TIME                                           | 6 Mont                      | hs                                                                                                              |                                    |                                          |                    |
| Solids<br>L=Liquid<br>O=Oll       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | TYPE OF CONTAINER                                      | G/P                         |                                                                                                                 |                                    |                                          |                    |
| 5=Soil<br>5E=Sediment<br>T=Tissue |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | NO. OF CONTAINER(S)                                    | 1                           |                                                                                                                 |                                    |                                          |                    |
| V=Vegetation<br>W=Water           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | VOLUME                                                 | 1L                          |                                                                                                                 |                                    |                                          |                    |
| w1=wipe<br>X=Other                | SPECIAL H<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDLING AND/OR STORAGE  | SAMPLE ANALYSIS                                        | Generic<br>Testing<br>CAS}; | {No                                                                                                             | • · · · ·                          |                                          |                    |
| SAMI                              | PLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MATRIX*                 | SAMPLE DATE SAMPLE TIM                                 | E                           | 2373                                                                                                            |                                    |                                          |                    |
| B31N13                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOIL                    | 7-13-15 0955                                           | L                           |                                                                                                                 |                                    |                                          |                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                        |                             |                                                                                                                 |                                    |                                          |                    |
| HAIN OF F                         | ED BY/REMOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED FROM JUL 1 3 ZUIS 14 | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>LS SSUHI | JUL                         | 1 3 2015 1415                                                                                                   | PECIAL INSTRUCTIONS<br>TRVL-15-097 |                                          |                    |

| CHAIN OF POSSESS            | SION            |                             | SIGN/ PRINT NAMES        |                   | SPECIAL INSTRUCTIONS  |                    |
|-----------------------------|-----------------|-----------------------------|--------------------------|-------------------|-----------------------|--------------------|
| RELINQUISHED BY/R           | EMOVED FROM JUL | 1 3 ZUIS 1415               | SUH JUL                  | 1 3 2015 1415     | TRVL-15-097           |                    |
| SSU-1                       | JUL             | 1620150745                  | CHPRC & Bruck JUL        | 1 6 2015 0745     |                       |                    |
| RELINQUISHED BX/R           | STICK JUL       | DATE/TIME<br>1 6 7015 79-30 | RECEIVED BY/STORED IN JU | L 1 6 2015 109-30 |                       |                    |
| RELINQUISHED BY/R           | EMOVED PROM     | DATE/TIME                   | RECEIVED BY/STORED IN    | DATE/TIME         |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                   | RECEIVED BY/STORED IN    | DATE/TIME         |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                   | RECEIVED BY/STORED IN    | DATE/TIME         |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                   | RECEIVED BY/STORED IN    | DATE/TIME         |                       |                    |
| LABORATORY<br>SECTION       | RECEIVED BY     |                             |                          |                   | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                             |                          |                   | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                | /26/2015        |                             | FSR ID = FSR249          | TI                | RVL NUM = TRVL-15-097 | A-6003-618 (REV 2) |

| CH2                           | CH2MHill Plateau Remediation Company                                            |                                                                 |                                                                       | CHAIN OF    | CUSTO                          | DY/SAMPLE ANALYSIS RE                    | QUEST                           | F15-014-219   | PAGE 1 OF 1          |
|-------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------------------------|------------------------------------------|---------------------------------|---------------|----------------------|
| COLLECTOR                     | Aguilar/CHPRC                                                                   |                                                                 | COMPANY CONT<br>TODAK, D                                              | АСТ         | Т                              | ELEPHONE NO.<br>376-6427                 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H | DATA<br>TURNAROUND   |
| SAMPLING<br>C8940, I-000      | NG LOCATION<br>I-006B<br>IST NO.                                                |                                                                 | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils  |             |                                |                                          | <b>SAF NO.</b><br>F15-014       |               | 30 Days / 30<br>Days |
| ICE CHEST                     | HEST NO.<br>N/A                                                                 |                                                                 | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-507-33/2 24,00'-24,50' |             | COA<br>303492                  | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL                        |               |                      |
| SHIPPED TO<br>Environme       | IPPED TO<br>wironmental Sciences Laboratory                                     |                                                                 | OFFSITE PROPERTY NO.                                                  |             | BILL OF LADING/AIR BILL I      | NO.                                      |                                 |               |                      |
| MATRIX*<br>A=Air              | TRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>Air *Contains Radioactive Material at |                                                                 | PRESER                                                                | ATION       | None                           |                                          |                                 |               |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentration                                                                   | ns that are not be regulated for<br>n per 49 CFR/IATA Dangerous | HOLDING TIME                                                          |             | 6 Months                       |                                          |                                 |               |                      |
| Solids<br>L=Liquid            | Goods Regul<br>DOE Order 4                                                      | ations but are not releasable per 58.1.                         | TYPE OF CONTAINER                                                     |             | G/P                            |                                          |                                 |               |                      |
| S=Soil<br>SE=Sediment         |                                                                                 |                                                                 | NO. OF CONTAINER(S)                                                   |             | 1                              |                                          |                                 |               |                      |
| V=Vegetation<br>W=Water       |                                                                                 |                                                                 | VOLUME                                                                |             | 1L                             |                                          |                                 |               |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA<br>N/A                                                               | NDLING AND/OR STORAGE                                           | SAMPLE A                                                              | NALYSIS     | Generic<br>Testing {N<br>CAS}; | D                                        |                                 |               |                      |
| SAM                           | PLE NO.                                                                         | MATRIX*                                                         | SAMPLE DATE                                                           | SAMPLE TIME | trail.                         | **<br>*                                  |                                 |               |                      |
| B31N19                        |                                                                                 | SOIL                                                            | 7-13-15                                                               | 1030        | V                              |                                          |                                 |               |                      |

| PRINTED ON 5                | 6/26/2015            | FSR ID = FSR254          | TRVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |
|-----------------------------|----------------------|--------------------------|------------------------|-------------------|
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD      |                          | DISPOSED BY            | DATE/TIME         |
| LABORATORY<br>SECTION       | RECEIVED BY          |                          | ΠΤLΕ                   | DATE/TIME         |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | IE RECEIVED BY/STORED IN | DATE/TIME              |                   |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | IE RECEIVED BY/STORED IN | DATE/TIME              |                   |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | IE RECEIVED BY/STORED IN | DATE/TIME              |                   |
| CHIPPC<br>CHIPPC            | EMOVED ROM DATE/TIM  | IE RECEIVED BY/STORED IN | DATE/TIME              |                   |
| RELINQUISHED BY /R          | EMOVED FROM          | RECEIVED BY/STORED IN    | 1 6 DATE/TIME          |                   |
| RELINQUISHED BY/R           | JUL 1 6 2015         | B.E. Briggs Contract III |                        |                   |
| J.R. Aguilar/CHPRC          | ITTE JUL 1 3 2013 12 | HLS SSU #1 JUL 13        | 2015 1415              |                   |
| LHAIN OF POSSES             | SION                 | SIGN/ PRINT NAMES        | TRVI -15-097           |                   |

| CH2                       | MHill Plateau                                                                     | Remediation Company                                                                                                                | CHAIN                                                                                                                                                         | OF CUSTO                       | DY/SAMPLE ANALYSIS R                                                                  | EQUEST                          | F15-014-222        | PAGE 1 OF 1        |  |
|---------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------|--------------------|--------------------|--|
| J.R. Agui                 | liar/CHPRC                                                                        |                                                                                                                                    | COMPANY CONTACT<br>TODAK, D                                                                                                                                   | Т                              | ELEPHONE NO.<br>376-6427                                                              | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND |  |
| AMPLING L                 | LOCATION                                                                          |                                                                                                                                    | PROJECT DESIGNATION                                                                                                                                           |                                |                                                                                       | SAF NO.                         | AIR QUALITY        | 30 Days / 30       |  |
| C8940, I-007              | 7D                                                                                |                                                                                                                                    | 300-FF-5 Post ROD Field Investig                                                                                                                              | gation - Soils                 |                                                                                       | F15-014                         |                    | Days               |  |
| CE CHEST N                | NO.                                                                               |                                                                                                                                    | FIELD LOGBOOK NO.                                                                                                                                             | A                              | CTUAL SAMPLE DEPTH                                                                    | COA                             | METHOD OF SHIPMENT | 0.0.7.0.7.114      |  |
|                           | N/                                                                                | A                                                                                                                                  | HNF: N-SO7                                                                                                                                                    | -33/2.                         | 25.00'-25.50'                                                                         | 303492                          | GOVERNMENT VEHICLE | ORIGINA            |  |
| IPPED TO                  | )<br>ntal Sciences L                                                              | aboratory                                                                                                                          | OFFSITE PROPERTY NO.                                                                                                                                          | /A                             |                                                                                       | BILL OF LADING/AIR BILL N/      | NO.<br>A           |                    |  |
| ATRIX*                    | POSSIBLE SA                                                                       | MPLE HAZARDS/ REMARKS                                                                                                              | PRESERVATION                                                                                                                                                  | None                           |                                                                                       | , k                             |                    |                    |  |
| .=Drum<br>quids<br>S=Drum | concentration                                                                     | ns that are not be regulated for<br>n per 49 CFR/IATA Dangerous                                                                    | HOLDING TIME                                                                                                                                                  | 6 Months                       |                                                                                       |                                 |                    |                    |  |
| lids<br>Liquid            | Goods Regula<br>DOE Order 4                                                       | ations but are not releasable per 58.1.                                                                                            | TYPE OF CONTAINER                                                                                                                                             | Split Spo<br>Liner             | on                                                                                    |                                 |                    |                    |  |
| =Soll                     |                                                                                   |                                                                                                                                    | NO. OF CONTAINER(S)                                                                                                                                           | 1                              |                                                                                       |                                 |                    |                    |  |
| =Vegetation<br>/=Water    |                                                                                   |                                                                                                                                    | VOLUME                                                                                                                                                        | 1000g                          |                                                                                       |                                 |                    |                    |  |
| I=Wipe<br>=Other          | SPECIAL HA                                                                        | NDLING AND/OR STORAGE                                                                                                              | SAMPLE ANALYSIS                                                                                                                                               | Generic<br>Testing {I<br>CAS}; | ka .                                                                                  |                                 |                    |                    |  |
| SAMI                      | PLE NO.                                                                           | MATRIX*                                                                                                                            | SAMPLE DATE SAMPLE TIM                                                                                                                                        | IE NESS                        | 50                                                                                    |                                 |                    |                    |  |
| 331N22                    |                                                                                   | SOIL                                                                                                                               | 7-12-15 1/18                                                                                                                                                  | 1.000                          |                                                                                       |                                 |                    |                    |  |
|                           |                                                                                   |                                                                                                                                    |                                                                                                                                                               |                                |                                                                                       |                                 |                    |                    |  |
| HAIN OF P                 | POSSESSION                                                                        |                                                                                                                                    | SIGN/ PRINT NAMES                                                                                                                                             |                                | S                                                                                     | SPECIAL INSTRUCTIONS            |                    |                    |  |
| ELINQUISH<br>B.E. Brigg   | ED BY/REMOVED<br>ED BY/REMOVED<br>ED BY/REMOVED<br>ED BY/REMOVED<br>ED BY/REMOVED | JUL 1 32015 14<br>PROM JUL 1 32015 14<br>JUL 1 6 2015 01<br>PROM JUL 1 6 2015 01<br>PROM JUL 1 6 2015 01<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>15 SSU #1<br>US E-ENG98<br>CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JUL<br>JU<br>nyeln Jl          | 1 3 2015 1415<br>L 1 6 2015 0745<br>JL 1 6 2015 0745<br>JL 1 6 2015 0725<br>DATE/TIME | IKVL-13-097                     |                    |                    |  |
| ELINQUISH                 | ED BY/REMOVED                                                                     | FROM DATE/TIME                                                                                                                     | RECEIVED BY/STORED IN                                                                                                                                         |                                | DATE/TIME                                                                             |                                 |                    |                    |  |
| ELINQUISH                 | ED BY/REMOVED                                                                     | D FROM DATE/TIME                                                                                                                   | RECEIVED BY/STORED IN                                                                                                                                         |                                | DATE/TIME                                                                             |                                 |                    |                    |  |
| ELINQUISH                 | ED BY/REMOVE                                                                      | D FROM DATE/TIME                                                                                                                   | RECEIVED BY/STORED IN                                                                                                                                         |                                | DATE/TIME                                                                             |                                 |                    |                    |  |
| LABORAT                   | TORY RECE                                                                         | EVED BY                                                                                                                            |                                                                                                                                                               |                                | Т                                                                                     | ITLE                            |                    | DATE/TIME          |  |

FSR ID = FSR256

DISPOSED BY

TRVL NUM = TRVL-15-097

FINAL SAMPLE DISPOSITION

PRINTED ON 5/26/2015

DISPOSAL METHOD

DATE/TIME

A-6003-618 (REV 2)

| CH                                | 2MHill Plateau                                 | Remediation Company                                               |                                                                                                                   | CHAIN O     | F CUST                      | Y/SAMPLE ANALYSIS RE                                        | QUEST                           | F15-014-223                              |    | PAGE | 1 0             | F 1   |
|-----------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|-------------------------------------------------------------|---------------------------------|------------------------------------------|----|------|-----------------|-------|
| COLLECTOR<br>J.R. A               | l<br>Iguiler/CHPRC                             |                                                                   | COMPANY CONT<br>TODAK, D                                                                                          | TACT        |                             | EPHONE NO.<br>76-6427                                       | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE                               | 8H |      | DA<br>TURNA     | ROUND |
| SAMPLING<br>C8940, I-00           | LOCATION<br>7C                                 |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils<br>FIELD LOGBOOK NO.<br>HNF-N-S07-33/2 25,50 |             |                             |                                                             | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              |    |      | 30 Days<br>Days |       |
| ICE CHEST                         | NO. N                                          | /A                                                                |                                                                                                                   |             |                             | TUAL SAMPLE DEPTH<br>5.50 <sup>4</sup> - 26.00 <sup>1</sup> | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE |    | (    | ORIGINA         |       |
| SHIPPED TO<br>Environme           | HIPPED TO<br>Environmental Sciences Laboratory |                                                                   | OFFSITE PROPERTY NO. N/A                                                                                          |             |                             | BILL OF LADING/AIR BILL                                     | NO.<br>N/A                      |                                          |    |      |                 |       |
| MATRIX*<br>A=Air                  | ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS        |                                                                   | PRESER                                                                                                            | VATION      | None                        |                                                             |                                 |                                          |    |      |                 |       |
| Liquids<br>DS=Drum                | concentration<br>transportation                | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME<br>TYPE OF CONTAINER<br>NO. OF CONTAINER(S)                                                          |             | 6 Month                     |                                                             |                                 |                                          |    |      |                 |       |
| Solids<br>L=Liquid<br>O=Oil       | DOE Order                                      | Jations but are not releasable per<br>458.1.                      |                                                                                                                   |             | Split Sp<br>Liner           |                                                             |                                 |                                          |    |      |                 |       |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                |                                                                   |                                                                                                                   |             | 1                           |                                                             |                                 |                                          |    |      |                 |       |
| V=Vegetation<br>W=Water           |                                                |                                                                   | VOL                                                                                                               | UME         | 1000g                       |                                                             |                                 |                                          |    |      |                 |       |
| X=Other                           | SPECIAL HA                                     | ANDLING AND/OR STORAGE                                            | SAMPLE                                                                                                            | ANALYSIS    | Generic<br>Testing<br>CAS}; |                                                             |                                 |                                          |    |      |                 |       |
| SAM                               | PLE NO.                                        | MATRIX*                                                           | SAMPLE DATE                                                                                                       | SAMPLE TIME | Res a                       |                                                             |                                 |                                          |    |      |                 |       |
| B31N23                            |                                                | SOIL                                                              | 7-13-15                                                                                                           | 1108        | -                           |                                                             |                                 |                                          |    |      |                 |       |

| CHAIN OF POSSES                         | SION            |                                        | SIGN/ PRINT NAMES                | ,                 | SPECIAL INSTRUCTIONS  |                   |
|-----------------------------------------|-----------------|----------------------------------------|----------------------------------|-------------------|-----------------------|-------------------|
| RELINQUISHED BY/R<br>J.R. Aguiler(CHPRC | EMOVED FROM     | 1 3 2015 1415                          | SSU # J JUL                      | 1 3 2015 1415     | TRVL-15-097           |                   |
| SSU-1                                   | EMOVED FROM     | L 1 6 2015 0                           | B.E. Briggs DISTORED IN<br>CHPRC | IUL 1 6 2015 0745 |                       |                   |
| CHPRC                                   | Brigg JUL       | 1 6 2015 09:30                         | RECEIVED BY/STORED IN 8          | JUL 1 6 2015 09:3 | )                     |                   |
| RELINQUISHED BY/R                       | ÉMOVED ROM      | DATE/TIME                              | RECEIVED BY/STORED IN            | DATE/TIME         |                       |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME                              | RECEIVED BY/STORED IN            | DATE/TIME         |                       |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME                              | RECEIVED BY/STORED IN            | DATE/TIME         |                       |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME                              | RECEIVED BY/STORED IN            | DATE/TIME         |                       |                   |
| LABORATORY<br>SECTION                   | RECEIVED BY     | ······································ |                                  |                   | TITLE                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION             | DISPOSAL METHOD |                                        |                                  |                   | DISPOSED BY           | DATE/TIME         |
| PRINTED ON 5                            | /26/2015        |                                        | FSR ID = FSR257                  | т                 | RVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| COLLECTOR<br>J.R. Aguilan               | CHPRC                                                                          | COMPANY CONT                      | ACT                             | 1.                          |                                        |                                 |                                          |                      |
|-----------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-----------------------------|----------------------------------------|---------------------------------|------------------------------------------|----------------------|
|                                         |                                                                                | TODAK, D                          |                                 |                             | ELEPHONE NO.<br>376-6427               | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING LOCATI<br>C8940, I-007B        | ION                                                                            | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>D Field Investigation | on - Soil:                  |                                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| ICE CHEST NO.                           | N/A                                                                            | FIELD LOGBOOK                     | NO.                             | 2                           | ACTUAL SAMPLE DEPTH<br>26.00' - 26.50' | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environmental Sc          | PED TO<br>ronmental Sciences Laboratory                                        |                                   | rty no.<br>N                    | /A                          |                                        | BILL OF LADING/AIR BILL         | NO.<br>N/A                               |                      |
| ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS |                                                                                | PRESERVATION                      |                                 | None                        |                                        |                                 |                                          |                      |
| Liquids conc<br>DS=Drum trans           | centrations that are not be regulated for sportation per 49 CFR/IATA Dangerous | HOLDING TIME                      |                                 | 6 Month                     | 5                                      |                                 |                                          |                      |
| Solids Good<br>L=Liquid DOE<br>O=Oil    | ds Regulations but are not releasable per<br>E Order 458.1.                    | TYPE OF CONTAINER                 |                                 | G/P                         |                                        |                                 |                                          |                      |
| 3=Soil<br>SE=Sediment<br>T=TIssue       |                                                                                | NO. OF CONTAINER(S) VOLUME        |                                 | 1                           |                                        |                                 |                                          |                      |
| V=Vegetation<br>W=Water                 |                                                                                |                                   |                                 | 1L                          |                                        |                                 |                                          |                      |
| x=Other SPEC                            | CIAL HANDLING AND/OR STORAGE                                                   | SAMPLE A                          | NALYSIS                         | Generic<br>Testing<br>CAS}; | No                                     |                                 |                                          |                      |
| SAMPLE NO                               | D. MATRIX*                                                                     | SAMPLE DATE                       | SAMPLE TIME                     | L'hatta                     | 122 M                                  |                                 |                                          |                      |
| B31N24                                  | SOIL                                                                           | 7-13-15                           | 1108                            | -                           |                                        |                                 |                                          |                      |

| CHAIN OF POSSES                        | SION            |                             | SIGN/ PRINT NAMES                                               | S                        | PECIAL INSTRUCTIONS  |                   |
|----------------------------------------|-----------------|-----------------------------|-----------------------------------------------------------------|--------------------------|----------------------|-------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPE | REMOVED FROM    | 1 3 ZUID 1415               | RECEIVED BY/STORED IN<br>SSUH JUL 1                             | 32015 1415               | IRVL-15-097          |                   |
| RELINQUISHED BY/R                      | JUL 1           | 6 2015 0745                 | RECEIVED BY/STOREDIN<br>B.E. Briggs Storedin<br>CHPRC 2000 11 1 | DATE/TIME<br>6 2015 0745 |                      |                   |
| RELINOUTSHED BY                        | Bruce JUL       | DATE/TIME<br>1 6 2015 09:30 | RECEIVED BY/STORED IN SUJOLIUL 1                                | DATE/TIME                |                      |                   |
| RELINQUISHED BY/R                      | REMOVED FROM    | DATE/TIME                   | RECEIVED BY/STORED IN                                           | DATE/TIME                |                      |                   |
| RELINQUISHED BY/R                      | REMOVED FROM    | DATE/TIME                   | RECEIVED BY/STORED IN                                           | DATE/TIME                |                      |                   |
| RELINQUISHED BY/R                      | REMOVED FROM    | DATE/TIME                   | RECEIVED BY/STORED IN                                           | DATE/TIME                |                      |                   |
| LABORATORY<br>SECTION                  | RECEIVED BY     |                             | 1                                                               | Т                        | ITLE                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION            | DISPOSAL METHOD |                             |                                                                 | C                        | ISPOSED BY           | DATE/TIME         |
| PRINTED ON 5                           | 5/26/2015       |                             | FSR ID = FSR258                                                 | TR                       | VL NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| CH2                           | MHill Plateau                 | <b>Remediation Company</b>                                        |                                                                                                                                                                  | CHAIN C                      | OF CUST                     | Y/SAMPLE ANALYSIS RE   | QUEST                           | F15-014-226                              | PAGE 1 OF 1          |
|-------------------------------|-------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.               | R. Aguilar/CHPR               | c                                                                 | COMPANY CONT<br>TODAK, D                                                                                                                                         | ACT                          |                             | LEPHONE NO.<br>76-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING I<br>C8940, I-007    | LOCATION<br>7A                |                                                                   | PROJECT DESIG<br>300-FF-5 Post RC                                                                                                                                | NATION<br>D Field Investigat | ion - Soils                 |                        | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| CE CHEST I                    | CHEST NO.<br>N/A              |                                                                   | FIELD LOGBOOK NO.<br>HWF-N-SU7.33/                                                                                                                               |                              | 12                          | TUAL SAMPLE DEPTH      | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences            | Laboratory                                                        | OFFSITE PROPE                                                                                                                                                    | RTY NO. N                    | /A                          |                        | BILL OF LADING/AIR BILL         | 1%<br>//A                                |                      |
| ATRIX*                        | POSSIBLE S                    | AMPLE HAZARDS/ REMARKS                                            | MARKS         PRESERVATION         Non           ted for<br>erous<br>able per         HOLDING TIME         6 M           TYPE OF CONTAINER         Split<br>Line |                              | None                        |                        |                                 |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio<br>transportatio | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous |                                                                                                                                                                  |                              | 6 Month                     |                        |                                 |                                          |                      |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regu<br>DOE Order       | lations but are not releasable per<br>458.1.                      |                                                                                                                                                                  |                              | Split Sp<br>Liner           |                        |                                 |                                          |                      |
| S=Soil<br>SE=Sediment         |                               |                                                                   | NO. OF CONTAINER(S)                                                                                                                                              |                              | 1                           |                        |                                 |                                          |                      |
| V=Vegetation<br>W=Water       |                               |                                                                   | VOL                                                                                                                                                              | UME                          | 1000g                       |                        |                                 |                                          |                      |
| WI=Wipe<br>X≂Other            | SPECIAL HA                    | ANDLING AND/OR STORAGE                                            | SAMPLE A                                                                                                                                                         | ANALYSIS                     | Generic<br>Testing<br>CAS}; |                        |                                 |                                          |                      |
| SAM                           | PLE NO.                       | MATRIX*                                                           | SAMPLE DATE                                                                                                                                                      | SAMPLE TIME                  |                             |                        |                                 |                                          |                      |
| B31N26                        |                               | SOIL                                                              | 7-13-15                                                                                                                                                          | 1108                         | V                           |                        |                                 |                                          |                      |

| CHAIN OF POSSESS            | ION              |                           | SIGN/ PRINT NAMES           | SPEC              | CIAL INSTRUCTIONS |                   |
|-----------------------------|------------------|---------------------------|-----------------------------|-------------------|-------------------|-------------------|
| RELINQUISHED BY/RE          | MOVED FROM JUL 1 | 3 ZUIS 1415               | RECEIVED BY/STORED IN JUL 1 | 32013 DATE/TIME   | VL-15-09/         |                   |
| RELINQUISHED BY/RE<br>SSU-1 | JUL              | DATE/TIME<br>1 6 2015 074 | BE. Briggs Je Bruin JUL     | 1 6 2015 0745     |                   |                   |
| CHPRC 20                    | Jucz JUL         | 1 6 2015 99               | RECEIVED BY/STORED IN OF JU | IL 1 6 2015 09:30 |                   |                   |
| RELINQUISHED BY/RE          | MOVED FRIEN      | DATE/TIME                 | RECEIVED BY/STORED IN       | DATE/TIME         |                   |                   |
| RELINQUISHED BY/RE          | MOVED FROM       | DATE/TIME                 | RECEIVED BY/STORED IN       | DATE/TIME         | •                 |                   |
| RELINQUISHED BY/RE          | EMOVED FROM      | DATE/TIME                 | RECEIVED BY/STORED IN       | DATE/TIME         |                   | ×                 |
| RELINQUISHED BY/RE          | EMOVED FROM      | DATE/TIME                 | RECEIVED BY/STORED IN       | DATE/TIME         |                   |                   |
| LABORATORY<br>SECTION       | RECEIVED BY      |                           |                             | דודנו             | E                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD  |                           |                             | DISP              | OSED BY           | DATE/TIME         |
| PRINTED ON 5/               | /26/2015         |                           | FSR ID = FSR259             | TRVL              | NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| CH2                           | MHill Plateau                                | Remediation Company                                               |                                   | CHAIN O                | F CUST                      | DY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-227  |        | PAGE | 1 0          | F 1            |
|-------------------------------|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------|------------------------|-----------------------------|--------------------------|---------------------------------|--------------|--------|------|--------------|----------------|
| COLLECTOR                     | gullar/CHPRC                                 |                                                                   | COMPANY CONT<br>TODAK, D          | ГАСТ                   |                             | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H     |      | DA<br>TURNA  | ROUND          |
| SAMPLING (<br>C8940, I-008    | LOCATION<br>BD                               |                                                                   | PROJECT DESIG<br>300-FF-5 Post RC | DD Field Investigation | ion - Soil                  |                          | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |        |      | 30 Day<br>Da | /s / 30<br>iys |
| ICE CHEST                     | NO.                                          | N/A                                                               | FIELD LOGBOON                     | (NO.<br>- SU7-33/      | 2                           | TUAL SAMPLE DEPTH        | COA<br>303492                   | GOVERNMENT V | EHICLE | (    | ORIC         | SINAL          |
| SHIPPED TO<br>Environme       | IPPED TO<br>nvironmental Sciences Laboratory |                                                                   | OFFSITE PROPERTY NO.              |                        |                             |                          | BILL OF LADING/AIR BILL         | N/A          |        |      |              |                |
| MATRIX*<br>A=Air              | POSSIBLE S                                   | AMPLE HAZARDS/ REMARKS                                            | PRESER                            | VATION                 | None                        |                          |                                 |              |        |      |              |                |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio                                 | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME<br>TYPE OF CONTAINER |                        | 6 Month                     |                          |                                 |              |        |      |              |                |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regu<br>DOE Order                      | lations but are not releasable per<br>458.1.                      |                                   |                        | Split Spoon<br>Liner        |                          |                                 |              |        |      |              |                |
| S=Soil<br>SE=Sediment         |                                              |                                                                   | NO. OF COM                        | TAINER(S)              | 1                           |                          |                                 |              |        |      |              |                |
| V=Vegetation<br>W=Water       |                                              |                                                                   | VOL                               | UME                    | 1000g                       |                          |                                 |              |        |      |              |                |
| X=Other                       | SPECIAL HA                                   | ANDLING AND/OR STORAGE                                            | SAMPLE                            | ANALYSIS               | Generic<br>Testing<br>CAS}; | o                        |                                 |              |        |      |              |                |
| SAM                           | PLE NO.                                      | MATRIX*                                                           | SAMPLE DATE                       | SAMPLE TIME            | TR                          |                          |                                 |              |        |      |              |                |
| B31N27                        |                                              | SOIL                                                              | 7-13-15                           | 1225                   | L                           |                          |                                 |              |        |      |              |                |

| CHAIN OF POSSES                  | SION            |                     | SIGN/ PRINT NAMES                                  | SPECIAL INSTRUCTIONS |                          |
|----------------------------------|-----------------|---------------------|----------------------------------------------------|----------------------|--------------------------|
| RELINQUISHED BY/R                | HEMOVED FROM    | - 1 3 2015 1415     | RECEIVED BY/STORED IN JUL 1 3                      | TRVL-15-097          | -                        |
| SSU-1                            | EMOVED FROM JUI | - 1 607164TIME 0745 | RECEIVED BY/STORED IN<br>B.E. Briggs J. Mich III 1 | 6 2015 0745          |                          |
| RELINQUISHED BY/R<br>B.E. Briggs | EMOVED FROM     | DATE/TIME           | RECEIVED BY/STORED IN SmallUL 1                    | 6 2015 09-30         | ·                        |
| RELINQUISHED BY                  | EMOVED          | DATE/TIME           | RECEIVED BY/STORED IN                              | DATE/TIME            |                          |
| RELINQUISHED BY/R                | EMOVED FROM     | DATE/TIME           | RECEIVED BY/STORED IN                              | DATE/TIME            |                          |
| RELINQUISHED BY/R                | EMOVED FROM     | DATE/TIME           | RECEIVED BY/STORED IN                              | DATE/TIME            |                          |
| RELINQUISHED BY/R                | EMOVED FROM     | DATE/TIME           | RECEIVED BY/STORED IN                              | DATE/TIME            |                          |
| LABORATORY<br>SECTION            | RECEIVED BY     |                     |                                                    | TITLE                | DATE/TIME                |
| FINAL SAMPLE<br>DISPOSITION      | DISPOSAL METHOD |                     |                                                    | DISPOSED BY          | DATE/TIME                |
| PRINTED ON 5                     | 6/26/2015       |                     | FSR ID = FSR260                                    | TRVL NUM = TRVL-1    | 5-097 A-6003-618 (REV 2) |

| CH2                           | MHill Plateau                                                                                          | <b>Remediation Company</b>                                        |                                      | CHAIN O                         | F CUST                      | Y/SAMPLE ANALYSIS R    | EQUEST                          | F15-014-228                              | PAGE 1 OF 1          |
|-------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|---------------------------------|-----------------------------|------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                     | R. Aguilar/CHPR                                                                                        | 5                                                                 | COMPANY CONT<br>TODAK, D             | ACT                             |                             | LEPHONE NO.<br>76-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING L<br>C8940, 1-008    | LOCATION<br>BC                                                                                         |                                                                   | 9ROJECT DESIG<br>300-FF-5 Post RO    | NATION<br>D Field Investigation | on - Soil                   |                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| ICE CHEST                     | CHEST NO. N/A                                                                                          | A                                                                 | FIELD LOGBOOK NO.<br>1+NF-N-507-33/2 |                                 |                             | TUAL SAMPLE DEPTH      | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environmen      | HIPPED TO<br>Environmental Sciences Laboratory                                                         |                                                                   | OFFSITE PROPERTY NO.                 |                                 |                             |                        | BILL OF LADING/AIR BILL         | NA                                       |                      |
| MATRIX*                       | vironmental Sciences Laboratory RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS Contains Badinactive Material at | PRESER                                                            | VATION                               | None                            |                             |                        |                                 |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio                                                                                           | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                         |                                 | 6 Month                     | _                      |                                 |                                          |                      |
| Solids<br>L=Liquid<br>Q=Oil   | Goods Regu<br>DOE Order                                                                                | lations but are not releasable per<br>458.1.                      | TYPE OF CO                           | ONTAINER                        | Split Sp<br>Liner           |                        |                                 |                                          |                      |
| S=Soil<br>SE=Sediment         |                                                                                                        |                                                                   | NO. OF CONTAINER(S)                  |                                 | 1                           |                        |                                 |                                          |                      |
| V=Vegetation<br>W=Water       |                                                                                                        | VOLUME                                                            |                                      | 1000g                           |                             |                        |                                 |                                          |                      |
| X=Other                       | SPECIAL HA                                                                                             | ANDLING AND/OR STORAGE                                            | SAMPLE A                             | NALYSIS                         | Generic<br>Testing<br>CAS}; |                        |                                 |                                          |                      |
| SAM                           | PLE NO.                                                                                                | MATRIX*                                                           | SAMPLE DATE                          | SAMPLE TIME                     | 2573                        |                        |                                 |                                          |                      |
| B31N28                        |                                                                                                        | SOIL                                                              | 7-13-15                              | 1225                            | L                           | -                      |                                 |                                          |                      |

| CHAIN OF POSSESS            | NOIS            |                              | SIGN/ PRINT NAMES                  |                  | SPECIAL INSTRUCTIONS  |                   |
|-----------------------------|-----------------|------------------------------|------------------------------------|------------------|-----------------------|-------------------|
| J.R. Aguitar/CHPRG          | EMOVED FROM     | 1 3 ZUIS 1415                | SSUH JUL                           | 1 3 2015 1415    | TRVL-15-097           |                   |
| SSU-1                       | EMOVED FROM     | DATE/TIME<br>L 1 6 2015 0745 | B.E. Briggs J. Brugs JU            | 1 6 2015 0745    |                       |                   |
| B.E. Briggs                 | BUGS IL         | IL 1 6 2015 79:30            | RECEIVED BY/STORED IN M. Snudur JU | L 1 6 2015 09:30 |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                    | RECEIVED BY/STORED IN              | DATE/TIME        |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                    | RECEIVED BY/STORED IN              | DATE/TIME        |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                    | RECEIVED BY/STORED IN              | DATE/TIME        |                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                    | RECEIVED BY/STORED IN              | DATE/TIME        |                       |                   |
| LABORATORY<br>SECTION       | RECEIVED BY     |                              |                                    |                  | TITLE                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                              |                                    | `                | DISPOSED BY           | DATE/TIME         |
| PRINTED ON 5                | /26/2015        |                              | FSR ID = FSR261                    | т                | RVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| CH2                                             | MHill Plateau                                                                                                                 | Remediation Company                        |                                      | CHAIN O                       | F CUST                      | ODY/SAMPLE ANALYSIS RI           | EQUEST                          | F15-014-229                              | PAGE 1 OF 1          |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|-----------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                                       | J.R. Agullar/0                                                                                                                | CHPRC                                      | COMPANY CONT<br>TODAK, D             | ACT                           |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C8940, I-00                         | LOCATION<br>8B                                                                                                                |                                            | PROJECT DESIG<br>300-FF-5 Post RC    | NATION<br>D Field Investigati | don - Soils                 |                                  | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| ICE CHEST                                       | E CHEST NO.<br>N/A<br>IIPPED TO                                                                                               |                                            | FIELD LOGBOOK NO.<br>HNF-N-SON-33    |                               |                             | ACTUAL SAMPLE DEPTH              | 1 COA<br>1 303492               | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environmental Sciences Laboratory |                                                                                                                               | OFFSITE PROPE                              | RTY NO. N/                           | 'A                            |                             | BILL OF LADING/AIR BILL          | NO.<br>N/A                      |                                          |                      |
| MATRIX*<br>A=Air                                | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>Form *Contains Radioactive Material at                                               |                                            | SAMPLE HAZARDS/ REMARKS PRESERVATION |                               | None                        |                                  |                                 |                                          |                      |
| Liquids<br>DS=Drum                              | *Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                               |                                      | 6 Mont                        | hs                          |                                  |                                 |                                          |                      |
| Solids<br>L≖Llquid<br>O⇒Oil                     | Goods Regu<br>DOE Order                                                                                                       | ulations but are not releasable per 458.1. | TYPE OF CONTAINER                    |                               | G/P                         |                                  |                                 |                                          |                      |
| S=Soil<br>SE=Sediment                           |                                                                                                                               |                                            | NO. OF CONTAINER(S)                  |                               | 1                           |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water                         |                                                                                                                               |                                            | VOLUME                               |                               | 1L                          |                                  |                                 |                                          |                      |
| WI=Wipe<br>X=Other                              | SPECIAL HA                                                                                                                    | ANDLING AND/OR STORAGE                     | SAMPLE A                             | NALYSIS                       | Generic<br>Testing<br>CAS}; | {No                              |                                 |                                          |                      |
| SAM                                             | PLE NO.                                                                                                                       | MATRIX*                                    | SAMPLE DATE                          | SAMPLE TIME                   | F.M                         | 436                              |                                 |                                          |                      |
| B31N29                                          |                                                                                                                               | SOIL                                       | 7-13-15                              | 1225                          | L                           | -                                |                                 |                                          |                      |

| CHAIN OF POSSESS                          | SION            | SIGN/          | PRINT NAMES         |                           | SPECIAL INSTRUCTIONS  |                   |
|-------------------------------------------|-----------------|----------------|---------------------|---------------------------|-----------------------|-------------------|
| LR. Aguilar/CHPRC                         | EMOVED FROM     | TE/TIME RECEIV | A H JUL 1 3         | 2015 DATE/TIME            | TRVL-15-097           |                   |
| RELINQUISHED BY/R                         | JUL 1 6 7       | TE/TIME RECEIV | 1998 BORINGE IN     | DATE/TIME<br>7115 0745    |                       |                   |
| B.E. Briggs<br>CHPRC<br>RELINQUISHED BY/R | BULL JUL 162    |                | N/der/M. SnydulUL 1 | 6 2015 09 30<br>DATE/TIME |                       |                   |
| RELINQUISHED BY/R                         | EMOVED FROM DA  | TE/TIME RECEIV | ED BY/STORED IN     | DATE/TIME                 |                       |                   |
| RELINQUISHED BY/R                         | EMOVED FROM DA  | TE/TIME RECEIV | ED BY/STORED IN     | DATE/TIME                 |                       |                   |
| RELINQUISHED BY/R                         | REMOVED FROM DA | TE/TIME RECEIV | ED BY/STORED IN     | DATE/TIME                 |                       |                   |
| LABORATORY<br>SECTION                     | RECEIVED BY     |                |                     |                           | TITLE                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION               | DISPOSAL METHOD |                |                     |                           | DISPOSED BY           | DATE/TIME         |
| PRINTED ON 5                              | 6/26/2015       |                | FSR ID = FSR262     | TF                        | RVL NUM = TRVL-15-097 | A-6003-618 (REV : |

| 0.10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gullar/CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RC                                                                                                                                                                    |                                                                                                                                                  | TODAK, D                                                                                                                                                              |                                                                                               | 376-6427                                                                                                   |                                                                                                                          | TODAK, D                               | TRACE CODE    |                  | TURNAROUND           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|------------------|----------------------|
| SAMPLING L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OCATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                     |                                                                                                                                                  | PROJECT DESIG                                                                                                                                                         | NATION                                                                                        |                                                                                                            |                                                                                                                          | SAF NO.                                | AIR QUALITY   |                  | 30 Days / 30         |
| C8940, I-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                  | 300-FF-5 Post RC                                                                                                                                                      | DD Field Investigat                                                                           | ion - Solls                                                                                                |                                                                                                                          | F15-014                                |               |                  | Days                 |
| CE CHEST N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                   |                                                                                                                                                  | FIELD LOGBOON                                                                                                                                                         | K NO.                                                                                         | ACTUAL SAMPLE                                                                                              | EPTH                                                                                                                     | COA<br>303492                          | GOVERNMENT VI | IPMENT<br>EHICLE | ORIGINA              |
| HIPPED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                  | OFFSITE PROPE                                                                                                                                                         | RTY NO.                                                                                       | 041.00 AT                                                                                                  | 50                                                                                                                       | BILL OF LADING/AIR BILL                | NO.           |                  |                      |
| Environmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ntal Scien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nces Laboratory                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                       | N//                                                                                           | A                                                                                                          |                                                                                                                          | N//                                    | ۱             |                  |                      |
| ATRIX*<br>=Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | POSSIE<br>*Conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLE SAMPLE HAZARD                                                                                                                                                     | S/ REMARKS                                                                                                                                       | PRESER                                                                                                                                                                | VATION                                                                                        | None                                                                                                       |                                                                                                                          |                                        |               |                  |                      |
| quids<br>S≖Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | transpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trations that are not be<br>ortation per 49 CFR/IAT                                                                                                                   | regulated for<br>A Dangerous                                                                                                                     | HOLDIN                                                                                                                                                                |                                                                                               | 6 Months                                                                                                   |                                                                                                                          |                                        |               |                  |                      |
| olids<br>=Liquid<br>)=Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regulations but are not order 458.1.                                                                                                                                  | c releasable per                                                                                                                                 | TYPE OF C                                                                                                                                                             | ONTAINER                                                                                      | Split Spoon<br>Liner                                                                                       |                                                                                                                          |                                        |               |                  |                      |
| =Soil<br>E=Sediment<br>=Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                  | NO. OF COM                                                                                                                                                            | TAINER(S)                                                                                     | 1                                                                                                          |                                                                                                                          |                                        |               |                  |                      |
| =Vegetation<br>/=Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                  | VOL                                                                                                                                                                   | UME                                                                                           | 1000g                                                                                                      |                                                                                                                          |                                        |               |                  |                      |
| =Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPECIA<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL HANDLING AND/C                                                                                                                                                     | DR STORAGE                                                                                                                                       | SAMPLE                                                                                                                                                                | ANALYSIS                                                                                      | Generic<br>Testing (No<br>CAS);                                                                            |                                                                                                                          |                                        |               |                  |                      |
| SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA                                                                                                                                                                    | TRIX*                                                                                                                                            | SAMPLE DATE                                                                                                                                                           | SAMPLE TIME                                                                                   | 10. A. I.                                                                                                  |                                                                                                                          |                                        |               |                  |                      |
| 331N31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                       |                                                                                               | 1 C 2 1 - 2 2                                                                                              |                                                                                                                          |                                        |               |                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOIL                                                                                                                                                                  |                                                                                                                                                  | 7-13-15                                                                                                                                                               | 1225                                                                                          | -                                                                                                          |                                                                                                                          |                                        |               |                  |                      |
| HAIN OF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POSSESSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOIL                                                                                                                                                                  |                                                                                                                                                  | 7-13-15<br>SIGN/ PRIN                                                                                                                                                 | 1225                                                                                          | -                                                                                                          | SPE                                                                                                                      | ECIAL INSTRUCTIONS                     |               |                  |                      |
| HAIN OF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POSSESSI<br>ED BY/REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       | DATE/JIME                                                                                                                                        | SIGN/ PRINT                                                                                                                                                           | 1225<br>T NAMES                                                                               | JUL 1 3 2010 PATE/TI                                                                                       | SPE<br>TF                                                                                                                | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| HAIN OF P<br>LELINQUISHI<br>J.R. Aguila<br>LELINQUISHI<br>SSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POSSESSI<br>ED BY/REM<br>HICHIPRO<br>ED BY/REM<br>I-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOIL                                                                                                                                                                  | рате/јтме<br>1 3 2013 ј4<br>рате/јтме<br>1 6 2015 О                                                                                              | SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>CHIPRC                                  | 1225<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN                                        | JUL 1 3 2015 141                                                                                           | IE<br>S<br>IE<br>74/5                                                                                                    | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| CHAIN OF P<br>LELINQUISH<br>J.R. Aguila<br>RELINQUISH<br>B.E. Brig<br>CHPRC<br>RELINQUISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POSSESSI<br>ED BY/REM<br>HCHPRO<br>ED BY/REM<br>ED BY/REM<br>ED BY/REM<br>ED BY/REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOIL<br>TON<br>MOVED FROM<br>JUL<br>MOVED FROM<br>JUL<br>MOVED FROM                                                                                                   | рате/тіме<br><u>1 3 2013 ) 4</u><br><u>1 6 2015 0</u><br>дате/тіме<br><u>1 6 2015 0</u><br>ате/тіме<br><u>1 6 2015 0</u><br>ате/тіме             | SIGN/ PRIN<br>SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/              | T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN                      | JUL 1 3 2015 141<br>JUL 1 6 2015 0<br>JUL 1 6 2015 0<br>DATE/TI<br>MULJUL 1 6 2015 0<br>DATE/TI<br>DATE/TI | SPE<br>TF<br>S<br>1E<br>74/5<br>1E<br>7:-30<br>1E                                                                        | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| CHAIN OF P<br>J.R. Aguita<br>J.R. Aguita<br>SELINQUISHI<br>B.E. Brig<br>CHPBC<br>CHPBC<br>LELINQUISHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POSSESSI<br>ED BY/REA<br>MICHIPRO<br>ED BY/REA<br>ED BY/REA<br>ED BY/REA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOIL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM                                                                                                                        | DATE/JIME<br>1.3 2013 14<br>DATE/JIME<br>1.6 2015 0<br>DATE/TIME<br>1.6 2015 0<br>DATE/TIME<br>DATE/TIME                                         | 7-13-15<br>SIGN/ PRIN<br>RECEIVED BY/<br>SSU H<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/                                        | T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN                      | JUL 1 3 2015 141<br>JUL 1 6 2015 0<br>JUL 1 6 2015 0<br>DATE/TI<br>DATE/TI<br>DATE/TI                      | SPE<br>TF<br>S<br>1E<br>74/5<br>1E<br>7:-30<br>1E                                                                        | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| CHAIN OF P<br>LELINQUISHI<br>J.R. Aguila<br>SELINQUISHI<br>B.E. Brig<br>CHPRC<br>CHPRC<br>CHPRC<br>RELINQUISHI<br>RELINQUISHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POSSESSI<br>ED BY/REM<br>MCHIPRO<br>ED BY/REM<br>ED BY/REM<br>ED BY/REM<br>ED BY/REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM                                                                                            | DATE/JIME<br>1.3 2013 14<br>DATE/JIME<br>1.6 2015 O<br>DATE/TIME<br>1.6 7/015 0<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME                           | 7-13-15<br>SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/                                 | 1225<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN              | JUL 1 3 2015 0<br>JUL 1 6 2015 0<br>JUL 1 6 2015 0<br>DATE/TI<br>DATE/TI<br>DATE/TI                        | SPE<br>TF<br>S<br>1E<br>74/5<br>1E<br>7:-20<br>1E<br>1E<br>1E                                                            | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| CHAIN OF P<br>LELINQUISHI<br>J.R. Aguila<br>SELINQUISHI<br>B.E. Brig<br>CHPRC<br>CHPRC<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POSSESSI<br>ED BY/REN<br>ED BY/REN<br>ED BY/REN<br>ED BY/REN<br>ED BY/REN<br>ED BY/REN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SOIL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM                                                                              | DATE/TIME<br>1.32013 14<br>DATE/TIME<br>1.62015 07<br>DATE/TIME<br>1.67/115 07<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME               | 7-13-15<br>SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/ | 1225<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL 1 3 2015 J41<br>JUL 1 3 2015 J41<br>JUL 1 6 2015 O<br>DATE/TI<br>DATE/TI<br>DATE/TI<br>DATE/TI         | SPE<br>TF<br>S<br>1E<br>74/5<br>1E<br>7:-30<br>1E<br>1E<br>1E<br>1E                                                      | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  |                      |
| CHAIN OF P<br>RELINQUISHI<br>J.R. Aguila<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POSSESSI<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP<br>ED BY/REP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOIL                                                                                                                                                                  | DATE/TIME<br>1.32013 14<br>DATE/TIME<br>1.62015 07<br>DATE/TIME<br>1.67015 09<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME   | 7-13-15<br>SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/ | 1225<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL 1 3 2013 141                                                                                           | SPE<br>TF<br>S<br>1E<br>745<br>1E<br>7:-30<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E                                           | ECIAL INSTRUCTIONS<br>RVL-15-097       |               |                  | ATE/TIME             |
| CHAIN OF P<br>RELINQUISHI<br>J.R. Aguila<br>RELINQUISHI<br>B.E. Brig<br>CHPRC<br>CHPRC<br>IELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQUISHI<br>RELINQU | POSSESSI<br>ED BY/REA<br>ED BY/REA | SOIL<br>TON<br>MOVED FROM<br>MOVED FROM | DATE/JIME<br>1.3 2013 14<br>DATE/JIME<br>1.6 2015 0<br>DATE/TIME<br>1.6 7/015 0<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | 7-13-15<br>SIGN/ PRIN<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/                 | 1225<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL 1 3 2015 J4J<br>JUL 1 3 2015 J4J<br>JUL 1 6 2015 O<br>DATE/TI<br>DATE/TI<br>DATE/TI<br>DATE/TI         | SPE<br>TF<br>S<br>1E<br>745<br>1E<br>7:-30<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E<br>1E | ECIAL INSTRUCTIONS<br>RVL-15-097<br>LE |               | D                | ATE/TIME<br>ATE/TIME |

CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST TELEPHONE NO.

COMPANY CONTACT

CH2MHill Plateau Remediation Company

COLLECTOR

PAGE 1 OF 1

DATA

F15-014-231

PROJECT COORDINATOR

| CH2                               | MHill Plateau                                                        | Remediation Company                                               |                                   | CHAIN O                        | F CUST                      | ODY/SAMPLE ANALYSIS R            | EQUEST                          | F15-014-233                              | PAGE 1 OF 1          |
|-----------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                         | ullar/CHPRC                                                          |                                                                   | COMPANY CONT<br>TODAK, D          | TACT                           |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING I<br>C8940, I-009        | OCATION                                                              |                                                                   | 9ROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigati | on - Soi                    | ls                               | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                                                  | N/A                                                               | FIELD LOGBOOK NO.<br>HNF-N-SO7-33 |                                |                             | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme           | ntal Sciences                                                        | Laboratory                                                        | OFFSITE PROPE                     | RTY NO. N/                     | A                           |                                  | BILL OF LADING/AIR BILL         | NO.<br>/A                                |                      |
| MATRIX*<br>A=Air                  | POSSIBLE SAMPLE HAZARDS/ REMARK<br>*Contains Radioactive Material at |                                                                   | PRESERVATION                      |                                | None                        |                                  | 1                               |                                          |                      |
| Uquids<br>DS≂Drum                 | concentration<br>transportation                                      | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                      |                                | 6 Mont                      | hs                               |                                 |                                          |                      |
| Solids<br>L=Liquid<br>0=Oil       | Goods Regu<br>DOE Order                                              | ulations but are not releasable per 458.1.                        | TYPE OF CONTAINER                 |                                | Split Sp<br>Liner           | nooo                             |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                      |                                                                   | NO. OF CONTAINER(S)               |                                | . 1                         |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water           |                                                                      |                                                                   | VOLUME                            |                                | 1000g                       |                                  |                                 |                                          |                      |
| WI=Wipe<br>X=Other                | SPECIAL HANNA                                                        | ANDLING AND/OR STORAGE                                            | SAMPLE /                          | ANALYSIS                       | Generic<br>Testing<br>CAS}; | {No                              |                                 |                                          |                      |
| SAM                               | PLE NO.                                                              | MATRIX*                                                           | SAMPLE DATE                       | SAMPLE TIME                    |                             |                                  |                                 |                                          |                      |
| B31N33                            |                                                                      | SOIL                                                              | 7-13-15                           | 1255                           | L                           | -                                |                                 |                                          |                      |

| CHAIN OF POSSESS            | SION                 | SIGN/ PRINT NAMES                                        | SPECIAL INSTRUCTIONS   |                   |
|-----------------------------|----------------------|----------------------------------------------------------|------------------------|-------------------|
| J.R. Aguilerichite          | JUL 1 3 ZUIS         | 415 SS(1 #) JUL                                          | 1 3 2015 14 LS         |                   |
| RELINQUISHED BYTH           | JUL 1 6 7115         | AE RECEIVED BY/STORED IN JU<br>074 DB.E. Briggs 24 Duton | L 1 6 2015 0745        |                   |
| B.E. Briggs                 | JUL 1 67115          | 19:30 M. Snyder M. Snyder J                              | UL 1 6 7115 191:30     |                   |
| RELINQUISHED BY/R           | EMOVED EROM DATE/TIM | AE RECEIVED BY/STORED IN                                 | DATE/TIME              |                   |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | ME RECEIVED BY/STORED IN                                 | DATE/TIME              |                   |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | ME RECEIVED BY/STORED IN                                 | DATE/TIME              |                   |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIM | ME RECEIVED BY/STORED IN                                 | DATE/TIME              |                   |
| LABORATORY<br>SECTION       | RECEIVED BY          |                                                          | ΠΤLΕ                   | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD      |                                                          | DISPOSED BY            | DATE/TIME         |
| PRINTED ON 5                | /26/2015             | FSR ID = FSR265                                          | TRVL NUM = TRVL-15-097 | A-6003-618 (REV 2 |

| CROAD LOOD                                                                                                                                                                                                                                                                           | LOCATIO                                                                                                                                                                            | N                                                                                                                                                              |                                                                                                                        | PROJECT DESIG                                                                                                                                                                | NATION                                                                                             | lon Coil                    | le .                                                                                                                                      | S            | 5AF NO.<br>F15-014                       | AIR QUAL |   | Days                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|----------|---|------------------------|
| CE CHEST N                                                                                                                                                                                                                                                                           | NO.                                                                                                                                                                                | ΝΙ/Α                                                                                                                                                           |                                                                                                                        | FIELD LOGBOOK                                                                                                                                                                | ( NO.                                                                                              |                             | ACTUAL SAMPLE DEP                                                                                                                         | гн с         | COA<br>303492                            | METHOD O |   | ORIGIN                 |
| HIPPED TO                                                                                                                                                                                                                                                                            | )                                                                                                                                                                                  | N/A                                                                                                                                                            |                                                                                                                        | HNF-                                                                                                                                                                         | J-507-3<br>RTY NO.                                                                                 | 3/2                         | 31.00 - 31.5                                                                                                                              | 0 B          | BILL OF LADING/AIR BILL                  | NO.      |   |                        |
| Environmen                                                                                                                                                                                                                                                                           | ntal Scie                                                                                                                                                                          | nces Laboratory                                                                                                                                                |                                                                                                                        |                                                                                                                                                                              | N//                                                                                                | 4                           |                                                                                                                                           |              |                                          | N/A      |   |                        |
| ATRIX*<br>=Air                                                                                                                                                                                                                                                                       | POSSII                                                                                                                                                                             | BLE SAMPLE HAZARD                                                                                                                                              | 5/ REMARKS                                                                                                             | PRESER                                                                                                                                                                       | VATION                                                                                             | None                        |                                                                                                                                           |              |                                          |          |   |                        |
| _=Drum<br>quids<br>S=Drum                                                                                                                                                                                                                                                            | concer                                                                                                                                                                             | ntrations that are not be<br>ortation per 49 CFR/IAT/                                                                                                          | regulated for<br>A Dangerous                                                                                           | HOLDIN                                                                                                                                                                       | G TIME                                                                                             | 6 Mont                      | hs                                                                                                                                        |              |                                          |          |   |                        |
| olids<br>=Liquid<br>=Oil                                                                                                                                                                                                                                                             | Goods<br>DOE O                                                                                                                                                                     | Regulations but are not order 458.1.                                                                                                                           | releasable per                                                                                                         | TYPE OF CO                                                                                                                                                                   | ONTAINER                                                                                           | G/P                         |                                                                                                                                           |              |                                          |          |   |                        |
| =Soil<br>E=Sediment                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                                        | NO, OF CON                                                                                                                                                                   | TAINER(S)                                                                                          | 1                           |                                                                                                                                           |              |                                          |          |   |                        |
| =Vegetation<br>=Water                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                                        | VOL                                                                                                                                                                          | UME                                                                                                | 1L                          |                                                                                                                                           |              |                                          |          | , |                        |
| I=Wipe<br>=Other                                                                                                                                                                                                                                                                     | 5PECI/<br>N/A                                                                                                                                                                      | AL HANDLING AND/O                                                                                                                                              | OR STORAGE                                                                                                             | SAMPLE A                                                                                                                                                                     | NALYSIS                                                                                            | Generic<br>Testing<br>CAS}; | {No                                                                                                                                       |              |                                          |          |   |                        |
| SAMP                                                                                                                                                                                                                                                                                 | PLE NO.                                                                                                                                                                            | MAT                                                                                                                                                            | TRIX*                                                                                                                  | SAMPLE DATE                                                                                                                                                                  | SAMPLE TIME                                                                                        |                             |                                                                                                                                           |              |                                          |          |   |                        |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                                        |                                                                                                                                                                              |                                                                                                    | And Links                   |                                                                                                                                           |              |                                          |          |   |                        |
| 331N34                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    | SOIL                                                                                                                                                           |                                                                                                                        | -13-15                                                                                                                                                                       | 1255                                                                                               | -                           | -                                                                                                                                         |              |                                          |          |   |                        |
| 331N34<br>CHAIN OF P                                                                                                                                                                                                                                                                 | POSSESS                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                        | · フ-13-15                                                                                                                                                                    | IQ55                                                                                               |                             | -                                                                                                                                         | SPECI        | IAL INSTRUCTIONS                         |          |   |                        |
| CHAIN OF P                                                                                                                                                                                                                                                                           | POSSESS)                                                                                                                                                                           | SOIL<br>ION                                                                                                                                                    | DATE/TIME                                                                                                              | SIGN/ PRINT                                                                                                                                                                  | NAMES                                                                                              |                             | DATE/TIME                                                                                                                                 | SPECI<br>TRV | ial instructions<br>/L-15-097            |          |   |                        |
| CHAIN OF P<br>CHAIN OF P<br>J.R. Agular<br>FELINQUISHE                                                                                                                                                                                                                               | POSSESS)                                                                                                                                                                           |                                                                                                                                                                | рате/тіме<br>З 2015 /4 L                                                                                               | SIGN/ PRINT                                                                                                                                                                  | I NAMES<br>STORED IN                                                                               | UL 1                        | 3 2015 DATE/TIME<br>1415                                                                                                                  | SPECI<br>TRV | <b>IAL INSTRUCTIONS</b><br>/L-15-097     |          |   |                        |
| CHAIN OF P<br>RELINQUISHE<br>J.R. AGUIN<br>RELINQUISHE<br>SSU-1                                                                                                                                                                                                                      | POSSESSI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                                                                                    | SOIL<br>NON<br>MOVED FROM<br>JUL                                                                                                                               | ате/тіме<br>2015 ј.– ј.<br>дате/тіме<br>1 6 2015 (О 7                                                                  | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/S<br>SSU#1<br>B.E. Brigger<br>CHPRC                                                                                       | I NAMES<br>STORED IN<br>STORED IN<br>STORED IN                                                     | UL 1<br>JUL 1               | 3 2013 DATE/TIME<br>3 2013 141S<br>1 6 2015 DATE/TIME<br>0 745                                                                            | SPECI<br>TRV | <b>IAL INSTRUCTIONS</b><br>/L-15-097     |          |   |                        |
| HAIN OF P<br>ELINQUISH<br>J.R. Aguin<br>SSU-1<br>ELINQUISH<br>B.E. Briggs                                                                                                                                                                                                            | ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                                                                      | SOIL                                                                                                                                                           | рате/тіме<br>3 2015 141<br>одате/тіме<br>1 6 2015.07<br>одате/тіме<br>1 6 2015 07                                      | SIGN/ PRINT<br>SIGN/ PRINT<br>RECEIVED BY/S<br>SSU#<br>B.E. Briggs<br>CHPRC<br>CHPRC<br>CHPRC<br>20 W. Souden                                                                | I NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>CIM OWNED                           |                             | 3 2015 DATE/TIME<br>3 2015 141S<br>1 6 2015 074 S<br>0 ATE/TIME<br>1 6 2015 074 S                                                         | SPECI<br>TRV | ial instructions<br>/L-15-097            |          |   |                        |
| HAIN OF P<br>HAIN OF P<br>LELINQUISHE<br>SSU-1<br>SELINQUISHE<br>B.E. Brigge<br>CHPPC                                                                                                                                                                                                | ED BY/REL<br>ED BY/REL<br>ED BY/REL<br>ED BY/REL<br>ED BY/REL                                                                                                                      | SOIL<br>NOVED FROM<br>JUL<br>MOVED FROM<br>JUL<br>MOVED FROM<br>JUL                                                                                            | 2015<br>2015<br>Дате/тіме<br>1 6 2015<br>0 Ате/тіме<br>1 6 2015<br>0 Ате/тіме<br>1 ате/тіме                            | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/<br>B.E. Briggs<br>CHPRC/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/                 | I NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN |                             | 3 2015 DATE/TIME<br>3 2015 141S<br>1 6 2015 DATE/TIME<br>DATE/TIME<br>1 6 2015 025<br>DATE/TIME<br>DATE/TIME                              | SPECI<br>TRV | <b>IAL INSTRUCTIONS</b><br>/L-15-097     |          |   |                        |
| CHAIN OF P<br>CELINQUISHE<br>J.R. AQUISHE<br>SSU-1<br>ELINQUISHE<br>B.E. Briggs<br>CELINQUISHE<br>RELINQUISHE                                                                                                                                                                        | ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                                                                      | SOIL<br>SOIL<br>MOVED FROM<br>JUL<br>MOVED FROM<br>MOVED FROM                                                                                                  | 2013 /4/<br>дате/тіме<br>1 6 2015.07<br>дате/тіме<br>1 6 2015.07<br>дате/тіме<br>дате/тіме<br>дате/тіме                | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/S<br>B.E. Briggy<br>CHPRC<br>CHPRC<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S                                     | I DAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN                           |                             | 3 2015 DATE/TIME<br>3 2015 1415<br>1 6 2015 5745<br>DATE/TIME<br>1 6 2015 025<br>DATE/TIME<br>DATE/TIME                                   | SPECI<br>TRV | IAL INSTRUCTIONS<br>/L-15-097            |          |   |                        |
| HAIN OF P<br>HAIN OF P<br>HELINQUISHE<br>SSU-1<br>HELINQUISHE<br>HELINQUISHE                                                                                                                                                                                                         | ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                                                         | SOIL<br>SOIL<br>MOVED FROM<br>JUL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM                                                                                    | 2013 /4/<br>Дате/тіме<br>1 6 2015.07<br>Дате/тіме<br>1 6 2015.07<br>Дате/тіме<br>Дате/тіме<br>Дате/тіме<br>Дате/тіме   | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/S<br>B.E. Briggy<br>CHPRC<br>CHPRC<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S                    | I DISS                                                                                             |                             | 3 2015 DATE/TIME<br>3 2015 1415<br>1 6 2015 5745<br>DATE/TIME<br>1 6 2015 022<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME                      | SPECI<br>TRV | IAL INSTRUCTIONS<br>/L-15-097            |          |   |                        |
| HAIN OF P<br>ELINQUISHE<br>SSU-1<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE                                                                                                                                                                                             | ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                                            | SOIL<br>ION<br>MOVED FROM<br>JUL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM                                                                                     | 2013 141<br>DATE/TIME<br>1 6 2015 07<br>DATE/TIME<br>1 6 2015 07<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME   | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/S<br>B.E. Briggy<br>CHPRC<br>CHPRC<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S   | I DISS                                                                                             |                             | 3 2015 DATE/TIME<br>3 2015 DATE/TIME<br>1 6 2015 0745<br>DATE/TIME<br>0 ATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME      | SPECI<br>TRV | IAL INSTRUCTIONS<br>/L-15-097            |          |   |                        |
| HAIN OF P<br>ELINQUISHE<br>SSU-1<br>J.R. AQUIN<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE                                                                                                                                                   | ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI<br>ED BY/REI                                                                  | SOIL<br>TON<br>MOVED FROM<br>JUL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM | 3 2013 141<br>DATE/TIME<br>1 6 2015 07<br>DATE/TIME<br>1 6 2015 07<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/<br>B.E. Briggs<br>CHPRC/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/ | I DASS                                                                                             |                             | 3 2015 DATE/TIME<br>3 2015 I 41 S<br>1 6 2015 DATE/TIME<br>1 6 2015 09 3<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | SPECI<br>TRV | IAL INSTRUCTIONS<br>/L-15-097            |          |   | DATE/TIME              |
| HAIN OF P<br>ELINQUISHE<br>J.R. AQUINE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE<br>ELINQUISHE | ED BY/REI<br>ED BY/REI | SOIL<br>ION<br>MOVED FROM<br>JUL<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM<br>MOVED FROM | 2013 141<br>Date/time<br>1 6 2015.07<br>Date/time<br>1 6 2015 07<br>Date/time<br>Date/time<br>Date/time<br>Date/time   | SIGN/ PRINT<br>SIGN/ PRINT<br>SSU#1<br>RECEIVED BY/S<br>B.E. Briggy<br>C. Breggy<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S<br>RECEIVED BY/S        | I DISS                                                                                             |                             | 3 2015 Date/time<br>1 41 S<br>1 6 2015 Date/time<br>Date/time<br>1 6 2015 02 2<br>Date/time<br>Date/time<br>Date/time<br>Date/time        | SPECI<br>TRV | IAL INSTRUCTIONS<br>/L-15-097<br>DSED BY |          |   | DATE/TIME<br>DATE/TIME |

CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST

**TELEPHONE NO.** 

376-6427

COMPANY CONTACT

TODAK, D

F15-014-234

PRICE CODE

8H

PROJECT COORDINATOR

TODAK, D

PAGE 1 OF 1

DATA TURNAROUND

**CH2MHill Plateau Remediation Company** 

COLLECTOR

J.R. Agullar/CHPRC

| CH2                               | MHill Plateau Remediation Company                                                        |                                   | CHAIN C                       | OF CUSTO                      | DY/SAMPLE ANALYSIS R                     | EQUEST                                                                                                           | F15-014-258                              | PAGE 1 OF 1          |
|-----------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.R. Agu             | Mar/CHPRC                                                                                | COMPANY CONT<br>TODAK, D          | FACT                          | 1                             | <b>ELEPHONE NO.</b><br>376-6427          | PROJECT COORDINATOR<br>TODAK, D                                                                                  | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING (<br>C9451, I-00)        | LOCATION                                                                                 | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigat | ion - Soils                   |                                          | <b>SAF NO.</b><br>F15-014                                                                                        |                                          | 30 Days / 30<br>Days |
| ICE CHEST I                       | no.<br>N/A                                                                               | FIELD LOGBOON                     | (NO.<br>SD 7-33/              | 3                             | CTUAL SAMPLE DEPTH<br>$O_1O_2 - 10.50^4$ | COA<br>303492                                                                                                    | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environme           | )<br>ntal Sciences Laboratory                                                            | OFFSITE PROPERTY NO. N/A          |                               |                               |                                          | BILL OF LADING/AIR BILL NO.                                                                                      |                                          |                      |
| MATRIX*<br>A=Air                  | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESER                            | VATION                        | None                          |                                          | 1 mm de - 100 mm - 10 mm |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum     | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDIN                            |                               | 6 Month                       |                                          |                                                                                                                  |                                          |                      |
| Solids<br>L≃Liquid<br>O=O⊯        | Goods Regulations but are not releasable per<br>DOE Order 458.1.                         | TYPE OF CONTAINER                 |                               | Split Spo<br>Liner            | on                                       |                                                                                                                  |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                                          | NO. OF CONTAINER(S)               |                               | 1                             |                                          |                                                                                                                  |                                          |                      |
| V=Vegetation<br>W=Water           |                                                                                          | VOLUME                            |                               | 1000g                         |                                          |                                                                                                                  |                                          |                      |
| X=Other                           | SPECIAL HANDLING AND/OR STORAGE<br>N/A                                                   | SAMPLE A                          | ANALYSIS                      | Generic<br>Testing {<br>CAS}; | ło                                       |                                                                                                                  |                                          |                      |
| SAM                               | PLE NO. MATRIX*                                                                          | SAMPLE DATE                       | SAMPLE TIME                   |                               |                                          |                                                                                                                  |                                          |                      |
| B31N62                            | SOIL                                                                                     | 7-14-15                           | 0835                          | -                             |                                          |                                                                                                                  |                                          |                      |

į1

| CHAIN OF POSSES                                                       | SION            |                                                       | SIGN/ PRINT NAMES                                                                    |                                           | SPECIAL INSTRUCTIONS  | -                  |
|-----------------------------------------------------------------------|-----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|--------------------|
| RELINQUISHED BY/R<br>J.R. Aguilan/CHPRC<br>RELINQUISHED BY/R<br>SSU-1 | TEMOVED FROM    | DATE/TIME<br>4 2015 1430<br>DATE/TIME<br>1 6 2015 074 | RECEIVED BY/STORED IN<br>SSU#1 JUL 1<br>RECEIVED BY/STORED IN<br>KG. Patterson/CHPP: | 4 2015 1430<br>ATE/TIME<br>L 1 6 20150745 | IRVL-15-098           |                    |
| K.C. Patterson/CHPR                                                   | C III           | IL 1 6 2015 09                                        | RECEIVED BY/STORED IN<br>BO M. SNULL/M. Shapelle 1                                   | DATE/TIME                                 | <b>b</b>              |                    |
| RELINQUISHED BY/R                                                     | EMOVED FROM     | DATE/TIME                                             | RECEIVED BY/STORED IN                                                                | DATE/TIME                                 |                       |                    |
| RELINQUISHED BY/R                                                     | EMOVED FROM     | DATE/TIME                                             | RECEIVED BY/STORED IN                                                                | DATE/TIME                                 |                       |                    |
| RELINQUISHED BY/R                                                     | REMOVED FROM    | DATE/TIME                                             | RECEIVED BY/STORED IN                                                                | DATE/TIME                                 |                       |                    |
| RELINQUISHED BY/R                                                     | REMOVED FROM    | DATE/TIME                                             | RECEIVED BY/STORED IN                                                                | DATE/TIME                                 |                       |                    |
| LABORATORY<br>SECTION                                                 | RECEIVED BY     |                                                       |                                                                                      |                                           | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION                                           | DISPOSAL METHOD |                                                       |                                                                                      |                                           | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                                                          | 6/26/2015       | ,                                                     | FSR ID = FSR300                                                                      | Т                                         | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | MHill Plateau                                                                                                                       | Remediation Company                          |                                     | CHAIN C             | OF CUST                     | DY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-259   |       | PAGE 1 OF 1          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|---------------------|-----------------------------|--------------------------|---------------------------------|---------------|-------|----------------------|
| COLLECTOR                     | juliar/CHPRC                                                                                                                        |                                              | COMPANY CONT<br>TODAK, D            | TACT                |                             | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8H    | DATA<br>TURNAROUND   |
| SAMPLING (<br>C9451, I-00)    | LOCATION                                                                                                                            |                                              | 9ROJECT DESIG<br>300-FF-5 Post RC   | DD Field Investigat | tion - Soils                |                          | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |       | 30 Days / 30<br>Days |
| ICE CHEST                     | NO.                                                                                                                                 | I/A                                          | FIELD LOGBOOK NO.<br>HNF-N-SO7-33 3 |                     | 5                           | SO' - (1. 0 0            | COA<br>303492                   | GOVERNMENT VI | HICLE | ORIGINA              |
| SHIPPED TO<br>Environme       | IIPPED TO nvironmental Sciences Laboratory TRIX*                                                                                    |                                              | OFFSITE PROPERTY NO. N/A            |                     |                             | BILL OF LADING/AIR BILL  | NO.                             |               | -     |                      |
| MATRIX*<br>A=Air              | POSSIBLE S                                                                                                                          | AMPLE HAZARDS/ REMARKS                       | PRESER                              | VATION              | None                        |                          | ų                               |               |       |                      |
| DL=Drum<br>Liquids<br>DS=Drum | L=Drum Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                              | HOLDIN                              |                     | 6 Monti                     |                          |                                 |               |       |                      |
| Solids<br>L=Liquid            | Goods Regu<br>DOE Order                                                                                                             | lations but are not releasable per<br>458.1. | TYPE OF CO                          | ONTAINER            | Split Sp<br>Liner           | n                        |                                 |               |       |                      |
| S=Soil<br>SE=Sediment         |                                                                                                                                     |                                              | NO. OF COM                          | TAINER(S)           | 1                           |                          |                                 |               |       |                      |
| V=Vegetation<br>W=Water       |                                                                                                                                     |                                              | VOL                                 | UME                 | 1000g                       |                          |                                 |               |       |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                                                                                                                          | ANDLING AND/OR STORAGE                       | SAMPLE A                            | ANALYSIS            | Generic<br>Testing<br>CAS}; | •                        |                                 |               |       |                      |
| SAM                           | PLE NO.                                                                                                                             | MATRIX*                                      | SAMPLE DATE                         | SAMPLE TIME         | 8.4                         | Sec. 1                   |                                 |               |       |                      |
| B31N63                        |                                                                                                                                     | SOIL                                         | 7-14-15                             | 0835                | V                           |                          |                                 |               |       |                      |

| RELINQUISHED BY/REMOVED FR<br>JR. AQUIM/CHPRC<br>RELINQUISHED BY/REMOVED FR<br>SSU-1<br>RELINQUISHED BY/REMOVED FR<br>K.C. Pattarson/CHPRC<br>RELINQUISHED BY/REMOVED FR | ком<br>JUL 1 4 2015 1430<br>ком<br>JUL 1 6 2015 074<br>диц 1 6 2015 074<br>полтегтиме<br>JUL 1 6 2015 074<br>полтегтиме<br>DATE/ТИМЕ<br>ДИЦ 1 6 2015 074<br>ПОЛТЕРТИМЕ<br>ПОЛТЕРТИМЕ                                                                                                                                                                                  | RECEIVED BY/STORED IN<br>SSU H) JUL 1<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>M. SNYCH/M. SNYCH J<br>RECEIVED BY/STORED IN | 4 2015 1430<br>DATE/TIME<br>UL 1 6 2015<br>DATE/TIME<br>UL 1 6 2015 89-30<br>DATE/TIME<br>DATE/TIME | TRVL-15-098           |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| RELINQUISHED BY/REMOVED PR<br>SSU-1<br>RELINQUISHED BY/REMOVED FR<br>K.C. Patterson/CHPR<br>RELINQUISHED BY/REMOVED FR                                                   | IIII         Date/time           JUL         1         6         2015         0742           IOM         Date/time         Date/time         0415         042           IIII         1         6         2015         042           IOM         Date/time         0412         0415         042           IOM         Date/time         0412         0415         042 | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>BUSINGEN IN SINGLY J<br>RECEIVED BY/STORED IN                                                                  | DATE/TIME<br>UL 1 6 2015<br>DATE/TIME<br>UL 1 6 2015 09:30<br>DATE/TIME                             | 0                     |                    |
| RELINQUISHED BY/REMOVED FR                                                                                                                                               | IUL 1 6 2015 AS                                                                                                                                                                                                                                                                                                                                                       | RECEIVED BY/STORED IN<br>B. M. SNYDW/M. SNYDU J<br>RECEIVED BY/STORED IN                                                                                         | UL 1 6 2015 09:30<br>DATE/TIME                                                                      |                       |                    |
| RELINQUISHED BY/REMOVED FR                                                                                                                                               | ROM DATE/TIME                                                                                                                                                                                                                                                                                                                                                         | RECEIVED BY/STORED IN                                                                                                                                            | DATE/TIME                                                                                           |                       |                    |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                     |                       |                    |
| RELINQUISHED BY/REMOVED FF                                                                                                                                               | COM DATE/TIME                                                                                                                                                                                                                                                                                                                                                         | RECEIVED BY/STORED IN                                                                                                                                            | DATE/TIME                                                                                           |                       |                    |
| RELINQUISHED BY/REMOVED FF                                                                                                                                               | COM DATE/TIME                                                                                                                                                                                                                                                                                                                                                         | RECEIVED BY/STORED IN                                                                                                                                            | DATE/TIME                                                                                           |                       | · .                |
| RELINQUISHED BY/REMOVED FF                                                                                                                                               | ROM DATE/TIME                                                                                                                                                                                                                                                                                                                                                         | RECEIVED BY/STORED IN                                                                                                                                            | DATE/TIME                                                                                           |                       |                    |
| LABORATORY RECEIVE<br>SECTION                                                                                                                                            | D BY                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  | WARNE                                                                                               | TITLE                 | DATE/TIME          |
| FINAL SAMPLE DISPOSA<br>DISPOSITION                                                                                                                                      | L METHOD                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                     | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5/26/201                                                                                                                                                      | .5                                                                                                                                                                                                                                                                                                                                                                    | FSR ID = FSR301                                                                                                                                                  | TR                                                                                                  | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | 2MHill Plateau                                                                                                               | Remediation Company                         |                                   | CHAIN O                        | F CUST     | ODY/SAMPLE ANALYSIS RI           | EQUEST                          | F15-014-260                              | PAGE 1 OF 1          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------|------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.R. Agu         | laller/CHPRC                                                                                                                 |                                             | COMPANY CONT<br>TODAK, D          | TACT                           |            | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9451, I-00       | LOCATION<br>1B                                                                                                               |                                             | 9ROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigati | ion - Soil | s                                | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                     | NO.                                                                                                                          | N/A                                         | HNF- N-S                          | (NO.<br>07-33/3                |            | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme       | IPPED TO<br>Ivironmental Sciences Laboratory                                                                                 |                                             | OFFSITE PROPERTY NO. /<br>N/A     |                                |            |                                  | BILL OF LADING/AIR BILL         | NO.                                      | · · ·                |
| MATRIX*<br>A=Air              | NIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for   |                                             | PRESER                            | VATION                         | None       |                                  |                                 |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum | Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                             | HOLDIN                            |                                | 6 Month    | hs                               |                                 |                                          |                      |
| Solids<br>L=Liquid            | Goods Regul<br>DOE Order 4                                                                                                   | ations but are not releasable per<br>158.1. | TYPE OF CO                        | ONTAINER                       | G/P        |                                  |                                 |                                          |                      |
| S=Soil<br>SE=Sediment         |                                                                                                                              |                                             | NO. OF COM                        | TAINER(S)                      | 1          |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water       |                                                                                                                              |                                             | VOLUME                            |                                | 1L         |                                  |                                 |                                          |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                                                                                                                   | SPECIAL HANDLING AND/OR STORAGE             |                                   | SAMPLE ANALYSIS                |            | (No                              |                                 |                                          |                      |
| SAM                           | PLE NO.                                                                                                                      | MATRIX*                                     | SAMPLE DATE                       | SAMPLE TIME                    | 257        |                                  |                                 |                                          |                      |
| B31N64                        |                                                                                                                              | SOIL                                        | 7-14-15                           | 0835                           | U          | -                                |                                 |                                          |                      |

| CHAIN OF POSSES             | SION              |                       | SIGN/ PRINT NAMES         |                 | SPECIAL INSTRUCTIONS                  |                   |
|-----------------------------|-------------------|-----------------------|---------------------------|-----------------|---------------------------------------|-------------------|
| LR. Aguilar/CHPRO           | EMOVED FROM - JUL | DATE/TIME             | RECEIVED BY/STORED IN JUL | 1.4 2015 1430   | TRVL-15-098                           |                   |
| SSU-T                       | JUL               | DATE/TIME<br>1 6 2015 | RECEIVED BY/STORED IN     | L 1 6 2015 5745 |                                       |                   |
| LELINQUISHED BY/R           | EMOVED FROM       | DATE/TIME             | RECEIVED BY/STORED IN     | DATE/TIME       |                                       |                   |
| K.C. Patterson/CHPR         |                   | 1 6 2015              | 30 M. Snyder M. Snyder JI | 1 6 2015 097.30 |                                       |                   |
| RELINQUISHED BY/R           | EMOVED FROM       | DATE/TIME             | RECEIVED BY/STORED IN     | DATE/TIME       | · · · · · · · · · · · · · · · · · · · |                   |
| RELINQUISHED BY/R           | REMOVED FROM      | DATE/TIME             | RECEIVED BY/STORED IN     | DATE/TIME       |                                       |                   |
| ELINQUISHED BY/R            | REMOVED FROM      | DATE/TIME             | RECEIVED BY/STORED IN     | DATE/TIME       |                                       |                   |
| RELINQUISHED BY/R           | REMOVED FROM      | DATE/TIME             | RECEIVED BY/STORED IN     | DATE/TIME       |                                       |                   |
| LABORATORY                  | RECEIVED BY       |                       |                           |                 | TITLE                                 | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD   |                       |                           |                 | DISPOSED BY                           | DATE/TIME         |
| PRINTED ON 5                | 6/26/2015         |                       | FSR ID = FSR302           | T               | RVL NUM = TRVL-15-098                 | A-6003-618 (REV 2 |

| CH                                | 2MHill Plateau                                                                                                             | Remediation Company                                                                                                                                          |                                   | CHAIN O               | F CUST                        | ODY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-262                              | PAGE 1 OF 1          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|-------------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                         | R. Aguilan/CHPRC                                                                                                           | ,                                                                                                                                                            | COMPANY CONT<br>TODAK, D          | TACT                  | 1                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9451, I-00           | LOCATION<br>1A                                                                                                             |                                                                                                                                                              | PROJECT DESIG<br>300-FF-5 Post RC | D Field Investigation | on - Soils                    | 5                                | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                                                                                                        | N/A                                                                                                                                                          | FIELD LOGBOON                     | (NO.<br>507-33)3      |                               | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme           | IPPED TO<br>nvironmental Sciences Laboratory                                                                               |                                                                                                                                                              | OFFSITE PROPERTY NO. N/A          |                       |                               |                                  | BILL OF LADING/AIR BILL NO.     |                                          |                      |
| MATRIX*<br>A=Air                  | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for |                                                                                                                                                              | PRESERVATION                      |                       | None                          |                                  |                                 |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum     | concentration                                                                                                              | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                   | IG TIME               | 6 Month                       | 15                               |                                 |                                          |                      |
| Solids<br>L=Llquid<br>O=Oil       | Goods Regul<br>DOE Order 4                                                                                                 |                                                                                                                                                              |                                   | TYPE OF CONTAINER     |                               | oon                              |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                                                                            |                                                                                                                                                              |                                   | NO. OF CONTAINER(S)   |                               |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water           |                                                                                                                            |                                                                                                                                                              | VOLUME                            |                       | 1000g                         |                                  |                                 |                                          |                      |
| X=Other                           | SPECIAL HANDLING AND/OR STORAGE<br>N/A                                                                                     |                                                                                                                                                              | SAMPLE ANALYSIS                   |                       | Generic<br>Testing (<br>CAS}; | (No                              |                                 | . •                                      |                      |
| SAM                               | PLE NO.                                                                                                                    | MATRIX*                                                                                                                                                      | SAMPLE DATE                       | SAMPLE TIME           |                               | 52                               |                                 |                                          |                      |
| B31N66                            |                                                                                                                            | SOIL                                                                                                                                                         | 7-14-15                           | 0835                  | V                             | -                                |                                 |                                          |                      |

| CHAIN OF POSSES                         | SION            |               | SIGN/ PRINT NAMES                   | SPECIAL INS         | STRUCTIONS    |                   |
|-----------------------------------------|-----------------|---------------|-------------------------------------|---------------------|---------------|-------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPRC | JUL             | 1 4 2015 1430 | RECEIVED BY/STORED IN<br>SSU #1 JUL | 1 4 2010 1430       | 098           |                   |
| SSU-1                                   | EMOVED PROM JUL | 1 6 2015 ME   | RECEIVED BY/STORED IN               | LUL 1 6 2015 0745   |               |                   |
| K.C. Patterson/CHPR                     | EMOVED FROM JUL | 1 602015TIME  | PRECEIVED BY/STORED IN              | JUL 1 6 2015 DA: 36 |               |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN               | DATE/TIME           |               |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN               | DATE/TIME           |               |                   |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN               | DATE/TIME           |               |                   |
| RELINQUISHED BY/R                       | REMOVED FROM    | DATE/TIME     | RECEIVED BY/STORED IN               | DATE/TIME           |               |                   |
| LABORATORY<br>SECTION                   | RECEIVED BY     |               |                                     | TITLE               |               | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION             | DISPOSAL METHOD |               |                                     | DISPOSED BY         |               | DATE/TIME         |
| PRINTED ON 5                            | /26/2015        |               | FSR ID = FSR303                     | TRVL NUM            | = TRVL-15-098 | A-6003-618 (REV 2 |

| CH2                                             | MHill Plateau                                                                                           | Remediation Company                                                                                                                                          | -                                 | CHAIN O                          | F CUSTO                       | DDY/SAMPLE ANALYSIS REC          | QUEST                           | F15-014-265                              | PAGE 1 OF 1          |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                                       | .R. Agullar/CHPR                                                                                        | c                                                                                                                                                            | COMPANY CONT<br>TODAK, D          | ACT                              | T                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING (<br>C9451, I-002                      | LOCATION<br>2B                                                                                          |                                                                                                                                                              | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigation | on - Soils                    |                                  | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                                       | NO.                                                                                                     | N/A                                                                                                                                                          | FIELD LOGBOOK                     | (NO.<br>507-33/3                 | 4                             | 13,4'- 13,9'                     | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme                         | IIPPED TO<br>nvironmental Sciences Laboratory                                                           |                                                                                                                                                              | OFFSITE PROPERTY NO.              |                                  | BILL OF LADING/AIR BILL NN/A  | 0.                               |                                 |                                          |                      |
| MATRIX*<br>A≖Air                                | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>ir<br>Drum Concentrations that are not be regulated for<br>ids |                                                                                                                                                              | PRESER                            |                                  | None                          |                                  |                                 | •                                        |                      |
| DL=Drum<br>Liquids<br>DS=Drum                   | concentration<br>transportation                                                                         | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                   | G TIME                           | 6 Months                      | 5                                |                                 |                                          |                      |
| Solids<br>L≕Liquid<br>O≖Oii                     | Goods Regul<br>DOE Order 4                                                                              |                                                                                                                                                              |                                   | ONTAINER                         | Split-Spe<br>Lines-           | TRP CA 7-14-15                   |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=TIssue               |                                                                                                         |                                                                                                                                                              |                                   | NO. OF CONTAINER(S)              |                               | 1000- CA 7-14-15                 |                                 |                                          |                      |
| I = Issue<br>V=Vegetation<br>W=Water<br>WI=Wine |                                                                                                         |                                                                                                                                                              | VOLUME                            |                                  | 10000                         |                                  |                                 |                                          |                      |
| X=Other                                         | SPECIAL HA<br>N/A                                                                                       | NDLING AND/OR STORAGE                                                                                                                                        | SAMPLE A                          | NALYSI5                          | Generic<br>Testing {<br>CAS}; | No                               |                                 | × .                                      |                      |
| 5AM                                             | PLE NO.                                                                                                 | MATRIX*                                                                                                                                                      | SAMPLE DATE                       | SAMPLE TIME                      |                               | T.                               |                                 |                                          |                      |
| B31N69                                          |                                                                                                         | SOIL                                                                                                                                                         | 7-14-15                           | 0915                             | V                             |                                  |                                 |                                          |                      |

| PRINTED ON 5                              | /26/2015        |                | FSR ID = FSR306          | т              | RVL NUM = TRVL-15-098               | A-6003-618 (REV 2) |
|-------------------------------------------|-----------------|----------------|--------------------------|----------------|-------------------------------------|--------------------|
| FINAL SAMPLE<br>DISPOSITION               | DISPOSAL METHOD |                |                          |                | DISPOSED BY                         | DATE/TIME          |
| LABORATORY<br>SECTION                     | RECEIVED BY     |                | · ·                      |                | ππε                                 | DATE/TIME          |
| RELINQUISHED BY/R                         | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN    | DATE/TIME      |                                     |                    |
| RELINQUISHED BY/R                         | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN    | DATE/TIME      |                                     |                    |
| RELINQUISHED BY/R                         | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN    | DATE/TIME      |                                     |                    |
| RELINQUISHED BY/R                         | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN    | DATE/TIME      |                                     |                    |
| RELINQUISHED BY/R<br>K.C. Patterson/CHPRC | EMOVED FROM     | L 1 6 2015 09: | 30 M. Snyler AM Snudh JU | 1 6 2015 09:30 |                                     | -                  |
| SSU-1                                     | EMOVED FROM     | 1 6 2015074    | K.C. Petterson/QHER      | 1 6 2015 orth  |                                     |                    |
| RELINOUSHED BY/R<br>J.R. AgulianoHPRC     | EMOVED FROM     | 4 2015 1430    | SSUH) JUL                | 1 4 2015 1430  |                                     |                    |
| CHAIN OF POSSES                           | SION            |                | SIGN/ PRINT NAMES        |                | SPECIAL INSTRUCTIONS<br>TRVI-15-098 |                    |

| CH2                           | MHill Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Remediation Company</b>                                                                                 |                                                                                     | CHAIN O                                                      | FCUST                   | DDY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-267 |          | PAGE 1 OF 1          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|----------------------------------|---------------------------------|-------------|----------|----------------------|
| COLLECTOR<br>J.R. Ag          | ullar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            | COMPANY CONT<br>TODAK, D                                                            | FACT                                                         |                         | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H       | DATA<br>TURNAROUND   |
| SAMPLING I<br>C9451, I-002    | LOCATION<br>2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            | PROJECT DESIG<br>300-FF-5 Post RC                                                   | DD Field Investigation                                       | on - Soils              | 5                                | <b>SAF NO.</b><br>F15-014       | AIR QUALITY |          | 30 Days / 30<br>Days |
| ICE CHEST                     | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                        | FIELD LOGBOOK NO.         ACTUAL SAMPLE DE           HNF-N-507-33         13.9'-14. |                                                              | 13.9'-14.4              | COA<br>303492                    | GOVERNMENT V                    | EHICLE      | ORIGINAL |                      |
| SHIPPED TO<br>Environmen      | Image: Construction of the second |                                                                                                            | OFFSITE PROPERTY NO.                                                                |                                                              | BILL OF LADING/AIR BILL | NO.                              |                                 |             |          |                      |
| MATRIX*<br>A=Alr              | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>Ir<br>Drum<br>Is<br>Contains Radioactive Material at<br>concentrations that are not be regulated for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | PRESER                                                                              | VATION                                                       | None                    |                                  |                                 |             |          |                      |
| DL≕Drum<br>Liquids<br>DS=Drum | L≂Drum <sup>*</sup> Contains i<br>quids concentrati<br>S=Drum transportat<br>bilds Goods Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ins that are not be regulated for<br>on per 49 CFR/IATA Dangerous                                          | HOLDING TIME                                                                        |                                                              | 6 Month                 | IS .                             |                                 |             |          |                      |
| Solids<br>L=Liquid<br>O=Oti   | Goods Regu<br>DOE Order 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Goods Regulations but are not releasable per<br>DOE Order 458.1.<br>SPECIAL HANDLING AND/OR STORAGE<br>N/A |                                                                                     | TYPE OF CONTAINER NO. OF CONTAINER(S) VOLUME SAMPLE ANALYSIS |                         | noo                              |                                 |             |          |                      |
| S=Soil<br>SE=Sediment         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                     |                                                              |                         | · ·                              |                                 |             |          |                      |
| V=Vegetation<br>W=Water       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                     |                                                              |                         |                                  |                                 |             |          |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                                                     |                                                              |                         | (No                              |                                 |             |          |                      |
| SAM                           | PLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MATRIX*                                                                                                    | SAMPLE DATE                                                                         | SAMPLE TIME                                                  | 潮社                      |                                  |                                 |             |          |                      |
| B31N71                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOIL                                                                                                       | 7-14-15                                                                             | 0915                                                         | -                       |                                  |                                 |             |          |                      |

| CHAIN OF POSSES             | SION            |                 | SIGN/ PRINT NAMES      |                  | SPECIAL INSTRUCTIONS  |                    |
|-----------------------------|-----------------|-----------------|------------------------|------------------|-----------------------|--------------------|
| RELINQUISHED BY/B           | IN JU           | L 1 4 2015 1430 | SUIT JUL               | 1 4 2015 1430    | IRVL-15-098           |                    |
| RELINQUISHED BY             | EMOVED FROM     | DATE/TIME       | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| SSU-1                       | 111             | 1 6 2015 579    | K.C. Patterson/CHPFE   | 167115 5744      |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME       | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| K.C. Petterson/CHPR         | CALL.           | 09:3            | M. Snyduri M Snudu III | 1 1 6 2015 09:30 |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | UL I BATHY AME  | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME       | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME       | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME       | RECEIVED BY/STORED IN  | DATE/TIME        |                       |                    |
| LABORATORY                  | RECEIVED BY     |                 |                        |                  | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                 |                        |                  | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                | 6/26/2015       |                 | FSR ID = FSR307        | TI               | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| СНа                               | CH2MHill Plateau Remediation Company           |                                                                                          |                                                              | CHAIN O             | F CUSTO                       | DY/SAMPLE ANALYSIS RE    | QUEST                           | F15-014-268                              | PAGE 1 OF 1          |
|-----------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                         | .R. Aguller/CHPR                               | ic '                                                                                     | COMPANY CON<br>TODAK, D                                      | TACT                | 1                             | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9451, I-002          | LOCATION<br>3D                                 |                                                                                          | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |                     | lon - Soils                   |                          | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                            | N/A                                                                                      | FIELD LOGBOOK NO.<br>HNF-N-SU7-33                            |                     | 3 -                           | CTUAL SAMPLE DEPTH       | COA<br>/ 303492                 | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme           | HIPPED TO<br>Environmental Sciences Laboratory |                                                                                          | OFFSITE PROPERTY NO.                                         |                     |                               | 214.15                   | BILL OF LADING/AIR BILL P       |                                          |                      |
| MATRIX*                           | POSSIBLE S                                     | AMPLE HAZARDS/ REMARKS<br>adioactive Material at                                         | PRESER                                                       | VATION              | None                          |                          |                                 |                                          |                      |
| Liquids<br>DS=Drum                | concentratio<br>transportatio                  | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                              | IG TIME             | 6 Month                       |                          |                                 |                                          |                      |
| Solids<br>L=Liquid<br>O=Oil       | Goods Regu<br>DOE Order                        | lations but are not releasable per<br>458.1.                                             | TYPE OF CONTAINER                                            |                     | Split Spo<br>Liner            | n                        |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                |                                                                                          |                                                              | NO. OF CONTAINER(S) |                               |                          |                                 |                                          |                      |
| V=Vegetation<br>W=Water           |                                                |                                                                                          | VOL                                                          | UME                 | 1000g                         |                          |                                 |                                          |                      |
| X=Other                           | SPECIAL HA                                     | ANDLING AND/OR STORAGE                                                                   | SAMPLE                                                       | ANALYSIS            | Generic<br>Testing {<br>CAS}; | o                        |                                 |                                          |                      |
| SAM                               | PLE NO.                                        | MATRIX*                                                                                  | SAMPLE DATE                                                  | SAMPLE TIME         | 5.5                           |                          |                                 |                                          |                      |
| B31N72                            |                                                | SOIL                                                                                     | 7-14-15                                                      | 0945                | L                             | 24 J                     |                                 |                                          |                      |

| PRINTED ON 5                             | /26/2015        |                | FSR ID = FSR308       | T                        | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2 |
|------------------------------------------|-----------------|----------------|-----------------------|--------------------------|-----------------------|-------------------|
| FINAL SAMPLE<br>DISPOSITION              | DISPOSAL METHOD |                |                       |                          | DISPOSED BY           | DATE/TIME         |
| LABORATORY<br>SECTION                    | RECEIVED BY     |                |                       |                          | TITLE                 | DATE/TIME         |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN | DATE/TIME                |                       |                   |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN | DATE/TIME                |                       |                   |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN | DATE/TIME                |                       |                   |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN | JUL 1 6 2015 01-3        | 0                     |                   |
| RELINQUISHED BY/R<br>K.C. Patterson/CHPR | EMOVED FROM     | UL 1 6 2015 20 | RECEIVED BY/STORED IN | DATE/TIME                | *                     | •                 |
| SSU-1                                    | JUL             | 1 6 2015 574   | K.C. Patterson/CHPRC  | L1620150745              |                       |                   |
| J.R. Aguilar/CHRRC/<br>RELINOUISHED BY/R | EMOVED FROM     | 4 2013 1430    | SSUTI JUL I           | 4 2013 1980<br>DATE/TIME |                       |                   |
| RELINQUISHED BY                          | EMOVED FROM     | DATE/TIME      | RECEIVED BY/STORED IN | DATE/TIME                |                       |                   |
| CHAIN OF POSSES                          | SION            |                | SIGN/ PRINT NAMES     |                          | TDVI-15-008           |                   |

| CH2                         | MHill Plateau                                                                                                    | <b>Remediation Company</b>                                                               |                                                                    | CHAIN O                | F CUST                      | DDY/SAMPLE ANALYSIS R           | EQUEST                          | F15-014-269                              | PAGE 1 OF 1          |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------|---------------------------------|---------------------------------|------------------------------------------|----------------------|--|--|
| COLLECTOR                   | R. Agullar/CHPR                                                                                                  | c                                                                                        | COMPANY CONT<br>TODAK, D                                           | TACT                   |                             | <b>ELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |  |  |
| SAMPLING (<br>C9451, I-003  | LOCATION<br>BC                                                                                                   | 0 04                                                                                     | PROJECT DESIG<br>300-FF-5 Post RC                                  | DD Field Investigation | on - Soil                   |                                 | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |  |  |
| ICE CHEST                   | NO.                                                                                                              | N/A                                                                                      | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-S07-33/3 15,5'- 16' |                        |                             | IS, 5' - 16                     | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |  |  |
| SHIPPED TO                  | )                                                                                                                |                                                                                          | OFFSITE PROPE                                                      | RTY NO.                |                             |                                 | BILL OF LADING/AIR BILL NO.     |                                          |                      |  |  |
| Environme                   | INVIRONMENTAI Sciences Laboratory ITRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS Alir *Contains Radioactive Material at |                                                                                          |                                                                    |                        | N/                          | 4                               |                                 | N/A                                      |                      |  |  |
| MATRIX*                     |                                                                                                                  |                                                                                          | PRESER                                                             | VATION                 | None                        |                                 |                                 |                                          | •                    |  |  |
| Liquids<br>DS=Drum          | concentratio<br>transportatio                                                                                    | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                    |                        | 6 Month                     | S                               |                                 |                                          |                      |  |  |
| Solids<br>L=Llquid<br>O=Oil | Goods Regu<br>DOE Order 4                                                                                        | lations but are not releasable per<br>458.1.                                             | TYPE OF CONTAINER                                                  |                        | Split Sp<br>Liner           | non .                           |                                 |                                          |                      |  |  |
| S=Soil<br>SE=Sediment       |                                                                                                                  |                                                                                          |                                                                    | NO. OF CONTAINER(S)    |                             |                                 |                                 |                                          |                      |  |  |
| V=Vegetation<br>W=Water     |                                                                                                                  |                                                                                          | VOL                                                                | UME                    | 1000g                       |                                 |                                 |                                          |                      |  |  |
| WI=Wipe<br>X=Other          | SPECIAL HA                                                                                                       | ANDLING AND/OR STORAGE                                                                   | SAMPLE A                                                           | ANALYSIS               | Generic<br>Testing<br>CAS}; | No                              |                                 |                                          |                      |  |  |
| SAM                         | PLE NO.                                                                                                          | MATRIX*                                                                                  | SAMPLE DATE                                                        | SAMPLE TIME            | 17AUS                       |                                 |                                 |                                          |                      |  |  |
| B31N73                      |                                                                                                                  | SOIL                                                                                     | 7-14-15                                                            | 0945                   | (X. ) E.                    |                                 |                                 |                                          |                      |  |  |

| CHAIN OF POSSES                         | SION            |                  | SIGN/ PRINT NAMES                                    | SPECIA                         | LINSTRUCTIONS    |                    |
|-----------------------------------------|-----------------|------------------|------------------------------------------------------|--------------------------------|------------------|--------------------|
| RELINQUISHED BY/R                       | EMOVED FROM     | 1 4 2015 )430    | SSUH JUL                                             | 1 4 2013 1430                  | -15-098          |                    |
| SSU-1                                   | IU JU           | IL 1 6 2015 8 74 | K.C. Pattersonicher                                  | 1.6 2015 0745                  |                  |                    |
| RELINQUISHED BY/R<br>K.C. Patterson/GHP | RC STATE        | UL 1 6 2015 09:  | RECEIVED BY/STORED IN<br>30 M. Sovidua / M. Snurlu J | DATE/TIME<br>UL 1 6 2015 09-30 |                  |                    |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME        | RECEIVED BY/STORED IN                                | DATE/TIME                      |                  |                    |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME        | RECEIVED BY/STORED IN                                | DATE/TIME                      |                  |                    |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME        | RECEIVED BY/STORED IN                                | DATE/TIME                      |                  |                    |
| RELINQUISHED BY/R                       | EMOVED FROM     | DATE/TIME        | RECEIVED BY/STORED IN                                | DATE/TIME                      |                  |                    |
| LABORATORY<br>SECTION                   | RECEIVED BY     |                  |                                                      | TITLE                          |                  | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION             | DISPOSAL METHOD |                  |                                                      | DISPOS                         | ED BY            | DATE/TIME          |
| PRINTED ON 5                            | /26/2015        |                  | FSR ID = FSR309                                      | TRVL N                         | UM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | CH2MHill Plateau Remediation Company<br>ECTOR<br>J.R. Aguilar/CHPRC<br>PLING LOCATION | Remediation Company                                             |                                                                      | CHAIN C                      | OF CUS                     | TODY/SAMPLE ANALYSIS RI          | EQUEST                          | F15-014-270  |        | PAGE | 1 0          | F 1            |
|-------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------|----------------------------------|---------------------------------|--------------|--------|------|--------------|----------------|
| COLLECTOR<br>J.               | R. Aguiler/CHPRC                                                                      |                                                                 | COMPANY CONT<br>TODAK, D                                             | ACT                          |                            | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H     |      |              | ROUND          |
| SAMPLING (<br>C9451, I-00)    | LOCATION<br>3B                                                                        |                                                                 | PROJECT DESIG<br>300-FF-5 Post RC                                    | NATION<br>D Field Investigat | ion - So                   | ils                              | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |        |      | 30 Day<br>Da | /s / 30<br>ays |
| ICE CHEST                     | NO.                                                                                   | N/A                                                             | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF- N-507-33 3 16' - 16.5' |                              |                            |                                  | COA<br>303492                   | GOVERNMENT V | EHICLE |      | ORIC         | SINAL          |
| SHIPPED TO<br>Environme       | HIPPED TO<br>Environmental Sciences Laboratory                                        |                                                                 | OFFSITE PROPERTY NO.                                                 |                              |                            | BILL OF LADING/AIR BILL N/A      | NO.                             |              |        |      |              |                |
| MATRIX*<br>A=Air              | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS                                                 |                                                                 | PRESERVATION                                                         |                              | None                       |                                  |                                 |              |        |      |              |                |
| DL=Drum<br>Liquids<br>DS=Drum | concentration                                                                         | ns that are not be regulated for<br>n per 49 CFR/IATA Dangerous | HOLDING TIME                                                         |                              | 6 Mon                      | ths                              |                                 |              |        |      |              |                |
| Solids<br>L=Liquid            | Goods Regula<br>DOE Order 4                                                           | ations but are not releasable per 58.1.                         | TYPE OF CONTAINER                                                    |                              | G/P                        |                                  |                                 |              |        |      |              |                |
| S=Soil<br>SE=Sediment         |                                                                                       |                                                                 | NO. OF CON                                                           | TAINER(S)                    | 1                          |                                  |                                 |              |        |      |              |                |
| V=Vegetation<br>W=Water       |                                                                                       |                                                                 | VOL                                                                  | UME                          | 1L                         |                                  |                                 |              |        |      |              |                |
| WI=Wipe<br>X=Other            | SPECIAL HA                                                                            | NDLING AND/OR STORAGE                                           | SAMPLE A                                                             | NALYSIS                      | Generi<br>Testiny<br>CAS}; | (No                              |                                 |              |        |      |              |                |
| SAM                           | PLE NO.                                                                               | MATRIX*                                                         | SAMPLE DATE                                                          | SAMPLE TIME                  |                            | 22                               |                                 |              |        |      |              |                |
| B31N74                        |                                                                                       | SOIL                                                            | 7-14-15                                                              | 0945                         | L                          | -                                |                                 |              |        |      |              |                |

| CHAIN OF POSSESS                           | SION                      | SIGN/ PRINT NAMES                           | SPECIAL INSTRUCTIONS   |                    |
|--------------------------------------------|---------------------------|---------------------------------------------|------------------------|--------------------|
| RELINQUISHED BY/RI                         | EMOVED FROM JOL -1 4 2015 | ME RECEIVED BY/STORED IN<br>430 SSU H J JUL | 1 4 2015 1430          |                    |
| SSU-1                                      | 111 1 6 2015 6            | TUSKC. Patters prochPH                      | UL 1 6 20150745        |                    |
| RELINQUISHED BY/RI<br>K.C. Patterson/CHPRC | IUL 1 6 2015              | OT-30 M- SNAW M- Smidh                      | JUL 1 6 2015 09:30     |                    |
| RELINQUISHED BY/R                          | EMOVED FROM DATE/T        | IME RECEIVED BY/STORED IN                   | DATE/TIME              |                    |
| RELINQUISHED BY/R                          | EMOVED FROM DATE/T        | IME RECEIVED BY/STORED IN                   | DATE/TIME              |                    |
| RELINQUISHED BY/R                          | EMOVED FROM DATE/T        | IME RECEIVED BY/STORED IN                   | DATE/TIME              |                    |
| RELINQUISHED BY/R                          | EMOVED FROM DATE/T        | IME RECEIVED BY/STORED IN                   | DATE/TIME              |                    |
| LABORATORY                                 | RECEIVED BY               |                                             | ΠΤΙΕ                   | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION                | DISPOSAL METHOD           |                                             | DISPOSED BY            | DATE/TIME          |
| PRINTED ON 5                               | /26/2015                  | FSR ID = FSR310                             | TRVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | MHill Plateau                                   | Remediation Company                                              |                                                                    | CHAIN O                       | F CUST                      | ODY/SAMPLE ANALYSIS R            | EQUEST                          | F15-014-273        | PAGE 1 OF 1          |  |
|-------------------------------|-------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|-----------------------------|----------------------------------|---------------------------------|--------------------|----------------------|--|
| COLLECTOR<br>J.R.             | Aguilar/CHPRC                                   |                                                                  | COMPANY CONT<br>TODAK, D                                           | ACT                           |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |  |
| SAMPLING 1<br>C9451, I-003    | LOCATION<br>BA                                  |                                                                  | PROJECT DESIG<br>300-FF-5 Post RO                                  | NATION<br>D Field Investigati | ion - Soils                 | s .                              | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        | 30 Days / 30<br>Days |  |
| ICE CHEST                     | NO.                                             | N/A                                                              | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-S0-7-33/3 14-5'-17' |                               |                             |                                  | COA<br>303492                   | GOVERNMENT VEHICLE | ORIGINAL             |  |
| SHIPPED TO<br>Environme       | SHIPPED TO<br>Environmental Sciences Laboratory |                                                                  | OFFSITE PROPE                                                      | rty no.<br>N/                 | A                           |                                  | BILL OF LADING/AIR BILL NO.     |                    |                      |  |
| MATRIX*<br>A=Alr              | ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS         |                                                                  | PRESERVATION                                                       |                               | None                        |                                  |                                 |                    |                      |  |
| DL=Drum<br>Liquids<br>DS=Drum | concentration                                   | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                                       |                               | 6 Month                     | 15                               |                                 |                    |                      |  |
| Solids<br>L=Liquid            | Goods Regul<br>DOE Order 4                      | ations but are not releasable per 58.1.                          | TYPE OF CONTAINER                                                  |                               | Split Sp<br>Liner           | oon                              |                                 |                    |                      |  |
| S=Soil<br>SE=Sediment         |                                                 |                                                                  | NO. OF CON                                                         | ITAINER(S)                    | 1                           |                                  |                                 |                    |                      |  |
| V=Vegetation<br>W=Water       |                                                 |                                                                  | VOL                                                                | UME                           | 1000g                       |                                  |                                 |                    |                      |  |
| WI=Wipe<br>X=Other            | SPECIAL HA                                      | NDLING AND/OR STORAGE                                            | SAMPLE A                                                           | NALYSIS                       | Generic<br>Testing<br>CAS}; | (No                              |                                 |                    |                      |  |
| SAM                           | PLE NO.                                         | MATRIX*                                                          | SAMPLE DATE                                                        | SAMPLE TIME                   |                             | -R                               | ,                               |                    |                      |  |
| B31N77                        |                                                 | SOIL                                                             | 7-14-15                                                            | 0945                          | -                           | -                                |                                 |                    |                      |  |

| CHAIN OF POSSESS            | SION            |              | SIGN/ PRINT NAMES                                  |                    |                      |                    |
|-----------------------------|-----------------|--------------|----------------------------------------------------|--------------------|----------------------|--------------------|
| RELINQUISHED BY/R           | EMOVED FROM JUL | DATE/TIME    | RECEIVED BY/STORED IN                              | JL 1 4 2015 1430   | 1KAF-12-020          |                    |
| RELANSUISHED BY/R           | EMOVED FROM JUL | 1 6 2015 074 | RECEIVED BY/STORED IN                              | III 1 6 2015 ong   |                      |                    |
| RELINQUISHED BY/B           | EMOVED FROM     | 1 6 2015 07: | RECEIVED BY/STORED IN<br>30 U. Savdur / M. Savad 1 | JUL 1 6 2015 09:30 |                      |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                              | DATE/TIME          |                      |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                              | DATE/TIME          |                      | ·                  |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                              | DATE/TIME          |                      |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                              | DATE/TIME          |                      |                    |
| LABORATORY<br>SECTION       | RECEIVED BY     |              |                                                    |                    | TITLE                | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |              |                                                    |                    | DISPOSED BY          | DATE/TIME          |
| PRINTED ON 5                | /26/2015        |              | FSR ID = FSR312                                    | TR                 | VL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | CH2MHill Plateau Remediation Company                                                                        |                                                                  |                                                              | CHAIN C     | OF CUST                     | ODY/SAMPLE ANALYSIS R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EQUEST                          | F15-014-274        | PAGE 1 OF 1          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------|
| COLLECTOR                     | I.R. Aguilar/CHPR                                                                                           | uc                                                               | COMPANY CONT<br>TODAK, D                                     | ACT         |                             | <b>TELEPHONE NO.</b><br>376-6427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |
| SAMPLING L<br>C9451, I-004    | OCATION                                                                                                     |                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |             |                             | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        | 30 Days / 30<br>Days |
| ICE CHEST N                   | E CHEST NO.<br>N/A<br>IPPED TO                                                                              |                                                                  | FIELD LOGBOOK                                                | (NO.        | 3                           | ACTUAL SAMPLE DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COA<br>303492                   | GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO                    | )                                                                                                           |                                                                  | OFFSITE PROPE                                                | RTY NO.     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BILL OF LADING/AIR BILL         | NO.                |                      |
| Environme                     | Environmental Sciences Laboratory ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS *Contains Radioactive Material at |                                                                  |                                                              | N           | A/A                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |
| MATRIX*                       |                                                                                                             |                                                                  | PRESERVATION                                                 |             | None                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |
| DL=Drum<br>Llquids<br>DS=Drum | concentratio<br>transportatio                                                                               | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                                                       | IG TIME     | 6 Mont                      | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |                      |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regul<br>DOE Order 4                                                                                  | lations but are not releasable per 158.1.                        | TYPE OF CONTAINER                                            |             | Split Sp<br>Liner           | oon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    |                      |
| S=Soil<br>SE=Sediment         |                                                                                                             |                                                                  | NO. OF CON                                                   | TAINER(S)   | 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |
| V=Vegetation<br>W=Water       |                                                                                                             |                                                                  | VOL                                                          | UME         | 1000g                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                                                                                                  | ANDLING AND/OR STORAGE                                           | SAMPLE A                                                     | ANALYSIS    | Generic<br>Testing<br>CAS}; | (No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    |                      |
| _                             |                                                                                                             |                                                                  |                                                              |             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |
| SAM                           | PLE NO.                                                                                                     | MATRIX*                                                          | SAMPLE DATE                                                  | SAMPLE TIME |                             | 1931 - Contra 1937 - Contra 19 |                                 |                    |                      |
| B31N78                        |                                                                                                             | SOIL                                                             | 7-14-15                                                      | 1040        | L                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |                      |

| CHAIN OF POSSES                        | SION                  | SIGN/ PRINT NAMES                | SPECIAL INSTRUCTIONS   | · · ·             |
|----------------------------------------|-----------------------|----------------------------------|------------------------|-------------------|
| J.R. Aguilar SHPRC                     | JUL 1 4 ZUIS          | 430 SSUE JUL 14                  | 2015 1430              |                   |
| RELINQUISHED BY/R                      | JUL 1 6 2015          | RECEIVED BY/STORED IN            | 6 2015 JT 45           |                   |
| RELINQUISHED BY/R<br>K.C. Patters TUCH | JUL 1 6 2015          | 19:30 4 Snyder / M. Smyder JUL 1 | f 2015 7:30            |                   |
| RELINQUISHED BY/R                      | REMOVED FROM DATE/TIM | E RECEIVED BY/STORED IN          | DATE/TIME              |                   |
| RELINQUISHED BY/R                      | REMOVED FROM DATE/TIM | IE RECEIVED BY/STORED IN .       | DATE/TIME              |                   |
| RELINQUISHED BY/R                      | REMOVED FROM DATE/TIM | RECEIVED BY/STORED IN            | DATE/TIME              |                   |
| RELINQUISHED BY/R                      | REMOVED FROM DATE/TIM | RECEIVED BY/STORED IN            | DATE/TIME              |                   |
| LABORATORY<br>SECTION                  | RECEIVED BY           |                                  | TITLE                  | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION            | DISPOSAL METHOD       |                                  | DISPOSED BY            | DATE/TIME         |
| PRINTED ON 5                           | 5/26/2015             | FSR ID = FSR313                  | TRVL NUM = TRVL-15-098 | A-6003-618 (REV 2 |

| CH2                           | MHill Plateau                                  | Remediation Company                                             |                                                                     | CHAIN O                         | F CUST                      | ODY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-275                              | PAGE 1 OF 1          |
|-------------------------------|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|-----------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                     | uller/CHPRC                                    |                                                                 | COMPANY CONT<br>TODAK, D                                            | ACT                             |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE COPE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C9451, I-004    | LOCATION<br>4C                                 |                                                                 | 9ROJECT DESIG<br>300-FF-5 Post RC                                   | NATION<br>D Field Investigation | on - Soils                  | s                                | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                     | E CHEST NO.<br>N/A                             |                                                                 | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-507-33/3 18,0'-18,5' |                                 |                             |                                  | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme       | HIPPED TO<br>Environmental Sciences Laboratory |                                                                 | OFFSITE PROPE                                                       | RTY NO.                         | N/A                         |                                  | BILL OF LADING/AIR BILL         | NO.                                      |                      |
| MATRIX*<br>A=Air              | ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS        |                                                                 | PRESERVATION                                                        |                                 | None                        |                                  |                                 |                                          |                      |
| DL≖Drum<br>Liquids<br>DS≖Drum | concentration                                  | ns that are not be regulated for<br>n per 49 CFR/IATA Dangerous | HOLDING TIME                                                        |                                 | 6 Month                     | hs                               |                                 |                                          |                      |
| Solids<br>L=Llquid<br>O≖Oil   | Goods Regula<br>DOE Order 4                    | ations but are not releasable per 58.1.                         | TYPE OF CO                                                          | ONTAINER                        | Split Sp<br>Liner           | xxxx                             |                                 |                                          |                      |
| S=Soil<br>SE=Sediment         |                                                |                                                                 | NO. OF CON                                                          | TAINER(S)                       | 1                           |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water       |                                                |                                                                 | VOL                                                                 | UME                             | 1000g                       |                                  |                                 |                                          |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                                     | NDLING AND/OR STORAGE                                           | SAMPLE A                                                            | ANALYSIS                        | Generic<br>Testing<br>CAS}; | (No                              |                                 |                                          |                      |
| SAM                           | PLE NO.                                        | MATRIX*                                                         | SAMPLE DATE                                                         | SAMPLE TIME                     | 1. P.                       |                                  |                                 |                                          |                      |
| B31N79                        |                                                | SOIL                                                            | 7-14-15                                                             | 1040                            | L                           | -                                |                                 |                                          |                      |

| CHAIN OF POSSES                                                                                                                                     | SION                                                                                                                                                                   | SIGN/ PRINT NAMES                                                                                                                                                                    | SPECIAL INSTRUCTIONS                                                                                  |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>K.C. Patterson/CHPRG<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R | THE OVED FROM JUL 1 4 2015 14<br>JUL 1 4 2015 14<br>JUL 1 6 2015 JUL 1 6 2015 DATE/TIME<br>JUL 1 6 2015 DATE/TIME<br>JUL 1 6 2015 DATE/TIME<br>STEMOVED FROM DATE/TIME | RECEIVED BY/STORED IN<br>SSUAL<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | DATE/TIME<br>2015 1430<br>DATE/TIME<br>6 2015 546<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME |                    |
| RELINQUISHED BY/R                                                                                                                                   | REMOVED FROM DATE/TIME                                                                                                                                                 | RECEIVED BY/STORED IN                                                                                                                                                                | DATE/TIME                                                                                             |                    |
| RELINQUISHED BY/R                                                                                                                                   | REMOVED FROM DATE/TIME                                                                                                                                                 | RECEIVED BY/STORED IN                                                                                                                                                                | DATE/TIME                                                                                             |                    |
| LABORATORY<br>SECTION                                                                                                                               | RECEIVED BY                                                                                                                                                            |                                                                                                                                                                                      | TITLE                                                                                                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                         | IDISPOSAL METHOD                                                                                                                                                       |                                                                                                                                                                                      | DISPOSED BY                                                                                           | DATE/TIME          |
| PRINTED ON 5                                                                                                                                        | 5/26/2015                                                                                                                                                              | FSR ID = FSR314                                                                                                                                                                      | TRVL NUM = TRVL-15-098                                                                                | A-6003-618 (REV 2) |

| CH2MHill Plateau Remediation Company                                                                                                                         |                                                                                                                                                                                                                                              |                                                              |                     | CHAIN O     | F15-014-276                      | PAGE 1 OF 1                     |                    |                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|-------------|----------------------------------|---------------------------------|--------------------|----------------------|--|
| COLLECTOR<br>J.R. Aguilar/CHPRC                                                                                                                              |                                                                                                                                                                                                                                              | COMPANY CONTACT<br>TODAK, D                                  |                     |             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |  |
| SAMPLING LOCATION<br>C9451, I-004B                                                                                                                           |                                                                                                                                                                                                                                              | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |                     |             | lls                              | <b>SAF NO.</b><br>F15-014       |                    | 30 Days / 30<br>Days |  |
| ICE CHEST NO.<br>N/A                                                                                                                                         |                                                                                                                                                                                                                                              | FIELD LOGBOOK NO.<br>HNF-N-SOD-331                           |                     | 3           | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT VEHICLE | ORIGINAL             |  |
| SHIPPED TO<br>Environmental Sciences Laboratory                                                                                                              |                                                                                                                                                                                                                                              | OFFSITE PROPE                                                | RTY NO.<br>N/A      |             |                                  | BILL OF LADING/AIR BILL         | NO.                |                      |  |
| MATRIX*<br>A=Air<br>DL=Drum<br>Liquids<br>DS=Drum<br>Solids<br>L=Liquid<br>O=Oil<br>SE=Sediment<br>T=Tissue<br>V=Vegetabion<br>W=Water<br>WI=Wipe<br>X=Other | <b>POSSIBLE SAMPLE HAZARDS/ REMARKS</b><br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                                              | PRESER              | VATION      | None                             |                                 |                    |                      |  |
|                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                              | HOLDING TIME        |             | 6 Mont                           | ths                             |                    |                      |  |
|                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                              | TYPE OF CONTAINER   |             | G/P                              |                                 |                    |                      |  |
|                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                              | NO. OF CONTAINER(S) |             | 1                                |                                 |                    |                      |  |
|                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                              | VOLUME              |             | 1L                               |                                 |                    |                      |  |
|                                                                                                                                                              | SPECIAL HANDLING AND/OR STORAGE<br>N/A                                                                                                                                                                                                       |                                                              | SAMPLE ANALYSIS     |             | Generic<br>Testing<br>CAS};      | (No                             |                    | ,                    |  |
| SAMPLE NO.                                                                                                                                                   |                                                                                                                                                                                                                                              | MATRIX*                                                      | SAMPLE DATE         | SAMPLE TIME |                                  |                                 |                    |                      |  |
| B31N80                                                                                                                                                       |                                                                                                                                                                                                                                              | SOIL                                                         | 7-14-15             | 1040        | L                                |                                 |                    |                      |  |

| CHAIN OF POSSESSION                                                           |                 |                       | SIGN/ PRINT NAMES     |                  | SPECIAL INSTRUCTIONS  |                    |
|-------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------|------------------|-----------------------|--------------------|
| RELINQUISHED BY/R                                                             | EMOVED FROM     | 4 2015 1430           | SSU BI JUL            | 1 4 2015 1430    | TRVL-15-098           |                    |
| SSU-1                                                                         | IUL 1           | 6 2015 074            | K.C. Patterson/CHPR   | L 1620150745     |                       |                    |
| RELINQUISHED BY/R                                                             | EMOVED FROM     | DATE/TIME             | RECEIVED BY/STORED IN | III 1 COATE TIME |                       |                    |
| K.C. Patterson/CHPICE                                                         |                 | 162015 OF:            | 30 M. Shour M. Shudu  | UL I U LUIS 04-8 |                       |                    |
| RELINQUISHED BY/R                                                             | EMOVED FROM     | DATE/TIME             | RECEIVED BY/STORED IN | DATE/TIME        |                       |                    |
| RELINQUISHED BY/REMOVED FROM DATE/TIME RELINQUISHED BY/REMOVED FROM DATE/TIME |                 | RECEIVED BY/STORED IN | DATE/TIME             |                  |                       |                    |
|                                                                               |                 | RECEIVED BY/STORED IN | DATE/TIME             |                  |                       |                    |
| RELINQUISHED BY/R                                                             | EMOVED FROM     | DATE/TIME             | RECEIVED BY/STORED IN | DATE/TIME        |                       |                    |
| LABORATORY                                                                    | RECEIVED BY     |                       |                       |                  | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION                                                   | DISPOSAL METHOD |                       |                       | - Hellenis I     | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                                                                  | /26/2015        |                       | FSR ID = FSR315       | т                | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |
|                                                                                                                                                                                                                              | LLECTOR<br>J.R. Agullar/CHPRC<br>MPLING LOCATION<br>0451, I-004A                                                                                                                                                            | RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TODAK, D                                                                                                                                                             | TACT                                                                                           |                             | <b>TELEPHONE NO.</b><br>376-6427                                                                                                                   | PROJECT COORDINATOR<br>TODAK, D                                       | PRICE CODE 8H                                                                          | DATA<br>TURNAROUND     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------|
| C9451, I-004                                                                                                                                                                                                                 | OCATION                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROJECT DESIG<br>300-FF-5 Post RC                                                                                                                                    | NATION<br>D Field Investigati                                                                  | ion - Soil:                 | s                                                                                                                                                  | <b>SAF NO.</b><br>F15-014                                             | PRICE CODE 8H<br>AIR QUALITY<br>METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE<br>NO.<br>N/A | 30 Days / 30<br>Days   |
| CE CHEST N                                                                                                                                                                                                                   | 10.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIELD LOGBOON                                                                                                                                                        | K NO.                                                                                          |                             | ACTUAL SAMPLE DEPTH                                                                                                                                | COA                                                                   | METHOD OF SHIPMENT                                                                     |                        |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HNF-N                                                                                                                                                                | -507-33                                                                                        | 13                          | 19.00-19.5                                                                                                                                         | 303492                                                                | GOVERNMENT VEHICLE                                                                     | ORIGINA                |
| HIPPED TO                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OFFSITE PROPE                                                                                                                                                        | RTY NO.                                                                                        |                             |                                                                                                                                                    | BILL OF LADING/AIR BILL                                               | NO.                                                                                    |                        |
| Environmen                                                                                                                                                                                                                   | ntal Science                                                                                                                                                                                                                | es Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                | N/A                         |                                                                                                                                                    |                                                                       |                                                                                        |                        |
| ATRIX*<br>=Air                                                                                                                                                                                                               | POSSIBLE                                                                                                                                                                                                                    | E SAMPLE HAZARDS/ REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESER                                                                                                                                                               | VATION                                                                                         | None                        |                                                                                                                                                    | 1                                                                     |                                                                                        |                        |
| l⊊Drum<br>Iquids<br>S≖Drum                                                                                                                                                                                                   | concentra<br>transporta                                                                                                                                                                                                     | ations that are not be regulated for<br>ation per 49 CFR/IATA Dangerous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOLDIN                                                                                                                                                               |                                                                                                | 6 Month                     | 15                                                                                                                                                 |                                                                       |                                                                                        |                        |
| olids<br>≂Liquid<br>)=Oil                                                                                                                                                                                                    | DOE Orde                                                                                                                                                                                                                    | egulations but are not releasable per<br>er 458.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TYPE OF CO                                                                                                                                                           | ONTAINER                                                                                       | Split Sp<br>Liner           | oon                                                                                                                                                |                                                                       |                                                                                        |                        |
| =Soil<br>E=Sediment<br>I=Tissue                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO. OF COM                                                                                                                                                           | TAINER(S)                                                                                      | 1                           |                                                                                                                                                    |                                                                       |                                                                                        |                        |
| V=Water                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOL                                                                                                                                                                  | UME                                                                                            | 1000g                       |                                                                                                                                                    |                                                                       |                                                                                        |                        |
| (=Other                                                                                                                                                                                                                      | SPECIAL I<br>N/A                                                                                                                                                                                                            | HANDLING AND/OR STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE A                                                                                                                                                             | ANALYSIS                                                                                       | Generic<br>Testing<br>CAS}; | {No                                                                                                                                                |                                                                       |                                                                                        |                        |
| SAMP                                                                                                                                                                                                                         | PLE NO.                                                                                                                                                                                                                     | MATRIX*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE DATE                                                                                                                                                          | SAMPLE TIME                                                                                    | 1000                        |                                                                                                                                                    |                                                                       |                                                                                        |                        |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                | AND THE AVE. I              |                                                                                                                                                    |                                                                       |                                                                                        |                        |
| B31N82                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-14-18                                                                                                                                                              | 1040                                                                                           | 5                           |                                                                                                                                                    |                                                                       |                                                                                        |                        |
| B31N82                                                                                                                                                                                                                       | OSSESSION                                                                                                                                                                                                                   | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-14-15<br>SIGN/ PRIN                                                                                                                                                | 1040                                                                                           | ~                           |                                                                                                                                                    | SPECIAL INSTRUCTIONS                                                  |                                                                                        |                        |
| CHAIN OF PI<br>RELINQUISHE<br>J.R. Aguita<br>RELINQUISHE<br>SSU-1                                                                                                                                                            | OSSESSION                                                                                                                                                                                                                   | N<br>VED TROM<br>JUL 1 4 2015 JUS<br>VED FROM<br>JUL 1 6 2015 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SGU # 1<br>RECEIVED BY/<br>K.C. Patharsonia                                                                                | I D40                                                                                          | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>HUL 1 6 2015 074                                                                                        | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        |                        |
| CHAIN OF PO<br>RELINQUISHE<br>J.R. Aguila<br>RELINQUISHE<br>SSU-1<br>RELINQUISHE<br>G. Patterson/G<br>RELINQUISHE                                                                                                            | OSSESSION<br>D BY/REMO<br>ED BY/REMO<br>ED BY/REMO<br>CHPRC<br>ED BY/REMO                                                                                                                                                   | SOIL<br>N<br>VED ROM<br>JUL 1 4 2013 J430<br>DATE/TIME<br>JUL 1 6 2015 07<br>DATE/TIME<br>JUL 1 6 2015 07<br>DATE/TIME<br>DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU #<br>RECEIVED BY/<br>K.C. Pattarsoal<br>RECEIVED BY/<br>A:30 U.S.A.G.<br>RECEIVED BY/                                  | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN              | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>JUL 1 6 2015 074<br>JUL 1 6 2015 013<br>DATE/TIME<br>JUL 1 6 2015 013                                   | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        |                        |
| CHAIN OF P<br>RELINQUISHE<br>J.R. Aguita<br>RELINQUISHE<br>SSU-1<br>RELINQUISHE<br>RELINQUISHE                                                                                                                               | OSSESSION<br>TO BY/REMOTE<br>TO BY/REMOTE<br>TO BY/REMOTE<br>TO BY/REMOTE<br>TO BY/REMOTE<br>TO BY/REMOTE<br>TO BY/REMOTE                                                                                                   | SOIL<br>VED TROM<br>UED TROM<br>UED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU # 1<br>RECEIVED BY/<br>K.C. Pattarson/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/                 | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN              | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>JUL 1 6 2015 074<br>DATE/TIME<br>JUL 1 6 2015 043<br>DATE/TIME<br>DATE/TIME                             | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        |                        |
| CHAIN OF P<br>RELINQUISHE<br>JR. Aguita<br>RELINQUISHE<br>SSU-1<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE                                                                                                                 | OSSESSION<br>ED BY/REMOT<br>ED BY/REMOT<br>ED BY/REMOT<br>ED BY/REMOT<br>ED BY/REMOT                                                                                                                                        | SOIL<br>N<br>VED FROM<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU # 1<br>RECEIVED BY/<br>K.C. Pattarson/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/ | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN              | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>JUL 1 6 2015 079<br>DATE/TIME<br>JUL 1 6 2015 093<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME                | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        |                        |
| CHAIN OF P<br>RELINQUISHE<br>JR. Aguila<br>RELINQUISHE<br>G. Patkerson/C<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE                                                                                                        | OSSESSION<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON                                                                                           | SOIL<br>N<br>VED FROM<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU # 1<br>RECEIVED BY/<br>K.C. Pattarson/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/ | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL                         | DATE/TIME<br>1 4 2015 14 30<br>DATE/TIME<br>JUL 1 6 2015 079<br>DATE/TIME<br>JUL 1 6 2015 04:3<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        |                        |
| CHAIN OF POR<br>RELINQUISHE<br>J.R. Aguila<br>RELINQUISHE<br>SSU-1<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE                                                                 | OSSESSION<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON<br>ED BY/REMON                                                                            | SOIL<br>N<br>VED FROM<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU 41<br>RECEIVED BY/<br>K.C. Pattarson/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/  | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>JUL 1 6 2015 079<br>DATE/TIME<br>JUL 1 6 2015 04:3<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME  | SPECIAL INSTRUCTIONS<br>TRVL-15-098                                   |                                                                                        | DATE/TIME              |
| CHAIN OF PO<br>RELINQUISHE<br>J.R. Aguila<br>RELINQUISHE<br>SSU-1<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>RELINQUISHE<br>SECTIO<br>FINAL SAM<br>DISPOSIT | OSSESSION<br>ED BY/REMOI<br>ED BY/REMOI | SOIL<br>N<br>VED FROM<br>ULL 1 4 2015<br>JUL 1 6 2015<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>VED FROM<br>DATE/TIME<br>VED FROM<br>DATE/TIME                                                                                                                                                                                              | 7-14-18<br>SIGN/ PRINT<br>RECEIVED BY/<br>SSU 41<br>RECEIVED BY/<br>K.C. Pattarson/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/<br>RECEIVED BY/  | I D40<br>T NAMES<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN<br>STORED IN | JUL                         | DATE/TIME<br>1 4 2015 1430<br>DATE/TIME<br>JUL 1 6 2015 079<br>DATE/TIME<br>JUL 1 6 2015 09<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME    | SPECIAL INSTRUCTIONS<br>TRVL-15-098<br>5<br>0<br>TITLE<br>DISPOSED BY |                                                                                        | DATE/TIME<br>DATE/TIME |

CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST

**CH2MHill Plateau Remediation Company** 

A-180

PAGE 1 OF 1

F15-014-278

| CH2                           | MHill Plateau           | Remediation Company                                                                                                                                               |                                                              | CHAIN O          | FCUS                                                                                                       | TODY/SAMPLE ANALYSIS R           | EQUEST                          | F15-014-280        | PAG | E 1             | OF   | 1         |
|-------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------|-----|-----------------|------|-----------|
| COLLECTOR                     | R. Agulian/CHPRC        | )                                                                                                                                                                 | COMPANY CONT<br>TODAK, D                                     | ACT              |                                                                                                            | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      |     | TUR             | DATA | A         |
| SAMPLING<br>C9451, I-00       | LOCATION<br>5C          |                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |                  | ROJECT DESIGNATION         SAF NO.           800-FF-5 Post ROD Field Investigation - Soils         F15-014 |                                  | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        |     | 30 Days<br>Days |      | / 30<br>s |
| ICE CHEST                     | NO.                     | N/A                                                                                                                                                               | FIELD LOGBOOK                                                | (NO.<br>SU7-33/3 |                                                                                                            | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT VEHICLE |     | OR              | IGI  | INAL      |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences      | Laboratory                                                                                                                                                        | OFFSITE PROPE                                                | RTY NO.          | I/A                                                                                                        |                                  | BILL OF LADING/AIR BILL N/A     | NO.                |     |                 |      |           |
| MATRIX*<br>A=Air              | POSSIBLE S              | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                              | ATION            | None                                                                                                       |                                  |                                 |                    |     |                 |      |           |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio            |                                                                                                                                                                   |                                                              | HOLDING TIME     |                                                                                                            | ths                              |                                 |                    |     |                 |      |           |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regu<br>DOE Order | ilations but are not releasable per<br>458.1.                                                                                                                     | TYPE OF CONTAINER NO. OF CONTAINER(S) VOLUME                 |                  | Split S<br>Liner                                                                                           | poon                             |                                 |                    |     |                 |      |           |
| S=Soil<br>SE=Sediment         |                         |                                                                                                                                                                   |                                                              |                  | 1                                                                                                          |                                  |                                 |                    |     |                 |      |           |
| V=Vegetation<br>W=Water       |                         |                                                                                                                                                                   |                                                              |                  | 1000g                                                                                                      |                                  |                                 |                    |     |                 |      |           |
| WI=Wipe<br>X=Other            | SPECIAL HA              | ANDLING AND/OR STORAGE                                                                                                                                            | SAMPLE A                                                     | NALYSIS          | Generic<br>Testing<br>CAS};                                                                                | (No                              |                                 |                    |     |                 |      |           |
| SAM                           | PLE NO.                 | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                  | SAMPLE TIME      |                                                                                                            | at the                           |                                 |                    |     |                 |      |           |
| B31N84                        |                         | SOIL                                                                                                                                                              | 7-14-15                                                      | 1105             | L                                                                                                          | -                                |                                 |                    |     |                 |      |           |

| CHAIN OF POSSES             | SION            |               | SIGN/ PRINT NAMES                             | SPI             | CIAL INSTRUCTIONS   |                   |
|-----------------------------|-----------------|---------------|-----------------------------------------------|-----------------|---------------------|-------------------|
| RELINQUISHED BY/R           | EMOVED FROM     | A ZUIS 1430   | RECEIVED BY/STORED IN JU                      | L 1 4 2015 1430 | RVL-15-098          |                   |
| SSU-1                       | EMOVED FROM     | 1 6 2015 074  | RECEIVED BY/STORED IN<br>K.C. Patterson/CHERR | UL 1 6 2015 THE |                     |                   |
| RELINQUISHED BY/R           | IUI             | L 1 6 2015 09 | BO U Souther M. Snull                         | DATE/TIME       |                     |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                         | DATE/TIME       |                     |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                         | DATE/TIME       |                     |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                         | DATE/TIME       |                     |                   |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN                         | DATE/TIME       |                     |                   |
| LABORATORY<br>SECTION       | RECEIVED BY     |               |                                               | тп              | LE                  | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |               |                                               | DIS             | POSED BY            | DATE/TIME         |
| PRINTED ON 5                | /26/2015        |               | FSR ID = FSR318                               | TRV             | L NUM = TRVL-15-098 | A-6003-618 (REV 2 |

| CH2                           | MHill Plateau                                  | Remediation Company                                                                         |                                   | CHAIN O                       | F CUST                      | DDY/SAMPLE ANALYSIS RI           | EQUEST                            | F15-014-281                              | PAGE 1 OF 1          |  |
|-------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------|----------------------------------|-----------------------------------|------------------------------------------|----------------------|--|
| COLLECTOR                     | . Agullar/CHP/RC                               | 1                                                                                           | COMPANY CONT<br>TODAK, D          | ACT                           |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D ° | PRICE CODE 8H                            | DATA<br>TURNAROUND   |  |
| SAMPLING 1<br>C9451, I-005    | DCATION<br>5B                                  |                                                                                             | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>D Field Investigati | ion - Soils                 | 5                                | <b>SAF NO.</b><br>F15-014         |                                          | 30 Days / 30<br>Days |  |
| ICE CHEST                     | NO.                                            | N/A                                                                                         | FIELD LOGBOOK                     | (NO.                          | ACTUAL SAMPLE DEPTH CO      |                                  | COA<br>303492                     | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |  |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences                             | Laboratory                                                                                  | OFFSITE PROPERTY NO.              |                               |                             |                                  | BILL OF LADING/AIR BILL           | 0.                                       |                      |  |
| MATRIX*<br>A=Air              | POSSIBLES                                      | POSSIBLE SAMPLE HAZARDS/ REMARKS                                                            |                                   | VATION                        | None                        |                                  |                                   |                                          |                      |  |
| DL=Drum<br>Liquids<br>DS=Drum | *Contains R<br>concentration<br>transportation | adioactive Material at<br>ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                            | G TIME                        | 6 Months                    |                                  |                                   |                                          |                      |  |
| Solids<br>L=Llquid<br>O=Oil   | Goods Regu<br>DOE Order                        | ilations but are not releasable per<br>458.1.                                               | TYPE OF CONTAINER                 |                               | Split-Spl                   | 1LP<br>12 HAS                    |                                   |                                          |                      |  |
| S=Soil<br>SE=Sediment         |                                                |                                                                                             | NO. OF CON                        | TAINER(S)                     | 1                           |                                  |                                   |                                          |                      |  |
| V=Vegetation<br>W=Water       |                                                |                                                                                             | VOL                               | UME                           | 10009                       | Thyle                            |                                   |                                          |                      |  |
| WI=Wipe<br>X=Other            | SPECIAL HA                                     | SPECIAL HANDLING AND/OR STORAGE N/A                                                         |                                   | NALYSIS                       | Generic<br>Testing<br>CAS}; | (No                              |                                   |                                          |                      |  |
| SAMI                          |                                                | MATDIY*                                                                                     |                                   |                               | Jan 19                      | Hr 2                             | ,                                 |                                          |                      |  |
| B31N85                        |                                                | SOIL                                                                                        |                                   | 110C                          | Raber                       |                                  |                                   |                                          |                      |  |
|                               |                                                |                                                                                             | 1-14-15                           | 1105                          |                             |                                  |                                   |                                          |                      |  |

| CHAIN OF POSSES             | SION            |               | SIGN/ PRINT NAMES       | SPECIAL INSTRUCTIONS |                          |
|-----------------------------|-----------------|---------------|-------------------------|----------------------|--------------------------|
| RELINQUISHED BY             | EMOVED FROM     | 4 2015 143D   | SSU # JUL 1             | 4 2013 1430          |                          |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| SSU-1                       |                 | 1 6 2015 5745 | K.C. Patterson/CHPPC    | 1 6 2015 0745        |                          |
| RELINQUISHED BY             | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| K.C. Patterson/CHPRC        |                 | 1 6 2015 29:2 | O M. Snydor (M. Soudy ) | 111 1 6 2015 09:30   |                          |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN   | DATE/TIME            |                          |
| LABORATORY                  | RECEIVED BY     |               |                         | TITLE                | DATE/TIME                |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |               |                         | DISPOSED BY          | DATE/TIME                |
| PRINTED ON 5                | /26/2015        |               | FSR ID = FSR319         | TRVL NUM = TRVL-     | 15-098 A-6003-618 (REV ) |

| CH2                               | MHill Plateau                 | <b>Remediation Company</b>                                        |                                   | CHAIN O                        | F CUST                      | ODY/SAMPLE ANALYSIS R            | EQUEST                          | F15-014-283                             | PAGE 1 OF 1          |  |
|-----------------------------------|-------------------------------|-------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------|----------------------------------|---------------------------------|-----------------------------------------|----------------------|--|
| COLLECTOR                         | R. Aguiler/CHPR               | c                                                                 | COMPANY CONT<br>TODAK, D          | TACT                           |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                           | DATA<br>TURNAROUND   |  |
| SAMPLING 0<br>C9451, I-00         | LOCATION<br>5A                |                                                                   | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigati | stigation - Soils F15-      |                                  | <b>SAF NO.</b><br>F15-014       |                                         | 30 Days / 30<br>Days |  |
| ICE CHEST                         | NO.                           | N/A                                                               | FIELD LOGBOON                     | (NO.<br>507-33/                | 3                           | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMEN<br>GOVERNMENT VEHICLE | ORIGINAL             |  |
| SHIPPED TO<br>Environme           | )<br>ntal Sciences            | Laboratory                                                        | OFFSITE PROPE                     | RTY NO.                        | A                           |                                  | BILL OF LADING/AIR BILL         | NO.                                     |                      |  |
| IATRIX*<br>A=Air<br>DL=Drum       | POSSIBLE S                    | AMPLE HAZARDS/ REMARKS                                            | PRESER                            | VATION                         | None                        |                                  |                                 |                                         |                      |  |
| DL=Drum<br>Liquids<br>DS=Drum     | concentratio<br>transportatio | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                      |                                | 6 Mont                      | 15                               | ,                               |                                         |                      |  |
| Solids<br>L=Liquid<br>O≈Oil       | Goods Regu<br>DOE Order 4     | lations but are not releasable per<br>458.1.                      | TYPE OF CONTAINER                 |                                | Split Sp<br>Liner           | oon                              |                                 |                                         |                      |  |
| S=Soil<br>SE=Sediment<br>T=TIssue |                               |                                                                   | NO. OF CONTAINER(S)               |                                | 1                           |                                  |                                 |                                         |                      |  |
| V=Vegetation<br>W=Water           | -                             |                                                                   |                                   | VOLUME                         |                             |                                  |                                 |                                         |                      |  |
| X=Other                           | SPECIAL HA                    | ANDLING AND/OR STORAGE                                            | SAMPLE /                          | ANALYSIS                       | Generic<br>Testing<br>CAS}; | (No                              |                                 |                                         |                      |  |
| SAM                               | PLE NO.                       | MATRIX*                                                           | SAMPLE DATE                       | SAMPLE TIME                    | 200                         | 123                              |                                 |                                         |                      |  |
| B31N87                            |                               | SOIL                                                              | 7-14-15                           | 1105                           |                             |                                  |                                 |                                         |                      |  |

| CHAIN OF POSSES             | SION                        | SIGN/ PRINT NAMES         | SPECIAL INSTRUCTIONS   |                    |
|-----------------------------|-----------------------------|---------------------------|------------------------|--------------------|
| J.R. ADDANCHPRC             | HOVED FROM JUL 14 ZUIS 1430 | SSU#1 JUL 14              | 2015 J930              |                    |
| RELINQUISHED BY             | JUL 1 6 2015 074            | RECEIVED BY/STORED IN     | UL 1 6 2015 and        |                    |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME       | RECEIVED BY/STORED IN     | DATE/TIME              |                    |
| K.C. Patterson/CHPRC        | 111 1 6 2015 9              | 30 M. Snyder M. Snyder JU | L 1 6 2015 09:30       |                    |
| RELINQUISHED BY/R           | EMOVED FROM JOL DATE TIME   | RECEIVED BY/STOKED IN     | DĂTE/TIME              |                    |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME       | RECEIVED BY/STORED IN     | DATE/TIME              |                    |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME       | RECEIVED BY/STORED IN     | DATE/TIME              |                    |
| RELINQUISHED BY/R           | EMOVED FROM DATE/TIME       | RECEIVED BY/STORED IN     | DATE/TIME              |                    |
| LABORATORY<br>SECTION       | RECEIVED BY                 |                           | TITLE                  | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD             |                           | DISPOSED BY            | DATE/TIME          |
| PRINTED ON 5                | /26/2015                    | FSR ID = FSR320           | TRVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | MHill Plateau              | Remediation Company                                              |                                     | CHAIN O                       | F CUS                     | SAMPLE ANALYSIS RE         | EQUEST                             | F15-014-286 |                    | PAGE 1 OF 1          |  |
|-------------------------------|----------------------------|------------------------------------------------------------------|-------------------------------------|-------------------------------|---------------------------|----------------------------|------------------------------------|-------------|--------------------|----------------------|--|
| COLLECTOR                     | uller/CHPRC                |                                                                  | COMPANY CONT<br>TODAK, D            | ACT                           |                           | <b>PHONE NO.</b><br>6-6427 | PROJECT COORDINATOR<br>TODAK, D    | PRICE CODE  | 8H                 | DATA<br>TURNAROUND   |  |
| SAMPLING<br>C9451, I-000      | LOCATION<br>6B             |                                                                  | PROJECT DESIG<br>300-FF-5 Post RC   | NATION<br>D Field Investigati | on - So                   |                            | <b>SAF NO.</b><br>F15-014          | AIR QUALITY |                    | 30 Days / 30<br>Days |  |
| ICE CHEST                     | NO.<br>I                   | N/A                                                              | FIELD LOGBOOK NO.<br>HWF-N-SOD-33/3 |                               | 13                        | H' - 24, 5                 | SAMPLE DEPTH COA<br>- 24, 5 303492 |             | GOVERNMENT VEHICLE |                      |  |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences I       | Laboratory                                                       | OFFSITE PROPE                       | RTY NO. N/A                   | 4                         |                            | BILL OF LADING/AIR BILL            | 0.          |                    |                      |  |
| MATRIX*<br>A=Air              | POSSIBLE S                 | AMPLE HAZARDS/ REMARKS                                           | PRESER                              | VATION                        | None                      |                            | •                                  |             |                    |                      |  |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio               | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                              | HOLDING TIME 6 Months         |                           |                            |                                    |             |                    |                      |  |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regul<br>DOE Order 4 | Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                     | ONTAINER                      | G/P                       |                            |                                    |             |                    |                      |  |
| S=Soil<br>SE=Sediment         |                            |                                                                  | NO. OF CON                          | TAINER(S)                     | 1                         | Used                       | For I-oule's sample                |             |                    |                      |  |
| V=Vegetation<br>W=Water       |                            |                                                                  | VOL                                 | UME                           |                           |                            |                                    |             |                    |                      |  |
| WI=Wipe<br>X=Other            | SPECIAL HA                 | SPECIAL HANDLING AND/OR STORAGE                                  |                                     | NALYSIS                       | Generi<br>Testin<br>CAS}; | 1 sept                     | ns were Lu                         | ner A       |                    |                      |  |
|                               |                            |                                                                  |                                     |                               |                           |                            | CA                                 |             |                    |                      |  |
| SAM                           | PLE NO.                    | MATRIX*                                                          | SAMPLE DATE                         | SAMPLE TIME                   | N.                        |                            | 7-14-1                             | <b>r</b> -  |                    |                      |  |
| B31N90                        |                            | SOIL                                                             | 7-111-15                            | 1215                          | 1                         |                            |                                    |             |                    |                      |  |

| CHAIN OF POSSES             | SION            |               | SIGN/ PRINT NAMES         | SP                 | ECIAL INSTRUCTIONS  |                   |
|-----------------------------|-----------------|---------------|---------------------------|--------------------|---------------------|-------------------|
| RELINQUISHED BY             | EMONED FROM     | 12015 143D    | SSUHI JUL 1               | 4 2015 1430        | RVL-15-098          |                   |
| RELINQUISHED BY/F           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| SSU-1                       |                 | L 1 6 2015074 | K.C. Patterson CHPRC      | L 1 6 20150745     |                     |                   |
| RELINQUISHED BY             | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| K.C. Patterson/CHPRC        |                 | 1 6 2015 09-  | 30 U. Snyder / M. Sauder. | JUL 1 6 2015 69:30 |                     |                   |
| RELINQUISHED BY/P           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| RELINQUISHED BY/F           |                 | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| RELINQUISHED BY/F           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| RELINQUISHED BY/F           | EMOVED FROM     | DATE/TIME     | RECEIVED BY/STORED IN     | DATE/TIME          |                     |                   |
| LABORATORY<br>SECTION       | RECEIVED BY     |               |                           | . τι               | LE .                | DATE/TIME         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |               |                           | DI                 | SPOSED BY           | DATE/TIME         |
| PRINTED ON 5                | 5/26/2015       |               | FSR ID = FSR323           | TRV                | L NUM = TRVL-15-098 | A-6003-618 (REV 2 |

| CHA                                                  | MHill Plateau                   | Remediation Company                                              |                                   | CHAIN O                        | F CUST                      | ODY/SAMPLE ANALYSIS R | EQUEST                                                                   | F15-014-292   | PAGE 1 OF 1          |  |
|------------------------------------------------------|---------------------------------|------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------|-----------------------|--------------------------------------------------------------------------|---------------|----------------------|--|
| COLLECTOR<br>J.R. A                                  | guller/CHPRC                    |                                                                  | COMPANY CONT<br>TODAK, D          | ACT                            |                             | 376-6427              | PROJECT COORDINATOR<br>TODAK, D                                          | PRICE CODE 8H | DATA<br>TURNAROUND   |  |
| SAMPLING<br>C9451, I-00                              | LOCATION<br>7B                  |                                                                  | PROJECT DESIG<br>300-FF-5 Post RC | NATION<br>D Field Investigatio | on - Soi                    | S                     | <b>SAF NO.</b><br>F15-014                                                | AIR QUALITY   | 30 Days / 30<br>Days |  |
| ICE CHEST                                            | NO.                             | N/A                                                              | FIELD LOGBOOK                     | NO.                            |                             | ACTUAL SAMPLE DEPTH   | L SAMPLE DEPTH COA<br>5 <sup>'</sup> - スフ <sup>'</sup> <sup>303492</sup> |               | ORIGINAL             |  |
| SHIPPED TO<br>Environme                              | )<br>ntal Sciences L            | aboratory                                                        | OFFSITE PROPE                     | RTY NO.                        | •                           | <u>.</u>              | BILL OF LADING/AIR BILL N                                                | 10.           |                      |  |
| MATRIX*<br>A=Air<br>DL=Drum                          | POSSIBLE SA<br>*Contains Ra     | AMPLE HAZARDS/ REMARKS                                           | PRESER                            | ATION                          | None                        |                       |                                                                          |               |                      |  |
| Liquids<br>DS=Drum                                   | concentration<br>transportation | ns that are not be regulated for<br>n per 49 CFR/IATA Dangerous  | HOLDIN                            | G TIME                         | 6 Mont                      | 15                    |                                                                          |               |                      |  |
| Solids<br>L=Liquid<br>O=Oil                          | DOE Order 4                     | Goods Regulations but are not releasable per<br>DOE Order 458.1. |                                   | NTAINER                        | G/P                         | Used                  | Used Liner A For                                                         |               | aple                 |  |
| S=Soil<br>SE=Sediment<br>T=Tissue                    |                                 |                                                                  | NO. OF CON                        | TAINER(S)                      | 1                           | Dept                  | hs were For                                                              | - Liner A     |                      |  |
|                                                      |                                 |                                                                  | VOL                               | IME                            | 1L                          |                       | •                                                                        |               |                      |  |
| V=Vegetation<br>W=Water                              |                                 |                                                                  |                                   |                                |                             |                       |                                                                          |               |                      |  |
| V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other        | SPECIAL HA                      | NDLING AND/OR STORAGE                                            | SAMPLE A                          | NALYSIS                        | Generic<br>Testing<br>CAS}; | (No                   |                                                                          |               |                      |  |
| V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other<br>SAM | SPECIAL HANNA                   | NDLING AND/OR STORAGE<br>MATRIX*                                 | SAMPLE A                          | NALYSIS<br>SAMPLE TIME         | Generic<br>Testing<br>CAS}; | (No                   |                                                                          |               |                      |  |

| CHAIN OF POSSES                           | SION            |             | SIGN/ PRINT NAMES                            |                    | SPECIAL INSTRUCTIONS  |                    |
|-------------------------------------------|-----------------|-------------|----------------------------------------------|--------------------|-----------------------|--------------------|
| RELINQUISHED BY/F                         | REMOVED EROM    | PZUIS 1430  | SSU # JUL                                    | 1 4 2013 1430      | TRVL-15-098           |                    |
| RELINQUISHED BY/F                         | LEMOVED FROM    | 1 6 2015 OT | RECEIVED BY/STORED IN                        | 1 6 2015 DATE/TIME |                       |                    |
| RELINQUISHED BY/M<br>K.C. Patterson/CHPRC | NEMOVED FROM    | 1 6 2015 OF | RECEIVED BY/STORED IN<br>U. Snyder M. Snydel | JL 1 6 2015 04:30  |                       |                    |
| RELINQUISHED BY                           | EMOVED FROM     | DATE/TIME   | RECEIVED BY/STORED IN                        | DATE/TIME          |                       |                    |
| RELINQUISHED BY/F                         | REMOVED FROM    | DATE/TIME   | RECEIVED BY/STORED IN                        | DATE/TIME          |                       |                    |
| RELINQUISHED BY/F                         | REMOVED FROM    | DATE/TIME   | RECEIVED BY/STORED IN                        | DATE/TIME          |                       |                    |
| RELINQUISHED BY/F                         | REMOVED FROM    | DATE/TIME   | RECEIVED BY/STORED IN                        | DATE/TIME          |                       |                    |
| LABORATORY                                | RECEIVED BY     |             |                                              |                    | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION               | DISPOSAL METHOD |             |                                              |                    | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                              | 5/26/2015       |             | FSR ID = FSR328                              | TF                 | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH                                                | 2MHill Plateau          | Remediation Company                                               |                                                                                   | CHAIN C                                                            | OF CUST                                                                                                          | DY/SAMPLE ANALYSIS R      | EQUEST                          | F15-014-296                              | PAGE 1 OF 1        |  |
|---------------------------------------------------|-------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|------------------------------------------|--------------------|--|
| COLLECTOR                                         | J.R. Aguilar/CH         | IPRC                                                              | COMPANY CONT<br>TODAK, D                                                          | TACT                                                               | -                                                                                                                | ELEPHONE NO.<br>376-6427  | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND |  |
| SAMPLING<br>C9451, I-00                           | LOCATION<br>8C          |                                                                   | PROJECT DESIG<br>300-FF-5 Post RC                                                 | ROJECT DESIGNATION<br>00-FF-5 Post ROD Field Investigation - Soils |                                                                                                                  | <b>SAF NO.</b><br>F15-014 |                                 | 30 Days / 30<br>Days                     |                    |  |
| ICE CHEST                                         | NO.                     | N/A                                                               | N/A FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH COA<br>H.NF-N-S07-33/3 28'-28.5' 303492 |                                                                    | ELD LOGBOOK NO.         ACTUAL SAMPLE DEPTH         COA           NF-N-S07-33/3         28'-28,5'         303492 |                           | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL           |  |
| SHIPPED TO<br>Environme                           | 0<br>Intal Sciences     | Laboratory                                                        | OFFSITE PROPE                                                                     | RTY NO.                                                            |                                                                                                                  | V/A                       | BILL OF LADING/AIR BILL         | N/A                                      |                    |  |
| MATRIX*<br>A=Alr<br>DL=Drum<br>Llquids<br>DS=Drum | POSSIBLE S              | SAMPLE HAZARDS/ REMARKS                                           | PRESER                                                                            | VATION                                                             | None                                                                                                             |                           |                                 |                                          |                    |  |
|                                                   | concentratio            | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                                                      |                                                                    | 6 Month                                                                                                          |                           |                                 |                                          |                    |  |
| Solids<br>L=Liquid<br>O=Oti                       | Goods Regu<br>DOE Order | ulations but are not releasable per 458.1.                        | TYPE OF CONTAINER<br>NO. OF CONTAINER(S)<br>VOLUME                                |                                                                    | Split Sp<br>Liner                                                                                                | n                         |                                 |                                          |                    |  |
| S=Soil<br>SE=Sediment<br>T=Tissue                 |                         |                                                                   |                                                                                   |                                                                    | 1                                                                                                                |                           |                                 |                                          |                    |  |
| V=Vegetation<br>W=Water                           |                         |                                                                   |                                                                                   |                                                                    | 1000g                                                                                                            |                           |                                 |                                          |                    |  |
| X=Other                                           | SPECIAL HA              | SPECIAL HANDLING AND/OR STORAGE                                   |                                                                                   | ANALYSIS                                                           | Generic<br>Testing<br>CAS};                                                                                      | D                         |                                 |                                          |                    |  |
| SAM                                               | PLE NO.                 | MATRIX*                                                           | SAMPLE DATE                                                                       | SAMPLE TIME                                                        |                                                                                                                  |                           |                                 |                                          |                    |  |
| B31NB0                                            |                         | SOIL                                                              | 7-14-15                                                                           | 1255                                                               | L                                                                                                                |                           |                                 |                                          |                    |  |

| CHAIN OF POSSESSION                         |                | SIGN/ PRINT NAMES                                  |                  | SPECIAL INSTRUCTIONS   |                    |
|---------------------------------------------|----------------|----------------------------------------------------|------------------|------------------------|--------------------|
| RELINQUISHED BY BEHOVED FROM                | A ZUIS 1430    | RECEIVED BY/STORED IN JUL 1                        | 4 2015 1430      | TRVL-15-098            |                    |
| RELINQUISHED BY/REMOVED FROM JUL            | 1 6 ZO15 ME    | RECEIVED BY/STORED IN JUL                          | 1 6 20150745     |                        |                    |
| RELINQUISHED BY/REMOVED FROM                | 1 6 2015 09:32 | RECEIVED BY/STORED IN<br>U. Sovder IM. Spruder JUI | L 1 6 2015 09:31 | D                      |                    |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME      | RECEIVED BY/STORED IN                              | DATE/TIME        |                        |                    |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME      | RECEIVED BY/STORED IN                              | DATE/TIME        |                        |                    |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME      | RECEIVED BY/STORED IN                              | DATE/TIME        |                        |                    |
| RELINQUISHED BY/REMOVED FROM                | DATE/TIME      | RECEIVED BY/STORED IN                              | DATE/TIME        |                        |                    |
| LABORATORY RECEIVED BY<br>SECTION           |                | 1                                                  |                  | TITLE                  | DATE/TIME          |
| FINAL SAMPLE DISPOSAL METHOD<br>DISPOSITION |                | •                                                  |                  | DISPOSED BY            | DATE/TIME          |
| PRINTED ON 5/26/2015                        |                | FSR ID = FSR331                                    | Т                | RVI NUM = TRVI -15-098 | A-6003-618 (REV 2) |

| CH2                           | MHill Plateau                          | Remediation Company                                                           |                                   | CHAIN C            | OF CUST                     | DDY/SAMPLE ANALYSIS R            | EQUEST                          | F15-014-297                              | PAGE 1 OF 1          |
|-------------------------------|----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|--------------------|-----------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.F              | R. Aguilar/CHPRC                       |                                                                               | COMPANY CONT<br>TODAK, D          | TACT               |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING 0<br>C9451, I-008    | IPLING LOCATION                        |                                                                               | PROJECT DESIG<br>300-FF-5 Post RC | D Field Investigat | ion - Soil                  | 5                                | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                     | NO.                                    | N/A                                                                           | FIELD LOGBOOK NO.                 |                    |                             | 28.5' - 29'                      | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences I                   | Laboratory                                                                    | OFFSITE PROPE                     | RTY NO.            | N/A                         |                                  | BILL OF LADING/AIR BILL<br>N/A  | NO.                                      |                      |
| MATRIX*<br>A=Air              | POSSIBLE SAMPLE HAZARDS/ REMARKS       |                                                                               | PRESER                            | VATION             | None                        |                                  |                                 |                                          |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio<br>transportatio          | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous              | HOLDING TIME                      |                    | 6 Mont                      | 5                                |                                 |                                          |                      |
| Solids<br>L=Liquid<br>O=OII   | Goods Regul<br>DOE Order 4             | ds Regulations but are not releasable per<br>E Order 458.1. TYPE OF CONTAINER |                                   | ONTAINER           | G/P                         |                                  |                                 |                                          |                      |
| S=Soil<br>SE=Sediment         |                                        |                                                                               | NO. OF CONTAINER(S)               |                    | 1                           |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water       | SPECIAL HANDLING AND/OR STORAGE<br>N/A |                                                                               | VOLUME                            |                    | 1L                          |                                  |                                 |                                          |                      |
| WI=Wipe<br>X=Other            |                                        |                                                                               | SAMPLE A                          | ANALYSIS           | Generic<br>Testing<br>CAS}; | (No                              |                                 |                                          |                      |
| SAM                           | PLE NO.                                | MATRIX*                                                                       | SAMPLE DATE                       | SAMPLE TIME        |                             |                                  |                                 |                                          |                      |
| B31NB1                        |                                        | SOIL                                                                          | 7-14-15                           | 1255               | L                           |                                  |                                 |                                          |                      |

| CHAIN OF POSSES             | SION            |            | SIGN/ PRINT NAMES         |                                       | SPECIAL INSTRUCTIONS |                    |
|-----------------------------|-----------------|------------|---------------------------|---------------------------------------|----------------------|--------------------|
| RELINQUISHED BY/R           | HEMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN JUL | 1 4 2015 14 30                        | TRVL-15-098          |                    |
| SSU ,                       | JUL 1           | 6 20150745 | K.C. Patterson/CHPRC      | 162015079                             |                      |                    |
| RELINQUISHED BY/R           | REMOVED TROM    | DATE/TIME  | RECEIVED BY/STORED IN     | DATE/TIME                             |                      |                    |
| RELINQUISHED BY/R           | TUL I           | DATE/TIME  | RECEIVED BY/STORED IN     | DATE/TIME                             |                      |                    |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN     | DATE/TIME                             |                      |                    |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN     | DATE/TIME                             |                      |                    |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN     | DATE/TIME                             |                      |                    |
| LABORATORY<br>SECTION       | RECEIVED BY     |            |                           | · · · · · · · · · · · · · · · · · · · | TITLE                | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |            |                           |                                       | DISPOSED BY          | DATE/TIME          |
| PRINTED ON 5                | 5/26/2015       |            | FSR ID = FSR332           | TR                                    | VL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                           | MHill Plateau                   | Remediation Company                                                                      |                                              | CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST |                               |            |                                 | CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST |                      |  | EQUEST | F15-014-299 | PAGE 1 OF 1 |
|-------------------------------|---------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------|------------|---------------------------------|------------------------------------------|----------------------|--|--------|-------------|-------------|
| COLLECTOR                     | J.R. Agulla                     | r/CHPRC                                                                                  | COMPANY CONT<br>TODAK, D                     | ACT                                      | T                             | -6427      | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |  |        |             |             |
| SAMPLING                      | LOCATION<br>BA                  |                                                                                          | PROJECT DESIG                                | NATION<br>D Field Investigation          | on - Soils                    |            | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |  |        |             |             |
| ICE CHEST                     | NO.                             | N/A                                                                                      | FIELD LOGBOON                                | (NO.<br>507-33/3                         | -                             | 9.0'-29.5' | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |  |        |             |             |
| SHIPPED TO<br>Environme       | )<br>ntal Sciences              | Laboratory                                                                               | OFFSITE PROPE                                | RTY NO.                                  | I/A                           |            | BILL OF LADING/AIR BILL         | NO.<br>IA                                |                      |  |        |             |             |
| MATRIX*<br>A=Air              | POSSIBLE S                      | SAMPLE HAZARDS/ REMARKS                                                                  | PRESER                                       | VATION                                   | None                          |            |                                 |                                          |                      |  |        |             |             |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio                    | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                              | G TIME                                   | 6 Month                       |            |                                 |                                          |                      |  |        |             |             |
| Solids<br>L=∐quid<br>Ω=Oil    | Goods Regu<br>DOE Order         | ulations but are not releasable per 458.1.                                               | TYPE OF CONTAINER NO. OF CONTAINER(S) VOLUME |                                          | Split Spo<br>Uner             |            |                                 |                                          |                      |  |        |             |             |
| S=Soil<br>SE=Sediment         |                                 |                                                                                          |                                              |                                          | 1                             |            |                                 |                                          |                      |  |        |             |             |
| V=Vegetation<br>W=Water       |                                 |                                                                                          |                                              |                                          | 1000g                         |            |                                 |                                          |                      |  |        |             |             |
| WI=Wipe<br>X=Other            | SPECIAL HANDLING AND/OR STORAGE |                                                                                          | SAMPLE                                       | NALYSIS                                  | Generic<br>Testing {<br>CAS}; |            |                                 |                                          |                      |  |        |             |             |
| SAM                           | PLE NO.                         | MATRIX*                                                                                  | SAMPLE DATE                                  | SAMPLE TIME                              |                               |            |                                 |                                          |                      |  |        |             |             |
|                               |                                 | SOIL                                                                                     | 7-14-15                                      | 1255                                     | ~                             |            |                                 |                                          |                      |  |        |             |             |

| CHAIN OF POSSES                          | SION            |              | SIGN/ PRINT NAMES                    | SPECIAL           | E 009           |                    |
|------------------------------------------|-----------------|--------------|--------------------------------------|-------------------|-----------------|--------------------|
| RELINQUISHED BY/R                        | EMOVED TROM     | -2015 1430   | RECEIVED BY/STORED IN JUL            | 1 4 2015 1430     | 060-0           |                    |
| RELINQUISHED BY/R                        | EMOVED FROM     | 1 6 2015 074 | RECEIVED BY/STORED IN                | L 1 6 2015 TIME   |                 |                    |
| RELINQUISHED BY/R<br>K.C. Patterson/CHPR | EMOVED PROM     | 1 6 2015 09  | RECEIVED BY/STORED IN 30 M. SAUCHA J | UL 1 6 2015 09:30 |                 |                    |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                | DATE/TIME         |                 |                    |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                | DATE/TIME         |                 |                    |
| RELINQUISHED BY/R                        | REMOVED FROM    | DATE/TIME    | RECEIVED BY/STORED IN                | DATE/TIME         |                 |                    |
| RELINQUISHED BY/R                        | EMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                | DATE/TIME         |                 |                    |
| LABORATORY                               | RECEIVED BY     |              | 1                                    | TITLE             |                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION              | DISPOSAL METHOD |              |                                      | DISPOSED          | BY              | DATE/TIME          |
| PRINTED ON 5                             | /26/2015        |              | FSR ID = FSR333                      | TRVL NU           | M = TRVL-15-098 | A-6003-618 (REV 2) |

| CH2                                                                                                                                             | MHill Plateau                                                     | Remediation Company                                                                                                           |                                                                        | CHAIN O                                                             | F CUST                                               | DDY/SAMPLE ANALYSIS R | EQUEST                          | F15-014-302                                   | PAGE 1 OF 1          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|-----------------------|---------------------------------|-----------------------------------------------|----------------------|--|
| COLLECTOR                                                                                                                                       | D. AnullariOtema                                                  |                                                                                                                               | COMPANY CONT.<br>TODAK, D                                              | ACT                                                                 |                                                      | 376-6427              | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                                 | DATA<br>TURNAROUND   |  |
| SAMPLING I<br>C9451, I-009                                                                                                                      | CATION                                                            |                                                                                                                               | PROJECT DESIG                                                          | NATION<br>D Field Investigati                                       | ion - Soi                                            |                       | SAF NO. AIR QUALITY<br>F15-014  |                                               | 30 Days / 30<br>Days |  |
| ICE CHEST I                                                                                                                                     | NO.                                                               | N/A                                                                                                                           | FIELD LOGBOOK                                                          | NO.                                                                 | 3                                                    | 31.5'- 32             | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE ORIG |                      |  |
| SHIPPED TO<br>Environme                                                                                                                         | )<br>ntal Sciences L                                              | aboratory                                                                                                                     | OFFSITE PROPER                                                         | RTY NO.                                                             | I/A                                                  |                       | BILL OF LADING/AIR BILL N       | NO.                                           |                      |  |
| MATRIX*                                                                                                                                         | POSSIBLE 5/                                                       | AMPLE HAZARDS/ REMARKS                                                                                                        | PRESERV                                                                | VATION                                                              | None                                                 |                       |                                 |                                               |                      |  |
| DL=Drum<br>Liquids                                                                                                                              | *Contains Ra                                                      | *Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CEP/IATA Dangerous |                                                                        |                                                                     | C 14                                                 |                       |                                 |                                               |                      |  |
| Liquids<br>DS=Drum                                                                                                                              | transportatio                                                     | n per 49 CFR/IATA Dangerous                                                                                                   | HOLDIN                                                                 | GTIME                                                               | 6 Mon                                                | S                     |                                 |                                               |                      |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Liquid                                                                                                        | transportation<br>Goods Regula<br>DOE Order 4                     | n per 49 CFR/IATA Dangerous<br>ations but are not releasable per<br>58.1.                                                     | HOLDIN<br>TYPE OF CO                                                   | G TIME                                                              | G/P                                                  | s (l so               | d Liner A f                     | For T-1091                                    | 3 San ala            |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Llquid<br>O=Oil<br>S=Soil<br>SE=Sediment                                                                      | transportation<br>Goods Regula<br>DOE Order 4                     | n per 49 CFR/IATA Dangerous<br>ations but are not releasable per<br>58.1.                                                     | HOLDIN<br>TYPE OF CO<br>NO. OF CON                                     | IG TIME                                                             | G/P                                                  | u se                  | d Liner A f                     | For I-0091                                    | 3 Sample             |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Lquid<br>O=Oil<br>S=Soil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water                                | transportatio<br>Goods Regul<br>DOE Order 4                       | n per 49 CFR/IATA Dangerous<br>ations but are not releasable per<br>58.1.                                                     | HOLDIN<br>TYPE OF CO<br>NO. OF CON<br>VOL                              | IG TIME<br>DNTAINER<br>ITAINER(S)<br>UME                            | G/P<br>1<br>1L                                       | use<br>p              | d Liner A f<br>Lepths were      | For I-0091<br>For Liner                       | 3 Sample<br>A        |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Llquid<br>O=Oil<br>S=Soil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other         | transportatio<br>Goods Regul<br>DOE Order 4<br>SPECIAL HA<br>N/A  | NDLING AND/OR STORAGE                                                                                                         | HOLDIN<br>TYPE OF CO<br>NO. OF CON<br>VOLU                             | IG TIME<br>DNTAINER<br>ITAINER(S)<br>UME<br>INALYSIS                | G/P<br>G/P<br>1<br>1L<br>Generic<br>Testing<br>CAS}; | NO LSE                | ed Liner A f                    | For I-0091<br>For Liner                       | 3 Sample<br>A        |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Liquid<br>O=Oil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other                   | transportatio<br>Goods Regula<br>DOE Order 4<br>SPECIAL HA<br>N/A | NDLING AND/OR STORAGE                                                                                                         | HOLDIN<br>TYPE OF CO<br>NO. OF CON<br>VOLU                             | IG TIME<br>DNTAINER<br>ITAINER(S)<br>UME<br>NNALYSIS                | G/P<br>1<br>1L<br>Generic<br>Testing<br>CAS};        | NO USE                | epths were                      | For I-0091<br>For Liner                       | 3 Sample<br>A        |  |
| Liquids<br>DS=Drum<br>Solids<br>L=Liquid<br>O=Oil<br>SE=Soil<br>SE=Sediment<br>T=Tissue<br>V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other<br>SAM | transportatio<br>Goods Regul<br>DOE Order 4<br>SPECIAL HA<br>N/A  | NDLING AND/OR STORAGE                                                                                                         | HOLDING<br>TYPE OF CO<br>NO. OF CON<br>VOLI<br>SAMPLE A<br>SAMPLE DATE | IG TIME<br>DNTAINER<br>ITAINER(S)<br>UME<br>INALYSIS<br>SAMPLE TIME | G/P<br>1<br>1L<br>Generic<br>Testing<br>CAS};        | No<br>No              | epths were<br>cp 7-14-15        | For I-0091<br>For Liner                       | 3 Sample<br>A        |  |

| CHAIN OF POSSES             | SION            |                            | SIGN/ PRINT NAMES     |                | SPECIAL INSTRUCTIONS  |                    |
|-----------------------------|-----------------|----------------------------|-----------------------|----------------|-----------------------|--------------------|
| J.R. Aguttan CHET           | EMOVED FROM     | 4 2013 1431                | SSU-1 JUL 1           | 4 2013 1430    | 1KVL-12-098           |                    |
| RELINQUISHED BY             | EMOVEDFROM      | DATE/TIME                  | RECEIVED BY/STORED IN | DATE/TIME      |                       |                    |
| SSU-1                       |                 | 1 1 h /015074              | R.C. Patterson/CHER   | 1620150745     | · · · ·               |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME<br>1 6 2015 09:2 | RECEIVED BY/STORED IN | 1 6 2015 09:30 | · · · ·               |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                  | RECEIVED BY/STORED IN | DATE/TIME      |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                  | RECEIVED BY/STORED IN | DATE/TIME      |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                  | RECEIVED BY/STORED IN | DATE/TIME      |                       |                    |
| RELINQUISHED BY/R           | EMOVED FROM     | DATE/TIME                  | RECEIVED BY/STORED IN | DATE/TIME      |                       |                    |
| LABORATORY                  | RECEIVED BY     |                            |                       |                | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                            |                       |                | DISPOSED BY           | DATE/TIME          |
| PRINTED ON 5                | /26/2015        |                            | FSR ID = FSR336       | TI             | RVL NUM = TRVL-15-098 | A-6003-618 (REV 2) |

This page intentionally left blank.



Proudly Operated by Battelle Since 1965

PNNL-25420

# Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582

# May 2016

GV Last Z Wang JR Stephenson BD Williams MMV Snyder O Qafoku RE Clayton



Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

#### Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

> This document was printed on recycled paper. (8/2010)

PNNL-25420

# Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582

GV Last Z Wang JR Stephenson BD Williams MMV Snyder O Qafoku RE Clayton

May 2016

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

## **Executive Summary**

CH2M Hill Plateau Remediation Company is conducting remediation using injection and infiltration of a phosphate amendment to sequester uranium in a target source area within the Hanford Site 300-FF-5 Operable Unit. To provide technical input for evaluating this remedy's performance, Pacific Northwest National Laboratory conducted laboratory analysis on samples from three boreholes, C9580, C9581, and C9582, installed within the treatment zone after the phosphate amendment distribution for the initial stage of field treatment was completed. These boreholes are installed adjacent to boreholes that had been installed before the phosphate amendment. Laboratory tests consisted of sequential uranium extraction tests, labile uranium leach tests, flow-through column tests on both intact (field texture) splitspoon liner samples and <2-mm repacked columns, and identification of uranium mineral phase(s) and surface coating(s). By comparing data from these tests with data from pre-treatment samples, one can quantify changes in uranium mobility resulting from the phosphate treatment.

All sampled intervals were visibly very wet and very coarse grained, containing up to 86% gravel. Samples from boreholes C9580 and C9581 contained relatively low concentrations of uranium, while samples from borehole C9582 contained much higher uranium concentrations. In all but two sample intervals (C9580 I-001 and C9582 I-004), more than 50% of the uranium mass was extracted by the weakest two (acetic acid) solutions. Most of the phosphate (about 90%) was associated with the harshest extraction solutions (oxalate and nitric acid combined). Thus, for most samples, less than 50% of the uranium was associated with extractions where phosphate was also removed from the sediment.

Labile uranium concentrations continued to increase in all samples, even after 66 days, indicating that equilibrium was not reached in these experiments. These results suggest that non-equilibrium, kinetically controlled leaching will occur under field conditions. The flow-through column test results, for the medium-to-high concentration sample intervals tested, show initial high-concentration leaching that declines over time, and the uranium concentration increases during stop flow events. These data suggest that some of the uranium in these samples is still susceptible to rapid leaching and that kinetic leaching of uranium will also occur during the initial high concentration pulse and as it subsides. Results for sample intervals with lower uranium concentrations over time. Instead, results suggest that the uranium in these samples is primarily released through kinetically controlled mechanisms.

Mineral phase and surface coating analyses suggest that all samples except those from the upper portion of borehole C9580 (i.e., sample intervals I-001 and I-003) were likely to have U(VI) absorbed on quartz, uranyl-tricarbonate(s) adsorbed on calcium carbonate minerals, and U(VI)-phosphate adsorbed on montmorillonite. In all samples interrogated by fluorescence spectroscopy, there has been no detection of the characteristic features of crystalline uranyl-phosphate solid phases, which usually occur as discrete "hot" spots in the sediments.

Scanning electron microscopy and energy-dispersive X-ray analysis and electron microprobe analyses found uranium in association with particles from only two samples: those from the upper portion (I-001 and I-003) of borehole C9580. Those same particles also appeared to be composed of Ca, P, and Fe. The analyses also found uranium to be homogeneously distributed throughout these particles, suggesting a uranium-surface coating or the presence of uranium as a sorbed species.

The results herein provide data to quantify the uranium mobility in selected samples collected after the Stage A phosphate treatment in the field for the 300-FF-5 Operable Unit. The experimental methods used for this effort were the same as those applied previously to samples collected in adjacent boreholes prior to the phosphate treatment. Therefore, these results are suitable for comparison to results from pretreatment laboratory tests for evaluating the effect of the field phosphate treatment on uranium mobility.

## Acknowledgments

Numerous individuals at Pacific Northwest National Laboratory contributed to this work. Ian Leavy, Steven Baum, and Erin McElroy performed the inductively coupled plasma – optical emission spectroscopy, inductively coupled plasma – mass spectroscopy and ion chromatography analyses. Keith Geizler, Amanda Lawter, and Nik Qafoku provided independent technical reviews of the experiments and chemical analyses. Nik Qafoku, Mike Truex, and Jim Szecsody provided oversight guidance and technical review of this report. Matt Wilburn provided editorial and document production support.

# Acronyms and Abbreviations

| ALS     | ALS Environmental                                            |
|---------|--------------------------------------------------------------|
| BSE     | backscattering electron detector                             |
| CAWSRP  | Conducting Analytical Work in Support of Regulatory Programs |
| CHPRC   | CH2M Hill Plateau Remediation Company                        |
| EDS     | energy-dispersive spectroscopy                               |
| EDX     | energy-dispersive X-ray                                      |
| EPA     | U.S. Environmental Protection Agency                         |
| ESL     | Environmental Sciences Laboratory                            |
| HEIS    | Hanford Environmental Information System                     |
| ICP-MS  | inductively coupled plasma – mass spectroscopy               |
| ICP-OES | inductively coupled plasma – optical emission spectroscopy   |
| ID      | identification (as in identification number)                 |
| IDMS    | Integrated Document Management System                        |
| OU      | operable unit                                                |
| PNNL    | Pacific Northwest National Laboratory                        |
| PRZ     | periodically rewetted zone                                   |
| ROD     | record of decision                                           |
| SE      | secondary electron                                           |
| SEM     | scanning electron microscope                                 |
|         |                                                              |

# Contents

| Exe  | cutive | e Sumn  | nary                                                              | iii |
|------|--------|---------|-------------------------------------------------------------------|-----|
| Ack  | nowl   | edgmei  | nts                                                               | v   |
| Acro | onym   | s and A | Abbreviations                                                     | vii |
| 1.0  | Intro  | oductio | n                                                                 | 1   |
| 2.0  | Bac    | kgroun  | d                                                                 | 2   |
| 3.0  | Sam    | ple Ins | pection and Preparation                                           | 3   |
| 4.0  | Test   | Metho   | odology                                                           | 6   |
|      | 4.1    | Seque   | ential Uranium Extraction Testing                                 | 6   |
|      |        | 4.1.1   | Weak Acetic Acid Extraction                                       | 6   |
|      |        | 4.1.2   | Strong Acetic Acid Extraction                                     | 7   |
|      |        | 4.1.3   | Ammonium Oxalate Extraction                                       | 7   |
|      |        | 4.1.4   | Nitric Acid Extraction                                            | 7   |
|      |        | 4.1.5   | Effluent Analyses                                                 | 7   |
|      | 4.2    | Labile  | e Uranium Leach Testing                                           | 7   |
|      | 4.3    | <2-m    | m Flow-Through Column Leach Tests                                 | 8   |
|      | 4.4    | Field   | Textured Flow-Through Column Leach Tests                          | 9   |
|      | 4.5    | Identi  | fication of Mineral Phase and Surface Coating                     | 10  |
|      |        | 4.5.1   | Cryogenic Laser Fluorescence Spectroscopy                         | 10  |
|      |        | 4.5.2   | Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy | 11  |
|      |        | 4.5.3   | Electron Microprobe                                               | 11  |
|      | 4.6    | Phosp   | hate Measurement by Acid Extraction                               | 11  |
| 5.0  | Res    | ults    |                                                                   | 13  |
|      | 5.1    | Seque   | ential Uranium Extraction Tests                                   | 13  |
|      | 5.2    | Labile  | e Uranium                                                         |     |
|      | 5.3    | Flow-   | Through Column Tests                                              | 20  |
|      |        | 5.3.1   | <2-mm Repacked Flow-Through Column Results                        | 21  |
|      |        | 5.3.2   | Intact Splitspoon Liner Flow-Through Column Results               | 27  |
|      |        | 5.3.3   | Cumulative Flow-Through Column Results                            |     |
|      | 5.4    | Miner   | al Phase & Surface Coating                                        |     |
|      |        | 5.4.1   | Cryogenic U(VI) Laser Fluorescence Spectroscopy                   | 35  |
|      |        | 5.4.2   | SEM/EDX Spectroscopy and Electron Microprobe Results              |     |
|      | 5.5    | Phosp   | hate Measurement                                                  | 42  |
|      | 5.6    | Physi   | cal Property Results                                              | 43  |
| 6.0  | Sum    | nmary   |                                                                   | 43  |
| 7.0  | Refe   | erences |                                                                   |     |
| App  | endix  | A Cas   | se Narrative Analytical and Quality Control Results               | A.1 |
| App  | endix  | B Cha   | ain of Custodies, Geologic Descriptions and Sample Photographs    | B.1 |

| Appendix C Cryogenic U(VI) Laser Fluorescence Spectroscopy                     | C.1         |
|--------------------------------------------------------------------------------|-------------|
| Annendix D Representative Scanning Electron Microscope/Energy Dispersive X-ray |             |
| Spectroscopy and Electron Microreba Pacults for Borabolas (0581 and (0582      | р 1         |
| specification become and the option results for Dorenoics C9301 and C9302      | <i>D</i> .1 |

# Figures

| Figure 1.1. Locations of boreholes C9580, C9581, and C9582, modified after Jacques (2016).<br>Note that all well names (e.g., 1-67) are formally preceded by 399                                                                                                                 | 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.1. Field texture flow-through column testing setup                                                                                                                                                                                                                      | 9  |
| Figure 4.2. Spectrometer system.                                                                                                                                                                                                                                                 | 11 |
| Figure 5.1. Uranium concentrations recovered from sequential extraction tests by borehole and sample depth interval. Note that the ALS total uranium concentrations are from ALS analytical reports ALS1601062 and ALS1601118 (accessed via the Enterprise Application to IDMS). | 14 |
| Figure 5.2. Phosphorus concentrations recovered from sequential extraction tests by borehole and sample depth interval. Note that the ALS total phosphorus concentrations are from ALS analytical report ALS1601062 (accessed via the Enterprise Application to IDMS).           | 15 |
| Figure 5.3. Ratio of uranium concentrations to phosphorus concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests                                                                                                                   | 16 |
| Figure 5.4. Ratio of uranium concentrations to calcium concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests.                                                                                                                     | 17 |
| Figure 5.5. Ratio of calcium concentrations to phosphorus concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests                                                                                                                   | 18 |
| Figure 5.6. Composite uranium concentrations recovered during labile leach testing.                                                                                                                                                                                              | 19 |
| Figure 5.7. Uranium concentration recovered as a function of time during labile leach testing                                                                                                                                                                                    | 20 |
| Figure 5.8. Uranium concentration vs. pore volume for repacked <2-mm column containing composite B347F1 and B347F3 (borehole C9580, depth interval I-004).                                                                                                                       | 21 |
| Figure 5.9. Bromide concentration vs. pore volume for repacked <2-mm column containing composite B347F1 and B347F3 (borehole C9580, depth interval I-004)                                                                                                                        | 22 |
| Figure 5.10. Uranium concentration vs. pore volume for repacked <2-mm column containing composite B347P5 and B347P8 (borehole C9582, depth interval I-002)                                                                                                                       | 23 |
| Figure 5.11. Bromide concentration vs. pore volume for repacked <2-mm column containing composite B347P5 and B347P8 (borehole C9582, depth interval I-002).                                                                                                                      | 23 |
| Figure 5.12. Uranium concentration vs. pore volume for repacked <2-mm B347R1 column<br>(Borehole C9582, depth interval I-003)                                                                                                                                                    | 24 |
| Figure 5.13. Bromide concentration vs. pore volume for repacked <2-mm B347R1 column (borehole C9582, depth interval I-003).                                                                                                                                                      | 25 |
| Figure 5.14. Uranium concentration vs. pore volume for repacked <2-mm B347T7 column (borehole C9582, depth interval I-006).                                                                                                                                                      | 26 |
| Figure 5.15. Bromide concentration vs. pore volume for repacked <2-mm B347T7 column (borehole C9582, depth interval I-006).                                                                                                                                                      | 26 |
| Figure 5.16. Uranium concentration vs. pore volume for intact (field texture) column B347P4 (borehole C9582, depth interval I-002).                                                                                                                                              | 27 |

| Figure 5.17. Bromide concentration vs. pore volume for intact column B347P4 (borehole C9582, depth interval I-002).                                                                                                          | 28 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 5.18. Uranium concentration vs. pore volume for intact column B347R0 (borehole C9582, depth interval I-003).                                                                                                          | 29 |
| Figure 5.19. Bromide concentration vs. pore volume for intact column B347R0 (borehole C9582, depth interval I-003).                                                                                                          | 29 |
| Figure 5.20. Uranium concentration vs. pore volume for intact column B347T6 (borehole C9582, depth interval I-006).                                                                                                          | 30 |
| Figure 5.21. Bromide concentration vs. pore volume for intact column B347T6 (borehole C9582, depth interval I-006).                                                                                                          | 31 |
| Figure 5.22. Cumulative mass of uranium mass recovered by pore volume for the < 2-mm flow-<br>through column test of borehole C9580, sample interval I-004 (composite of samples<br>B347F1 and B347F3)                       | 32 |
| Figure 5.23. Cumulative mass of uranium recovered by pore volume for both the < 2-mm (composite of samples B347P5 and B347P8) and intact (sample B347P4) flow-through column tests of borehole C9582, sample interval I-002. | 33 |
| Figure 5.24. Cumulative mass of uranium recovered pore volume for both the < 2-mm (sample B347R1) and intact (sample B347R0) flow-through column tests of borehole C9582, sample interval I-003.                             | 34 |
| Figure 5.25. Cumulative mass of uranium recovered by pore volume for both the < 2-mm (sample B347T7) and intact (sample B347T6) flow-through column tests of borehole C9582, sample interval I-006                           | 35 |
| Figure 5.26. Sample B347C6, (collected from depth interval I-001, with total uranium concentration of 2.6 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]), Area 1.                                      | 38 |
| Figure 5.27. Sample B347C6 (collected from depth interval I-001, with total uranium concentration of 2.6-mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]), Area 2.                                       | 39 |
| Figure 5.28. Sample 347D8 (collected from depth interval I-003, with total uranium concentration of 3.2 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]).                                                | 40 |
| Figure 5.29. Sample B347F1&F3 (collected from depth interval I-004, with a total uranium concentration of 7.6 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]).                                          | 41 |

# Tables

| Table 3.1. List of samples received from CHPRC                                                                                                                                                                                                                      | 3  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 3.2. Sample intervals targeted for selected tests (personal communication, R Hermann, 1/18/2016).                                                                                                                                                             | 5  |
| Table 4.1. Tests conducted on each selected sample.                                                                                                                                                                                                                 | 6  |
| Table 4.2. Recipe for synthetic groundwater used in the flow-through column tests (from Snyder and Cantrell 2015) based on the average groundwater values from 42 wells in the 300 Area documented in Ma et al. 2010, Table 2 (email, S Mehta to GV Last, 2/3/2016) | 8  |
| Table 4.3. Samples selected for phosphate measurement by acid extraction.                                                                                                                                                                                           | 12 |

| Table 5.1. Flow-through column test parameters.                                    | 20 |
|------------------------------------------------------------------------------------|----|
| Table 5.2. Phosphate and uranium concentrations from 0.5 M nitric acid extraction. | 42 |
| Table 5.3. Phosphorus concentrations extracted using 0.5 M nitric acid             | 42 |
| Table 5.4. Hydraulic and physical properties of the bulk sediment samples          | 43 |

## 1.0 Introduction

CH2M Hill Plateau Remediation Company (CHPRC) is conducting remediation using injection and infiltration of a phosphate amendment to sequester uranium in a targeted source area within the Hanford Site 300-FF-5 Operable Unit (OU). To provide technical input for evaluating this remedy's performance, Pacific Northwest National Laboratory (PNNL) conducted laboratory analyses on three boreholes, C9580, C9581, and C9582, installed within the treatment zone after the phosphate amendment distribution was completed. These boreholes were installed adjacent to pre-treatment boreholes/monitoring wells, C9451 (399-1-80), C8940 (399-1-76), and C8936 (399-1-67), respectively, in the area of an initial stage (Stage A) of phosphate treatment aimed at enhancing attenuation of uranium in the vadose zone and periodically rewetted zone, or PRZ (Figure 1.1) (Jacques 2016). Data from these tests, compared to data from pre-treatment samples, provide a means to quantify how uranium mobility was changed by the phosphate treatment.



Figure 1.1. Locations of boreholes C9580, C9581, and C9582, modified after Jacques (2016). Note that all well names (e.g., 1-67) are formally preceded by 399-.

The purpose of the laboratory analyses is to support the supplemental post-record of decision (ROD) field investigation of the 300-FF-5 OU by providing data to quantify post-treatment uranium mobility in selected borehole samples. CHPRC will compare these data with similar data from pre-treatment borehole samples and will use these data as input to refine and evaluate the remedial design for enhanced attenuation of uranium using phosphate treatments (Sherwood 2014).

The approach for the leachability tests described herein was to test the post-treatment borehole samples (collected after injection of the phosphate treatment) in the same way as the pre-treatment borehole samples were tested (Snyder and Cantrell 2015; Snyder and Last 2015) to enable useful data comparison. These tests include the following:

- Sequential Uranium Extraction Tests: These tests quantify how uranium in sediment samples is distributed among surface phases that require different strengths of extraction solutions to remove the uranium from the sediment. Uranium phases that require stronger solutions have slower leaching characteristics under normal field conditions.
- Labile Uranium Leach Tests: These tests evaluate the quantity of uranium that is readily solubilized into the aqueous phase, helping define the most mobile portion of uranium in a sediment sample.
- Field Texture Flow-Through Column Tests: These tests provide information about the rate of uranium release into groundwater.
- <2-mm Size Fraction Flow-Through Column Tests: These tests provide information about the rate of uranium release into groundwater.
- Identification of Uranium Mineral Phase(s) and Surface Coating: Identification of mineral phases can be used to interpret uranium leaching behavior based on the types of surface phases present.

The amount of phosphate precipitate in the sediments was measured because previous studies (Szecsody et al. 2012) have shown a correlation between the amount of phosphate precipitate and less leachable uranium.

## 2.0 Background

Past waste disposal in former infiltration ponds and trenches resulted in uranium contamination in the vadose zone and groundwater in the 300 Area. Although near-surface contamination at these sites has been removed by excavation, deep residual uranium is thought to contribute to high uranium concentrations detected in the groundwater in this area (Sherwood 2014). Uranium is identified as a contaminant of concern in the 300 Area ROD/ROD Amendment (EPA and DOE 2013). One of the selected remedies for uranium in soil (300-FF-1 and 300-FF-2 OUs) and groundwater (300-FF-5 OU) is enhanced attenuation of uranium using sequestration (Sherwood 2014).

CHPRC conducted Stage A of a planned two-stage in situ uranium sequestration treatment by applying a phosphate amendment to part of the enhanced attenuation area, on November 6 through December 18, 2015 (Johnson and Thomle 2016). Boreholes C9580, C9581, and C9582 were installed in the Stage A treatment area, located near the south end of the 316-5 process trenches (Figure 1.1), between January 5 and 11, 2016 (roughly 18 to 24 days after application of the phosphate amendment). Samples

collected from these boreholes were provided to PNNL for laboratory analyses, including assessment of uranium leaching kinetics.

PNNL previously assessed uranium leaching kinetics on samples from two sets of pre-treatment boreholes (drilled prior to the injection of the phosphate amendments, Figure 1.1). These samples were from

- boreholes C8933, C8936, and C8938 (Snyder and Cantrell 2015) and
- boreholes C8940 and C9451 (Snyder and Last 2015).

## 3.0 Sample Inspection and Preparation

PNNL received 46 borehole samples, representing 18 sample intervals collected from the three posttreatment boreholes (Table 3.1) (i.e., 6 depth intervals/boreholes) from CHPRC on January 26, 2016. CHPRC selected nine of these sample intervals (corresponding to similar sample intervals from pretreatment boreholes) for leachability testing (Table 3.1). Individual borehole samples from each sample interval had been collected in four 10.2-cm (4-inch) diameter by 15.2-cm (6-inch) long lexan liners inside a 0.76-m (2.5-ft) long splitspoon sampler (with 15.2-cm [6-inch] long drive shoe) driven with sonic drilling methods (Whitley 2015; draft borehole logs<sup>1</sup>). The liners are typically labeled "A," "B," "C," and "D," starting at the bottom of each sample interval, with each liner sample assigned a unique Hanford Environmental Information System (HEIS) sample identification (ID) number. The "B" liners had been previously opened and the sample split for total uranium and other analyses conducted by ALS Environmental (ALS), and the analyses to be conducted at PNNL's Environmental Sciences Laboratory (ESL). Thus, sample materials from the "B" liner were received in 1-liter polyethylene jars. Samples from each identified interval in Table 3.1 were inspected and evaluated for their suitability to produce the quantity of <2-mm materials needed for the various tests, and/or for use in field texture flow-through column tests. Table 3.2 lists the specific samples selected for specific tests from each sample interval.

|             | Sample                  | HEIS                         | Beginning Depth | End Depth | ESL        |
|-------------|-------------------------|------------------------------|-----------------|-----------|------------|
| Borehole ID | Interval <sup>(a)</sup> | Sample Number <sup>(b)</sup> | (ft)            | (ft)      | Lab Number |
|             | I-001                   | B347C6                       | 21.5            | 22.0      | 1601046-01 |
|             | I-002                   | B347D2                       | 24.0            | 24.5      | 1601046-02 |
|             | I-003                   | B347D8                       | 26.5            | 27.0      | 1601046-03 |
|             | 1.004                   | <b>B347F1</b>                | 29.0            | 29.5      | 1601046-04 |
| C9580 I-    | 1-004                   | B347F3                       | 29.5            | 30.0      | 1601046-05 |
|             | I-005                   | B347F6                       | 31.5            | 32.0      | 1601046-06 |
|             |                         | B347F7                       | 31.0            | 31.5      | 1601046-07 |
|             |                         | B347F8                       | 30.5            | 31.0      | 1601046-08 |
|             |                         | B347H1                       | 34.0            | 34.5      | 1601046-09 |
|             | I-006                   | B347H2                       | 33.5            | 34.0      | 1601046-10 |
|             |                         | B347H3                       | 33.0            | 33.5      | 1601046-11 |

Table 3.1. List of samples received from CHPRC.

<sup>&</sup>lt;sup>1</sup> Email, R Hermman (CHPRC) to GV Last and M Truex (PNNL), January 20, 2016.

|             | Sample                  | HEIS                         | Beginning Depth | End Depth | ESL         |
|-------------|-------------------------|------------------------------|-----------------|-----------|-------------|
| Borehole ID | Interval <sup>(a)</sup> | Sample Number <sup>(b)</sup> | (ft)            | (ft)      | Lab Number  |
|             |                         | B347J6                       | 21.5            | 22.0      | 1601046-12  |
|             | I-001                   | B347J7                       | 21.0            | 21.5      | 1601046-13  |
|             |                         | B347J8                       | 20.5            | 21.0      | 1601046-14  |
|             |                         | B347K2                       | 24.0            | 24.5      | 1601046-15  |
|             | I-002                   | B347K3                       | 23.5            | 24.0      | 1601046-16  |
|             |                         | B347K4                       | 23.0            | 23.5      | 1601046-17  |
|             |                         | B347K7                       | 26.5            | 27.0      | 1601046-18  |
| C9581       | 1.002                   | B347K8                       | 26.0            | 26.5      | 1601046-19  |
|             | 1-003                   | B347K9                       | 25.5            | 26.0      | 1601046-20  |
|             |                         | B347L1                       | 25.0            | 25.5      | 1601046-21  |
|             |                         | B347L2                       | 29.0            | 29.5      | 1601046-22  |
|             | I-004                   | B347L3                       | 28.5            | 29.0      | 1601046-23B |
|             |                         | B347L4                       | 28.0            | 28.5      | 1601046-24  |
|             | I-005                   | B347M0                       | 32.0            | 32.5      | 1601046-25  |
|             | I-006                   | B347M3                       | 34.0            | 34.5      | 1601046-26  |
|             |                         | B347N8                       | 21.5            | 22.0      | 1601046-27  |
|             | I-001                   | B347N9                       | 21.0            | 21.5      | 1601046-28  |
|             |                         | B347P0                       | 20.5            | 21.0      | 1601046-29  |
|             |                         | B347P3                       | 24.0            | 24.5      | 1601046-30  |
|             | 1.002                   | B347P4                       | 23.5            | 24.0      | 1601046-31  |
|             | 1-002                   | B347P5                       | 23.0            | 23.5      | 1601046-32  |
|             |                         | B347P8                       | 22.5            | 23.0      | 1601046-33  |
|             |                         | B347P9                       | 26.5            | 27.0      | 1601046-34  |
|             | L-003                   | B347R0                       | 26.0            | 26.5      | 1601046-35  |
| C0582       | 1-005                   | B347R1                       | 25.5            | 26.0      | 1601046-36  |
| C9582       |                         | B347R4                       | 25.0            | 25.5      | 1601046-37  |
|             |                         | B347R5                       | 29.0            | 29.5      | 1601046-38  |
|             | I-004                   | B347R6                       | 28.5            | 29.0      | 1601046-39  |
|             |                         | B347R7                       | 29.5            | 30.0      | 1601046-40  |
|             | I-005                   | B347T0                       | 31.5            | 32.0      | 1601046-41  |
|             | 1-005                   | B347T1                       | 31.0            | 31.5      | 1601046-42  |
|             |                         | B347T5                       | 34.0            | 34.5      | 1601046-43  |
|             | I-006                   | B347T6                       | 33.5            | 34.0      | 1601046-44  |
|             | 1-000                   | B347T7                       | 33.0            | 33.5      | 1601046-45  |
|             |                         | B347T9                       | 32.5            | 33.0      | 1601046-46  |

(a) Yellow shaded sample intervals corresponding to similar sample intervals from pre-treatment boreholes (email,

(a) Fendw shaded sample met vals corresponding to similar sample met vals nom pre dedinient obtenoies (email R Hermann [CHPRC] to GV Last [PNNL], 1/20/2016).
(b) Bold sample numbers are the specific samples selected for analyses (email, R Hermann [CHPRC] to GV Last [PNNL}, 1/28/2016).

| Table 3.2. Sam | ple intervals targeted | for selected tests (r | personal communication, | R Hermann, | 1/18/2016). |
|----------------|------------------------|-----------------------|-------------------------|------------|-------------|
|                |                        | ( I                   | ,                       |            |             |

| Borehole | Sample<br>Interval | Total<br>Uranium<br>(µg/kg)<br>(HEIS #) <sup>(a)</sup> | Selected <2-mm Batch and Column Tests                                                                                                         | Selected Field<br>Texture Column<br>Tests |
|----------|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| C9580    | I-001              | 2,600<br>(B347C7)                                      | Sequential extraction, labile leach, mineral phase $B347C6^{(b)}$                                                                             |                                           |
| C9580    | I-003              | 3,200<br>(B347D9)                                      | Sequential extraction, labile leach, mineral phase $B347D8$                                                                                   |                                           |
| C9580    | I-004              | 7,600<br>(B347F4)                                      | Sequential extraction, labile leach, mineral phase,<br>and <2-mm column, phosphate extraction <i>B347F1</i><br><i>and B347F3 (Composited)</i> | None <sup>(c)</sup>                       |
| C9581    | I-004              | 4,300<br>(B347L5)                                      | Sequential extraction, labile leach, mineral phase <i>B347L4</i>                                                                              |                                           |
| C9582    | I-001              | 71,000<br>(B347P1)                                     | Sequential extraction, labile leach, mineral phase <i>B347P0</i>                                                                              |                                           |
| C9582    | I-002              | 100,000<br>(B347P6)                                    | Sequential extraction, labile leach, mineral phase, <2-mm column, phosphate extraction <i>B347P5 and B347P8 (Composited)</i>                  | Field texture column <i>B347P4</i>        |
| C9582    | I-003              | 32,000<br>(B347R2)                                     | Sequential extraction, labile leach, mineral phase, <pre>&lt;2-mm column, phosphate extraction B347R1</pre>                                   | Field texture column <i>B347R0</i>        |
| C9582    | I-004              | 39,000<br>(B347R8)                                     | Sequential extraction, labile leach, mineral phase <i>B347R7</i>                                                                              |                                           |
| C9582    | I-006              | 19,000<br>(B347T8)                                     | Sequential extraction, labile leach, mineral phase, <2-mm column, phosphate extraction <i>B347T7</i>                                          | Field texture column <i>B347T6</i>        |

(a) Total uranium concentration from ALS (email, R Hermann to GV Last and MJ Truex, 1/20/2016; ALS Reports ALS1601118 and ALS1601062 R2).

(b) B347<u>xx</u> are the HEIS sample numbers of specific samples selected for analyses (email, R Hermann [CHPRC] to GV Last [PNNL], 1/28/2016).

(c) Inspection determined that there was insufficient sample material from one of the sample intervals for all tests, so the field texture column test was dropped (telecom, S Mehta [Intera] and GV Last [PNNL], 1/29/2016).

All samples from the selected sample intervals listed in Table 3.2 were opened, photographed, sampled for moisture content, and visually described. These samples were all very wet and dominated by gravel. For the 1-liter jar samples, a portion (>150 g) of the sample was poured into a large weigh boat for photography and geologic description. For splitspoon liner samples, both ends of the core liner were opened and left undisturbed for photography and geologic description. Note that there was some uncertainty in the sample depths, particularly from boreholes C9581 and C9582, at the time of photography and geologic descriptions.

An aliquot of approximately 50 g was taken from each sample (except core liners retained for possible field texture column tests) and placed into a tared moisture tin and weighed, as soon as possible after the sample container was opened. These were dried in an oven and then reweighed to calculate the weight-percent moisture content.

Those samples selected for the <2-mm fraction tests were placed in open trays inside a fume hood to air dry. Where necessary, multiple samples from a given sample interval (e.g., "A" liners adjacent to the jar samples) were composited and homogenized (as appropriate) into a single tray, to yield enough <2-mm material for the selected tests. Once deemed dry enough, each selected sample was passed

through a 2-mm sieve to yield two size fractions: >2 mm and <2 mm. For each sample, the total weight and the weights of each size fraction were recorded. A suitable aliquot of the <2-mm size fraction was used for particle size analysis using both dry sieve and laser diffraction methods. The remainder of the <2-mm size fraction was used in the <2-mm tests.

## 4.0 Test Methodology

**Error! Reference source not found.** lists the samples tested and the preparations and tests performed on each. Each testing methodology is described in the following sections.

| Borehole<br>ID | Sample<br>Interval | HEIS<br>Sample<br>Number       | Depth<br>Interval<br>(ft) | Sample<br>Type | Sample<br>Preparation | Selective<br>Sequential<br>Leach | Labile<br>Leach | <2 mm<br>Repack<br>Column | Field<br>Texture<br>Column | Mineral<br>Phase |
|----------------|--------------------|--------------------------------|---------------------------|----------------|-----------------------|----------------------------------|-----------------|---------------------------|----------------------------|------------------|
| C9580          | I-001              | B347C6                         | 21.5-22.0                 | 1L             | < 2 mm                | Х                                | Х               |                           |                            | Х                |
|                | I-003              | B347D8                         | 26.5-27.0                 | 1L             | < 2 mm                | Х                                | Х               |                           |                            | Х                |
|                | I-004              | B347F1,<br>F347F3              | 29.0-30.0                 | SS - D<br>& 1L | < 2 mm                | Х                                | Х               | Х                         |                            | Х                |
|                |                    | composite                      |                           |                | -                     |                                  |                 |                           |                            |                  |
| C9581          | I-004              | B347L4                         | 28.0-28.5                 | 1L             | < 2 mm                | Х                                | Х               |                           |                            | х                |
| C9582          | I-001              | B347P0                         | 20.5-21.0                 | 1L             | < 2 mm                | Х                                | Х               |                           |                            | Х                |
|                | I-002              | B347P4                         | 23.5-24.0                 | SS - C         | Field texture         |                                  |                 |                           | Х                          |                  |
|                |                    | B347P5,<br>B347P8<br>composite | 23.0-23.5                 | 1L             | < 2 mm                | Х                                | Х               | х                         |                            | Х                |
|                | I-003              | B347R0                         | 26.0-26.5                 | SS - C         | Field texture         |                                  |                 |                           | Х                          |                  |
|                |                    | B347R1                         | 25.5-26.0                 | 1L             | < 2 mm                | Х                                | Х               | Х                         |                            | Х                |
|                | I-004              | B347R7                         | 29.5-30.0                 | 1L             | < 2 mm                | Х                                | Х               |                           |                            | Х                |
|                | I-006              | B347T6                         | 33.5-34.0                 | SS - C         | Field texture         |                                  |                 |                           | Х                          |                  |
|                |                    | B347T7                         | 33.0-33.5                 | 1L             | < 2 mm                | Х                                | Х               | Х                         |                            | Х                |
| 1L = 1-liter i | ar sample.         |                                |                           |                |                       |                                  |                 |                           |                            |                  |

Table 4.1. Tests conducted on each selected sample.

SS = splitspoon sample, C or D are the liner positions.

## 4.1 Sequential Uranium Extraction Testing

Aliquots of the air-dried, <2-mm size fraction from the nine selected sample intervals (Table 4.1) were subjected to sequential uranium extraction testing. These tests used a sequential chemical extraction technique as described by Serne et al. (2002) and Szecsody et al. (2012). The tests can provide information on the relative amounts of uranium present in extractable phases of carbonate coatings, carbonate solid-bearing compounds, amorphous hydrous oxides, crystalline iron (III) oxides, and strong acid leachable compounds.

## 4.1.1 Weak Acetic Acid Extraction

The first extraction involved a weak acetic acid consisting of 1 mol/L sodium acetate with a final pH of approximately 5. Each sample was agitated on an orbital shaker for 1 hour at a solid-to-solution ratio of 1 g/2 mL. After 1 hour, the sample was centrifuged, the solution decanted and filtered (for inductively coupled plasma – mass spectrometry [ICP-MS] and inductively coupled plasma – optical emission

spectroscopy [ICP-OES] analysis), and the sample was weighed to determine the remaining residual solution prior to starting the next sequential extraction. The target uranium phases for this extraction are the adsorbed (weakly bound) uranium and some of the uranium associated with carbonate minerals.

#### 4.1.2 Strong Acetic Acid Extraction

The second sequential extraction used a strong acetic acid (concentrated glacial acetic acid). After 5 days contact time, the samples were centrifuged, decanted, and filtered as described above. The target phase for the strong acetic acid is the strongly bound uranium associated with carbonate minerals.

#### 4.1.3 Ammonium Oxalate Extraction

The third extraction used a solution consisting of 0.1 mol/L ammonium oxalate with 0.1 mol/L oxalic acid. After 1 hour of contact time, the samples were centrifuged, decanted, and filtered. The target phases for the oxalate solution are the amorphous Fe, Al, Mn, and Si oxides.

#### 4.1.4 Nitric Acid Extraction

The final extraction involved 8 mol/L of nitric acid. The samples were transferred to a glass beaker with a stir bar and heated at 95°C for 2 hours on a hot plate. Samples were then weighed to determine the final volume. The target phases for the nitric acid extraction included clays, crystalline oxides, and Fe, Al, and Mn uranium oxides.

#### 4.1.5 Effluent Analyses

Each extractant solution was collected and analyzed for P, Ca, Al, Fe, and Mn via ICP-OES and uranium content via ICP-MS.

## 4.2 Labile Uranium Leach Testing

Aliquots of the air-dried, <2-mm size fraction from the nine selected sample intervals (Table 4.1) were subjected to labile uranium leach testing. The labile uranium leach test measures the readily leachable uranium to estimate the relative proportion of total uranium that is leachable during the river-stage dynamics observed in the PRZ.

Kohler et al. (2004) describe this method in detail. A solution containing 0.0144 mol/L of sodium bicarbonate (NaHCO<sub>3</sub>) and 0.0028 mol/L of sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) with a pH of approximately 9.45 was added to the sediment at a solid-to-solution ratio of 1 g/2 mL, and was allowed to agitate on an orbital shaker for 1,000 hours (~ 42 days). The pH was measured once before the solution was removed and after the fresh reagent was added. As described by Brown et al. (2008), total dissolved uranium was measured periodically to determine the concentration as a function of time (e.g. 3, 7, 21, and 42 days) and evaluate equilibrium (with respect to uranium solution concentrations). An additional time sampling was done at 66 days and analyzed only for uranium. The solid-to-solution ratio was kept constant at 1 g/2 mL by adding fresh reagent to replace the small aliquot (e.g., 2 to 5 mL) removed at each sampling time.

The contact fluids were periodically sampled and filtered using 0.45-µm syringe filters and analyzed for uranium via ICP-MS and Al, Ca, Mn, and P using ICP-OES.

### 4.3 <2-mm Flow-Through Column Leach Tests

Column desorption tests were conducted using the air-dried, <2-mm size fraction from four selected sample intervals (Table 4.1). Glass columns 15.2 cm (6 inches) long and 2.5 cm (1 inch) in diameter were used to minimize wall effects and ensure uniform influent coverage inside the column. These columns were filled with the <2-mm size fraction material in increments, and tamped as they were filled to minimize void space and channelized flow in the columns. Once the columns were filled, they were saturated by slowly percolating synthetic groundwater (Table 4.2) in an upflow direction to remove as much trapped air as possible, creating a near-water-saturated condition. The gross weight of the dry sediment-filled column, the net weight of the dry <2-mm sediment placed in the column, and the gross weight of the water-saturated column were used to calculate the bulk density, porosity, and pore volume for each column.

Once the column was saturated, the flow-through leach tests began at an influent flowrate of approximately 0.1 cm<sup>3</sup>/min. or 0.25 pore volumes per hour (similar to the 0.15 to 0.36 pore volumes per hour used by Snyder and Cantrell [2015]); yielding pore water velocities of about 70 to 90 cm/day. The column flow tests were run for a total of approximately 10 pore volumes with two stop flow events: one at approximately 4 pore volumes for about 48 hours and one at approximately 7 pore volumes for about 72 hours. At the end of this test, sodium bromide was added to the synthetic groundwater to achieve a Br concentration of 50 ppm and pumped through the columns (at the same rate used during the leach test) to determine the column porosities. Effluent samples were collected periodically and analyzed for uranium, pH, and bromide.

| <b>Table 4.2</b> . | Recipe for synthetic groundwater used in the flow-through column tests (from Snyder and |
|--------------------|-----------------------------------------------------------------------------------------|
|                    | Cantrell 2015) based on the average groundwater values from 42 wells in the 300 Area    |
|                    | documented in Ma et al. 2010, Table 2 (email, S Mehta to GV Last, 2/3/2016).            |

| Reagent                       | g/L     |  |
|-------------------------------|---------|--|
| CaCO <sub>3</sub>             | 0.1207  |  |
| $MgSO_4$                      | 0.06135 |  |
| NaHCO <sub>3</sub>            | 0.08695 |  |
| KCl                           | 0.01154 |  |
| NaNO <sub>3</sub>             | 0.03995 |  |
| pH adjusted to 7.3 using HCl. |         |  |

## 4.4 Field Textured Flow-Through Column Leach Tests

Column desorption experiments were conducted on three selected intact splitspoon samples (C liners) approximately 15.2 cm (6 inches) long and 10.2 cm (4 inches) in diameter (Figure 4.1). The columns were fitted with end caps and fittings that allowed the lexan liners to be hooked up to pumps for the column tests. During this column preparation, a sample was collected and analyzed for moisture content. The columns were saturated by slowly percolating synthetic groundwater in an upflow direction to remove as much trapped air as possible. The final weight and volume of the core liner, the moisture content, and the weight of the water-saturated column were used to calculate the bulk density, porosity, and pore volume for each column.



Figure 4.1. Field texture flow-through column testing setup.

Once the column was saturated, the column leach tests began at a flowrate of approximately 1.5 cm<sup>3</sup>/min, or 0.25 pore volumes per hour (similar to the 0.15 to 0.36 pore volumes per hour used by Snyder and Cantrell [2015]); yielding pore water velocities of about 110 to 180 cm/day. The column flow tests were run for a total of approximately 10 pore volumes with two stop flow events: one at approximately 4 pore volumes for about 48 hours and one at approximately 7 pore volumes for about 72 hours. At the end of this test, sodium bromide was added to the synthetic groundwater to achieve a Br concentration of 50 ppm and pumped through the columns (at the same rate used during the leach test) to help determine the column porosities. Effluent samples were collected periodically and analyzed for uranium, pH, and bromide.

## 4.5 Identification of Mineral Phase and Surface Coating

Aliquots of the air-dried, <2-mm size fraction from the nine selected sample intervals (Table 4.1) were evaluated to identify the primary uranium-bearing mineral phases and calcium phosphate precipitates using sequential application of surface analysis techniques, including cryogenic laser fluorescence spectroscopy, electron microprobe, and/or scanning electron microscope/energy dispersive x-ray (SEM/EDX) spectroscopy.

### 4.5.1 Cryogenic Laser Fluorescence Spectroscopy

Cryogenic time-resolved laser induced U(VI) fluorescence spectroscopic measurements of the selected sediment samples were performed at near-liquid helium temperature (LHeT,  $6 \pm 2$  K) using methods described in Wang et al. 2004 and 2005 (Figure 4.2). Sediment solids were placed inside a 2-mm by 4-mm by 25-mm fused quartz cuvette, sealed with a silicone stopper, further wrapped with parafilm, and attached to the cold-finger of a Cryo Industries model RC-152 cryogenic workstation and cooled with helium vapors to lower the sample temperature.

For spectral and lifetime measurements, the samples were excited at 415 nm using a Spectra-Physics Nd:YAG laser pumped Lasertechnik-GWU MOPO laser. The emitted light was collected at 85° to the excitation beam, dispersed through an Acton SpectroPro 300i double monochromator spectrograph, and detected with a thermoelectrically cooled Princeton Instruments PIMAX intensified charge-coupled device camera that was triggered by the delayed output of the laser pulse and controlled by the WinSpec data acquisition software. Photofluorescence decay curves were constructed by plotting the spectral intensity of a series of time-delayed fluorescence spectra as a function of the corresponding delay time. The emission spectra and decay data were analyzed using commercial software, IGOR®, from Wavematrix, Inc.



Figure 4.2. Spectrometer system.

### 4.5.2 Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy

A field emission focused ion beam SEM, equipped with an EDX detector, was used for compositional and morphological solid phase characterization (Quanta 3D FEG). The electron microscope can operate up to an acceleration voltage of 30 keV and beam current 1-2 nA. Prior to SEM analysis, selected samples were placed on carbon tape attached to an aluminum holder and coated with a 10 nm carbon layer to inhibit sample charging. The energy-dispersive spectroscopy (EDS) spectra for qualitative analysis were collected for 60 to 90 seconds using Oxford EDS INCA software.

#### 4.5.3 Electron Microprobe

A complementing SEM analysis field emission electron microprobe with high spatial resolution was used to accurately quantify uranium and its distribution in individual grains. The electron microprobe (JEOL JXA-8200) can operate at accelerating potential of 20 keV and a beam current of 20 nA, focused at a spot size of  $\sim 1 \mu m$ .

### 4.6 Phosphate Measurement by Acid Extraction

Acid extractions using 0.5 M nitric acid for 15 minutes were conducted on selected post-treatment samples (from boreholes C9580, C9581, and C9582) as well as selected pre-treatment samples from boreholes C8940 and C9451. These extractions (similar to those performed by Szecsody et al. [2009 and
2010]) were conducted on samples that had not been subjected to leach testing as well as on samples that had completed the flow-through column leach tests (i.e., both pre-leach and post-leach). Table 4.3 lists the samples selected for phosphate measurements.

| Pre-treatment<br>Borehole ID<br>(Well Name) | Post-<br>treatment<br>Borehole ID | Sample<br>Interval | HEIS Sample ID <sup>(a)</sup>     | Depth<br>Interval<br>(ft) | Unleached<br><2-mm<br>Sample<br>Material | Leached<br>(Post-column<br>Test)<br><2-mm<br>Sample<br>Material |
|---------------------------------------------|-----------------------------------|--------------------|-----------------------------------|---------------------------|------------------------------------------|-----------------------------------------------------------------|
| C8940<br>(399-1-76)                         |                                   | I-008              | B31N31                            | 28.5–29.0                 | Х                                        |                                                                 |
| C9451<br>(399-1-80)                         |                                   | I-001              | B31N64                            | 11.0-11.5                 | Х                                        |                                                                 |
| C9451<br>(399-1-80)                         |                                   | I-005              | B31N87                            | 21.0-21.5                 | Х                                        |                                                                 |
| C9451<br>(399-1-80)                         |                                   | I-007              | B31N96 <sup>(b)</sup>             | 26.5-27.0                 | Х                                        |                                                                 |
| C9451<br>(399-1-80)                         |                                   | I-008              | B31NB3                            | 28.5–29.0                 | Х                                        |                                                                 |
|                                             | C9580                             | I-001              | B347C6                            | 21.5-22.0                 | Х                                        |                                                                 |
|                                             | C9580                             | I-004              | B347F1 and B347F3<br>(Composited) | 29.0-30.0                 | Х                                        | Х                                                               |
|                                             | C9581                             | I-004              | B347L4                            | 28.0-28.5                 | Х                                        |                                                                 |
|                                             | C9582                             | I-002              | B347P5 & B347P8<br>(Composited)   | 22.5–23.5                 | Х                                        | Х                                                               |
|                                             | C9582                             | I-003              | B347R1                            | 25.5-26.0                 | Х                                        | Х                                                               |
|                                             | C9582                             | I-006              | B347T7                            | 33.0-33.5                 | Х                                        | Х                                                               |

Table 4.3. Samples selected for phosphate measurement by acid extraction.

-- Post column test material unavailable.

(a) B347 $\underline{xx}$  are the HEIS sample numbers of specific samples selected for analyses (based on correlations provided in R Hermann email to GV Last, 1/28/2016).

(b) Post-leach test materials may have been consolidated with residual sample materials for this sample interval.

For the samples that were post-column leach tested, one sample was taken approximately 3 cm from the top (or outflow end) of the column, and another was taken approximately 3 cm from the bottom of the column (or influent end of the column). Each sample is labeled with the HEIS number followed by "top" and "bottom" in the sample name

For each sample, 0.5 M nitric acid was added at a solid-to-solution ratio of 1 g/2 mL. The sample was then agitated on an orbital shaker for 15 minutes. After 15 minutes, the sample was centrifuged and the solution decanted and filtered. The filtered solution was then analyzed for phosphorus, calcium, aluminum, iron, and manganese via ICP-OES and uranium content via ICP-MS.

## 5.0 Results

This section summarizes some of the key analytical results of this study. Complete analytical and quality control results are provided in Appendix A. The prescribed holding times, defined as the time from sample preparation to the time of analyses, were met for all analytes. All reported analytical results meet the requirements of the CAWSRP (*Conducting Analytical Work in Support of Regulatory Programs*) and client-specified statement of work. The chain of custodies, geologic descriptions and photographs of each sample are provided in Appendix B.

## 5.1 Sequential Uranium Extraction Tests

Figure 5.1 summarizes the uranium concentration and relative fraction (percent) recovered from the sequential extraction tests. Total uranium concentrations determined by ALS are also provided in the chart on the left. The ALS results were generated using ICP-MS (U.S. Environmental Protection Agency [EPA] method 6020A) following acid digestion (EPA method SW 3050B).<sup>1</sup> Note that these are from a different sample from within the same sample interval. Those concentrations are nearly all lower, varying by 56% (B347F1&3 and B347T7) to 109% (B347C6) of the sum of the concentrations of all sequential extractions. This suggests that the sequential extractions drew more uranium from the sediment than a single extraction (from both different chemical interactions and possibly extraction time), and/or that there is some degree of heterogeneity between samples. The chart on the right shows that the uranium was more strongly sequestered in some samples, and that in all but three samples more than 50% of the uranium mass was extracted by the weakest two (acetic acid) solutions.

<sup>&</sup>lt;sup>1</sup> ALS Environmental analytical reports ALS1601062 and ALS1601118 (accessed via the Enterprise Application to the Integrated Document Management System, IDMS).





Figure 5.2 illustrates the phosphorus concentrations and relative fraction (percent) recovered from the selective extraction tests. Total phosphorus concentrations from borehole C9580 determined by ALS are provided in the chart on the left. The ALS results were generated using ICP-MS (EPA method 6010B) following acid digestion (EPA method SW 3050B).<sup>1</sup> Note that these are from a different sample from within the same sample interval. Those concentrations are all lower, varying by 78% to 93% of the sum of the concentrations of all sequential extractions. These results (chart on the right) show that in all but one sample, greater than 50% of the phosphate is associated with the harshest extraction solution (nitric acid), with 90% of the phosphate associated with the two harshest solutions (oxalate and nitric acid combined).

<sup>&</sup>lt;sup>1</sup> ALS Environmental analytical report ALS1601062 (accessed via the Enterprise Application to IDMS).





Figure 5.3 illustrates the ratio of uranium to phosphorus concentrations and the relative fraction (percent) of the uranium to phosphorus ratios recovered from the selective extraction tests. These charts suggest that the weak acid extracts (i.e. acetic acid extracts) extracted higher concentrations of uranium than phosphorus, particularly in borehole C9582. Whereas in the stronger acid extracts, phosphorus was extracted in higher concentrations than uranium (uranium/phosphorus ratio < 1). These results suggest that most of the uranium in the samples is not associated with phosphate.



Figure 5.3. Ratio of uranium concentrations to phosphorus concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests.

Figure 5.4 illustrates the ratio of uranium to calcium concentrations and the relative fraction (percent) of the uranium to calcium ratios recovered from the selective extraction tests. These charts suggest that the oxalate acid extracts extracted higher concentrations of uranium than calcium, particularly in boreholes C9580 and C9581. This is consistent with the significant incorporation of uranium into CaCO<sub>3</sub> that is found at the Hanford Site, which is dissolved with the two acetic acid extractions.



Figure 5.4. Ratio of uranium concentrations to calcium concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests.

Figure 5.5 illustrates the ratio of calcium concentrations to phosphorus concentrations and the relative fraction (percent) of the calcium to phosphorus ratios recovered from the selective extraction tests. These charts suggest that the weak acid extracts extracted higher concentrations of calcium than phosphorus, particularly in the upper portion of borehole C9582. This result would be expected with dissolution of calcium carbonate by the acetic acid extraction solutions.



Figure 5.5. Ratio of calcium concentrations to phosphorus concentrations, by borehole and sample depth interval, as recovered from sequential extraction tests.

## 5.2 Labile Uranium

Figure 5.6 and Figure 5.7 summarize the uranium concentrations recovered at four different reaction times (3, 7, 21, and 42 days) during labile leach testing. From these analyses, it does not appear that equilibrium (with respect to uranium solution concentrations) was attained for any of the samples, even after 42 days of reaction time. Another round of samples was collected after 66 days and analyzed only for uranium. However, it still appears that equilibrium was not reached. These results may indicate carbonate exchange, where uranium-containing carbonates are dissolving and non-uranium carbonates are precipitating. This type of non-equilibrium, kinetically controlled leaching in contact with a bicarbonate water solution could be expected to continue under field conditions.



Figure 5.6. Composite uranium concentrations recovered during labile leach testing.



Figure 5.7. Uranium concentration recovered as a function of time during labile leach testing.

## 5.3 Flow-Through Column Tests

Column leach experiments were conducted using four repacked columns containing only the <2-mmsize material from three sample intervals and three intact (field texture) splitspoon liner samples from three sample intervals. The repacked columns were prepared using 15.2-cm (6-inch) long and 2.5-cm (1-inch) diameter glass columns. The column experiments were run for approximately 10 pore volumes, using stop flow methodology (Table 5.1).

| Borehole               | HEIS<br>Sample<br>ID       | Sample/Depth<br>Interval<br>(ft)       | Preparation        | Bulk<br>Density<br>(g/cm <sup>3</sup> ) | Porosity | Average<br>Flow Rate<br>(cm <sup>3</sup> /min) | Average Pore<br>Water Velocity<br>(cm/day) <sup>(a)</sup> | Total Pore<br>Volumes <sup>(b)</sup> |
|------------------------|----------------------------|----------------------------------------|--------------------|-----------------------------------------|----------|------------------------------------------------|-----------------------------------------------------------|--------------------------------------|
| C9580                  | B347F1<br>F347F3           | I-004 / 29.0-29.5<br>I-004 / 29.5-30.0 | <2-mm<br>composite | 1.66                                    | 0.37     | 0.092                                          | 72.2                                                      | 9.1                                  |
| C9582                  | B347P4                     | I-002 / 23.5-24.0                      | Field texture      | 2.05                                    | 0.23     | 1.2                                            | 110                                                       | 16.9                                 |
|                        | B347P5<br>B347P8           | I-002 / 23.0-23.5<br>I-002 / 23.5-24.0 | <2-mm<br>composite | 1.72                                    | 0.35     | 0.092                                          | 77.1                                                      | 10.7                                 |
|                        | B347R0                     | I-003 / 26.0-26.5                      | Field texture      | 2.18                                    | 0.18     | 1.2                                            | 141                                                       | 12.5                                 |
|                        | B347R1                     | I-003 / 25.5-26.0                      | <2 mm              | 1.79                                    | 0.32     | 0.095                                          | 85.7                                                      | 12.4                                 |
|                        | B347T6                     | I-006 / 33.5-34.0                      | Field texture      | 2.26                                    | 0.15     | 1.2                                            | 167                                                       | 16.2                                 |
|                        | B347T7                     | I-006 / 33.0-33.5                      | <2 mm              | 1.78                                    | 0.33     | 0.093                                          | 83.7                                                      | 11.9                                 |
| (a) Avera<br>(b) Prior | age linear v<br>to bromide | elocity<br>elution                     |                    |                                         |          |                                                |                                                           |                                      |

Table 5.1. Flow-through column test parameters.

## 5.3.1 <2-mm Repacked Flow-Through Column Results

Figure 5.8 shows a graph of the uranium concentration as a function of pore volume for the repacked <2-mm composite of samples B347F1 and B347F3 from borehole C9580, depth interval I-004. The data show some increase in the uranium concentrations following the stop flow events. Thus, there is some kinetically controlled leaching continuing from this low-concentration sample. Figure 5.9 shows the bromide breakthrough curve, demonstrating uniform flow characteristics in the column.



Figure 5.8. Uranium concentration vs. pore volume for repacked <2-mm column containing composite B347F1 and B347F3 (borehole C9580, depth interval I-004).



Figure 5.9. Bromide concentration vs. pore volume for repacked <2-mm column containing composite B347F1 and B347F3 (borehole C9580, depth interval I-004).

Figure 5.10 shows a graph of the uranium concentration as a function of pore volume for the repacked <2-mm composite of samples B347P5 and B347P8 from borehole C9582, depth interval I-002. These data show initial high concentration leaching that decreases rapidly over time. Concentration increases were observed during both stop flow events. This sample, with the highest uranium concentration, shows that some uranium in the sample is still labile to rapid leaching and kinetic leaching of uranium is expected during the initial high concentration pulse and as it subsides. Figure 5.11 shows the bromide breakthrough curve, demonstrating uniform flow characteristics in the column.



Figure 5.10. Uranium concentration vs. pore volume for repacked <2-mm column containing composite B347P5 and B347P8 (borehole C9582, depth interval I-002).



Figure 5.11. Bromide concentration vs. pore volume for repacked <2-mm column containing composite B347P5 and B347P8 (borehole C9582, depth interval I-002).

Figure 5.12 shows a graph of uranium concentration versus pore volume for repacked <2-mm sample B347R1 from borehole C9582, depth interval I-003. These data show initial moderately high concentration leaching that decreases over time. Concentration increases were observed during both stop flow events. This sample, with moderately high uranium concentration, shows that some uranium in the sample is still labile to rapid leaching and kinetic leaching of uranium is expected during the initial high-concentration pulse and as it subsides. Figure 5.13 shows the bromide breakthrough curve, demonstrating uniform flow characteristics in the column.



Figure 5.12. Uranium concentration vs. pore volume for repacked <2-mm B347R1 column (Borehole C9582, depth interval I-003).



Figure 5.13. Bromide concentration vs. pore volume for repacked <2-mm B347R1 column (borehole C9582, depth interval I-003).

Figure 5.14 shows uranium concentration versus pore volume for repacked <2-mm material from sample B347T7 from borehole C9582, depth interval I-006. These data do not show the expected initial high concentration leaching that declines over time. The effluent uranium concentration in this sample is lower than the effluent concentration for the C9580, I-004 sample. However, the uranium soil concentration for C9582, I-006 is two to three times higher than the uranium soil concentration for C9580, I-004 (Figure 5.1). Sequential extraction results for these two samples show that there is more uranium associated with the oxalate and nitric acid extractions in the C9582, I-006 sample, though these extractions are still a small percentage of the sample's total uranium. The stop flow events show an increase in concentration, indicative of kinetic leaching. The increasing concentrations that tail upward following the last stop flow remain unexplained. A similar trend is seen in the intact (field texture) column from the same sample interval (see Section 5.3.2). Potentially, these data suggest that there is limited uranium available in a highly mobile form in this sample and that uranium is only released over time through kinetically controlled mechanisms. Figure 5.15 shows the bromide breakthrough curve, demonstrating uniform flow characteristics in the column.



Figure 5.14. Uranium concentration vs. pore volume for repacked <2-mm B347T7 column (borehole C9582, depth interval I-006).



Figure 5.15. Bromide concentration vs. pore volume for repacked <2-mm B347T7 column (borehole C9582, depth interval I-006).

### 5.3.2 Intact Splitspoon Liner Flow-Through Column Results

Figure 5.16 shows uranium concentration as a function of pore volume for the intact (field texture) column experiment using sample B347P4 (borehole C9582, depth interval I-002. Similar to the <2-mm repacked column for the composite of samples B347P5 and B347P8 from the same sample interval (see Section 5.3.1), these data show initial high concentration leaching that decreases rapidly over time. Concentration increases were observed during both stop flow events. This sample, with the highest uranium concentration, shows that some uranium in the sample is still labile to rapid leaching and kinetic leaching of uranium that is expected during the initial high-concentration pulse and as it subsides. While trends are similar for the repacked and intact columns for this sample interval, the effluent concentrations are lower for the intact column tests, perhaps reflecting the effect of having a large portion (86 wt%) of sediment in the column consisting of >2-mm particles. Figure 5.17 shows the bromide breakthrough curve, demonstrating relatively uniform flow characteristics in the column, though with more dispersion than observed in the repacked columns.



Figure 5.16. Uranium concentration vs. pore volume for intact (field texture) column B347P4 (borehole C9582, depth interval I-002).



Figure 5.17. Bromide concentration vs. pore volume for intact column B347P4 (borehole C9582, depth interval I-002).

Figure 5.18 shows a graph of uranium concentration versus pore volume for intact (field texture) sample B347R0 from borehole C9582, depth interval I-003. Similar to the data for the <2-mm repacked column test from sample B347R1 from the same sample interval, the data show initial moderately high concentration leaching that decreases over time. Concentration increases were observed during both stop flow events. This sample, with moderately high uranium concentration, shows that some uranium in the sample is still labile to rapid leaching and kinetic leaching of uranium is expected during the initial high-concentration pulse and as it subsides. For the C9582, I-003 sample, the intact and repacked columns show similar effluent uranium concentrations during leaching. Figure 5.19 shows the bromide breakthrough curve, demonstrating relatively uniform flow characteristics in the column, though with more dispersion than observed in the repacked columns.



Figure 5.18. Uranium concentration vs. pore volume for intact column B347R0 (borehole C9582, depth interval I-003).



Figure 5.19. Bromide concentration vs. pore volume for intact column B347R0 (borehole C9582, depth interval I-003).

Figure 5.20 shows uranium concentration versus pore volume for the intact (field texture) sample B347T6, from borehole C9582, depth interval I-006. Unlike the <2-mm repacked column of material from sample B347T7 from the same sample interval, these data show an initial higher concentration of uranium in the effluent that declines rapidly by 4 to 6 pore volumes. After this period, effluent concentrations increase even during flowing conditions in the column. Concentration increases are also observed in the stop flow events. Like the <2-mm repacked column results for this sample, results may indicate that there is limited uranium available in a highly mobile form in this sample and that uranium is only released over time through kinetically controlled mechanisms. Figure 5.21 shows the bromide breakthrough curve, demonstrating relatively uniform flow characteristics in the column, though with more dispersion than observed in the repacked columns.



Figure 5.20. Uranium concentration vs. pore volume for intact column B347T6 (borehole C9582, depth interval I-006).



Figure 5.21. Bromide concentration vs. pore volume for intact column B347T6 (borehole C9582, depth interval I-006).

## 5.3.3 Cumulative Flow-Through Column Results

Figure 5.22 through Figure 5.25 show the cumulative mass of uranium recovered by pore volume for both the <2-mm and intact flow-through column tests (where available) for each sample interval tested. Note that much of the variability between the < 2-mm and intact flow-though column tests (such as that in Figure 5.23) is most likely due to the high percentage (up to 86 wt. %) of gravel (> 2 mm) in the intact core samples.



**Figure 5.22.** Cumulative mass of uranium mass recovered by pore volume for the < 2-mm flow-through column test of borehole C9580, sample interval I-004 (composite of samples B347F1 and B347F3).



**Figure 5.23.** Cumulative mass of uranium recovered by pore volume for both the < 2-mm (composite of samples B347P5 and B347P8) and intact (sample B347P4) flow-through column tests of borehole C9582, sample interval I-002.



Figure 5.24. Cumulative mass of uranium recovered pore volume for both the < 2-mm (sample B347R1) and intact (sample B347R0) flow-through column tests of borehole C9582, sample interval I-003.





## 5.4 Mineral Phase & Surface Coating

Selected sediment samples from the nine selected sample intervals (Table 4.1) were investigated using cryogenic U(VI) laser fluorescence spectroscopy and SEM/EDX analysis.

## 5.4.1 Cryogenic U(VI) Laser Fluorescence Spectroscopy

Based on the spectral profiles and spectral band positions, the samples appear to fall into three sample classes. The first class consists of the majority of samples, including all but the B347C6 and B347D8 samples (borehole C9580, depth intervals I-001 and I-003, respectively), with relatively high U(VI) concentrations. The samples in this first class typically display three or more broad, not well-resolved vibronic bands with the first band 496.6 to 502.6 nm and the second band, which is the strongest, at 515.4 nm to 519.5 nm (see Appendix C). These band positions are close to those of U(VI) adsorbed on quartz (Wang et al. 2011; Ilton et al. 2012) and U(VI)-phosphate surface complexes adsorbed on montmorillonite (Troyer et al. 2016). As quartz is the dominant mineral phase in Hanford vadose zone sediments and phyllosilicates often exist as fine surface coatings on soil and mineral grains, it is expected that such surface uranium complexes adsorbed to the mineral hosts should be distributed throughout the sediments.

The second class of samples consists of the B347C6 and B347D8 samples (borehole C9580, depth intervals I-001 and I-003, respectively) plus some spots in sample B347F1&F3 (borehole C9580, depth interval I-004), with some of the lowest U(VI) concentrations. These samples display weak, poorly resolved spectra with an ill-defined band maximum around 512.7 to 514.6 nm or 534.0 to 534.8 nm (Appendix C). Similar spectra are also observed for all samples at extremely long delay times as well as pristine Hanford sediments (unpublished data<sup>1</sup>). The origin of such spectral features has not been definitely identified. However, these could result from the slow uptake of uranium over geological times within the mineral grains in the form of oxyhydroxide at low concentrations. Indeed, such peak positions are similar to U(VI) oxyhydroxides (Wang et al. 2008).

The third class of samples includes only B347P0 and B347R1, as a subset of the first class of samples, and includes samples with some of the highest uranium concentrations. At long delay times, the fluorescence spectra of these samples display features of uranyl-tricarbonate, with peak positions at approximately 481, 501, 521, and 542 nm (Dong et al. 2005; Wang et al. 2005). These samples likely possess noticeable levels of calcium carbonate minerals with adsorbed U(VI). This information for these samples suggests that the phosphate treatment was not extensive enough to cause the uranyl-tricarbonate species to desorb and interact with the released uranium.

None of the samples analyzed showed the characteristic features of crystalline uranyl-phosphate precipitates, which are characterized by intense, well-resolved vibronic bands with peak spacings between 815 and 851 cm<sup>-1</sup> (Wang et al. 2008). Given the relatively low concentrations of uranium in these sediments, if such crystalline uranyl-phosphates were present, they would be non-uniform, discrete "hot" spots in the sediments. The present results do not support such a hypothesis. A recent study of uranium speciation in the presence of phosphate and montmorillonite observed that such uranium-phosphate secondary precipitates only occurred at high uranium and phosphate concentrations, while surface adsorbed uranium dominates at lower uranium/phosphate concentrations (Troyer et al. 2016).

#### 5.4.2 SEM/EDX Spectroscopy and Electron Microprobe Results

Selected sediment samples from the nine selected sample intervals (Table 4.1) were investigated with SEM/EDX analysis part of the sample was secured into a C-tape attached to an SEM aluminum holder. Particle morphology was examined using a secondary electron (SE) detector at acceleration voltage of 5 to 10 KeV and current of 0.34 nA while compositional data was collected using a backscattering electron detector (BSE) at acceleration voltage of 30 keV and current of 1.2 nA. Randomly selected areas/particles were initially investigated using the BSE detector, which identifies solid phases containing elements with a large atomic number (Z) due to the bright contrast. Uranium-containing solids could therefore be identified using this approach. Each sediment sample was investigated for approximately 3.5 to 4 hours. On average, 30 to 40 particles were initially examined using the point identification technique described above. EDS and EDX elemental mapping was collected on particles of interest that appeared also to have chemical compositions matching phosphate borehole treatments. Semi-quantitative analysis for these particles was completed using an acquisition time of 60 seconds. Mapping with acquisition time that varied from 400 to 500 seconds was also performed on selected particles that demonstrated elevated Z contrasts as well as enhanced Ca and P concentrations.

<sup>&</sup>lt;sup>1</sup> Personal communication, Zheming Wang (PNNL).

Spot particle analysis did not detect uranium, likely due to the EDX detection limit being greater than uranium concentrations in all the samples (detection limit > 500 ppm). However, EDX elemental mapping analysis of the samples demonstrated some variation in uranium distribution among the samples.

#### 5.4.2.1 Borehole C9580

Samples B347C6, collected from depth interval I-001, and B347D8, collected from depth interval I-003, had several particles that demonstrated a slight degree of enhancement in uranium elemental mapping (Figure 5.26 through Figure 5.28). These particles appeared to be also composed of Ca, P, and Fe, as revealed by elemental mapping combined with EDX spectral data (see tables in Figure 5.26 through Figure 5.28). Based on elemental maps, Ca and P seem to be distributed uniformly throughout the selected particles. The EDX data, however, shows variation in the Fe content in Areas 1 and 3, unlike Area 2 (Figure 5.27). This variation could not be correlated to uranium due to weak contrast in the uranium-map. However, the U-maps appear to indicate that uranium is likely homogeneously distributed throughout the particles and not concentrated in "hot spots." Such uniform distribution could indicate uranium-surface coating or the presence of uranium as sorbed species. Furthermore, mapping analysis of sample B347D8 demonstrates that uranium likely is associated with particles that contain P, Ca, and possibly Fe (Figure 5.28). Clearly, the particle on the left of the inserts in Figure 5.28, which appears to have content similar to calcium aluminum silicate phase, seems to lack uranium contrast. With respect to the morphology of these particles, the micrographs collected using the SE detector show small particles or aggregates on the surface of the large particles. The small aggregates do not appear to significantly vary in composition (see SE inserts in Figure 5.26 and Figure 5.27).



| Energy Dispersive | Area 1    | Area 2 |  |
|-------------------|-----------|--------|--|
| Spectra Analysis  | Atom ic % |        |  |
| Ca                | 0.32      | 0.34   |  |
| Р                 | 0.20      | 0.34   |  |
| Fe                | 33.86     | 24.13  |  |
| Si                | 2.35      | 1.80   |  |
| AI                | 1.20      | 0.84   |  |
| 0                 | 21.43     | 22.68  |  |

\* Undetectable levels of U from EDS analysis. EDS acquisition time was 60sec, Mapping acquisition time varied from 400-500seconds.

Figure 5.26. Sample B347C6, (collected from depth interval I-001, with total uranium concentration of 2.6 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]), Area 1.

A-242



| *Energy Dispersive | Area 1 | Area 2   | Area 3 |  |  |
|--------------------|--------|----------|--------|--|--|
| Spectra Analysis   |        | Atomic % |        |  |  |
| Ca                 | 0.40   | 1.00     | 1.13   |  |  |
| Р                  | 0.27   | 0.23     | 1.10   |  |  |
| Fe                 | 40.13  | 7.59     | 36.29  |  |  |
| Si                 | 5.53   | 9.81     | 8.11   |  |  |
| Al                 | 3.33   | 4.49     | 3.76   |  |  |
| 0                  | 29.95  | 49.60    | 46.18  |  |  |

\*Undetectable levels of U from EDS analysis. EDS acquisition time was 60sec, Mapping acquisition time varied from 400-500seconds.

Figure 5.27. Sample B347C6 (collected from depth interval I-001, with total uranium concentration of 2.6-mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]), Area 2.



Figure 5.28. Sample 347D8 (collected from depth interval I-003, with total uranium concentration of 3.2 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]).

Unlike the previous two samples, uranium was not detected in the B347F1&F3 sample, collected from depth interval I-004, although particles rich in Ca, P, and Fe in this sample were identified and examined. Figure 5.29 shows an example of such particles.



Figure 5.29. Sample B347F1&F3 (collected from depth interval I-004, with a total uranium concentration of 7.6 mg/kg [ALS1601062, accessed via the Enterprise Application to IDMS]).

#### 5.4.2.2 Boreholes C9581 and C9582

SEM analysis of samples collected from boreholes C9581 (B347L4, depth interval I-004) and C9582 (B347P0, B347P5&P8, B347R1, B347R7, B347T7, depth intervals I-001 through I-006) did not reveal particles with detectable uranium concentration when EDX was used or enhancement in uranium elemental mapping, although equivalent time was used and an equivalent number of particles were

investigated as in previous samples. Representatives of several particles examined from C9581 and C9582 are shown in Appendix D.

## 5.5 Phosphate Measurement

Phosphorus (and uranium) was analyzed in extracts taken from unleached samples from five sample intervals collected prior to phosphate treatment and both unleached and leached samples from six sample intervals collected following phosphate treatment. These samples were exposed to 0.5 M nitric acid for 15 minutes as the phosphorus extraction method. Table 5.2 and Table 5.3 summarize the phosphorus and uranium concentrations from these samples, and suggest that the post-treatment samples contain higher concentrations of phosphorus than the pre-treatment samples.

|          |          |                       | Leached        |             |                   |                   |  |
|----------|----------|-----------------------|----------------|-------------|-------------------|-------------------|--|
|          |          |                       | Unlead         | ched        | (Post-C           | olumn Test)       |  |
| Borehole | Sample   |                       | Phosphorus     | Uranium     | Phosphorus        | Uranium           |  |
| ID       | Interval | HEIS Sample ID        | $(\mu g/g)$    | $(\mu g/g)$ | $(\mu g/g)^{(a)}$ | $(\mu g/g)^{(a)}$ |  |
|          |          |                       | Pre-treatment  | Samples     |                   |                   |  |
| C8940    | I-008    | B31N31                | 576            | 4.44        |                   |                   |  |
| C9451    | I-001    | B31N64                | 584            | 0.657       |                   |                   |  |
| C9451    | I-005    | B31N87                | 600            | 17.4        |                   |                   |  |
| C9451    | I-007    | B31N96 <sup>(a)</sup> | 561            | 8.1         |                   |                   |  |
| C9451    | I-008    | B31NB3                | 532            | 5.28        |                   |                   |  |
|          |          |                       | Post-treatment | Samples     |                   |                   |  |
| C9580    | I-001    | B347C6                | 907            | 1.14        |                   |                   |  |
| C9580    | I-004    | B347F1&F3             | 659            | 7.2         | 678               | 7.89              |  |
| C9581    | I-004    | B347L4                | 923            | 3.19        |                   |                   |  |
| C9582    | I-002    | B347P5&P8             | 362            | 43.6        | 362               | 33.3              |  |
| C9582    | I-003    | B347R1                | 403            | 25.1        | 402               | 19.3              |  |
| C9582    | I-006    | B347T7                | 988            | 19.3        | 911               | 18.7              |  |

Table 5.2. Phosphate and uranium concentrations from 0.5 M nitric acid extraction.

-- = Post column test material unavailable.

(a) Results are the average of samples taken from the top and bottom of the columns.

(b) Post-leach test materials may have been consolidated with residual sample materials for this sample interval.

 Table 5.3. Phosphorus concentrations extracted using 0.5 M nitric acid.

| Sample Type              | Number of<br>Samples | Maximum<br>(µg/g) | Minimum<br>(µg/g) | Average<br>(µg/g) | Standard<br>Deviation<br>(µg/g) |
|--------------------------|----------------------|-------------------|-------------------|-------------------|---------------------------------|
| Pre-treatment Unleached  | 5                    | 600               | 532               | 570.6             | 25.8                            |
| Post-treatment Unleached | 6                    | 988               | 362               | 707.0             | 275.5                           |
| Post-treatment Leached   | 8                    | 968               | 346               | 588.1             | 154.8                           |

## 5.6 Physical Property Results

Table 5.4 summarizes the hydraulic and physical property results from the bulk sediment samples.

|          | Particle Size                  |          | Bulk   |        | Saturated Hydraulic Conductivity |         |          |          |
|----------|--------------------------------|----------|--------|--------|----------------------------------|---------|----------|----------|
| Borehole | Sample ID                      | % Gravel | % Sand | % Silt | % Clay                           | Density | Porosity | (cm/s)   |
| C9580    | B347C6                         | 50.4     | 38.0   | 6.37   | 5.04                             |         |          |          |
|          | B347D8                         | 68.1     | 25.1   | 5.90   | 2.75                             |         |          |          |
|          | B347F1,<br>B347F3 <sup>a</sup> | 78.9     | 19.0   | 2.30   | 2.08                             |         |          |          |
| C9581    | B347L4                         | 55.6     | 37.1   | 4.39   | 3.10                             |         |          |          |
| C9582    | B347P0                         | 40.7     | 43.4   | 10.0   | 5.14                             |         |          |          |
|          | B347P4                         | 86.0     | 8.4    | 2.76   | 2.85                             | 2.07    | 0.22     | 1.10E-03 |
|          | B347P5,<br>B347P8 <sup>a</sup> | 84.7     | 13.6   | 2.74   | 2.32                             |         |          |          |
|          | B347R0                         | 72.5     | 22.6   | 2.52   | 2.32                             | 2.21    | 0.17     | 1.46E-03 |
|          | B347R1                         | 53.5     | 35.9   | 6.80   | 3.69                             |         |          |          |
|          | B347R7                         | 35.0     | 50.9   | 6.63   | 4.38                             |         |          |          |
|          | B347T6                         | 68.1     | 21.9   | 5.69   | 4.24                             | 2.29    | 0.14     | 3.73E-06 |
|          | B347T7                         | 73.9     | 23.0   | 3.40   | 2.06                             |         |          |          |

Table 5.4. Hydraulic and physical properties of the bulk sediment samples

(a) Samples were composited after removal of gravel (>2 mm) fraction. The gravel fraction represents an average of the two samples. The sand, silt, and clay fractions are from the composite sample

#### 6.0 Summary

A series of laboratory analyses were applied to samples taken from boreholes installed after an initial stage (Stage A) of phosphate treatment in the field within the 300-FF-5 OU at the Hanford Site. The phosphate treatment was aimed at enhancing attenuation of uranium in the vadose zone and PRZ (Jacques 2016). Data from these tests, in comparison to data from pre-treatment samples, provide a means to quantify how uranium mobility was changed by the phosphate treatment. All sampled intervals were observed to be very wet and very coarse grained, containing 40% to 86% gravel by weight. Samples from boreholes C9580 and C9581 contained relatively low concentrations of uranium (ranging from 2.6 to 7.6  $\mu g/g$  [ALS1601062 and ALS1601118]), while samples from borehole C9582 contained much higher uranium concentrations (ranging from 19 to 100 µg/g [ALS1601062 and ALS1601118]).

Sequential extraction results show that in all but two sample intervals (C9580 I-001 and C9582 I-004), more than 50% of the uranium mass was extracted by the weakest two (acetic acid) solutions. These results also show that in all but one sample interval (C9582 I-004), greater than 50% of the phosphate is associated with the harshest extraction solution (nitric acid), and in all sample intervals, 90% or more of the phosphate is associated with the two harshest solutions (oxalate and nitric acid combined). Thus, for most samples, less than 50% of the uranium was associated with extractions where phosphate was also removed from the sediment.

Labile uranium concentrations continued to increase in all samples, even after 66 days, indicating that equilibrium was not reached in these experiments. These results suggest that non-equilibrium, kinetically controlled leaching will occur under field conditions.

The flow-through column test results for all sample intervals tested, except those from borehole C9580 (I-004) and those from the lower most sample interval (I-006) of borehole C9582, show initial high concentration leaching that declines over time, and concentration increased following stop flow events. These data suggest that some uranium in these samples is still labile to rapid leaching and that kinetic leaching of uranium is expected during the initial high-concentration pulse and as it subsides. Results for sample intervals with lower uranium concentrations, C9580 (I-004) and C95821 (I-006), did not show an initial high concentration leaching response followed by a decrease in uranium concentrations over time. Instead, steady and then increasing uranium concentrations were observed during column flow periods. Concentration increases were also observed during stop flow events. These results suggest that the uranium in these samples is primarily released through kinetically controlled mechanisms.

Mineral phase and surface coating analyses suggest that all samples except those from the upper portion of borehole C9580 (i.e., sample intervals I-001 and I-003) were likely to have U(VI) absorbed on quartz, uranyl-tricarbonate(s) adsorbed on calcium carbonate minerals, and U(VI)-phosphate adsorbed on montmorillonite. None of the samples analyzed by fluorescence spectroscopy showed the characteristic features of crystalline uranyl-phosphate solid phases, which usually occur as discrete "hot" spots in the sediments. The samples from the upper portion of borehole C9580 (i.e., sample intervals I-001 and I-003), as well as some spots in the lower portion of the borehole (sample interval I-004), contained low concentrations of uranium with poorly resolved spectra that may be similar to U(VI) oxyhydroxides. None of the samples analyzed by fluorescence spectroscopy showed the characteristic features of crystalline uranyl-phosphate solid phases, which usually occur as discrete "hot" spots in the sediments.

SEM/EDX and electron microprobe analyses found uranium in association with particles from only two samples: those from the upper portion (I-001 and I-003) of borehole C9580. These same particles also appeared to be composed of Ca, P, and Fe. The analyses also found uranium to be homogeneously distributed throughout these particles, suggesting a uranium surface coating or the presence of uranium as a sorbed species.

The results herein provide data to quantify the uranium mobility in selected samples collected after the Stage A phosphate treatment in the field for the 300-FF-5 OU. The experimental methods for this effort were the same as those applied previously to samples collected in adjacent boreholes prior to the phosphate treatment. Therefore, these results are suitable for comparison to results from pre-treatment laboratory tests for evaluating the effect of the field phosphate treatment on uranium mobility.

## 7.0 References

Brown CF, W Um, and RJ Serne. 2008. Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model. PNNL-17793, Pacific Northwest National Laboratory, Richland, Washington.

Dong W, W Ball, C Liu, Z Wang, and A Stone. 2005. "Influence of Calcite and Dissolved Calcium on U(VI) Sorption to a Hanford Subsurface Sediment." *Environ. Sci. Technol.* 39:7949-7955.

EPA and DOE. 2013. Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1. U.S. Environmental Protection Agency, Region 10, U.S.

Department of Energy, Richland Operations Office, Richland, Washington. Available at http://pdw.hanford.gov/arpir/pdf.cfm?accession=0087180.

Ilton ES, Z Wang, JF Boily, O Qafoku, KM Rosso, and SC Smith. 2012. "The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO<sub>2</sub>." *Environ. Sci. Technol.* 46(12):6604-6611.

Jacques DI. 2016. 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report. SGW-59455, Rev. 0, CH2M Hill Plateau Remediation Company, Richland, Washington.

Johnson TC and JN Thomle. 2016. *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography*. PNNL-SA-25232, Pacific Northwest National Laboratory, Richland, Washington.

Kohler M, DP Curtis, DE Meece, and JA Davis. 2004. "Methods for Estimating Adsorbed Uranium (VI) and Distribution Coefficients of Contaminated Sediments." *Environ. Sci. Technol.* 38:240-247.

Ma R, C Zheng, H Prommer, J Greskowiak, C Liu, J Zachara, and M Rockhold. 2010. "A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions." *Water Resour. Res.* 46, W05509. doi:10.1029/2009WR008168.

Serne RJ, CF Brown, HT Schaef, EM Pierce, J Lindberg, Z Wang, P Gassman, and J Catalano. 2002. 300 Area Uranium Leach and Adsorption Project. PNNL-14022, Pacific Northwest National Laboratory, Richland, Washington.

Sherwood AR. 2014. Sampling Instructions for the 300-FF-5 Operable Unit Supplemental post ROD Field Investigation. SGW-56993, Rev. 0, CH2M Hill Plateau Remediation Company, Richland, Washington.

Snyder MMV and KJ Cantrell. 2015. Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8933, C8936 and C8938. PNNL-24308. Pacific Northwest National Laboratory, Richland, Washington.

Snyder MMV and GV Last. 2015. Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8940 and C9451. PNNL-24911, Pacific Northwest National Laboratory, Richland, Washington.

Szecsody JE, JS Fruchter, ML Rockhold, JP McKinley, M Oostrom, VR Vermeul, RC Moore, MT Covert, CA Burns, TW Wietsma, MD Williams, AT Breshears, L Zhong, and BJ Garcia. 2009. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution. PNNL-18303, Pacific Northwest National Laboratory, Richland, Washington.

Szecsody JE, VR Vermeul, JS Fruchter, MD Williams, ML Rockhold, NP Qafoku, and JL Phillips. 2010. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis. PNNL-19524, Pacific Northwest National Laboratory, Richland, Washington.

Szecsody JE, VR Vermeul, L Zhong, JS Fruchter, M Oostrom, and MD Williams. 2012. Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediments. PNNL-21733, Pacific Northwest National Laboratory, Richland, Washington.

45

Troyer LD, F Maillot, Z Wang, Z Wang, VS Mehta, DE Giammar, and JG Catalano. 2016. "Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers." *Geochim. Cosmochim. Acta* 175:86-99.

Wang Z, JM Zachara, W Yantasee, PL Gassman, CX Liu, and AG Joly. 2004. "Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters." *Environ. Sci. Technol.* 38(21):5591-5597.

Wang Z, JM Zachara, JP McKinely, and SC Smith. 2005. "Cryogenic Laser Induced U(VI) Fluorescence Studies of a U(VI) Substituted Natural Calcite: Implications to U(VI) Speciation in Contaminated Hanford Sediments." *Environ. Sci. Technol.* 39:2651-2659.

Wang Z, JM Zachara, C Liu, PL Gassman, AR Felmy, and SB Clark. 2008. "A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals." *Radiochim. Acta* 96(9-11):591-598.

Wang Z, JM Zachara, JF Boily, Y Xia, TC Resch, DA Moore, and C Liu. 2011. "Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study." *Geochim. Cosmochim. Acta* 75(10):2965-2979.

Whitley KM. 2015. Description of Work for the Installation of Three Boreholes in the 300-FF-5 Groundwater Operable Unit, FY2016. SGW-59369, Rev. 0, CH2M Hill Plateau Remediation Company, Richland, Washington.

# Appendix A

## **Case Narrative Analytical and Quality Control Results**
#### Introduction

Between January 26, 2016 and April 7, 2016 samples were received from the 300-FF5 for chemical analyses.

#### Analytical Results/Methodology

The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data.

#### **Quality Control**

The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the online QA plan "Conducting Analytical Work in Support of Regulatory Programs" (CAWSRP). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

#### Definitions

- Dup Duplicate
- RPD Relative Percent Difference
- NR No Recovery (percent recovery less than zero)
- ND Non-Detectable
- %REC Percent Recovery

#### Sample Receipt

Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis.

All samples were received with custody seals intact unless noted in the Case Narrative.

#### **Holding Times**

Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative.

#### **Analytical Results**

All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative.

#### **Case Narrative Report**

#### **Duplicate (DUP):**

Duplicate RPD for Calcium for 1602078-31 (49%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Manganese for 1602078-46 (41%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Manganese for 1602078-31 (74%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Phosphorus for 1602078-20 (49%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Iron for 1602049-22 (74%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Iron for 1602049-47 (48%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Iron for 1602049-71 (71%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Manganese for 1602049-22 (59%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Phosphorus for 1602049-71 (52%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity.

Duplicate RPD for Phosphorus for 1602049-95 (84%) was above the acceptable limit (35%) for ICP-OES Vadose-NP. Duplicate failure may be due to sample heterogeneity

Post-spike recovery for Aluminum (937%) was outside acceptable limitis (75-125%) for sample 6D13005-PS1 for ICP-OES Vadose-AE. The concentration of the analyate in the original sample was greater than 5 times the spiked concentration. There should be no impact to the data as reported.

Post-spike recovery for Calcium (439%) was outside acceptable limitis (75-125%) for sample 6D13005-PS1 for ICP-OES Vadose-AE. The concentration of the analyate in the original sample was greater than 5 times the spiked concentration. There should be no impact to the data as reported.

Post-spike recovery for Iron (362%) was outside acceptable limitis (75-125%) for sample 6D13005-PS1 for ICP-OES Vadose-AE. The concentration of the analyate in the original sample was greater than 5 times the spiked concentration. There should be no impact to the data as reported.

Post-spike recovery for Manganese (150%) was outside acceptable limitis (75-125%) for sample 6D13005-PS1 for ICP-OES Vadose-AE. The concentration of the analyate in the original sample was greater than 5 times the spiked concentration. There should be no impact to the data as reported.

Post-spike recovery for Phosphate (285%) was outside acceptable limitis (75-125%) for sample 6D13005-PS1 for ICP-OES Vadose-AE. The concentration of the analyate in the original sample was greater than 5 times the spiked concentration. There should be no impact to the data as reported.

#### Post Spike (PS):

Preparation Blank for Aluminum was greater than EQL for 1602078-59 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported.

Preparation Blank for Calcium was greater than EQL for 1602078-43 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported.

Preparation Blank for Calcium was greater than EQL for 1602078-55 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported.

Preparation Blank for Calcium was greater than EQL for 1602078-59 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported.

Preparation Blank for Iron was greater than EQL for 1602078-59 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported.

Preparation Blank for Manganese was greater than EQL for 1602078-59 for ICP-OES Vadose-NP. The measured concentration in the preparation blank was less than 20 times the concertation measured in the samples. There should be no impact to data as reported The Serial Dilution recovery for Uranium-238 (24.2%) was outside acceptable limits (within 10%) in E604022-SRD1 for ICPMS-Tc\_U-AE. The sample concentration was not greater than 100 times the IDL. There should be no impact to data as reported.

#### Other QC Criteria:

| Moisture Content (% by Weight) by PNNL-ESL-WC<br>Client ID. |                    |
|-------------------------------------------------------------|--------------------|
|                                                             | Results            |
|                                                             | Analyzed           |
| 1601046-01                                                  | Batch              |
| B347C6                                                      |                    |
|                                                             | 9.50E0<br>3/16/16  |
|                                                             | 6A31001            |
| 1601046-03                                                  | 1N/A               |
| B347D8                                                      | 6.89E0             |
|                                                             | 3/16/16            |
|                                                             | 6A31001<br>N/A     |
| 1601046-04<br>B347F1                                        |                    |
|                                                             | 1.75E1             |
|                                                             | 3/16/16<br>6A31001 |
| 1601046 05                                                  | N/A                |
| B347F3                                                      |                    |
|                                                             | 1.21E1<br>3/16/16  |
|                                                             | 6A31001            |
| 1601046-22                                                  | N/A                |
| B347L2                                                      | 6 36F0             |
|                                                             | 3/16/16            |
|                                                             | 6A31001<br>N/A     |
| 1601046-24<br>B347L4                                        |                    |
| D347L4                                                      | 5.56E0             |
|                                                             | 3/16/16<br>6A31001 |
| 1601046 20                                                  | N/A                |
| B347P0                                                      |                    |
|                                                             | 6.92E0<br>3/16/16  |
|                                                             | 6A31001            |
| 1601046-32                                                  | N/A                |
| B347P5                                                      | 1 10E1             |
|                                                             | 3/16/16            |
|                                                             | 6A31001<br>N/A     |
| 1601046-36<br>B347R1                                        |                    |
| DJ+/KI                                                      | 7.72E0             |
|                                                             | 3/16/16<br>6A31001 |
| 1601046 40                                                  | N/A                |
| B347R7                                                      |                    |
|                                                             | 1.08E1<br>3/16/16  |
|                                                             | 6A31001            |
| 1601046-45                                                  | N/A                |
| B347T7                                                      | 8 13E0             |
|                                                             | 3/16/16            |
|                                                             | 6A31001<br>N/A     |

# Wet Chemistry

A-256

## Total Metals by PNNL-ESL-ICP-OES/Acid Extract

| CAS #<br>Analyte                             |                     |         |
|----------------------------------------------|---------------------|---------|
|                                              | Units<br>FOL        | Results |
| Method                                       | Analyzed            |         |
|                                              | Batch               |         |
| Lab ID:<br>Client ID.<br>B31N31<br>7429-90-5 |                     |         |
|                                              | ug/g dry<br>4/13/16 |         |
| PNNL-ESL-ICP-OES                             |                     | 1 38E3  |
| Aluminum                                     | 6D13005             | 1.5025  |
| 7440 70 2                                    | 2.94E0              |         |
| /440-/0-2                                    | ug/g dry            |         |
| PNNL-ESL-ICP-OES                             | 4/13/16             |         |
| Calcium                                      |                     | 3.14E3  |
|                                              | 6D13005<br>3.05E0   |         |
| 7439-89-6                                    |                     |         |
| NUM FOR LOD OF C                             | 4/13/16             |         |
| PNNL-ESL-ICP-OES                             | :                   | 5.98E2  |
| Iron                                         | 6D13005             |         |
| 7439-96-5                                    | 7.90E-1             |         |
|                                              | ug/g dry<br>4/13/16 |         |
| PNNL-ESL-ICP-OES                             |                     | 6 57F1  |
| Manganese                                    | 6D12005             | 5.57121 |
|                                              | 2.62E-1             |         |
| 7723-14-0                                    | ug/g dry            |         |
| PNNL-ESL-ICP-OES                             | 4/13/16             |         |
| Phosphorus                                   |                     | 5.76E2  |
|                                              | 6D13005<br>3 88F0   |         |
| 1604032-02                                   | 5.0020              |         |
| Client ID.                                   |                     |         |
| <b>B31N64</b><br>7429-90-5                   |                     |         |
|                                              | ug/g dry<br>4/13/16 |         |
| PNNL-ESL-ICP-OES                             |                     | 6.12E2  |
| Aluminum                                     | 6D13005             |         |
| 7440 70 2                                    | 2.80E0              |         |
| /440-70-2                                    | ug/g dry            |         |
| PNNL-ESL-ICP-OES                             | 4/13/16             |         |
| Calcium                                      |                     | 2.97E3  |
|                                              | 6D13005<br>2.91E0   |         |
| 7439-89-6                                    | uø/ø drv            |         |
| DNINI ESI ICD OES                            | 4/13/16             |         |
| I INNE-EOE-ICI -VEO                          |                     | 4.71E2  |

| -                                             |                     |        |
|-----------------------------------------------|---------------------|--------|
| Iron                                          | 6D13005<br>7 53E-1  |        |
| 7439-96-5                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             | 4.9451 |
| Manganese                                     | 6D13005             | 4.64E1 |
| 7723-14-0                                     | 2.50E-1             |        |
| DNINI ESI ICD OES                             | ug/g dry<br>4/13/16 |        |
| Phosphorus                                    |                     | 5.84E2 |
| 1604032-03<br>Lab ID:                         | 6D13005<br>3.70E0   |        |
| Client ID.<br>B31N87                          |                     |        |
| /429-90-5                                     | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                              |                     | 9.34E2 |
| Aluminum                                      | 6D13005<br>2.84E0   |        |
| 7440-70-2                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/10             | 3.31E3 |
| Calcium                                       | 6D13005             |        |
| 7439-89-6                                     | 2.95E0              |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             |        |
| Iron                                          | 4D12005             | 5.06E2 |
| 7439-96-5                                     | 7.63E-1             |        |
| NUM FOLIOD OF O                               | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES Manganese                    |                     | 8.54E1 |
|                                               | 6D13005<br>2.54E-1  |        |
| 7723-14-0                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/15/10             | 6.00E2 |
| Phosphorus                                    | 6D13005             |        |
| 1604032-04<br>Lab ID:<br>Client ID.<br>B31N96 | 3.75E0              |        |
| 7429-90-5                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/10             | 8 60E2 |
| Aluminum                                      | 6D13005             | 0.0012 |
| 7440-70-2                                     | 2.91E0              |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             |        |

|                                              |                     | 3.31E3 |
|----------------------------------------------|---------------------|--------|
| Calcium                                      | 6D13005<br>3 02F0   |        |
| 7439-89-6                                    | ug/g dry            |        |
| PNNL-ESL-ICP-OES                             | 4/13/16             | 7.04F2 |
| Iron                                         | 6D13005             | 7.0122 |
| 7439-96-5                                    | 7.83E-1             |        |
| PNNL-ESL-ICP-OES                             | 4/13/16             | 1 0050 |
| Manganese                                    | 6D13005             | 1.08E2 |
| 7723-14-0                                    | 2.60E-1             |        |
| PNNL-ESL-ICP-OES                             | ug/g dry<br>4/13/16 |        |
| Phosphorus                                   | (D1)005             | 5.61E2 |
| 1604032-05                                   | 6D13005<br>3.85E0   |        |
| Lab ID:<br>Client ID.<br>B31NB3<br>7429-90-5 |                     |        |
| H27 76 3                                     | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                             |                     | 8.60E2 |
|                                              | 6D13005<br>2.80E0   |        |
| 7440-70-2                                    | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                             |                     | 2.58E3 |
| Calcium                                      | 6D13005<br>2 90E0   |        |
| 7439-89-6                                    | ug/g dry            |        |
| PNNL-ESL-ICP-OES                             | 4/13/16             | 4 46E2 |
| Iron                                         | 6D13005             |        |
| 7439-96-5                                    | /.52E-1<br>ug/g drv |        |
| PNNL-ESL-ICP-OES                             | 4/13/16             | 6 7051 |
| Manganese                                    | 6D13005             | 5./2EI |
| 7723-14-0                                    | 2.50E-1             |        |
| PNNL-ESL-ICP-OES                             | ug/g dry<br>4/13/16 |        |
| Phosphorus                                   | (D1)005             | 5.32E2 |
| 1604032-06<br>Lab ID:<br>Client ID.          | 3.70E0              |        |
| <b>B347C6</b><br>7429-90-5                   | uo/o dry            |        |
|                                              | 4/13/16             |        |

| PNNL-ESL-ICP-OES                  |                     | 7.43E2 |
|-----------------------------------|---------------------|--------|
| Aluminum                          | 6D13005             | 7.43E2 |
| 7440-70-2                         | 2.80E0              |        |
| , ++0-70 2                        | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                  | 1, 10, 10           | 2.89E3 |
| Calcium                           | 6D13005             |        |
| 7439-89-6                         | 2.90E0              |        |
|                                   | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                  |                     | 1.12E3 |
| Iron                              | 6D13005<br>7 52E 1  |        |
| 7439-96-5                         | ng/g dry            |        |
| PNNL-ESL-ICP-OES                  | 4/13/16             |        |
| Manganese                         |                     | 8.24E1 |
|                                   | 6D13005<br>2.50E-1  |        |
| 7723-14-0                         | ug/g dry            |        |
| PNNL-ESL-ICP-OES                  | 4/13/16             | 0.0752 |
| Phosphorus                        | 6D13005             | 9.0762 |
| 1604032-07                        | 3.69E0              |        |
| Lab ID:<br>Client ID.             |                     |        |
| <b>B347F1 and F3</b><br>7429-90-5 |                     |        |
|                                   | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                  |                     | 9.74E2 |
| Aluminum                          | 6D13005             |        |
| 7440-70-2                         | 2.74E0              |        |
| PNNL-ESL-ICP-OES                  | 4/13/16             |        |
| Calcium                           |                     | 2.76E3 |
|                                   | 6D13005<br>2.85E0   |        |
| 7439-89-6                         | ug/g dry            |        |
| PNNL-ESL-ICP-OES                  | 4/13/16             | 5.0752 |
| Iron                              | 6D13005             | 5.07E2 |
| 7439-96-5                         | 7.38E-1             |        |
|                                   | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                  |                     | 7.14E1 |
| Manganese                         | 6D13005             |        |
| 7723-14-0                         | 2.45E-1             |        |
| DNINI EST ICD OES                 | ug/g dry<br>4/13/16 |        |
| Phosphorus                        |                     | 6.59E2 |
| i nospitotus                      |                     |        |

|                                                            | 5D13005<br>3 63E0   |      |
|------------------------------------------------------------|---------------------|------|
| 1604032-08<br>Lab ID:<br>Client ID.<br>B347L4<br>7429-90-5 | 5.0520              |      |
| PNNL-ESL-ICP-OES                                           | ug/g dry<br>4/13/16 |      |
| Aluminum                                                   | 5D13005             | 3E2  |
| 7440-70-2                                                  | 2.78E0<br>ug/g dry  |      |
| PNNL-ESL-ICP-OES                                           | 4/13/16 2.8         | 33E3 |
| Calcium (                                                  | 5D13005<br>2.88E0   |      |
| /439-89-0                                                  | ug/g dry<br>4/13/16 |      |
| Iron                                                       | 5.5                 | 50E2 |
| 7439-96-5                                                  | 7.46E-1             |      |
| PNNL-ESL-ICP-OES                                           | 4/13/16             | 79E1 |
| Manganese                                                  | 5D13005             | 0E1  |
| 7723-14-0                                                  | 2.48E-1<br>ug/g dry |      |
| PNNL-ESL-ICP-OES                                           | 9.2                 | 23E2 |
| Phosphorus                                                 | 5D13005<br>3.67E0   |      |

## Total Metals by PNNL-ESL-ICP-OES/Acid Extract

| CAS #<br>Analyte                                                  |                          | Pagults |
|-------------------------------------------------------------------|--------------------------|---------|
|                                                                   | Units<br>EQL<br>Analyzed | Results |
| Method                                                            | Batch                    |         |
| 1604032-09<br>Lab ID:<br>Client ID.<br>B347P5 and P8<br>7429-90-5 | Bach                     |         |
|                                                                   | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                                  |                          | 3 51F3  |
| Aluminum                                                          | (1)12005                 | 5.5125  |
| 2440 20 2                                                         | 2.77E0                   |         |
| /440-/0-2                                                         | ug/g dry                 |         |
| PNNL-ESL-ICP-OES                                                  | 4/13/16                  |         |
| Calcium                                                           |                          | 4.64E3  |
|                                                                   | 6D13005<br>2 88E0        |         |
| 7439-89-6                                                         | 2.0020<br>110/0 dry      |         |
| NAU FOLIODOFO                                                     | 4/13/16                  |         |
| PNNL-ESL-ICP-OES                                                  |                          | 4.67E2  |
| Iron                                                              | 6D13005                  |         |
| 7439-96-5                                                         | 7.45E-1                  |         |
|                                                                   | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                                  |                          | 7 36F1  |
| Manganese                                                         | (1)1005                  | 7.50L1  |
| <b>7700</b> 4 4 0                                                 | 2.48E-1                  |         |
| //23-14-0                                                         | ug/g dry                 |         |
| PNNL-ESL-ICP-OES                                                  | 4/13/16                  |         |
| Phosphorus                                                        |                          | 3.62E2  |
| I                                                                 | 6D13005<br>3.66E0        |         |
| 1604032-10<br>Lab ID:                                             | 5.0020                   |         |
| Client ID.<br>B347R1<br>7429-90-5                                 |                          |         |
|                                                                   | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                                  |                          | 2 2353  |
| Aluminum                                                          | (1)1005                  | 2.2313  |
|                                                                   | 2.86E0                   |         |
| 7440-70-2                                                         | ug/g dry                 |         |
| PNNL-ESL-ICP-OES                                                  | 4/13/16                  |         |
| Calcium                                                           |                          | 3.51E3  |
|                                                                   | 6D13005<br>2.9650        |         |
| 7439-89-6                                                         | 2.7010                   |         |
|                                                                   | ug/g ary<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                                  |                          |         |

| Iron                                                                  |                     |        |
|-----------------------------------------------------------------------|---------------------|--------|
|                                                                       | 6D13005<br>7.68E-1  |        |
| 7439-96-5                                                             | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                                      | 4/13/16             | 6 5051 |
| Manganese                                                             | 6D12005             | 5.70E1 |
| 7723-14-0                                                             | 2.55E-1             |        |
| ,,, 110                                                               | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                      |                     | 4.03E2 |
| Phosphorus                                                            | 6D13005             |        |
| 1604032-11<br>Lab ID:<br>Client ID.<br>B347T7                         | 3.77E0              |        |
| 7429-90-5                                                             | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                                      | 4/15/16             | 2 24F3 |
| Aluminum                                                              | 6D13005             | 2.2403 |
| 7440-70-2                                                             | 2.80E0              |        |
|                                                                       | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                      |                     | 2.86E3 |
| Carcium                                                               | 6D13005<br>2 91E0   |        |
| 7439-89-6                                                             | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                                      | 4/13/16             |        |
| Iron                                                                  | (D12005             | 5.28E2 |
| 7439-96-5                                                             | 7.53E-1             |        |
|                                                                       | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                      |                     | 6.29E1 |
| Manganese                                                             | 6D13005             |        |
| 7723-14-0                                                             | 2.50E-1             |        |
| PNNL-ESL-ICP-OES                                                      | 4/13/16             |        |
| Phosphorus                                                            |                     | 9.88E2 |
|                                                                       | 6D13005<br>3.70E0   |        |
| 1604032-12<br>Lab ID:<br>Client ID.<br>B347F1 and F3 TOP<br>7429-90-5 |                     |        |
|                                                                       | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                      |                     | 1.15E3 |
| Aluminum                                                              | 6D13005             |        |
| 7440-70-2                                                             | 2.04EU              |        |
| PNNL-ESL-ICP-OES                                                      | 4/13/16             |        |

|                                                             |                     | 3.02E3 |
|-------------------------------------------------------------|---------------------|--------|
| Calcium                                                     | 6D13005<br>2 74E0   |        |
| 7439-89-6                                                   | 2.74E0<br>ug/g dry  |        |
| PNNL-ESL-ICP-OES                                            | 4/13/16             | 5 5150 |
| Iron                                                        | 6D1 3005            | 5./1E2 |
| 7439-96-5                                                   | 7.11E-1             |        |
| PNNI -FSI -ICP-OFS                                          | ug/g dry<br>4/13/16 |        |
| Managanasa                                                  |                     | 8.57E1 |
| Manganese                                                   | 6D13005<br>2.36E-1  |        |
| 7723-14-0                                                   | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                            | 4/15/10             | 6.96E2 |
| Phosphorus                                                  | 6D13005             |        |
| 1604032-13<br>Lab ID:<br>Client ID.<br>B347F1 and F3 BOTTOM | 3.49E0              |        |
| 7429-90-5                                                   | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                            | 4/13/16             | 1.06F3 |
| Aluminum                                                    | 6D13005             | 1.0025 |
| 7440-70-2                                                   | 2.89E0              |        |
| PNNI-ESL-ICP-OES                                            | ug/g dry<br>4/13/16 |        |
| Calcium                                                     |                     | 2.85E3 |
|                                                             | 6D13005<br>3.01E0   |        |
| /439-89-6                                                   | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                            |                     | 5.96E2 |
| Iron                                                        | 6D13005             |        |
| 7439-96-5                                                   | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                            | 4/13/16             | 7 0051 |
| Manganese                                                   | 6012005             | 7.99EI |
| 7723-14-0                                                   | 2.59E-1             |        |
|                                                             | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                            |                     | 6.60E2 |
| Phosphorus                                                  | 6D13005<br>3.83E0   |        |
| 1604032-14<br>Lab ID:<br>Client ID.<br>B347P5 and P8 TOP    |                     |        |
| 7429-90-5                                                   | ug/g dry<br>4/13/16 |        |
|                                                             | T/ 1 J/ 1 U         |        |

| PNNL-ESL-ICP-OES                              |                     | 3 00E3 |
|-----------------------------------------------|---------------------|--------|
| Aluminum                                      | 6D13005             | 3.9013 |
| 7440-70-2                                     | 2.75E0              |        |
|                                               | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                              |                     | 4.84E3 |
| Calcium                                       | 6D13005<br>2 85E0   |        |
| 7439-89-6                                     | ug/g drv            |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             |        |
| Iron                                          |                     | 5.01E2 |
| 7439.96.5                                     | 6D13005<br>7.39E-1  |        |
|                                               | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                              |                     | 9.42E1 |
| Manganese                                     | 6D13005             |        |
| 7723-14-0                                     | 2.40E-1             |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             |        |
| Phosphorus                                    |                     | 3.46E2 |
| 1604022-15                                    | 6D13005<br>3.63E0   |        |
| Lab ID:<br>Client ID.<br>B347P5 and P8 BOTTOM |                     |        |
| 7429-90-5                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             | 401E3  |
| Aluminum                                      | 6D13005             | 4.0125 |
| 7440-70-2                                     | 2.96E0              |        |
| DNNI ESI ICD OES                              | ug/g dry<br>4/13/16 |        |
| Calcium                                       |                     | 5.42E3 |
|                                               | 6D13005<br>3.07E0   |        |
| 7439-89-6                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             | 5 7252 |
| Iron                                          | 6D13005             | 5.7202 |
| 7439-96-5                                     | 7.95E-1             |        |
|                                               | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                              |                     | 9.38E1 |
| manganese                                     | 6D13005<br>2.64E-1  |        |
| 7723-14-0                                     | ug/g dry            |        |
| PNNL-ESL-ICP-OES                              | 4/13/16             | 2 7050 |
| Phosphorus                                    |                     | 3.78E2 |

|                  | 6D13005            |        |
|------------------|--------------------|--------|
|                  | 3.91E0             |        |
| 1604032-16       |                    |        |
| Lab ID:          |                    |        |
| Client ID.       |                    |        |
| B347R1 TOP       |                    |        |
| 7429-90-5        |                    |        |
|                  | ug/g dry           |        |
|                  | 4/13/16            |        |
| PNNL-ESL-ICP-OES |                    |        |
|                  |                    | 2.38E3 |
| Aluminum         |                    |        |
|                  | 6D13005            |        |
|                  | 2.77E0             |        |
| 7440-70-2        |                    |        |
|                  | ug/g dry           |        |
|                  | 4/13/16            |        |
| PNNL-ESL-ICP-OES |                    |        |
|                  |                    | 3.52E3 |
| Calcium          |                    |        |
|                  | 6D13005            |        |
|                  | 2.87E0             |        |
| 7439-89-6        |                    |        |
|                  | ug/g dry           |        |
|                  | 4/13/16            |        |
| PNNL-ESL-ICP-OES |                    |        |
| _                |                    | 6.15E2 |
| Iron             | (P. 4 8 9 8 7      |        |
|                  | 6D13005            |        |
| 7420.07.5        | /.44E-1            |        |
| /439-96-5        | ( <b>1</b>         |        |
|                  | ug/g dry           |        |
| NUL FOL ION OFG  | 4/13/16            |        |
| PNNL-ESL-ICP-OES |                    | ( 05E1 |
| Manganasa        |                    | 6.05E1 |
| wanganese        | 6D12005            |        |
|                  | 0D15005<br>2.47E 1 |        |
|                  | ∠.4/E-1            |        |

## Total Metals by PNNL-ESL-ICP-OES/Acid Extract

CAS#

| Analyte                                                        |                          | Results |
|----------------------------------------------------------------|--------------------------|---------|
|                                                                | Units<br>EQL<br>Analyzed | Results |
| Method                                                         | Datak                    |         |
| 1604032-16<br>Lab ID:<br>Client ID.<br>B347R1 TOP<br>7723-14-0 | isaten                   |         |
|                                                                | 4/13/16                  |         |
| PNNL-ESL-ICP-OES                                               |                          | 4.14E2  |
| Phosphorus                                                     | 6D13005                  |         |
| 1604032-17<br>Lab ID:<br>Client ID.                            | 3.66E0                   |         |
| <b>B347R1 BOTTOM</b><br>7429-90-5                              |                          |         |
|                                                                | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                               |                          | 2.20E3  |
| Aluminum                                                       | 6D13005<br>2.53E0        |         |
| 7440-70-2                                                      | ug/g dry                 |         |
| PNNL-ESL-ICP-OES                                               | 4/13/16                  | 3 56E3  |
| Calcium                                                        | 6D13005                  | 5.0025  |
| 7439-89-6                                                      | 2.63E0                   |         |
|                                                                | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                               |                          | 5.78E2  |
| Iron                                                           | 6D13005                  |         |
| 7439-96-5                                                      | 6.80E-1                  |         |
|                                                                | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                               |                          | 5.81E1  |
| Manganese                                                      | 6D13005                  |         |
| 7723-14-0                                                      | 2.26E-1                  |         |
|                                                                | ug/g dry<br>4/13/16      |         |
| PNNL-ESL-ICP-OES                                               |                          | 3.90E2  |
| Phosphorus                                                     | 6D13005                  |         |
| 1604032-18<br>Lab ID:<br>Client ID.<br>B347T7 TOP<br>7/20 00 5 | 3.34E0                   |         |
| 1427-70-0                                                      | ug/g dry                 |         |
| PNNL-ESL-ICP-OES                                               | 4/13/10                  | 1.0052  |
| Aluminum                                                       | 6D13005                  | 1.98E3  |
| 7440 70 2                                                      | 3.10E0                   |         |
| /440-/0-2                                                      |                          |         |

|                                                                   | ug/g dry<br>4/13/16 |        |
|-------------------------------------------------------------------|---------------------|--------|
| PNNL-ESL-ICP-OES                                                  |                     | 2.63E3 |
| Calcium                                                           | 6D13005             | 2.0010 |
| 7439-89-6                                                         | 3.22E0              |        |
| NINE FOL IOD OF S                                                 | ug/g dry<br>4/13/16 |        |
| Iron                                                              |                     | 5.30E2 |
| 101                                                               | 6D13005<br>8.34E-1  |        |
| 7439-96-5                                                         | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                                  | 4/13/16             |        |
| Manganese                                                         | 6012005             | 5.42E1 |
| 7723-14-0                                                         | 2.77E-1             |        |
| ,,, 110                                                           | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                  |                     | 8.53E2 |
| Phosphorus                                                        | 6D13005             |        |
| 1604032-19<br>Lab ID:<br>Client ID.<br>B347T7 BOTTOM<br>7429-90-5 | 4.10E0              |        |
| PNNL-ESL-ICP-OES                                                  | 4/13/16             |        |
| Aluminum                                                          |                     | 2.60E3 |
| 7440 70 2                                                         | 6D13005<br>2.71E0   |        |
| 1440-70-2                                                         | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                  |                     | 3.09E3 |
| Calcium                                                           | 6D13005             |        |
| 7439-89-6                                                         | 2.82E0              |        |
| DNINE EST TOD OES                                                 | ug/g dry<br>4/13/16 |        |
| Iron                                                              |                     | 6.26E2 |
|                                                                   | 6D13005<br>7 30E-1  |        |
| 7439-96-5                                                         | ug/g dry            |        |
| PNNL-ESL-ICP-OES                                                  | 4/13/16             |        |
| Manganese                                                         | (5) 2005            | 7.04E1 |
| 7723-14-0                                                         | 2.42E-1             |        |
|                                                                   | ug/g dry<br>4/13/16 |        |
| PNNL-ESL-ICP-OES                                                  |                     | 9.68E2 |
| Phosphorus                                                        | 6D13005<br>3.59E0   |        |

## Radionuclides by ICP-MS/Acid Extract

| CAS #<br>Analyte                                       | ·                   |         |
|--------------------------------------------------------|---------------------|---------|
|                                                        | Units               | Results |
|                                                        | EQL<br>Analyzed     |         |
| Method                                                 | Batch               |         |
| 1604032-01<br>Lab ID:<br>Client ID.<br>B31N31<br>U-238 | Daten               |         |
|                                                        | ug/g dry<br>4/12/16 |         |
| PNNL-ESL-ICPMS                                         |                     | 4 44F0  |
| Uranium 238                                            | 6D12001             |         |
| 1604032-02                                             | 1.340-1             |         |
| Lab ID:<br>Client ID.<br>B31N64                        |                     |         |
| 0-238                                                  | ug/g dry            |         |
| PNNL-ESL-ICPMS                                         | 4/12/16             |         |
| Uranium 238                                            |                     | 6.57E-1 |
|                                                        | 6D12001             |         |
| 1604032-03<br>Lab ID:<br>Client ID.<br>B31N87<br>U-238 | 1.4712-2            |         |
|                                                        | ug/g dry<br>4/12/16 |         |
| PNNL-ESL-ICPMS                                         |                     | 1 74E1  |
| Uranium 238                                            | 6012001             | 1., 151 |
| 1/0/022 04                                             | 1.49E-1             |         |
| Lab ID:<br>Client ID.<br>B31N96<br>U-238               |                     |         |
|                                                        | ug/g dry<br>4/12/16 |         |
| PNNL-ESL-ICPMS                                         | 4/12/10             | 9 10E0  |
| Uranium 238                                            | (D12001             | 0.1020  |
|                                                        | 1.53E-1             |         |
| 1604032-05<br>Lab ID:<br>Client ID.<br>B31NB3<br>U-238 |                     |         |
|                                                        | ug/g dry<br>4/12/16 |         |
| PNNL-ESL-ICPMS                                         |                     | 5 28E0  |
| Uranium 238                                            | 6D12001             | 5.2620  |
| 1604032-06<br>Lab ID:<br>Client ID.<br>B347C6          | L.4/E-1             |         |
| U-230                                                  | ug/g dry            |         |
| PNNL-ESL-ICPMS                                         | 4/12/16             | 1.14E0  |

| Uranium 238                                                       | 6D12001             |           |
|-------------------------------------------------------------------|---------------------|-----------|
| 1604032-07<br>Lab ID:<br>Client ID.<br>B347F1 and F3<br>U-238     | 1.4/E-2             |           |
| 0.250                                                             | ug/g dry            |           |
| PNNL-ESL-ICPMS                                                    | 4/12/10             | 7 2050    |
| Uranium 238                                                       |                     | 7.20E0    |
| 1604032-08<br>Lab ID:<br>Client ID.<br>B347L4<br>L-238            | 6D12001<br>1.44E-1  |           |
| 0.250                                                             | ug/g dry            |           |
| PNNL-ESL-ICPMS                                                    | 4/12/16             |           |
| Uranium 238                                                       |                     | 3.19E0    |
|                                                                   | 6D12001<br>1.46E-1  |           |
| 1604032-09<br>Lab ID:                                             |                     |           |
| Client ID.<br>B347P5 and P8                                       |                     |           |
| U-238                                                             | ug/g dry            |           |
|                                                                   | 4/12/16             |           |
| PNNL-ESL-ICPMS                                                    |                     | 4.36E1    |
| Uranium 238                                                       | 6D12001             |           |
| 1604032-10<br>Lab ID:<br>Client ID.<br>B347R1<br>U-238            | 7.28E-1             |           |
|                                                                   | ug/g dry            |           |
| PNNL-ESL-ICPMS                                                    | 7/12/10             | 2 5 1 E 1 |
| Uranium 238                                                       | (512001             | 2.31E1    |
|                                                                   | 7.50E-1             |           |
| 1604032-11<br>Lab ID:<br>Client ID.<br>B347T7<br>U-238            |                     |           |
|                                                                   | ug/g dry<br>4/12/16 |           |
| PNNL-ESL-ICPMS                                                    |                     | 193F1     |
| Uranium 238                                                       | 6D12001             | 1.7521    |
| 1604032-12<br>Lab ID:<br>Client ID.<br>B347F1 and F3 TOP<br>U-238 | 7.35E-1             |           |
|                                                                   | ug/g dry<br>4/12/16 |           |
| PNNL-ESL-ICPMS                                                    |                     | 8 0550    |
| Uranium 238                                                       | (D12001             | 0.03E0    |
|                                                                   | 1.39E-1             |           |
| 1604032-13<br>Lab ID:<br>Client ID.<br>B347F1 and F3 BOTTOM       |                     |           |

| U-238                                                                      | ug/g dry<br>4/12/16 |        |
|----------------------------------------------------------------------------|---------------------|--------|
| PNNL-ESL-ICPMS                                                             | 4/12/10             | 7 7250 |
| Uranium 238                                                                | 6D12001             | 7.72E0 |
| 1604032-14<br>Lab ID:<br>Client ID.<br>B347P5 and P8 TOP<br>U-238          | ug/g drv            |        |
| PNNL-ESL-ICPMS                                                             | 4/12/16             | 3 38E1 |
| Uranium 238<br>1604032-15<br>Lab ID:<br>Client ID.<br>B347P5 and P8 BOTTOM | 6D12001<br>7.22E-1  |        |
| 0-238                                                                      | ug/g dry            |        |
| PNNL-ESL-ICPMS                                                             | 4/12/16             | 2 2951 |
| Uranium 238<br>1604032-16<br>Lab ID:<br>Client ID.<br>B347B1 TOP           | 6D12001<br>7.76E-1  | 5.26E1 |
| U-238                                                                      | ug/g drv            |        |
| PNNL-ESL-ICPMS                                                             | 4/12/16             | 2 18E1 |
| Uranium 238                                                                | 6D12001<br>7.27E-1  | 2.1621 |
| 1604032-17<br>Lab ID:<br>Client ID.<br>B347R1 BOTTOM<br>U-238              | /.2/L-1             |        |
|                                                                            | ug/g dry<br>4/12/16 |        |
| PNINL-ESL-ICPINS                                                           |                     | 1.68E1 |
| 1604032-18<br>Lab ID:                                                      | 6D12001<br>6.64E-1  |        |
| B347T7 TOP<br>11-238                                                       |                     |        |
| PNNL-ESL-ICPMS                                                             | ug/g dry<br>4/12/16 |        |
| Uranium 238                                                                | (512001             | 1.60E1 |
| 1604032-19<br>Lab ID:<br>Client ID.<br>B347T7 BOTTOM                       | 6D12001<br>1.63E-1  |        |
| PNNI -FSI -ICPMS                                                           | ug/g dry<br>4/12/16 |        |
| Uranium 238                                                                | 6D12001             | 2.13E1 |
|                                                                            |                     |        |

A-271

7.13E-1

| <b>Total Metals by</b> | PNNL-ESL | -ICP-OES and | Uranium by | PNNL-ESL | -ICPMS/Sequential | Extraction |
|------------------------|----------|--------------|------------|----------|-------------------|------------|
|                        |          |              |            |          |                   |            |

| LabNumber       | SampleName                       | Analyte  | Result          | EQL  | Analyzed  |
|-----------------|----------------------------------|----------|-----------------|------|-----------|
|                 |                                  |          | ug/g            | ug/g |           |
| 1602078-23      | B347C6 oxalate                   | Aluminum | 533.2           | 4.1  | 3/16/2016 |
| 1602078-24      | B347D8 oxalate                   | Aluminum | 588.6           | 4.2  | 3/16/2016 |
| 1602078-25      | B347F1 and F3 oxalate            | Aluminum | 756.5           | 4.4  | 3/16/2016 |
| 1602078-26      | B347L4 oxalate                   | Aluminum | 820.3           | 3.9  | 3/16/2016 |
| 1602078-27      | B347P0 oxalate                   | Aluminum | 2157.3          | 4 5  | 3/16/2016 |
| 1602078-28      | B347P5 and P8 oxalate            | Aluminum | 3314.1          | 4.8  | 3/16/2016 |
| 1602078-29      | B347R1 ovalate                   | Aluminum | 2338.3          | 4.0  | 3/16/2016 |
| 1602078-53      | B347R7 oxalate                   | Aluminum | 2907.6          | 43.2 | 4/19/2016 |
| 1602078-30      | B347T7 ovalate                   | Aluminum | 2708.2          | 43.2 | 3/16/2016 |
| 1002078-50      | D34/17 Oxdiate                   | Alumnum  | 2700.2          | т.5  | 5/10/2010 |
| 1602078 34      | B347C6 nitric acid               | Aluminum | 7285 1          | 3.7  | 3/16/2016 |
| 1602078-34      | D347C0 Intric acid               | Aluminum | 7203.1          | 1.5  | 2/16/2016 |
| 1602078-35      | B347E1 and E3 nitric acid        | Aluminum | 8830.6          | 4.5  | 3/16/2016 |
| 1602078-30      | D3471 4 nitrio agid              | Aluminum | 122.7           | 4.0  | 2/16/2016 |
| 1602078-37      | D347L4 IIIIIC acid               | Aluminum | 125.7<br>9522.0 | 3.3  | 2/16/2016 |
| 1602078-30      | D247D5 and D9 mitric acid        | Aluminum | 0500.6          | 3.7  | 3/10/2010 |
| 1602078-39      |                                  | Aluminum | 9599.0          | 3.7  | 3/10/2010 |
| 1602078-40      | B34/R1 nitric acid               | Aluminum | 6/19.2          | 3./  | 3/16/2016 |
| 1602078-57      | B34/R/ nitric acid               | Aluminum | 10233.2         | 35.8 | 4/19/2016 |
| 16020/8-41      | B34/1/ nitric acid               | Aluminum | 8457.3          | 3.6  | 3/16/2016 |
| 1 ( 0 0 0 0 0 1 |                                  | <u> </u> | 1/28.1          | 0.7  | 2/16/2016 |
| 16020/8-01      | B34/C6 weak acetic acid          | Calcium  | 1657.1          | 0.7  | 3/16/2016 |
| 1602078-02      | B347D8 weak acetic acid          | Calcium  | 1499.0          | 0.7  | 3/16/2016 |
| 1602078-03      | B347F1 and F3 weak acetic acid   | Calcium  | 1393.5          | 0.7  | 3/16/2016 |
| 1602078-04      | B347L4 weak acetic acid          | Calcium  | 1453.4          | 0.7  | 3/16/2016 |
| 1602078-05      | B347P0 weak acetic acid          | Calcium  | 2153.4          | 0.7  | 3/16/2016 |
| 1602078-06      | B347P5 and P8 weak acetic acid   | Calcium  | 2522.3          | 0.7  | 3/16/2016 |
| 1602078-07      | B347R1 weak acetic acid          | Calcium  | 1849.1          | 0.7  | 3/16/2016 |
| 1602078-45      | B347R7 weak acetic acid          | Calcium  | 1192.1          | 0.7  | 4/19/2016 |
| 1602078-08      | B347T7 weak acetic acid          | Calcium  | 1301.2          | 0.7  | 3/16/2016 |
|                 |                                  |          |                 |      |           |
| 1602078-12      | B347C6 strong acetic acid        | Calcium  | 465.8           | 0.8  | 3/16/2016 |
| 1602078-13      | B347D8 strong acetic acid        | Calcium  | 498.9           | 0.8  | 3/16/2016 |
| 1602078-14      | B347F1 and F3 strong acetic acid | Calcium  | 401.5           | 0.8  | 3/16/2016 |
| 1602078-15      | B347L4 strong acetic acid        | Calcium  | 502.2           | 0.8  | 3/16/2016 |
| 1602078-16      | B347P0 strong acetic acid        | Calcium  | 853.3           | 0.8  | 3/16/2016 |
| 1602078-17      | B347P5 and P8 strong acetic acid | Calcium  | 1817.9          | 0.8  | 3/16/2016 |
| 1602078-18      | B347R1 strong acetic acid        | Calcium  | 692.6           | 0.8  | 3/16/2016 |
| 1602078-49      | B347R7 strong acetic acid        | Calcium  | 644.0           | 0.0  | 4/19/2016 |
| 1602078-19      | B347T7 strong acetic acid        | Calcium  | 555.6           | 0.8  | 3/16/2016 |
|                 |                                  |          |                 |      |           |
| 1602078-23      | B347C6 oxalate                   | Calcium  | 2.2             | 0.8  | 3/16/2016 |
| 1602078-24      | B347D8 oxalate                   | Calcium  | 1.5             | 0.9  | 3/16/2016 |
| 1602078-25      | B347F1 and F3 oxalate            | Calcium  | 2.0             | 0.9  | 3/16/2016 |
| 1602078-26      | B347L4 oxalate                   | Calcium  | 2.9             | 0.8  | 3/16/2016 |
| 1602078-27      | B347P0 oxalate                   | Calcium  | 52.6            | 0.9  | 3/16/2016 |
| 1602078-28      | B347P5 and P8 oxalate            | Calcium  | 98.3            | 1.0  | 3/16/2016 |
| 1602078-29      | B347R1 oxalate                   | Calcium  | 15.5            | 0.9  | 3/16/2016 |
| 1602078-53      | B347R7 oxalate                   | Calcium  | 75.4            | 0.9  | 4/19/2016 |
| 1602078-30      | B347T7 oxalate                   | Calcium  | 25.7            | 0.9  | 3/16/2016 |
|                 |                                  |          |                 |      |           |
| 1602078-34      | B347C6 nitric acid               | Calcium  | 4976.3          | 0.8  | 3/16/2016 |
| 1602078-35      | B347D8 nitric acid               | Calcium  | 4714.6          | 0.9  | 3/16/2016 |
| 1602078-36      | B347F1 and F3 nitric acid        | Calcium  | 4764.2          | 0.8  | 3/16/2016 |
| 1602078-37      | B347L4 nitric acid               | Calcium  | 5199.0          | 0.7  | 3/16/2016 |
| 1602078-38      | B347P0 nitric acid               | Calcium  | 4768.0          | 0.8  | 3/16/2016 |
| 1602078-39      | B347P5 and P8 nitric acid        | Calcium  | 5423.9          | 0.8  | 3/16/2016 |
| 1602078-40      | B347R1 nitric acid               | Calcium  | 4627.8          | 0.7  | 3/16/2016 |
| 1602078-57      | B347R7 nitric acid               | Calcium  | 5983.8          | 0.7  | 4/19/2016 |
| 1602078-41      | B347T7 nitric acid               | Calcium  | 5242.7          | 0.7  | 3/16/2016 |
|                 |                                  |          |                 |      |           |
| 1602078-01      | B347C6 weak acetic acid          | Iron     | 0.3             | 0.2  | 3/16/2016 |

| 1602078-02                                                                                                                                                                         | B347D8 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | 0.9                                                                                                                      | 0.2                                                                | 3/16/2016                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1602070 02                                                                                                                                                                         | D247E1 and E2 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 1.9                                                                                                                      | 0.2                                                                | 2/16/2016                                                                                                                                                             |
| 1002078-03                                                                                                                                                                         | B34/F1 and F3 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                   | поп                                                                                                                                                                                | 1.8                                                                                                                      | 0.2                                                                | 5/10/2010                                                                                                                                                             |
| 1602078-04                                                                                                                                                                         | B347L4 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | ND                                                                                                                       | 0.2                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-05                                                                                                                                                                         | B347P0 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | 16.0                                                                                                                     | 0.2                                                                | 3/16/2016                                                                                                                                                             |
| 1002078-05                                                                                                                                                                         | D34/10 weak accure actu                                                                                                                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                  | 10.0                                                                                                                     | 0.2                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-06                                                                                                                                                                         | B34/P5 and P8 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 1.2                                                                                                                      | 0.2                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-07                                                                                                                                                                         | B347R1 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | 7.3                                                                                                                      | 0.2                                                                | 3/16/2016                                                                                                                                                             |
| 1602078 45                                                                                                                                                                         | D247D7 week eastis said                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | ND                                                                                                                       | 0.2                                                                | 4/10/2016                                                                                                                                                             |
| 1002078-43                                                                                                                                                                         | B34/K/ weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | поп                                                                                                                                                                                | ND                                                                                                                       | 0.2                                                                | 4/19/2010                                                                                                                                                             |
| 1602078-08                                                                                                                                                                         | B347T7 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                               | ND                                                                                                                       | 0.2                                                                | 3/16/2016                                                                                                                                                             |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1(02070.12                                                                                                                                                                         | D2470( )                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    | 2(02.0                                                                                                                   | 2.1                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-12                                                                                                                                                                         | B34/C6 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 2603.8                                                                                                                   | 2.4                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-13                                                                                                                                                                         | B347D8 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 2450.1                                                                                                                   | 2.5                                                                | 3/16/2016                                                                                                                                                             |
| 1602070 14                                                                                                                                                                         | D247E1 and E2 strong apotic sold                                                                                                                                                                                                                                                                                                                                                                                 | Iron                                                                                                                                                                               | 1651.2                                                                                                                   | 2.5                                                                | 2/16/2016                                                                                                                                                             |
| 1002078-14                                                                                                                                                                         | B34/F1 and F3 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                 | поп                                                                                                                                                                                | 1031.5                                                                                                                   | 2.3                                                                | 3/10/2010                                                                                                                                                             |
| 1602078-15                                                                                                                                                                         | B347L4 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 2748.1                                                                                                                   | 2.4                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-16                                                                                                                                                                         | B347P0 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 3368.8                                                                                                                   | 2.5                                                                | 3/16/2016                                                                                                                                                             |
| 1602070 10                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | T                                                                                                                                                                                  | 1(14.0                                                                                                                   | 2.5                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-17                                                                                                                                                                         | B34/P5 and P8 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                 | Iron                                                                                                                                                                               | 1614.8                                                                                                                   | 2.4                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-18                                                                                                                                                                         | B347R1 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 1823.1                                                                                                                   | 2.5                                                                | 3/16/2016                                                                                                                                                             |
| 1602078 49                                                                                                                                                                         | B347P7 strong agetic agid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 1350.6                                                                                                                   | 25.1                                                               | 4/10/2016                                                                                                                                                             |
| 1002078-49                                                                                                                                                                         | D34/IC/ strong accut actu                                                                                                                                                                                                                                                                                                                                                                                        | non                                                                                                                                                                                | 1350.0                                                                                                                   | 25.1                                                               | 4/19/2010                                                                                                                                                             |
| 1602078-19                                                                                                                                                                         | B34717 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 800.0                                                                                                                    | 2.5                                                                | 3/16/2016                                                                                                                                                             |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1(02070.22                                                                                                                                                                         | D2470( 1)                                                                                                                                                                                                                                                                                                                                                                                                        | T                                                                                                                                                                                  | 1007 7                                                                                                                   | 2.5                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-23                                                                                                                                                                         | B34/C6 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 1896.7                                                                                                                   | 2.5                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-24                                                                                                                                                                         | B347D8 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 2186.9                                                                                                                   | 2.5                                                                | 3/16/2016                                                                                                                                                             |
| 1602078 25                                                                                                                                                                         | B3/17E1 and E2 ovalate                                                                                                                                                                                                                                                                                                                                                                                           | Iron                                                                                                                                                                               | 1755 4                                                                                                                   | 27                                                                 | 3/16/2016                                                                                                                                                             |
| 1002070-23                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | 1011                                                                                                                                                                               | 1/33.4                                                                                                                   | 2.1                                                                | 3/10/2010                                                                                                                                                             |
| 1602078-26                                                                                                                                                                         | B347L4 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 2294.5                                                                                                                   | 2.4                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-27                                                                                                                                                                         | B347P0 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 3500.6                                                                                                                   | 2.7                                                                | 3/16/2016                                                                                                                                                             |
| 1602070-27                                                                                                                                                                         | D247D5 1 D0 1 4                                                                                                                                                                                                                                                                                                                                                                                                  | T                                                                                                                                                                                  | 2520.0                                                                                                                   | 2.7                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-28                                                                                                                                                                         | B34/P5 and P8 oxalate                                                                                                                                                                                                                                                                                                                                                                                            | Iron                                                                                                                                                                               | 2532.1                                                                                                                   | 2.9                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-29                                                                                                                                                                         | B347R1 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 2470.5                                                                                                                   | 2.6                                                                | 3/16/2016                                                                                                                                                             |
| 1602079 53                                                                                                                                                                         | B3/7P7 evalute                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 1440.7                                                                                                                   | 26.2                                                               | 1/10/2016                                                                                                                                                             |
| 1602078-33                                                                                                                                                                         | D34/R/ oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | поп                                                                                                                                                                                | 1440.7                                                                                                                   | 20.2                                                               | 4/19/2010                                                                                                                                                             |
| 1602078-30                                                                                                                                                                         | B347T7 oxalate                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                                                                                                                                                                               | 1664.0                                                                                                                   | 2.6                                                                | 3/16/2016                                                                                                                                                             |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1 (000000.01                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                  | 000065                                                                                                                   | 22.4                                                               | 2/1//2011                                                                                                                                                             |
| 1602078-34                                                                                                                                                                         | B347C6 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 22236.5                                                                                                                  | 22.4                                                               | 3/16/2016                                                                                                                                                             |
| 1602078-35                                                                                                                                                                         | B347D8 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 19851.2                                                                                                                  | 27.6                                                               | 3/16/2016                                                                                                                                                             |
| 1(02078-2)                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | Inon                                                                                                                                                                               | 22059.4                                                                                                                  | 24.0                                                               | 2/16/2016                                                                                                                                                             |
| 1602078-36                                                                                                                                                                         | B34/F1 and F3 nitric acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 22838.4                                                                                                                  | 24.1                                                               | 3/10/2010                                                                                                                                                             |
| 1602078-37                                                                                                                                                                         | B347L4 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 23060.2                                                                                                                  | 21.0                                                               | 3/16/2016                                                                                                                                                             |
| 1602078 38                                                                                                                                                                         | B347P0 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 103/11 0                                                                                                                 | 22.5                                                               | 3/16/2016                                                                                                                                                             |
| 1002078-38                                                                                                                                                                         | B34/F0 little actu                                                                                                                                                                                                                                                                                                                                                                                               | non                                                                                                                                                                                | 19341.9                                                                                                                  | 22.3                                                               | 3/10/2010                                                                                                                                                             |
| 1602078-39                                                                                                                                                                         | B347P5 and P8 nitric acid                                                                                                                                                                                                                                                                                                                                                                                        | Iron                                                                                                                                                                               | 20447.3                                                                                                                  | 22.7                                                               | 3/16/2016                                                                                                                                                             |
| 1602078-40                                                                                                                                                                         | B347R1 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 18177 5                                                                                                                  | 22.2                                                               | 3/16/2016                                                                                                                                                             |
| 1(02079 57                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | Inch                                                                                                                                                                               | 25700.7                                                                                                                  | 21.7                                                               | 4/10/2016                                                                                                                                                             |
| 1602078-57                                                                                                                                                                         | B34/K/ nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 25799.7                                                                                                                  | 21.7                                                               | 4/19/2016                                                                                                                                                             |
| 1602078-41                                                                                                                                                                         | B347T7 nitric acid                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                                                                                               | 21121.7                                                                                                                  | 21.6                                                               | 3/16/2016                                                                                                                                                             |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1 (02070.01                                                                                                                                                                        | D2470( 1                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    | 11.0                                                                                                                     | 0.05                                                               | 2/16/2016                                                                                                                                                             |
| 1602078-01                                                                                                                                                                         | B347C6 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 11.8                                                                                                                     | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1602078-02                                                                                                                                                                         | B347D8 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 13.4                                                                                                                     | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1602078 02                                                                                                                                                                         | D247E1 and E2 week postic poid                                                                                                                                                                                                                                                                                                                                                                                   | Manganaga                                                                                                                                                                          | 4.2                                                                                                                      | 0.05                                                               | 2/16/2016                                                                                                                                                             |
| 1002078-03                                                                                                                                                                         | B34/F1 and F3 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                   | wanganese                                                                                                                                                                          | 4.2                                                                                                                      | 0.03                                                               | 3/10/2010                                                                                                                                                             |
| 1602078-04                                                                                                                                                                         | B347L4 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 8.0                                                                                                                      | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1602078-05                                                                                                                                                                         | B347P0 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 12.5                                                                                                                     | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1002070-05                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | Manganese                                                                                                                                                                          | 12.5                                                                                                                     | 0.05                                                               | 2/16/2016                                                                                                                                                             |
| 1602078-06                                                                                                                                                                         | B34/P5 and P8 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                   | Manganese                                                                                                                                                                          | 10.2                                                                                                                     | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1602078-07                                                                                                                                                                         | B347R1 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 6.7                                                                                                                      | 0.05                                                               | 3/16/2016                                                                                                                                                             |
| 1602078 45                                                                                                                                                                         | P247P7 week eastic said                                                                                                                                                                                                                                                                                                                                                                                          | Manganaga                                                                                                                                                                          | 7.0                                                                                                                      | 0.05                                                               | 4/10/2016                                                                                                                                                             |
| 1002078-45                                                                                                                                                                         | D34/K/ weak accut actu                                                                                                                                                                                                                                                                                                                                                                                           | wanganese                                                                                                                                                                          | 1.9                                                                                                                      | 0.05                                                               | 4/19/2010                                                                                                                                                             |
| 1602078-08                                                                                                                                                                         | B34717 weak acetic acid                                                                                                                                                                                                                                                                                                                                                                                          | Manganese                                                                                                                                                                          | 7.1                                                                                                                      | 0.05                                                               | 3/16/2016                                                                                                                                                             |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                  |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1602079 12                                                                                                                                                                         | D247C6 atmos = ==================================                                                                                                                                                                                                                                                                                                                                                                | Manazzzzzz                                                                                                                                                                         | 00.2                                                                                                                     | 0.1                                                                | 2/16/2016                                                                                                                                                             |
| 1002078-12                                                                                                                                                                         | B34/Co strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                          | 90.3                                                                                                                     | U.1                                                                | 3/10/2016                                                                                                                                                             |
| 1602078-13                                                                                                                                                                         | B347D8 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                          | 103.7                                                                                                                    | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-14                                                                                                                                                                         | B347F1 and F3 strong agetic agid                                                                                                                                                                                                                                                                                                                                                                                 | Manganece                                                                                                                                                                          | 104.0                                                                                                                    | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1(02070-14                                                                                                                                                                         | DO 171 1 and 10 Strong accure delu                                                                                                                                                                                                                                                                                                                                                                               | M                                                                                                                                                                                  | 102.1                                                                                                                    | 0.1                                                                | 2/16/2016                                                                                                                                                             |
| 1602078-15                                                                                                                                                                         | B34/L4 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                          | 102.1                                                                                                                    | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1602078-16                                                                                                                                                                         | B347P0 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                          | 132.5                                                                                                                    | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1602078 17                                                                                                                                                                         | B347P5 and D8 strong pactic acid                                                                                                                                                                                                                                                                                                                                                                                 | Manganasa                                                                                                                                                                          | 131.0                                                                                                                    | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1002078-17                                                                                                                                                                         | D54/P5 and P8 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                 | Manganese                                                                                                                                                                          | 151.0                                                                                                                    | 0.1                                                                | 3/10/2010                                                                                                                                                             |
| 1602078-18                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                          |                                                                    |                                                                                                                                                                       |
| 1602078-49                                                                                                                                                                         | B347R1 strong acetic acid                                                                                                                                                                                                                                                                                                                                                                                        | Manganese                                                                                                                                                                          | 96.0                                                                                                                     | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 10020/0-47                                                                                                                                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid                                                                                                                                                                                                                                                                                                                                                           | Manganese<br>Manganese                                                                                                                                                             | 96.0<br>105.5                                                                                                            | 0.1                                                                | 3/16/2016                                                                                                                                                             |
| 1(00070.10                                                                                                                                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid                                                                                                                                                                                                                                                                                                                                                           | Manganese<br>Manganese                                                                                                                                                             | 96.0<br>105.5                                                                                                            | 0.1                                                                | 3/16/2016<br>4/19/2016                                                                                                                                                |
| 1602078-19                                                                                                                                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid                                                                                                                                                                                                                                                                                                                              | Manganese<br>Manganese<br>Manganese                                                                                                                                                | 96.0<br>105.5<br>73.6                                                                                                    | 0.1<br>0.1<br>0.1                                                  | 3/16/2016<br>4/19/2016<br>3/16/2016                                                                                                                                   |
| 1602078-19                                                                                                                                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid                                                                                                                                                                                                                                                                                                                              | Manganese<br>Manganese<br>Manganese                                                                                                                                                | 96.0<br>105.5<br>73.6                                                                                                    | 0.1<br>0.1<br>0.1                                                  | 3/16/2016<br>4/19/2016<br>3/16/2016                                                                                                                                   |
| 1602078-19                                                                                                                                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 evaluate                                                                                                                                                                                                                                                                                                           | Manganese<br>Manganese<br>Manganese                                                                                                                                                | 96.0<br>105.5<br>73.6                                                                                                    | 0.1<br>0.1<br>0.1                                                  | 3/16/2016<br>4/19/2016<br>3/16/2016                                                                                                                                   |
| 1602078-19<br>1602078-23                                                                                                                                                           | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate                                                                                                                                                                                                                                                                                                            | Manganese<br>Manganese<br>Manganese                                                                                                                                                | 96.0<br>105.5<br>73.6<br>32.9                                                                                            | 0.1<br>0.1<br>0.1                                                  | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016                                                                                                                      |
| 1602078-19<br>1602078-23<br>1602078-24                                                                                                                                             | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347C6 oxalate<br>B347D8 oxalate                                                                                                                                                                                                                                                                        | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                                                                      | 96.0<br>105.5<br>73.6<br>32.9<br>29.9                                                                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1                                    | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                                                         |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25                                                                                                                               | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347C6 oxalate<br>B347C8 oxalate<br>B347F1 and F3 oxalate                                                                                                                                                                                                                                               | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                                                                      | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7                                                                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                      | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                                            |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25                                                                                                                               | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate                                                                                                                                                                                                                                                                 | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                                                         | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.2                                                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                      | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>2/16/2016                                                                               |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26                                                                                                                 | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347L4 oxalate                                                                                                                                                                                                                                               | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                                            | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3                                                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                               |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27                                                                                                   | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T6 oxalate<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347L4 oxalate<br>B347P0 oxalate                                                                                                                                                                                                           | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                               | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3                                                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1        | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                  |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28                                                                                     | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F4 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate                                                                                                                                                                                                    | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                               | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5                                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1        | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                  |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28<br>16002078-28                                                                      | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T6 oxalate<br>B347D8 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347L4 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347P5 and P8 oxalate                                                                                                                                                         | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                                                            | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5                                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                                  |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-25<br>1602078-27<br>1602078-27<br>1602078-28<br>1602078-29                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate                                                                                                                                                                       | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                                     | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9                                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                                     |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-27<br>1602078-29<br>1602078-53                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P5 and P8 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate<br>B347R1 oxalate                                                                                                                            | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                        | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1                                    | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                                        |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28<br>1602078-29<br>1602078-53<br>1602078-32                                           | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate<br>B347R7 oxalate<br>B347R7 oxalate                                                                                                                                   | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                        | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>20.7                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>4/19/2016                           |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-25<br>1602078-27<br>1602078-28<br>1602078-29<br>1602078-53<br>1602078-30                                           | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F0 oxalate<br>B347P5 and P8 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate<br>B347R7 oxalate<br>B347T7 oxalate                                                                                                          | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                           | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>4/19/2016<br>3/16/2016                           |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28<br>1602078-28<br>1602078-53<br>1602078-53<br>1602078-30                             | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 and F3 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate<br>B347R7 oxalate<br>B347T7 oxalate<br>B347T7 oxalate                                                                                        | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                           | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7                            | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>4/19/2016<br>3/16/2016              |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28<br>1602078-29<br>1602078-53<br>1602078-30<br>1602078-34                             | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347D8 oxalate<br>B347L4 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347R7 oxalate<br>B347R7 oxalate<br>B347C6 pitric acid                                                                                                                    | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                           | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7<br>222.6                   | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016              |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-29<br>1602078-30<br>1602078-30                                                         | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347R7 oxalate<br>B347R7 oxalate<br>B347T7 oxalate<br>B347C6 nitric acid<br>B347C6 nitric acid                                                                     | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese                                        | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7<br>222.6                   | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016                           |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-26<br>1602078-27<br>1602078-28<br>1602078-28<br>1602078-33<br>1602078-30<br>1602078-34<br>1602078-35               | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347R7 oxalate<br>B347R7 oxalate<br>B347T7 oxalate<br>B347T7 oxalate<br>B347T6 nitric acid<br>B347D8 nitric acid                                                   | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese              | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7<br>222.6<br>206.5          | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016 |
| 1602078-19<br>1602078-23<br>1602078-24<br>1602078-25<br>1602078-25<br>1602078-27<br>1602078-28<br>1602078-29<br>1602078-33<br>1602078-30<br>1602078-34<br>1602078-35<br>1602078-36 | B347R1 strong acetic acid<br>B347R7 strong acetic acid<br>B347T7 strong acetic acid<br>B347T7 strong acetic acid<br>B347C6 oxalate<br>B347D8 oxalate<br>B347F1 and F3 oxalate<br>B347F1 oxalate<br>B347P0 oxalate<br>B347P5 and P8 oxalate<br>B347R1 oxalate<br>B347R1 oxalate<br>B347T7 oxalate<br>B347T7 oxalate<br>B347T7 oxalate<br>B347T7 oxalate<br>B347T2 and F3 nitric acid<br>B347E1 and F3 nitric acid | Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese<br>Manganese | 96.0<br>105.5<br>73.6<br>32.9<br>29.9<br>39.7<br>28.3<br>38.3<br>44.5<br>29.9<br>41.1<br>29.7<br>222.6<br>206.5<br>257.5 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 3/16/2016<br>4/19/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016<br>3/16/2016 |

| 1602078-37    | B347L4 nitric acid               | Manganese    | 224.3        | 0.1  | 3/16/2016  |
|---------------|----------------------------------|--------------|--------------|------|------------|
| 1602078 28    | D247D0 mitrie agid               | Manganasa    | 190.6        | 0.1  | 2/16/2016  |
| 1002078-38    | B34/F0 IIIII c aciu              | wanganese    | 169.0        | 0.1  | 3/10/2010  |
| 1602078-39    | B347P5 and P8 nitric acid        | Manganese    | 207.0        | 0.1  | 3/16/2016  |
| 1602078-40    | B347R1 nitric acid               | Manganese    | 187.3        | 0.1  | 3/16/2016  |
| 1602078 57    | D247D7 mitrie gold               | Manganasa    | 240.2        | 0.0  | 4/10/2016  |
| 1602078-37    | B34/K/ IIIIIic acid              | Manganese    | 249.5        | 0.0  | 4/19/2010  |
| 1602078-41    | B34717 nitric acid               | Manganese    | 213.4        | 0.1  | 3/16/2016  |
|               |                                  |              |              |      |            |
| 1602078-01    | B347C6 weak agetic agid          | Phoenhorus   | 130.2        | 0.8  | 3/16/2016  |
| 1002078-01    | B347C0 weak acetic acid          | Fliosphorus  | 130.2        | 0.8  | 3/10/2010  |
| 1602078-02    | B347D8 weak acetic acid          | Phosphorus   | 33.3         | 0.8  | 3/16/2016  |
| 1602078-03    | B347F1 and F3 weak acetic acid   | Phosphorus   | 16.5         | 0.9  | 3/16/2016  |
| 1602078 04    | P247L4 week eastic agid          | Dhoophorug   | 160.2        | 0.8  | 2/16/2016  |
| 1002078-04    | B34/L4 weak accur actu           | Fliosphorus  | 109.2        | 0.8  | 3/10/2010  |
| 1602078-05    | B347P0 weak acetic acid          | Phosphorus   | 1.2          | 0.9  | 3/16/2016  |
| 1602078-06    | B347P5 and P8 weak acetic acid   | Phosphorus   | 1.9          | 0.8  | 3/16/2016  |
| 1602078 07    | P347P1 work pactic paid          | Dhoophorug   | 1.6          | 0.0  | 2/16/2016  |
| 1002078-07    | B34/K1 weak acetic actu          | Fliosphorus  | 1.0          | 0.9  | 3/10/2010  |
| 1602078-45    | B347R7 weak acetic acid          | Phosphorus   | 215.6        | 0.9  | 4/19/2016  |
| 1602078-08    | B347T7 weak acetic acid          | Phosphorus   | 26.1         | 0.8  | 3/16/2016  |
|               |                                  |              |              |      |            |
| 1 (000 000 10 |                                  | <b>D1 1</b>  | <b>a</b> a 4 | 1.0  | 2/1/2/2017 |
| 1602078-12    | B347C6 strong acetic acid        | Phosphorus   | 28.4         | 1.0  | 3/16/2016  |
| 1602078-13    | B347D8 strong acetic acid        | Phosphorus   | 25.9         | 1.0  | 3/16/2016  |
| 1602078 14    | D247E1 and E2 strong postia paid | Dhoomhomus   | 16.0         | 1.0  | 2/16/2016  |
| 1002078-14    | B34/F1 and F3 strong acetic acid | Filospilorus | 10.0         | 1.0  | 3/10/2010  |
| 1602078-15    | B347L4 strong acetic acid        | Phosphorus   | 24.9         | 1.0  | 3/16/2016  |
| 1602078-16    | B347P0 strong acetic acid        | Phosphorus   | 1.8          | 1.0  | 3/16/2016  |
| 1602070 17    | D247D5 and D9 strong postio poid | Dhoomhomus   | 22.1         | 1.0  | 2/16/2016  |
| 1002078-17    | B34/P3 and P8 strong acetic acid | Phosphorus   | 22.1         | 1.0  | 5/10/2010  |
| 1602078-18    | B347R1 strong acetic acid        | Phosphorus   | 4.8          | 1.0  | 3/16/2016  |
| 1602078-49    | B347R7 strong acetic acid        | Phosphorus   | 25.0         | 1.0  | 4/19/2016  |
| 1(02079 10    |                                  | Disculture   | 10.6         | 1.0  | 2/16/2016  |
| 1602078-19    | B34/1/ strong acetic acid        | Phosphorus   | 19.0         | 1.0  | 3/16/2016  |
|               |                                  |              |              |      |            |
| 1602078-23    | B347C6 oxalate                   | Phosphorus   | 702.7        | 1.0  | 3/16/2016  |
| 1602070 23    | D247D0 amalata                   | Dhambarra    | 570.9        | 1.0  | 2/16/2016  |
| 1602078-24    | B34/D8 oxalate                   | Phosphorus   | 570.8        | 1.0  | 3/16/2016  |
| 1602078-25    | B347F1 and F3 oxalate            | Phosphorus   | 434.2        | 1.1  | 3/16/2016  |
| 1602078-26    | B347L4 oxalate                   | Phosphorus   | 701.4        | 1.0  | 3/16/2016  |
| 1(02070-20    |                                  | Dhasehamas   | 215.5        | 1.0  | 2/16/2016  |
| 1602078-27    | B34/P0 oxalate                   | Phosphorus   | 215.5        | 1.1  | 3/16/2016  |
| 1602078-28    | B347P5 and P8 oxalate            | Phosphorus   | 199.7        | 1.2  | 3/16/2016  |
| 1602078-29    | B3//7R1 ovalate                  | Phoenhorus   | 241.8        | 1.1  | 3/16/2016  |
| 1002078-22    | D347R1 Oxdiate                   | T nosphorus  | 1201.0       | 1.1  | 3/10/2010  |
| 1602078-53    | B34/R/ oxalate                   | Phosphorus   | 1301.9       | 1.1  | 4/19/2016  |
| 1602078-30    | B347T7 oxalate                   | Phosphorus   | 809.9        | 1.1  | 3/16/2016  |
|               |                                  |              |              |      |            |
| 1(00070.24    | D2470( '+ ' '1                   | D1 1         | 1051.2       | 0.0  | 2/16/2016  |
| 1602078-34    | B34/C6 nitric acid               | Phosphorus   | 1051.3       | 0.9  | 3/16/2016  |
| 1602078-35    | B347D8 nitric acid               | Phosphorus   | 978.8        | 1.1  | 3/16/2016  |
| 1602078-36    | B347F1 and F3 nitric acid        | Phosphorus   | 1029.8       | 1.0  | 3/16/2016  |
| 1602070-30    |                                  | n nosphorus  | 1124.1       | 1.0  | 2/16/2016  |
| 1602078-37    | B34/L4 nitric acid               | Phosphorus   | 1134.1       | 0.9  | 3/16/2016  |
| 1602078-38    | B347P0 nitric acid               | Phosphorus   | 944.6        | 0.9  | 3/16/2016  |
| 1602078-39    | B347P5 and P8 nitric acid        | Phosphorus   | 1139.2       | 0.9  | 3/16/2016  |
| 1(02070-3)    |                                  | DI 1         | 1112.5       | 0.9  | 2/16/2016  |
| 1602078-40    | B34/R1 nitric acid               | Phosphorus   | 1112.5       | 0.9  | 3/16/2016  |
| 1602078-57    | B347R7 nitric acid               | Phosphorus   | 1500.3       | 0.9  | 4/19/2016  |
| 1602078-41    | B347T7 nitric acid               | Phosphorus   | 1229.8       | 0.9  | 3/16/2016  |
| 1002070-41    |                                  | i nosphorus  | 1227.0       | 0.7  | 5/10/2010  |
|               |                                  |              |              |      |            |
| 1602078-01    | B347C6 weak acetic acid          | Uranium 238  | 0.2          | 0.01 | 3/16/2016  |
| 1602078-02    | B347D8 weak acetic acid          | Uranium 238  | 0.9          | 0.01 | 3/16/2016  |
| 1602070-02    | D247E1 and E211                  | Limming 220  | 2 (          | 0.01 | 2/16/2016  |
| 1002078-03    | D34/F1 and F3 weak acetic acid   | Oranium 238  | 5.0          | 0.02 | 5/10/2010  |
| 1602078-04    | B347L4 weak acetic acid          | Uranium 238  | 0.8          | 0.01 | 3/16/2016  |
| 1602078-05    | B347P0 weak acetic acid          | Uranium 238  | 16.8         | 0.01 | 3/16/2016  |
| 1602078 06    | B347D5 and D9 weak castic asid   | Uranium 220  | 10.0         | 0.01 | 3/16/2016  |
| 1002078-00    | D34/F3 and F6 Weak acetic acid   |              | 20.3         | 0.01 | 3/10/2010  |
| 1602078-07    | B347R1 weak acetic acid          | Uranium 238  | 16.5         | 0.02 | 3/16/2016  |
| 1602078-45    | B347R7 weak acetic acid          | Uranium 238  | 2.5          | 0.02 | 4/12/2016  |
| 1602078 08    | P247T7 week eastic agid          | Uronium 228  | 5.2          | 0.01 | 2/16/2016  |
| 1002070-00    | שלא מוכנוט מכוע                  | Oraniuni 230 | 5.5          | 0.01 | 5/10/2010  |
|               |                                  |              |              |      |            |
| 1602078-12    | B347C6 strong acetic acid        | Uranium 238  | 0.9          | 0.02 | 3/16/2016  |
| 1602078 13    | B347D8 strong agetic agid        | Uranium 220  | 2.1          | 0.02 | 3/16/2016  |
| 1002070-13    |                                  |              | 2.1          | 0.02 | 2/16/2010  |
| 1602078-14    | B34/F1 and F3 strong acetic acid | Uranium 238  | 0.0          | 0.02 | 3/10/2016  |
| 1602078-15    | B347L4 strong acetic acid        | Uranium 238  | 3.1          | 0.02 | 3/16/2016  |
| 1602078-16    | B347P0 strong acetic acid        | Uranium 238  | 43.5         | 0.02 | 3/16/2016  |
| 1(00070-17    |                                  | Unen' 220    | TJ.J         | 0.02 | 2/16/2016  |
| 1002078-17    | D34/P3 and P8 strong acetic acid | Oranium 238  | 40.4         | 0.02 | 3/10/2016  |
| 1602078-18    | B347R1 strong acetic acid        | Uranium 238  | 25.0         | 0.02 | 3/16/2016  |
| 1602078-49    | B347R7 strong acetic acid        | Uranium 238  | 18.8         | 0.02 | 4/12/2016  |
| 1602070 10    |                                  | Urominum 200 | 15.0         | 0.02 | 2/16/2016  |
| 10020/8-19    | D34/1/ strong acetic acid        | Oranium 238  | 13.8         | 0.02 | 3/10/2010  |
|               |                                  |              |              |      |            |
| 1602078-23    | B347C6 oxalate                   | Uranium 238  | 0.5          | 0.02 | 3/16/2016  |
| 1602070 24    | $D247D0 \text{ ava}^{1-4-}$      | Uronium 220  | 0.0          | 0.02 | 2/16/2016  |
| 10020/8-24    | D34/D8 Oxalate                   | Oranium 238  | 0.8          | 0.02 | 5/10/2010  |
| 1602078-25    | B347E1 and E3 ovalate            | Uranium 238  | 19           | 0.02 | 3/16/2016  |
|               | DJ4/11 and 15 Oxalate            | Oramun 250   | 1.7          | 0.02 | 5/10/2010  |
| 1602078-26    | B347L4 oxalate                   | Uranium 238  | 1.0          | 0.02 | 3/16/2016  |
| 1602078-26    | B347L4 oxalate<br>B347PD oxalate | Uranium 238  | 1.0          | 0.02 | 3/16/2016  |

| 1602078-28 | B347P5 and P8 oxalate     | Uranium 238 | 17.9 | 0.02 | 3/16/2016 |
|------------|---------------------------|-------------|------|------|-----------|
| 1602078-29 | B347R1 oxalate            | Uranium 238 | 5.3  | 0.02 | 3/16/2016 |
| 1602078-53 | B347R7 oxalate            | Uranium 238 | 10.0 | 0.02 | 4/12/2016 |
| 1602078-30 | B347T7 oxalate            | Uranium 238 | 6.7  | 0.02 | 3/16/2016 |
|            |                           |             |      |      |           |
| 1602078-34 | B347C6 nitric acid        | Uranium 238 | 0.8  | 0.02 | 3/16/2016 |
| 1602078-35 | B347D8 nitric acid        | Uranium 238 | 0.9  | 0.02 | 3/16/2016 |
| 1602078-36 | B347F1 and F3 nitric acid | Uranium 238 | 1.6  | 0.02 | 3/16/2016 |
| 1602078-37 | B347L4 nitric acid        | Uranium 238 | 1.0  | 0.01 | 3/16/2016 |
| 1602078-38 | B347P0 nitric acid        | Uranium 238 | 4.8  | 0.02 | 3/16/2016 |
| 1602078-39 | B347P5 and P8 nitric acid | Uranium 238 | 12.7 | 0.02 | 3/16/2016 |
| 1602078-40 | B347R1 nitric acid        | Uranium 238 | 3.3  | 0.02 | 3/16/2016 |
| 1602078-57 | B347R7 nitric acid        | Uranium 238 | 12.5 | 0.02 | 4/12/2016 |
| 1602078-41 | B347T7 nitric acid        | Uranium 238 | 6.3  | 0.02 | 3/16/2016 |

|                             | LabNumber    | SampleName                 | Analyte                 | Result | EQL   | Analyzed  | Method               |
|-----------------------------|--------------|----------------------------|-------------------------|--------|-------|-----------|----------------------|
|                             |              |                            |                         | ug/g   | ug/g  |           |                      |
| Cumulative reaction time: 3 | 1602049-13   | B347P5&P8-3d<br>1          | Calcium                 | 11.7   | 0.346 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                        | 1602040 14   | B347F1&F3-3d               | Coloium                 | 70 0   | 0.344 | 4/14/2016 | PNNL-ESL-            |
|                             | 1002049-14   | 1                          | Calcium                 | /8.8   | 0.344 | 4/14/2010 | PNNL-ESL-            |
|                             | 1602049-15   | B347R1-3d1                 | Calcium                 | 16.4   | 0.351 | 4/14/2016 | ICP-OES              |
|                             | 1600040.16   |                            |                         | 26.0   | 0.242 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-16   | B34/L4-301                 | Calcium                 | 36.9   | 0.343 | 4/14/2016 | PNNL-FSL-            |
|                             | 1602049-17   | B347P0-3d1                 | Calcium                 | 10.2   | 0.344 | 4/14/2016 | ICP-OES              |
|                             | 1602040 18   | D2470( 241                 | Calaina                 | 26.5   | 0.242 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-18   | B34/C6-301                 | Calcium                 | 30.5   | 0.342 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-19   | B347D8-3d1                 | Calcium                 | 56.9   | 0.344 | 4/14/2016 | ICP-OES              |
|                             | 1602040-20   | D247T7 241                 | Calairan                | 27.2   | 0.244 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-20   | B34/1/-301                 | Calcium                 | 31.2   | 0.344 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-21   | B347R7-3d1                 | Calcium                 | 13.0   | 0.343 | 4/14/2016 | ICP-OES              |
| Cumulative                  | 1 (020 40 20 | B347P5&P8-7d               | <b>a</b> 1 <sup>1</sup> | 12.0   | 0.246 | 4/14/2016 | PNNL-ESL-            |
| reaction time: 7            | 1602049-38   | l<br>B347E1&E3 74          | Calcium                 | 12.9   | 0.346 | 4/14/2016 | ICP-OES<br>DNINI ESI |
| days                        | 1602049-39   | 1                          | Calcium                 | 81.3   | 0.344 | 4/14/2016 | ICP-OES              |
|                             | 1 (020 10 10 | D245D1 511                 | G.1.:                   | 17.5   | 0.051 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-40   | B34/R1-/d1                 | Calcium                 | 17.5   | 0.351 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
|                             | 1602049-41   | B347L4-7d1                 | Calcium                 | 37.4   | 0.343 | 4/14/2016 | ICP-OES              |
|                             | 1 (000 10 10 | D2 (5D0 5 1)               | <b>a</b> 1 <sup>1</sup> | 11.7   | 0.244 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-42   | B34/P0-/d1                 | Calcium                 | 11.7   | 0.344 | 4/14/2016 | PNNL-FSL-            |
|                             | 1602049-43   | B347C6-7d1                 | Calcium                 | 39.5   | 0.342 | 4/14/2016 | ICP-OES              |
|                             |              |                            | a.t.:                   |        |       |           | PNNL-ESL-            |
|                             | 1602049-44   | B347D8-7d1                 | Calcium                 | 58.8   | 0.344 | 4/14/2016 | ICP-OES<br>PNNL-FSL- |
|                             | 1602049-45   | B347T7-7d1                 | Calcium                 | 34.4   | 0.344 | 4/14/2016 | ICP-OES              |
|                             | 1(02040 4)   | D247D7 711                 | Galaine                 | 12.5   | 0.242 | 4/14/2016 | PNNL-ESL-            |
| Cumulative                  | 1602049-46   | B34/R/-/d1<br>B347P5&P8-21 | Calcium                 | 15.5   | 0.343 | 4/14/2016 | PNNL-FSL-            |
| reaction time: 21           | 1602049-62   | d1                         | Calcium                 | 12.8   | 0.346 | 4/14/2016 | ICP-OES              |
| days                        |              | B347F1&F3-21               |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-63   | d1                         | Calcium                 | 72.5   | 0.344 | 4/14/2016 | ICP-OES              |
|                             | 1602049-64   | B347R1-21d1                | Calcium                 | 17.4   | 0.351 | 4/14/2016 | ICP-OES              |
|                             |              |                            |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-65   | B347L4-21d1                | Calcium                 | 33.1   | 0.343 | 4/14/2016 | ICP-OES              |
|                             | 1602049-66   | B347P0-21d1                | Calcium                 | 9.52   | 0.344 | 4/14/2016 | ICP-OES              |
|                             |              |                            |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-67   | B347C6-21d1                | Calcium                 | 35.1   | 0.342 | 4/14/2016 | ICP-OES              |
|                             | 1602049-68   | B347D8-21d1                | Calcium                 | 53.3   | 0.344 | 4/14/2016 | ICP-OES              |
|                             |              |                            |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-69   | B34717-21d1                | Calcium                 | 29.6   | 0.344 | 4/14/2016 | ICP-OES<br>DNINI ESI |
|                             | 1602049-70   | B347R7-21d1                | Calcium                 | 17.1   | 0.343 | 4/14/2016 | ICP-OES              |
| Cumulative                  |              | B347P5&P8-42               |                         |        |       |           | PNNL-ESL-            |
| reaction time: 42           | 1602049-86   | d1                         | Calcium                 | 13.4   | 0.346 | 4/14/2016 | ICP-OES              |
| days                        | 1602049-87   | B34/F1&F3-42<br>d1         | Calcium                 | 64.5   | 0.344 | 4/14/2016 | ICP-OES              |
|                             |              |                            |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-88   | B347R1-42d1                | Calcium                 | 16.3   | 0.351 | 4/14/2016 | ICP-OES              |
|                             | 1602049-89   | B347L4-42d1                | Calcium                 | 29.8   | 0.343 | 4/14/2016 | ICP-OES              |
|                             |              |                            |                         |        |       |           | PNNL-ESL-            |
|                             | 1602049-90   | B347P0-42d1                | Calcium                 | 7.37   | 0.344 | 4/14/2016 | ICP-OES              |

## Total Metals by PNNL-ESL-ICP-OES and Uranium by PNNL-ESL-ICPMS/Labile Extraction

|                                 | 1602049-91 | B347C6-42d1        | Calcium | 31.8  | 0.342 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|---------------------------------|------------|--------------------|---------|-------|-------|-----------|----------------------|
|                                 | 1002010 02 |                    | C L :   | 51.6  | 0.014 | 4/14/2016 | PNNL-ESL-            |
|                                 | 1602049-92 | B347D8-42d1        | Calcium | 51.5  | 0.344 | 4/14/2016 | PNNL-ESL-            |
|                                 | 1602049-93 | B347T7-42d1        | Calcium | 27.3  | 0.344 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-94 | B347R7-42d1        | Calcium | 14.7  | 0.343 | 4/14/2016 | ICP-OES              |
| Cumulative<br>reaction time: 3  | 1602049-13 | B347P5&P8-3d<br>1  | Iron    | 2.37  | 0.103 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-14 | B347F1&F3-3d<br>1  | Iron    | 0.138 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-15 | B347R1-3d1         | Iron    | 0.347 | 0.104 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-16 | B347L4-3d1         | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-17 | B347P0-3d1         | Iron    | 1.93  | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-18 | B347C6-3d1         | Iron    | 0.110 | 0.102 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-19 | B347D8-3d1         | Iron    | ND    | 0.102 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-20 | B347T7-3d1         | Iron    | ND    | 0.102 | 4/14/2016 | ICP-OES              |
| Cumulating                      | 1602049-21 | B347R7-3d1         | Iron    | 1.24  | 0.102 | 4/14/2016 | ICP-OES              |
| reaction time: 7                | 1602049-38 | 1                  | Iron    | 1.96  | 0.103 | 4/14/2016 | ICP-OES              |
| days                            | 1602049-39 | B347F1&F3-7d<br>1  | Iron    | 0.014 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-40 | B347R1-7d1         | Iron    | 0.416 | 0.104 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-41 | B347L4-7d1         | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-42 | B347P0-7d1         | Iron    | 1.29  | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-43 | B347C6-7d1         | Iron    | 0.915 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-44 | B347D8-7d1         | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-45 | B347T7-7d1         | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-46 | B347R7-7d1         | Iron    | 1.38  | 0.102 | 4/14/2016 | ICP-OES              |
| Cumulative<br>reaction time: 21 | 1602049-62 | B347P5&P8-21<br>d1 | Iron    | 1.75  | 0.103 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-63 | B347F1&F3-21<br>d1 | Iron    | 0.001 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-64 | B347R1-21d1        | Iron    | 1.30  | 0.104 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-65 | B347L4-21d1        | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-66 | B347P0-21d1        | Iron    | 2.95  | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-67 | B347C6-21d1        | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-68 | B347D8-21d1        | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-69 | B347T7-21d1        | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-70 | B347R7-21d1        | Iron    | 3.71  | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| Cumulative reaction time: 42    | 1602049-86 | B347P5&P8-42<br>d1 | Iron    | 2.79  | 0.103 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-87 | B347F1&F3-42<br>d1 | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-88 | B347R1-42d1        | Iron    | 3.11  | 0.104 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-89 | B347L4-42d1        | Iron    | ND    | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-90 | B347P0-42d1        | Iron    | 1.64  | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-91 | B347C6-42d1        | Iron    | 0.569 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |

|                             | 1602049-92 | B347D8-42d1        | Iron      | 0.655 | 0.102 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|-----------------------------|------------|--------------------|-----------|-------|-------|-----------|----------------------|
|                             | 1002017 72 |                    | -         | 0.000 | 0.102 | 1/1//2010 | PNNL-ESL-            |
|                             | 1602049-93 | B347T7-42d1        | Iron      | 0.254 | 0.102 | 4/14/2016 | ICP-OES<br>PNNL-FSL- |
|                             | 1602049-94 | B347R7-42d1        | Iron      | 7.93  | 0.102 | 4/14/2016 | ICP-OES              |
| Cumulative                  |            | B347P5&P8-3d       |           |       |       |           | PNNL-ESL-            |
| reaction time: 3            | 1602049-13 | 1<br>D247E1 %E2 24 | Manganese | 0.051 | 0.025 | 4/14/2016 | ICP-OES              |
| uays                        | 1602049-14 | B34/F1&F3-3d<br>1  | Manganese | ND    | 0.025 | 4/14/2016 | ICP-OES              |
|                             | 1602049-15 | B347R1-3d1         | Manganese | ND    | 0.025 | 4/14/2016 | ICP-OES              |
|                             | 1602049-16 | B347L4-3d1         | Manganese | ND    | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-17 | B347P0-3d1         | Manganese | 0.028 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-18 | B347C6-3d1         | Manganese | ND    | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-19 | B347D8-3d1         | Manganese | 0.034 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-20 | B347T7-3d1         | Manganese | 0.025 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-21 | B347R7-3d1         | Manganese | 0.029 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| Cumulative reaction time: 7 | 1602049-38 | B347P5&P8-7d<br>1  | Manganese | 0.084 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                        | 1602049-39 | B347F1&F3-7d       | Manganese | ND    | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-40 | B347R1-7d1         | Manganese | ND    | 0.025 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-41 | B347I 4-7d1        | Manganese | ND    | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-42 | B347P0-7d1         | Manganese | 0.003 | 0.025 | 4/14/2016 | PNNL-ESL-            |
|                             | 1(02040 42 | D2470( 741         | Manganese | 0.024 | 0.024 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-43 | B34/C6-/d1         | Manganese | 0.034 | 0.024 | 4/14/2016 | PNNL-ESL-            |
|                             | 1602049-44 | B347D8-7d1         | Manganese | 0.031 | 0.025 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
|                             | 1602049-45 | B347T7-7d1         | Manganese | ND    | 0.025 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
| Cumulative                  | 1602049-46 | B347R7-7d1         | Manganese | 0.031 | 0.025 | 4/14/2016 | ICP-OES              |
| reaction time: 21           | 1602049-62 | dl                 | Manganese | 0.093 | 0.025 | 4/14/2016 | ICP-OES              |
| days                        | 1602049-63 | B347F1&F3-21<br>d1 | Manganese | ND    | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-64 | B347R1-21d1        | Manganese | 0.026 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-65 | B347I 4-21d1       | Manganese | ND    | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-66 | B347P0-21d1        | Manganese | 0.041 | 0.025 | 4/14/2016 | PNNL-ESL-            |
|                             | 1002049-00 | D34710-2101        | Wanganese | 0.041 | 0.023 | 4/14/2010 | PNNL-ESL-            |
|                             | 1602049-67 | B347C6-21d1        | Manganese | 0.003 | 0.024 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
|                             | 1602049-68 | B347D8-21d1        | Manganese | 0.032 | 0.025 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
|                             | 1602049-69 | B347T7-21d1        | Manganese | 0.000 | 0.025 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
| Cumulativa                  | 1602049-70 | B347R7-21d1        | Manganese | 0.068 | 0.025 | 4/14/2016 | ICP-OES              |
| reaction time: 42           | 1602049-86 | dl                 | Manganese | 0.119 | 0.025 | 4/14/2016 | ICP-OES              |
| days                        | 1602049-87 | B347F1&F3-42<br>d1 | Manganese | ND    | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-88 | B347R1-42d1        | Manganese | 0.056 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-89 | B347L4-42d1        | Manganese | ND    | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-90 | B347P0-42d1        | Manganese | 0.004 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-91 | B347C6-42d1        | Manganese | 0.026 | 0.024 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                             | 1602049-92 | B347D8-42d1        | Manganese | 0.036 | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |

|                                 | 1602049-93   | B347T7-42d1        | Manganese  | ND    | 0.025 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|---------------------------------|--------------|--------------------|------------|-------|-------|-----------|----------------------|
|                                 | 1/02040.04   | D247D7 4211        |            | 0.140 | 0.025 | 4/14/2016 | PNNL-ESL-            |
|                                 | 1602049-94   | B34/K/-42d1        | Manganese  | 0.148 | 0.025 | 4/14/2016 | ICP-OES              |
| Cumulative                      |              | B347P5&P8-3d       |            |       |       |           | PNNL-ESL-            |
| reaction time: 3                | 1602049-13   | 1<br>P247E1&E2.2d  | Phosphorus | 3.11  | 0.420 | 4/14/2016 | ICP-OES              |
| uays                            | 1602049-14   | 1                  | Phosphorus | 21.1  | 0.418 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-15   | B347R1-3d1         | Phosphorus | ND    | 0.426 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-16   | B347L4-3d1         | Phosphorus | 79.6  | 0.416 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-17   | B347P0-3d1         | Phosphorus | 1.15  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-18   | B347C6-3d1         | Phosphorus | 72.3  | 0.416 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-19   | B347D8-3d1         | Phosphorus | 29.0  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-20   | B347T7-3d1         | Phosphorus | 35.6  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-21   | B347R7-3d1         | Phosphorus | 239   | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| Cumulative<br>reaction time: 7  | 1602049-38   | B347P5&P8-7d       | Phosphorus | 3.23  | 0.420 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-39   | B347F1&F3-7d       | Phosphorus | 23.2  | 0.418 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 |              |                    |            |       |       |           | PNNL-ESL-            |
|                                 | 1602049-40   | B347R1-7d1         | Phosphorus | ND    | 0.426 | 4/14/2016 | ICP-OES<br>PNNL-ESL- |
|                                 | 1602049-41   | B347L4-7d1         | Phosphorus | 78.5  | 0.416 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-42   | B347P0-7d1         | Phosphorus | 1.17  | 0.417 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-43   | B347C6-7d1         | Phosphorus | 81.7  | 0.416 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-44   | B347D8-7d1         | Phosphorus | 31.7  | 0.417 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-45   | B347T7-7d1         | Phosphorus | 42.6  | 0.417 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-46   | B347R7-7d1         | Phosphorus | 253   | 0.417 | 4/14/2016 | ICP-OES              |
| Cumulative reaction time: 21    | 1602049-62   | B347P5&P8-21<br>d1 | Phosphorus | 2.92  | 0.420 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-63   | B347F1&F3-21       | Phosphorus | 22.2  | 0.418 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-64   | B347R1-21d1        | Phosphorus | 0.470 | 0.426 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-65   | B347L4-21d1        | Phosphorus | 68.0  | 0.416 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1 (000 40 40 |                    |            | 1.00  | 0.415 | 4/14/2016 | PNNL-ESL-            |
|                                 | 1602049-66   | B34/P0-21d1        | Phosphorus | 1.09  | 0.41/ | 4/14/2016 | PNNL-ESL-            |
|                                 | 1602049-67   | B347C6-21d1        | Phosphorus | 71.9  | 0.416 | 4/14/2016 | ICP-OES<br>DNINL ESI |
|                                 | 1602049-68   | B347D8-21d1        | Phosphorus | 28.7  | 0.417 | 4/14/2016 | ICP-OES              |
|                                 | 1602049-69   | B347T7-21d1        | Phosphorus | 40.6  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-70   | B347R7-21d1        | Phosphorus | 238   | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| Cumulative<br>reaction time: 42 | 1602049-86   | B347P5&P8-42<br>d1 | Phosphorus | 2.66  | 0.420 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
| days                            | 1602049-87   | B347F1&F3-42<br>d1 | Phosphorus | 22.0  | 0.418 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-88   | B347R1-42d1        | Phosphorus | 0.046 | 0.426 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-89   | B347L4-42d1        | Phosphorus | 53.5  | 0.416 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-90   | B347P0-42d1        | Phosphorus | 0.746 | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-91   | B347C6-42d1        | Phosphorus | 54.8  | 0.416 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-92   | B347D8-42d1        | Phosphorus | 27.0  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|                                 | 1602049-93   | B347T7-42d1        | Phosphorus | 36.5  | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |

|                                | 1602049-94 | B347R7-42d1                | Phosphorus  | 203   | 0.417 | 4/14/2016 | PNNL-ESL-<br>ICP-OES |
|--------------------------------|------------|----------------------------|-------------|-------|-------|-----------|----------------------|
|                                |            |                            |             |       |       |           |                      |
| Cumulative<br>reaction time: 3 | 1602049-13 | B347P5&P8-3d               | Uranium 238 | 14.7  | 0.146 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
| days                           | 1602040.14 | B347F1&F3-3d               |             | 2.00  | 0.145 | 2/15/2016 | PNNL-ESL-            |
|                                | 1602049-14 | 1                          | Uranium 238 | 2.80  | 0.145 | 3/15/2016 | PNNL-ESL-            |
|                                | 1602049-15 | B347R1-3d1                 | Uranium 238 | 6.97  | 0.148 | 3/15/2016 | ICPMS                |
|                                | 1602049-16 | B347L4-3d1                 | Uranium 238 | 0.282 | 0.014 | 3/15/2016 | ICPMS                |
|                                | 1602049-17 | B347P0-3d1                 | Uranium 238 | 7.61  | 0.145 | 3/15/2016 | ICPMS                |
|                                | 1602049-18 | B347C6-3d1                 | Uranium 238 | 0.094 | 0.001 | 3/15/2016 | ICPMS                |
|                                | 1602049-19 | B347D8-3d1                 | Uranium 238 | 0.534 | 0.015 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-20 | B347T7-3d1                 | Uranium 238 | 2.04  | 0.145 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-21 | B347R7-3d1                 | Uranium 238 | 0.874 | 0.015 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
| Cumulative<br>reaction time: 7 | 1602049-38 | B347P5&P8-7d<br>1          | Uranium 238 | 14.4  | 0.146 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
| days                           | 1602049-39 | B347F1&F3-7d<br>1          | Uranium 238 | 3.43  | 0.145 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-40 | B347R1-7d1                 | Uranium 238 | 7.66  | 0.148 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-41 | B347L4-7d1                 | Uranium 238 | 0.318 | 0.014 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602040 42 | D247D0 741                 | Umanium 229 | 0.25  | 0.145 | 2/15/2016 | PNNL-ESL-            |
|                                | 1602049-42 | D34/F0-/d1                 | Ummium 228  | 0.110 | 0.001 | 2/15/2016 | PNNL-ESL-            |
|                                | 1602049-43 | B34/C0-/d1                 | Uranium 238 | 0.110 | 0.001 | 2/15/2016 | PNNL-ESL-            |
|                                | 1602049-44 | B34/D8-/d1                 | Oranium 238 | 0.009 | 0.015 | 3/13/2010 | PNNL-ESL-            |
|                                | 1602049-45 | B347T7-7d1                 | Uranium 238 | 2.49  | 0.145 | 3/15/2016 | ICPMS<br>PNNL-ESL-   |
| Cumulative                     | 1602049-46 | B347R7-7d1<br>B347P5&P8-21 | Uranium 238 | 1.06  | 0.015 | 3/15/2016 | ICPMS<br>PNNL-ESL-   |
| reaction time: 21              | 1602049-62 | d1                         | Uranium 238 | 15.9  | 0.146 | 3/15/2016 | ICPMS                |
| uays                           | 1602049-63 | B34/F1&F3-21<br>d1         | Uranium 238 | 3.27  | 0.145 | 3/15/2016 | ICPMS                |
|                                | 1602049-64 | B347R1-21d1                | Uranium 238 | 8.42  | 0.148 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-65 | B347L4-21d1                | Uranium 238 | 0.364 | 0.014 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-66 | B347P0-21d1                | Uranium 238 | 8.77  | 0.145 | 3/15/2016 | ICPMS                |
|                                | 1602049-67 | B347C6-21d1                | Uranium 238 | 0.138 | 0.001 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-68 | B347D8-21d1                | Uranium 238 | 0.709 | 0.015 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-69 | B347T7-21d1                | Uranium 238 | 2.70  | 0.145 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-70 | B347R7-21d1                | Uranium 238 | 1.35  | 0.015 | 3/15/2016 | PNNL-ESL-<br>ICPMS   |
| Cumulative reaction time: 42   | 1602049-86 | B347P5&P8-42<br>d1         | Uranium 238 | 15.7  | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
| days                           | 1602049-87 | B347F1&F3-42<br>d1         | Uranium 238 | 3.80  | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-88 | B347R1-42d1                | Uranium 238 | 9.26  | 0.074 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-89 | B347L4-42d1                | Uranium 238 | 0.538 | 0.072 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-90 | B347P0-42d1                | Uranium 238 | 9.89  | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-91 | B347C6-42d1                | Uranium 238 | 0.199 | 0.072 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-92 | B347D8-42d1                | Uranium 238 | 0.811 | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-93 | B347T7-42d1                | Uranium 238 | 3.46  | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |
|                                | 1602049-94 | B347R7-42d1                | Uranium 238 | 1.99  | 0.073 | 3/29/2016 | PNNL-ESL-<br>ICPMS   |

| Cumulative        |            | B347P5&P8-66 |             |       |       |           | PNNL-ESL- |
|-------------------|------------|--------------|-------------|-------|-------|-----------|-----------|
| reaction time: 66 | 1602049-AK | d1           | Uranium 238 | 16.1  | 0.073 | 4/19/2016 | ICPMS     |
| days              |            | B347F1&F3-66 |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AL | d1           | Uranium 238 | 3.94  | 0.073 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AM | B347R1-66d1  | Uranium 238 | 10.5  | 0.074 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AN | B347L4-66d1  | Uranium 238 | 0.647 | 0.072 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AO | B347P0-66d1  | Uranium 238 | 11.0  | 0.073 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AP | B347C6-66d1  | Uranium 238 | 0.248 | 0.072 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AQ | B347D8-66d1  | Uranium 238 | 0.940 | 0.073 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AR | B347T7-66d1  | Uranium 238 | 4.06  | 0.073 | 4/19/2016 | ICPMS     |
|                   |            |              |             |       |       |           | PNNL-ESL- |
|                   | 1602049-AS | B347R7-66d1  | Uranium 238 | 2.49  | 0.073 | 4/19/2016 | ICPMS     |

## Total Metals by PNNL-ESL-ICP-OES and Uranium by PNNL-ESL-ICPMS/Sequential Extraction

## **Quality Control**

## Duplicates

| LabNumber  | SampleName                    | Analyte     | Results  | RPD (%) | RPD   | EQL  | Analyzed  |
|------------|-------------------------------|-------------|----------|---------|-------|------|-----------|
|            |                               |             | ug/g     |         | Limit | ug/g |           |
| 1602078-31 | B347P0 DUP oxalate            | Aluminum    | 2.01E+03 | 7.0%    | 35    | 4.4  | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Aluminum    | 2.87E+03 | 1.3%    | 35    | 41.5 | 4/19/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Aluminum    | 6.12E+03 | 33%     | 35    | 3.7  | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Aluminum    | 8.97E+03 | 13%     | 35    | 34.2 | 4/19/2016 |
| 1602078-09 | B347P0 DUP weak acetic acid   | Calcium     | 2.29E+03 | 6.1%    | 35    | 0.7  | 3/16/2016 |
| 1602078-46 | B347R7 DUP weak acetic acid   | Calcium     | 1.21E+03 | 1.5%    | 35    | 0.7  | 4/19/2016 |
| 1602078-20 | B347P0 DUP strong acetic acid | Calcium     | 8.16E+02 | 4.4%    | 35    | 0.8  | 3/16/2016 |
| 1602078-50 | B347R7 DUP strong acetic acid | Calcium     | 5.64E+02 | 13%     | 35    | 0.0  | 4/19/2016 |
| 1602078-31 | B347P0 DUP oxalate            | Calcium     | 8.71E+01 | 49%     | 35    | 0.9  | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Calcium     | 7.45E+01 | 1.2%    | 35    | 0.8  | 4/19/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Calcium     | 3.65E+03 | 27%     | 35    | 0.7  | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Calcium     | 5.55E+03 | 7.5%    | 35    | 0.7  | 4/19/2016 |
| 1602078-09 | B347P0 DUP weak acetic acid   | Iron        | 2.14E+01 | 29%     | 35    | 0.2  | 3/16/2016 |
| 1602078-46 | B347R7 DUP weak acetic acid   | Iron        | ND       | NA      | 35    | 0.2  | 4/19/2016 |
| 1602078-20 | B347P0 DUP strong acetic acid | Iron        | 4.39E+03 | 26%     | 35    | 2.5  | 3/16/2016 |
| 1602078-50 | B347R7 DUP strong acetic acid | Iron        | 1.20E+03 | 12%     | 35    | 23.8 | 4/19/2016 |
| 1602078-31 | B347P0 DUP oxalate            | Iron        | 3.78E+03 | 7.8%    | 35    | 2.7  | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Iron        | 1.44E+03 | 0.02%   | 35    | 25.2 | 4/19/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Iron        | 1.37E+04 | 34%     | 35    | 22.2 | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Iron        | 2.34E+04 | 9.7%    | 35    | 20.7 | 4/19/2016 |
| 1602078-09 | B347P0 DUP weak acetic acid   | Manganese   | 1.55E+01 | 22%     | 35    | 0.05 | 3/16/2016 |
| 1602078-46 | B347R7 DUP weak acetic acid   | Manganese   | 1.20E+01 | 41%     | 35    | 0.05 | 4/19/2016 |
| 1602078-20 | B347P0 DUP strong acetic acid | Manganese   | 1.51E+02 | 13%     | 35    | 0.1  | 3/16/2016 |
| 1602078-50 | B347R7 DUP strong acetic acid | Manganese   | 9.61E+01 | 9.3%    | 35    | 0.1  | 4/19/2016 |
| 1602078-31 | B347P0 DUP oxalate            | Manganese   | 1.76E+01 | 74%     | 35    | 0.1  | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Manganese   | 3.93E+01 | 4.6%    | 35    | 0.1  | 4/19/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Manganese   | 1.49E+02 | 24%     | 35    | 0.1  | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Manganese   | 2.34E+02 | 6.3%    | 35    | 0.0  | 4/19/2016 |
| 1602078-09 | B347P0 DUP weak acetic acid   | Phosphorus  | 1.13E+00 | 5.1%    | 35    | 0.8  | 3/16/2016 |
| 1602078-46 | B347R7 DUP weak acetic acid   | Phosphorus  | 2.22E+02 | 2.7%    | 35    | 0.8  | 4/19/2016 |
| 1602078-20 | B347P0 DUP strong acetic acid | Phosphorus  | 1.08E+00 | 49%     | 35    | 1.0  | 3/16/2016 |
| 1602078-50 | B347R7 DUP strong acetic acid | Phosphorus  | 2.50E+01 | 0.1%    | 35    | 1.0  | 4/19/2016 |
| 1602078-31 | B347P0 DUP oxalate            | Phosphorus  | 1.52E+02 | 34%     | 35    | 1.1  | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Phosphorus  | 1.18E+03 | 9.5%    | 35    | 1.0  | 4/19/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Phosphorus  | 8.47E+02 | 11%     | 35    | 0.9  | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Phosphorus  | 1.52E+03 | 1.6%    | 35    | 0.8  | 4/19/2016 |
| 1602078-09 | B347P0 DUP weak acetic acid   | Uranium 238 | 1.83E+01 | 8.6%    | 35    | 0.01 | 3/16/2016 |
| 1602078-46 | B347R7 DUP weak acetic acid   | Uranium 238 | 2.60E+00 | 4.9%    | 35    | 0.01 | 4/12/2016 |
| 1602078-20 | B347P0 DUP strong acetic acid | Uranium 238 | 4.98E+01 | 13%     | 35    | 0.02 | 3/16/2016 |
| 1602078-50 | B347R7 DUP strong acetic acid | Uranium 238 | 2.11E+01 | 12%     | 35    | 0.02 | 4/12/2016 |
| 1602078-31 | B347P0 DUP oxalate            | Uranium 238 | 9.16E+00 | 22%     | 35    | 0.02 | 3/16/2016 |
| 1602078-54 | B347R7 DUP oxalate            | Uranium 238 | 9.80E+00 | 1.9%    | 35    | 0.02 | 4/12/2016 |
| 1602078-42 | B347P0 DUP nitric acid        | Uranium 238 | 6.03E+00 | 22%     | 35    | 0.02 | 3/16/2016 |
| 1602078-58 | B347R7 DUP nitric acid        | Uranium 238 | 1.28E+01 | 2.1%    | 35    | 0.01 | 4/12/2016 |

## **Preparation Blanks**

| LabNumber  | SampleName            | Analyte  | Result   | EQL | Analyzed  |
|------------|-----------------------|----------|----------|-----|-----------|
|            |                       |          | ug/L     |     |           |
| 1602078-32 | PB oxalate            | Aluminum | ND       | 165 | 3/16/2016 |
| 1602078-43 | PB nitric acid        | Aluminum | ND       | 165 | 3/16/2016 |
| 1602078-55 | B347R7 oxalate PB     | Aluminum | ND       | 165 | 4/19/2016 |
| 1602078-59 | B347R7 nitric acid PB | Aluminum | 5.06E+02 | 165 | 4/19/2016 |
| 1602078-10 | PB weak acetic acid   | Calcium  | ND       | 336 | 3/16/2016 |
| 1602078-21 | PB strong acetic acid | Calcium  | ND       | 336 | 3/16/2016 |
| 1602078-32 | PB oxalate            | Calcium  | ND       | 336 | 3/16/2016 |
| 1602078-43 | PB nitric acid        | Calcium  | 4.09E+02 | 336 | 3/16/2016 |

| 1602078-55 | B347R7 oxalate PB            | Calcium     | 3.69E+02 | 336   | 4/19/2016 |
|------------|------------------------------|-------------|----------|-------|-----------|
| 1602078-59 | B347R7 nitric acid PB        | Calcium     | 9.69E+02 | 336   | 4/19/2016 |
| 1602078-10 | PB weak acetic acid          | Iron        | ND       | 100   | 3/16/2016 |
| 1602078-21 | PB strong acetic acid        | Iron        | ND       | 1000  | 3/16/2016 |
| 1602078-32 | PB oxalate                   | Iron        | ND       | 1000  | 3/16/2016 |
| 1602078-43 | PB nitric acid               | Iron        | ND       | 10000 | 3/16/2016 |
| 1602078-47 | B347R7 weak acetic acid PB   | Iron        | ND       | 100   | 4/19/2016 |
| 1602078-51 | B347R7 strong acetic acid PB | Iron        | ND       | 100   | 4/19/2016 |
| 1602078-55 | B347R7 oxalate PB            | Iron        | ND       | 100   | 4/19/2016 |
| 1602078-59 | B347R7 nitric acid PB        | Iron        | 2.10E+03 | 100   | 4/19/2016 |
| 1602078-10 | PB weak acetic acid          | Manganese   | ND       | 23.9  | 3/16/2016 |
| 1602078-21 | PB strong acetic acid        | Manganese   | ND       | 23.9  | 3/16/2016 |
| 1602078-32 | PB oxalate                   | Manganese   | ND       | 23.9  | 3/16/2016 |
| 1602078-43 | PB nitric acid               | Manganese   | ND       | 23.9  | 3/16/2016 |
| 1602078-47 | B347R7 weak acetic acid PB   | Manganese   | ND       | 23.9  | 4/19/2016 |
| 1602078-51 | B347R7 strong acetic acid PB | Manganese   | ND       | 23.9  | 4/19/2016 |
| 1602078-55 | B347R7 oxalate PB            | Manganese   | ND       | 23.9  | 4/19/2016 |
| 1602078-59 | B347R7 nitric acid PB        | Manganese   | 3.87E+01 | 23.9  | 4/19/2016 |
| 1602078-10 | PB weak acetic acid          | Phosphorus  | ND       | 408   | 3/16/2016 |
| 1602078-21 | PB strong acetic acid        | Phosphorus  | ND       | 408   | 3/16/2016 |
| 1602078-32 | PB oxalate                   | Phosphorus  | ND       | 408   | 3/16/2016 |
| 1602078-43 | PB nitric acid               | Phosphorus  | ND       | 408   | 3/16/2016 |
| 1602078-47 | B347R7 weak acetic acid PB   | Phosphorus  | ND       | 408   | 4/19/2016 |
| 1602078-51 | B347R7 strong acetic acid PB | Phosphorus  | ND       | 408   | 4/19/2016 |
| 1602078-55 | B347R7 oxalate PB            | Phosphorus  | ND       | 408   | 4/19/2016 |
| 1602078-59 | B347R7 nitric acid PB        | Phosphorus  | ND       | 408   | 4/19/2016 |
| 1602078-10 | PB weak acetic acid          | Uranium 238 | ND       | 7.1   | 3/16/2016 |
| 1602078-21 | PB strong acetic acid        | Uranium 238 | ND       | 7.1   | 3/16/2016 |
| 1602078-32 | PB oxalate                   | Uranium 238 | ND       | 7.1   | 3/16/2016 |
| 1602078-43 | PB nitric acid               | Uranium 238 | ND       | 7.1   | 3/16/2016 |
| 1602078-47 | B347R7 weak acetic acid PB   | Uranium 238 | ND       | 7.1   | 4/12/2016 |
| 1602078-51 | B347R7 strong acetic acid PB | Uranium 238 | ND       | 7.1   | 4/12/2016 |
| 1602078-55 | B347R7 oxalate PB            | Uranium 238 | ND       | 7.1   | 4/12/2016 |
| 1602078-59 | B347R7 nitric acid PB        | Uranium 238 | ND       | 7.1   | 4/12/2016 |

## Laboratory Control Samples

|            |                              |          |        |     | %        |        |           |
|------------|------------------------------|----------|--------|-----|----------|--------|-----------|
| LabNumber  | SampleName                   | Analyte  | Result | EQL | recovery | %REC   | Analyzed  |
|            |                              |          | ug/L   |     |          | LIMITS |           |
| 1602078-33 | BS oxalate                   | Aluminum | 4020   | 165 | 80.4     | 80-120 | 3/16/2016 |
| 1602078-44 | BS nitric acid               | Aluminum | 4850   | 165 | 95.7     | 80-120 | 3/16/2016 |
| 1602078-56 | B347R7 oxalate BS            | Aluminum | 4120   | 165 | 82.4     | 80-120 | 4/19/2016 |
| 1602078-60 | B347R7 nitric acid BS        | Aluminum | 5550   | 165 | 97.6     | 80-120 | 4/19/2016 |
|            |                              |          |        |     |          |        |           |
| 1602078-11 | BS weak acetic acid          | Calcium  | 5010   | 336 | 100      | 80-120 | 3/16/2016 |
| 1602078-22 | BS strong acetic acid        | Calcium  | 4460   | 336 | 89.2     | 80-120 | 3/16/2016 |
| 1602078-33 | BS oxalate                   | Calcium  | 5110   | 336 | 102      | 80-120 | 3/16/2016 |
| 1602078-44 | BS nitric acid               | Calcium  | 5420   | 336 | 107      | 80-120 | 3/16/2016 |
| 1602078-48 | B347R7 weak acetic acid BS   | Calcium  | 4840   | 336 | 96.8     | 80-120 | 4/19/2016 |
| 1602078-52 | B347R7 strong acetic acid BS | Calcium  | 4600   | 336 | 92.0     | 80-120 | 4/19/2016 |
| 1602078-56 | B347R7 oxalate BS            | Calcium  | 4610   | 336 | 92.2     | 80-120 | 4/19/2016 |
| 1602078-60 | B347R7 nitric acid BS        | Calcium  | 6250   | 336 | 110      | 80-120 | 4/19/2016 |

| 1602078-11 | BS weak acetic acid          | Iron      | 4720 | 100  | 94.4 | 80-120 | 3/16/2016 |
|------------|------------------------------|-----------|------|------|------|--------|-----------|
| 1602078-22 | BS strong acetic acid        | Iron      | 5000 | 1000 | 100  | 80-120 | 3/16/2016 |
| 1602078-33 | BS oxalate                   | Iron      | 5000 | 1000 | 100  | 80-120 | 3/16/2016 |
| 1602078-44 | BS nitric acid               | Iron      | 5300 | 1000 | 105  | 80-120 | 3/16/2016 |
| 1602078-48 | B347R7 weak acetic acid BS   | Iron      | 4670 | 100  | 93.4 | 80-120 | 4/19/2016 |
| 1602078-52 | B347R7 strong acetic acid BS | Iron      | 5100 | 100  | 102  | 80-120 | 4/19/2016 |
| 1602078-56 | B347R7 oxalate BS            | Iron      | 4930 | 100  | 98.6 | 80-120 | 4/19/2016 |
| 1602078-60 | B347R7 nitric acid BS        | Iron      | 5830 | 100  | 102  | 80-120 | 4/19/2016 |
|            |                              |           |      |      |      |        |           |
| 1602078-11 | BS weak acetic acid          | Manganese | 4720 | 23.9 | 94.4 | 80-120 | 3/16/2016 |
| 1602078-22 | BS strong acetic acid        | Manganese | 4750 | 23.9 | 95.0 | 80-120 | 3/16/2016 |
| 1602078-33 | BS oxalate                   | Manganese | 4690 | 23.9 | 93.8 | 80-120 | 3/16/2016 |
| 1602078-44 | BS nitric acid               | Manganese | 5020 | 23.9 | 99.1 | 80-120 | 3/16/2016 |
| 1602078-48 | B347R7 weak acetic acid BS   | Manganese | 4600 | 23.9 | 92.0 | 80-120 | 4/19/2016 |
| 1602078-52 | B347R7 strong acetic acid BS | Manganese | 4910 | 23.9 | 98.2 | 80-120 | 4/19/2016 |
| 1602078-56 | B347R7 oxalate BS            | Manganese | 4660 | 23.9 | 93.2 | 80-120 | 4/19/2016 |
| 1602078-60 | B347R7 nitric acid BS        | Manganese | 5440 | 23.9 | 95.6 | 80-120 | 4/19/2016 |

## Total Metals by PNNL-ESL-ICP-OES and Uranium by PNNL-ESL-ICPMS/Labile Extraction

## **Quality Control**

#### Duplicates

| Cumulative | LabNaaba   |                    |                 |         |          |       |        |           |
|------------|------------|--------------------|-----------------|---------|----------|-------|--------|-----------|
| reaction   | Labinumbe  | SamplaNama         | Analyta         | Doculto | DDD (%)  | DDD   | FOI    | Analyzad  |
| dava       | 1          | Samplervame        | Analyte         | Results | KID (70) | Limit | EQL    | Analyzeu  |
| days       |            |                    |                 | ug/g    |          | Limit | ug/g   |           |
| 3          | 1602049-22 | B347P0 Dup-3d1     | Calcium         | 10.7    | 5.0%     | 35    | 0 343  | 4/14/2016 |
| 7          | 1602049-47 | B347P0 Dup-7d1     | Calcium         | 10.9    | 6.4%     | 35    | 0.343  | 4/14/2016 |
| ,          | 1002013 11 | B347P0             | Curtruin        | 10.9    | 0.170    | 50    | 0.0 10 |           |
| 21         | 1602049-71 | Dup-21d1           | Calcium         | 8.26    | 14%      | 35    | 0.343  | 4/14/2016 |
|            |            | B347P0             |                 |         |          |       |        |           |
| 42         | 1602049-95 | Dup-42d1           | Calcium         | 7.36    | 0.14%    | 35    | 0.343  | 4/14/2016 |
|            |            |                    |                 |         |          |       |        |           |
| 3          | 1602049-22 | B347P0 Dup-3d1     | Iron            | 4.19    | 74%      | 35    | 0.102  | 4/14/2016 |
| 7          | 1602049-47 | B347P0 Dup-7d1     | Iron            | 2.11    | 48%      | 35    | 0.102  | 4/14/2016 |
|            |            | B347P0             |                 |         |          |       |        |           |
| 21         | 1602049-71 | Dup-21d1           | Iron            | 1.41    | 71%      | 35    | 0.102  | 4/14/2016 |
|            |            | B347P0             |                 |         |          |       |        |           |
| 42         | 1602049-95 | Dup-42d1           | Iron            | 1.37    | 18%      | 35    | 0.102  | 4/14/2016 |
|            |            |                    |                 |         |          |       |        |           |
| 3          | 1602049-22 | B347P0 Dup-3d1     | Manganese       | 0.051   | 59%      | 35    | 0.025  | 4/14/2016 |
| 7          | 1602049-47 | B347P0 Dup-7d1     | Manganese       | 0.005   | NA       | 35    | 0.025  | 4/14/2016 |
|            |            | B347P0             |                 |         |          |       |        |           |
| 21         | 1602049-71 | Dup-21d1           | Manganese       | 0.001   | NA       | 35    | 0.025  | 4/14/2016 |
| 12         | 1602040.05 | B347P0             | M               | ND      | NIA      | 25    | 0.025  | 4/14/2016 |
| 42         | 1602049-95 | Dup-42d1           | Manganese       | ND      | INA      | 35    | 0.025  | 4/14/2016 |
|            | 1(02040.22 | D247D0 D 211       | DI I            | 1.20    | 120/     | 25    | 0.417  | 4/14/2016 |
| 3          | 1602049-22 | B34/P0 Dup-3d1     | Phosphorus      | 1.30    | 12%      | 35    | 0.417  | 4/14/2016 |
| /          | 1602049-47 | B34/P0 Dup-/d1     | Phosphorus      | 1.52    | 26%      | 35    | 0.417  | 4/14/2016 |
| 21         | 1602040 71 | B34/P0             | Dhaanharua      | 1.95    | 520/     | 25    | 0.417  | 4/14/2016 |
| 21         | 1002049-71 | Dup-2101<br>D247D0 | Filospilorus    | 1.65    | 3270     | 35    | 0.417  | 4/14/2010 |
| 42         | 1602049-95 | Dup-42d1           | Phosphorus      | 1.83    | 84%      | 35    | 0.417  | 4/14/2016 |
| 42         | 1002047-75 | Dup-4201           | Thosphorus      | 1.05    | 0470     | 55    | 0.417  | 4/14/2010 |
| 2          | 1602040 22 | P247P0 Dup 2d1     | Uranium 228     | 7.24    | 2 70/    | 35    | 0.145  | 2/15/2016 |
| 7          | 1602049-22 | B347P0 Dup-7d1     | Uranium 238     | 8 21    | 1.7%     | 35    | 0.145  | 3/15/2016 |
| /          | 1002047-47 | B3/7P0             | Orallulli 256   | 0.21    | 1.770    | 55    | 0.145  | 5/15/2010 |
| 21         | 1602049-71 | Dup-21d1           | Uranium 238     | 9.40    | 6.9%     | 35    | 0.145  | 3/15/2016 |
|            |            | B347P0             | 2.14.114.11.250 | 2.10    | 0.270    |       | 0.1.10 | 5/10/2010 |
| 42         | 1602049-95 | Dup-42d1           | Uranium 238     | 10.0    | 0.7%     | 35    | 0.073  | 3/29/2016 |
|            |            | B347P0             |                 |         |          |       |        |           |
| 66         | 1602049-AT | Dup-66d1           | Uranium 238     | 11.1    | 1.1%     | 35    | 0.073  | 4/20/2016 |

## **Preparation Blanks**

| LabNumber  | SampleName | Analyte   | Result | EQL  | Analyzed  |
|------------|------------|-----------|--------|------|-----------|
|            |            |           | ug/L   | ug/L |           |
| 1602049-23 | PB-3d1     | Calcium   | ND     | 168  | 4/14/2016 |
| 1602049-48 | PB-7d1     | Calcium   | ND     | 168  | 4/14/2016 |
| 1602049-72 | PB-21d1    | Calcium   | ND     | 168  | 4/14/2016 |
| 1602049-96 | PB-42d1    | Calcium   | ND     | 168  | 4/14/2016 |
|            |            |           |        |      |           |
| 1602049-23 | PB-3d1     | Iron      | ND     | 50   | 4/14/2016 |
| 1602049-48 | PB-7d1     | Iron      | ND     | 50   | 4/14/2016 |
| 1602049-72 | PB-21d1    | Iron      | ND     | 50   | 4/14/2016 |
| 1602049-96 | PB-42d1    | Iron      | ND     | 50   | 4/14/2016 |
|            |            |           |        |      |           |
| 1602049-23 | PB-3d1     | Manganese | ND     | 12   | 4/14/2016 |
| 1602049-48 | PB-7d1     | Manganese | ND     | 12   | 4/14/2016 |

| 1602049-72 | PB-21d1 | Manganese   | ND | 12   | 4/14/2016 |
|------------|---------|-------------|----|------|-----------|
| 1602049-96 | PB-42d1 | Manganese   | ND | 12   | 4/14/2016 |
|            |         |             |    |      |           |
| 1602049-23 | PB-3d1  | Phosphorus  | ND | 204  | 4/14/2016 |
| 1602049-48 | PB-7d1  | Phosphorus  | ND | 204  | 4/14/2016 |
| 1602049-72 | PB-21d1 | Phosphorus  | ND | 204  | 4/14/2016 |
| 1602049-96 | PB-42d1 | Phosphorus  | ND | 204  | 4/14/2016 |
|            |         |             |    |      |           |
| 1602049-23 | PB-3d1  | Uranium 238 | ND | 0.71 | 3/15/2016 |
| 1602049-48 | PB-7d1  | Uranium 238 | ND | 0.71 | 3/15/2016 |
| 1602049-72 | PB-21d1 | Uranium 238 | ND | 0.71 | 3/15/2016 |
| 1602049-96 | PB-42d1 | Uranium 238 | ND | 0.71 | 3/29/2016 |

## Laboratory Control Samples

| LabNumber  | SampleName  | Analyte   | Result | % recovery | %REC   | Analyzed  |
|------------|-------------|-----------|--------|------------|--------|-----------|
|            |             |           | ug/L   |            | Limits |           |
| 1602049-24 | ICP BS-3d1  | Calcium   | 4920   | 98.4       | 80-120 | 4/14/2016 |
| 1602049-49 | ICP BS-7d1  | Calcium   | 4390   | 97.6       | 80-120 | 4/14/2016 |
| 1602049-73 | ICP BS-21d1 | Calcium   | 4000   | 100        | 80-120 | 4/14/2016 |
| 1602049-97 | ICP BS-42d1 | Calcium   | 3690   | 105        | 80-120 | 4/14/2016 |
|            |             |           |        |            |        |           |
| 1602049-24 | ICP BS-3d1  | Iron      | 4630   | 92.6       | 80-120 | 4/14/2016 |
| 1602049-49 | ICP BS-7d1  | Iron      | 4270   | 94.9       | 80-120 | 4/14/2016 |
| 1602049-73 | ICP BS-21d1 | Iron      | 3700   | 92.5       | 80-120 | 4/14/2016 |
| 1602049-97 | ICP BS-42d1 | Iron      | 3340   | 95.4       | 80-120 | 4/14/2016 |
|            |             |           |        |            |        |           |
| 1602049-24 | ICP BS-3d1  | Manganese | 4670   | 93.4       | 80-120 | 4/14/2016 |
| 1602049-49 | ICP BS-7d1  | Manganese | 4200   | 93.3       | 80-120 | 4/14/2016 |
| 1602049-73 | ICP BS-21d1 | Manganese | 3720   | 93.0       | 80-120 | 4/14/2016 |
| 1602049-97 | ICP BS-42d1 | Manganese | 3340   | 95.4       | 80-120 | 4/14/2016 |
Result Limit Reporting

Units Level Spike Result Source %REC %REC Limits RPD Limit Notes

Analyte

### Total Metals by PNNL-ESL-ICP-AES/Acid Extract - Quality Control Environmental Science Laboratory

#### Batch 6D13005 - ASTM D 5198 (ICP/ICPMS) Blank (6D13005-BLK1) Prepared & Analyzed: 04/13/16

|                                                                                 | ug/g wet         |
|---------------------------------------------------------------------------------|------------------|
| Aluminum                                                                        | <1.35E0          |
|                                                                                 | 1.35E0           |
|                                                                                 | <1.40E0          |
| Calcium                                                                         | 1.40E0           |
|                                                                                 | "                |
| Iron                                                                            | <3.04E-1         |
|                                                                                 | "                |
|                                                                                 | <1.21E-1         |
| Manganese                                                                       | 1.21E-1          |
|                                                                                 | "<br><1.79E0     |
| Phosphorus                                                                      | 1,720            |
| LCS (6D13005-BS1)                                                               | 1.79E0           |
| Prepared & Analyzed: 04/13/16                                                   |                  |
|                                                                                 | 5.00E0           |
|                                                                                 | 80-120<br>80 7   |
|                                                                                 | 4.04E0           |
| Aluminum                                                                        | 1.35E0           |
|                                                                                 | "<br>5.00E0      |
|                                                                                 | 80-120           |
|                                                                                 | 100 5.01E0       |
| Calcium                                                                         | 14050            |
|                                                                                 | "<br>"           |
|                                                                                 | 5.00E0<br>80-120 |
|                                                                                 | 93.7             |
| Iron                                                                            | 4.69E0           |
|                                                                                 | "                |
|                                                                                 | 5.00E0           |
|                                                                                 | 93.8             |
| Mangapese                                                                       | 4.69E0           |
| Wanganese                                                                       | 1.21E-1          |
|                                                                                 | "<br>80-120      |
| Dhoanhama                                                                       | <1.79E0          |
| rnosphorus                                                                      | 1.79E0           |
| Duplicate (6D13005-DUP1)<br>Prepared & Analyzed: 04/13/16<br>Source: 1604032-10 |                  |
|                                                                                 | ug/g dry         |
|                                                                                 | 35               |
|                                                                                 | 1.36 2.20E3      |
| Aluminum                                                                        | 2 0150           |
|                                                                                 | 2 ATEU           |

|                                                                                 | "                |
|---------------------------------------------------------------------------------|------------------|
|                                                                                 | 3.51E3           |
|                                                                                 | 35<br>3 95       |
|                                                                                 | 3.38E3           |
| Calcium                                                                         | 2 92F0           |
|                                                                                 | "                |
|                                                                                 | 5.20E2           |
|                                                                                 | 2.25             |
|                                                                                 | 5.32E2           |
| Iron                                                                            | 7.56E-1          |
|                                                                                 |                  |
|                                                                                 | 35.70E1          |
|                                                                                 | 0.116            |
| Manganese                                                                       | 5.71E1           |
|                                                                                 | 2.51E-1          |
|                                                                                 | 4.02E2           |
|                                                                                 | 35               |
|                                                                                 | 0.782            |
| Phosphorus                                                                      | 4.00E2           |
|                                                                                 | 3.72E0           |
| Post Spike (6D13005-PS1)<br>Prepared & Analyzed: 04/13/16<br>Source: 1604032-19 |                  |
|                                                                                 | ug/L             |
|                                                                                 | 1.30E5           |
|                                                                                 | 75-125           |
|                                                                                 | 937              |
| Aluminum                                                                        |                  |
|                                                                                 | " N/A            |
|                                                                                 | 5.00E2           |
|                                                                                 | 1.54E5<br>75-125 |
|                                                                                 | 439              |
| Calaium                                                                         | 1.56E5           |
| Calcium                                                                         | N/A              |
|                                                                                 | "<br>            |
|                                                                                 | 3.12E4           |
|                                                                                 | 75-125           |
|                                                                                 | 362<br>3 30F4    |
| Iron                                                                            |                  |
|                                                                                 | " N/A            |
|                                                                                 | 2.50E2           |
|                                                                                 | 3.51E3<br>75.125 |
|                                                                                 | 150              |
| Manapasa                                                                        | 3.88E3           |
| manganos                                                                        | N/A              |
|                                                                                 |                  |
|                                                                                 | 4.82E4           |
|                                                                                 | 75-125           |
|                                                                                 | 285 5 18F4       |
| Phosphorus                                                                      |                  |
| F                                                                               |                  |

Result Limit Reporting

Units Level Spike Result Source %REC %REC Limits RPD RPD Limit Notes

Analyte

#### Radionuclides by ICP-MS/Acid Extract - Quality Control Environmental Science Laboratory Batch 6D12001 - ASTM D 5198 (ICP/ICPMS)

| Blank (6D12001-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Prepared: 04/07/16 Analyzed: 04/12/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/g wet           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <7.10E-4           |
| Uranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 105-4            |
| LCS (6D12001-BS1)<br>Prepared: 04/07/16 Analyzed: 04/12/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.102-4            |
| . I a state of the | ug/g wet           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80-120<br><7.10F-4 |
| Uranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.102 1            |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10E-4            |
| Dupicate (6D12001-D011)<br>Prepared: 04/07/16 Analyzed: 04/12/16<br>Source: 1604032-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/g dry           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51E1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.52               |
| Uranium 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.40E1             |
| Oranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.39E-1            |
| Post Spike (6D12001-PS1)<br>Prepared & Analyzed: 04/12/16<br>Source: 1604032-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 12E-1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-125             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                 |
| Uranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1020             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                |

| LabNumb        | SampleNa | Analyte     | Result | Units    | E        | Analysis          |
|----------------|----------|-------------|--------|----------|----------|-------------------|
| er             | me       |             |        |          | L        |                   |
| 1602092-0<br>1 | F1F3-1   | pH          | 7.7    | pH Units |          | pH-NP             |
| 1602092-0<br>1 | F1F3-1   | Uranium 238 | 13.4   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0      | F1F3-2   | Uranium 238 | 13.8   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>3 | F1F3-3   | рН          | 7.92   | pH Units |          | pH-NP             |
| 1602092-0<br>3 | F1F3-3   | Uranium 238 | 15.2   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>4 | F1F3-4   | Uranium 238 | 16.8   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>5 | F1F3-5   | pН          | 8.07   | pH Units |          | pH-NP             |
| 1602092-0<br>5 | F1F3-5   | Uranium 238 | 17.1   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>6 | F1F3-6   | Uranium 238 | 17.2   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>7 | F1F3-7   | Uranium 238 | 16.3   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>8 | F1F3-8   | Uranium 238 | 16.7   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-0<br>9 | F1F3-9   | pH          | 8.43   | pH Units |          | pH-NP             |
| 1602092-0<br>9 | F1F3-9   | Uranium 238 | 15.9   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>0 | F1F3-10  | Uranium 238 | 16     | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>2 | F1F3-12  | Uranium 238 | 15.9   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>3 | F1F3-13  | pН          | 8.16   | pH Units |          | pH-NP             |
| 1602092-1<br>5 | F1F3-15  | Uranium 238 | 16     | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>7 | F1F3-17  | pН          | 8.06   | pH Units |          | pH-NP             |
| 1602092-1<br>7 | F1F3-17  | Uranium 238 | 19.5   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>8 | F1F3-18  | Uranium 238 | 20.9   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-1<br>9 | F1F3-19  | pН          | 8.49   | pH Units |          | pH-NP             |
| 1602092-1<br>9 | F1F3-19  | Uranium 238 | 20.7   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>0 | F1F3-20  | Uranium 238 | 20.4   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>1 | F1F3-21  | pН          | 8.19   | pH Units |          | pH-NP             |
| 1602092-2<br>1 | F1F3-21  | Uranium 238 | 20.1   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>3 | F1F3-23  | Uranium 238 | 16.9   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>4 | F1F3-24  | Uranium 238 | 16.2   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>5 | F1F3-25  | рН          | 8.18   | pH Units |          | pH-NP             |
| 1602092-2<br>5 | F1F3-25  | Uranium 238 | 16     | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>6 | F1F3-26  | Uranium 238 | 16.3   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-2<br>8 | F1F3-28  | Uranium 238 | 16.5   | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP |
| 1602092-3<br>0 | F1F3-30  | рН          | 8.4    | pH Units |          | pH-NP             |

### Analytical Data for <2mm composite column B347F1 and B347F3

| 1602092-3      | F1F3-30 | Uranium 238 | 18.4 | ug/L     | 1.       | ICPMS-Tc_U-         |
|----------------|---------|-------------|------|----------|----------|---------------------|
| 1602092-3      | F1F3-31 | Uranium 238 | 193  | 119/L    | 42       | ICPMS-Tc U-         |
| 1              |         |             | 17.5 | ug, 2    | 42       | NP                  |
| 1602092-3<br>2 | F1F3-32 | pН          | 8.25 | pH Units |          | pH-NP               |
| 1602092-3<br>2 | F1F3-32 | Uranium 238 | 19.3 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>4 | F1F3-34 | pН          | 8.24 | pH Units |          | pH-NP               |
| 1602092-3<br>4 | F1F3-34 | Uranium 238 | 18.5 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>5 | F1F3-35 | Uranium 238 | 16.9 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>6 | F1F3-36 | Uranium 238 | 16.7 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>7 | F1F3-37 | Uranium 238 | 15.8 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>8 | F1F3-38 | Uranium 238 | 16.3 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-3<br>9 | F1F3-39 | pН          | 8.26 | pH Units |          | pH-NP               |
| 1602092-3<br>9 | F1F3-39 | Uranium 238 | 16.6 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-4<br>1 | F1F3-41 | Uranium 238 | 16.4 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-4<br>3 | F1F3-43 | Uranium 238 | 16.5 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-4<br>4 | F1F3-44 | pН          | 8.43 | pH Units |          | pH-NP               |
| 1602092-4<br>5 | F1F3-45 | Uranium 238 | 16.7 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-4<br>8 | F1F3-48 | pН          | 8.43 | pH Units |          | pH-NP               |
| 1602092-4<br>8 | F1F3-48 | Uranium 238 | 16.4 | ug/L     | 1.<br>42 | ICPMS-Tc_U-<br>NP   |
| 1602092-4<br>9 | F1F3-49 | Bromide     | ND   | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>0 | F1F3-50 | Bromide     | ND   | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>1 | F1F3-51 | Bromide     | ND   | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>2 | F1F3-52 | Bromide     | 13.3 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>3 | F1F3-53 | Bromide     | 39.4 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>4 | F1F3-54 | Bromide     | 49.8 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>5 | F1F3-55 | Bromide     | 49.8 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>6 | F1F3-56 | Bromide     | 50   | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>7 | F1F3-57 | Bromide     | 49.8 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-5<br>8 | F1F3-58 | Bromide     | 49.8 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-6<br>0 | F1F3-60 | Bromide     | 48.7 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-6      | F1F3-62 | Bromide     | 49.9 | ug/mL    | 5        | Anions by IC-<br>NP |
| 1602092-6<br>5 | F1F3-65 | Bromide     | 49.4 | ug/mL    | 5        | Anions by IC-<br>NP |
|                |         |             |      |          |          |                     |

### Pore Volume and stop flow data for <2mm composite column B347F1 and B347F3

| Vial # | Pore volumes | COMMENTS |
|--------|--------------|----------|
| 1      | 0.21         | Start    |
| 2      | 0.42         |          |
| 3      | 0.63         |          |
| 4      | 0.83         |          |

| 5  | 1.04 |                   |                                                                                                                 |
|----|------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| 6  | 1.24 |                   | 1                                                                                                               |
| 7  | 1.44 |                   | 1                                                                                                               |
| 8  | 1.64 |                   | 1                                                                                                               |
| 9  | 1.85 |                   | 1                                                                                                               |
| 10 | 2.05 |                   | 1                                                                                                               |
| 11 | 2.25 |                   | 1                                                                                                               |
| 12 | 2.46 |                   | 1                                                                                                               |
| 13 | 2.66 |                   | 1                                                                                                               |
| 14 | 2.87 |                   | 1                                                                                                               |
| 15 | 3.09 |                   | 1                                                                                                               |
| 16 | 3 23 | 48 hour stop flow | 1                                                                                                               |
| 17 | 3.42 |                   |                                                                                                                 |
| 18 | 3.63 |                   | 1                                                                                                               |
| 19 | 3.84 |                   | 1                                                                                                               |
| 20 | 4 04 |                   | 1                                                                                                               |
| 20 | 4 25 |                   | 1                                                                                                               |
| 21 | 4.25 |                   | ·                                                                                                               |
| 22 | 4.23 |                   |                                                                                                                 |
| 23 | 4.45 |                   |                                                                                                                 |
| 24 | 4.00 |                   |                                                                                                                 |
| 25 | 4.80 |                   |                                                                                                                 |
| 20 | 5.07 |                   |                                                                                                                 |
| 27 | 5.27 |                   |                                                                                                                 |
| 28 | 5.48 | 701               |                                                                                                                 |
| 29 | 5.54 | 72 hour stop flow |                                                                                                                 |
| 30 | 5.72 |                   |                                                                                                                 |
| 31 | 5.92 |                   |                                                                                                                 |
| 32 | 6.11 |                   |                                                                                                                 |
| 33 | 6.30 |                   |                                                                                                                 |
| 34 | 6.49 |                   |                                                                                                                 |
| 35 | 6.68 |                   |                                                                                                                 |
| 36 | 6.87 |                   |                                                                                                                 |
| 37 | 7.06 |                   |                                                                                                                 |
| 38 | 7.25 |                   |                                                                                                                 |
| 39 | 7.44 |                   |                                                                                                                 |
| 40 | 7.64 |                   |                                                                                                                 |
| 41 | 7.84 |                   | ]                                                                                                               |
| 42 | 8.04 |                   | ]                                                                                                               |
| 43 | 8.24 |                   | ]                                                                                                               |
| 44 | 8.44 |                   | 1                                                                                                               |
| 45 | 8.64 |                   | 1                                                                                                               |
| 46 | 8.84 |                   | 1                                                                                                               |
| 47 | 9.04 |                   | 1                                                                                                               |
| 48 | 9.11 | Stop              | 1                                                                                                               |
| -  | 1    | <b>r</b>          | al contract of the second s |

# Analytical Data for <2mm composite column B347P5 and B347P8

| LabNumbe<br>r | SampleNam<br>e | Analyte     | Result | Units    | EQL  | Analysis          |
|---------------|----------------|-------------|--------|----------|------|-------------------|
| 1602093-01    | P5P8-1         | pН          | 8.31   | pH Units |      | pH-NP             |
| 1602093-01    | P5P8-1         | Uranium 238 | 18500  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-02    | P5P8-2         | Uranium 238 | 24900  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-03    | P5P8-3         | pH          | 8.61   | pH Units |      | pH-NP             |
| 1602093-03    | P5P8-3         | Uranium 238 | 22100  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-04    | P5P8-4         | Uranium 238 | 20000  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-05    | P5P8-5         | pН          | 8.66   | pH Units |      | pH-NP             |
| 1602093-05    | P5P8-5         | Uranium 238 | 28900  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-06    | P5P8-6         | Uranium 238 | 14900  | ug/L     | 1420 | ICPMS-Tc_U-<br>NP |
| 1602093-07    | P5P8-7         | Uranium 238 | 13100  | ug/L     | 142  | ICPMS-Tc_U-<br>NP |
| 1602093-08    | P5P8-8         | Uranium 238 | 11600  | ug/L     | 142  | ICPMS-Tc_U-<br>NP |

| 1602093-09 | P5P8-9  | Uranium 238 | 10900 | ug/L     | 1.42 | ICPMS-Tc_U-       |
|------------|---------|-------------|-------|----------|------|-------------------|
| 1602093-10 | P5P8-10 | рН          | 8.78  | pH Units |      | pH-NP             |
| 1602093-10 | P5P8-10 | Uranium 238 | 9570  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-12 | P5P8-12 | Uranium 238 | 8040  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-15 | P5P8-15 | pН          | 8.81  | pH Units |      | pH-NP             |
| 1602093-15 | P5P8-15 | Uranium 238 | 6140  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-18 | P5P8-18 | Uranium 238 | 4840  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-20 | P5P8-20 | pН          | 8.74  | pH Units |      | pH-NP             |
| 1602093-20 | P5P8-20 | Uranium 238 | 7050  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-21 | P5P8-21 | Uranium 238 | 5980  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-22 | P5P8-22 | pH          | 8.69  | pH Units |      | pH-NP             |
| 1602093-22 | P5P8-22 | Uranium 238 | 5290  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-23 | P5P8-23 | Uranium 238 | 4710  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-24 | P5P8-24 | pH          | 8.77  | pH Units |      | pH-NP             |
| 1602093-24 | P5P8-24 | Uranium 238 | 4350  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-25 | P5P8-25 | Uranium 238 | 4010  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-26 | P5P8-26 | Uranium 238 | 3780  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-27 | P5P8-27 | Uranium 238 | 3480  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-28 | P5P8-28 | Uranium 238 | 3320  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-29 | P5P8-29 | pH          | 8.73  | pH Units |      | pH-NP             |
| 1602093-29 | P5P8-29 | Uranium 238 | 3130  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-32 | P5P8-32 | Uranium 238 | 2640  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-34 | P5P8-34 | pH          | 8.84  | pH Units |      | pH-NP             |
| 1602093-34 | P5P8-34 | Uranium 238 | 3960  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-35 | P5P8-35 | Uranium 238 | 3640  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-36 | P5P8-36 | pH          | 8.92  | pH Units |      | pH-NP             |
| 1602093-36 | P5P8-36 | Uranium 238 | 3150  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-37 | P5P8-37 | Uranium 238 | 2850  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-38 | P5P8-38 | pH          | 8.79  | pH Units |      | pH-NP             |
| 1602093-38 | P5P8-38 | Uranium 238 | 2750  | ug/L     | 1.42 | ICPMS-Ic_U-<br>NP |
| 1602093-39 | P5P8-39 | Uranium 238 | 2600  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-40 | P5P8-40 | Uranium 238 | 2440  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-41 | P5P8-41 | Uranium 238 | 2280  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-42 | P5P8-42 | Uranium 238 | 2170  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-43 | P5P8-43 | pH          | 8.74  | pH Units | 1.45 | pH-NP             |
| 1602093-43 | P5P8-43 | Uranium 238 | 2050  | ug/L     | 1.42 | ICPMS-Tc_U-       |
| 1602093-45 | P5P8-45 | Uranium 238 | 1890  | ug/L     | 1.42 | ICPMS-Tc_U-       |
| 1602093-47 | P5P8-47 | nH          | 8.78  | pH Units |      | pH-NP             |
| 1602093-47 | P5P8-47 | Uranium 238 | 1710  | ug/L     | 1.42 | ICPMS-Tc_U-       |
| 1602093-50 | P5P8-50 | Uranium 238 | 1520  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-51 | P5P8-51 | pH          | 8.7   | pH Units |      | pH-NP             |
| 1602093-55 | P5P8-55 | Uranium 238 | 1280  | ug/L     | 1.42 | ICPMS-Tc_U-<br>NP |
| 1602093-56 | P5P8-56 | pН          | 8.64  | pH Units |      | pH-NP             |

| 1602093-57 | P5P8-57 | Bromide | ND   | ug/mL | 5 | Anions by IC-<br>NP |
|------------|---------|---------|------|-------|---|---------------------|
| 1602093-58 | P5P8-58 | Bromide | ND   | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-59 | P5P8-59 | Bromide | 8.16 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-60 | P5P8-60 | Bromide | 22.3 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-61 | P5P8-61 | Bromide | 33.4 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-62 | P5P8-62 | Bromide | 41.7 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-63 | P5P8-63 | Bromide | 46.9 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-64 | P5P8-64 | Bromide | 49.6 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-65 | P5P8-65 | Bromide | 50.1 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-66 | P5P8-66 | Bromide | 50.3 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-68 | P5P8-68 | Bromide | 50.2 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-70 | P5P8-70 | Bromide | 50.2 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-72 | P5P8-72 | Bromide | 50.1 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-74 | P5P8-74 | Bromide | 49.9 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-76 | P5P8-76 | Bromide | 50.2 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602093-79 | P5P8-79 | Bromide | 50   | ug/mL | 5 | Anions by IC-<br>NP |

# Pore Volume and stop flow data for <2mm composite column B347P5 and B347P8

| Vial # | Pore volumes | COMMENTS          |
|--------|--------------|-------------------|
| 1      | 0.19         | Start             |
| 2      | 0.40         |                   |
| 3      | 0.61         |                   |
| 4      | 0.81         |                   |
| 5      | 1.02         |                   |
| 6      | 1.22         |                   |
| 7      | 1.43         |                   |
| 8      | 1.65         |                   |
| 9      | 1.86         |                   |
| 10     | 2.08         |                   |
| 11     | 2.28         |                   |
| 12     | 2.50         |                   |
| 13     | 2.71         |                   |
| 14     | 2.91         |                   |
| 15     | 3.13         |                   |
| 16     | 3.34         |                   |
| 17     | 3.55         |                   |
| 18     | 3.76         |                   |
| 19     | 3.91         | 48 hour stop flow |
| 20     | 4.07         |                   |
| 21     | 4.28         |                   |
| 22     | 4.49         |                   |
| 23     | 4.70         |                   |
| 24     | 4.91         |                   |
| 25     | 5.11         |                   |
| 26     | 5.32         |                   |
| 27     | 5.53         |                   |
| 28     | 5.74         |                   |
| 29     | 5.95         |                   |
| 30     | 6.16         |                   |
| 31     | 6.37         |                   |
| 32     | 6.58         |                   |
| 33     | 6.63         | 72 hour stop flow |
| 34     | 6.82         |                   |

| 35 | 7.02  |      |
|----|-------|------|
| 36 | 7.22  |      |
| 37 | 7.40  |      |
| 38 | 7.59  |      |
| 39 | 7.79  |      |
| 40 | 7.98  |      |
| 41 | 8.18  |      |
| 42 | 8.29  |      |
| 43 | 8.48  |      |
| 44 | 8.67  |      |
| 45 | 8.87  |      |
| 46 | 9.06  |      |
| 47 | 9.20  |      |
| 48 | 9.39  |      |
| 49 | 9.59  |      |
| 50 | 9.78  |      |
| 51 | 9.98  |      |
| 52 | 10.12 |      |
| 53 | 10.27 |      |
| 54 | 10.47 |      |
| 55 | 10.62 |      |
| 56 | 10.70 | Stop |

### Analytical Data for <2mm column B347R1

| LabNumbe<br>r | SampleName | Analyte     | Analyte Result |          | EQL  | Analysis          |
|---------------|------------|-------------|----------------|----------|------|-------------------|
| 1602094-01    | 7R1-1      | nH          | 8 07           | pH Units |      | pH-NP             |
| 1602094-01    | 7R1-1      | Uranium 238 | 3600           | ug/L     | 14.2 | ICPMS-Tc_U-       |
| 1602094-02    | 7R1-2      | Uranium 238 | 4160           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-03    | 7R1-3      | pН          | 8.68           | pH Units |      | pH-NP             |
| 1602094-03    | 7R1-3      | Uranium 238 | 4270           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-04    | 7R1-4      | Uranium 238 | 4110           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-05    | 7R1-5      | pН          | 8.5            | pH Units |      | pH-NP             |
| 1602094-05    | 7R1-5      | Uranium 238 | 4140           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-06    | 7R1-6      | Uranium 238 | 4040           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-07    | 7R1-7      | Uranium 238 | 3880           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-08    | 7R1-8      | Uranium 238 | 3590           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-09    | 7R1-9      | Uranium 238 | 3510           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-10    | 7R1-10     | pН          | 8.59           | pH Units |      | pH-NP             |
| 1602094-10    | 7R1-10     | Uranium 238 | 3280           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-12    | 7R1-12     | Uranium 238 | 2990           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-15    | 7R1-15     | pН          | 8.43           | pH Units |      | pH-NP             |
| 1602094-15    | 7R1-15     | Uranium 238 | 2570           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-18    | 7R1-18     | Uranium 238 | 2400           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-20    | 7R1-20     | pН          | 8.41           | pH Units |      | pH-NP             |
| 1602094-20    | 7R1-20     | Uranium 238 | 2950           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-21    | 7R1-21     | Uranium 238 | 2790           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-22    | 7R1-22     | pН          | 8.42           | pH Units |      | pH-NP             |
| 1602094-22    | 7R1-22     | Uranium 238 | 2490           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-23    | 7R1-23     | Uranium 238 | 2430           | ug/L     | 14.2 | ICPMS-Tc_U-<br>NP |
| 1602094-24    | 7R1-24     | рН          | 8.46           | pH Units |      | pH-NP             |

| 1602094-24 | 7R1-24 | Uranium 238 | 2320 ug/L 14.2            |          | 14.2              | ICPMS-Tc_U-         |
|------------|--------|-------------|---------------------------|----------|-------------------|---------------------|
| 1602094-25 | 7R1-25 | Uranium 238 | 2240                      | ug/L     | 14.2              | ICPMS-Tc_U-         |
| 1602094-26 | 7R1-26 | Uranium 238 | 2020                      | ug/L     | 14.2              | ICPMS-Tc_U-         |
| 1602094-27 | 7R1-27 | Uranium 238 | 1990                      | ug/L     | 14.2              | ICPMS-Tc_U-         |
| 1602094-28 | 7R1-28 | Uranium 238 | 1920                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-29 | 7R1-29 | рН          | 8 4 1                     | pH Units |                   | pH-NP               |
| 1602094-29 | 7R1-29 | Uranium 238 | 1880                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-32 | 7R1-32 | Uranium 238 | 1690                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-34 | 7R1-34 | pH          | 8.47                      | pH Units |                   | pH-NP               |
| 1602094-34 | 7R1-34 | Uranium 238 | 2320                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-35 | 7R1-35 | Uranium 238 | 2140                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-36 | 7R1-36 | pH          | 8.5                       | pH Units |                   | pH-NP               |
| 1602094-36 | 7R1-36 | Uranium 238 | 1940                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-37 | 7R1-37 | Uranium 238 | 1810                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-38 | 7R1-38 | pH          | 8.48                      | pH Units |                   | pH-NP               |
| 1602094-38 | 7R1-38 | Uranium 238 | 1770                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-39 | 7R1-39 | Uranium 238 | 1700                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-40 | 7R1-40 | Uranium 238 | ranium 238 1640 ug/L 14.2 |          | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-41 | 7R1-41 | Uranium 238 | 238 1610 ug/L 14.2        |          | ICPMS-Tc_U-<br>NP |                     |
| 1602094-42 | 7R1-42 | Uranium 238 | 1500                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-43 | 7R1-43 | pH          | 8.51                      | pH Units |                   | pH-NP               |
| 1602094-43 | 7R1-43 | Uranium 238 | 1420                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-45 | 7R1-45 | Uranium 238 | 1300                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-47 | 7R1-47 | pH          | 8.46                      | pH Units |                   | pH-NP               |
| 1602094-47 | 7R1-47 | Uranium 238 | 1280                      | ug/L     | 14.2              | ICPMS-Te_U-<br>NP   |
| 1602094-50 | 7R1-50 | Uranium 238 | 1110                      | ug/L     | 14.2              | ICPMS-Tc_U-<br>NP   |
| 1602094-51 | 7R1-51 | pH          | 8.55                      | pH Units |                   | pH-NP               |
| 1602094-55 | 7R1-55 | Uranium 238 | 977                       | ug/L     | 14.2              | ICPMS-Te_U-<br>NP   |
| 1602094-56 | 7R1-56 | pH          | 8.33                      | pH Units |                   | pH-NP               |
| 1602094-57 | 7R1-57 | Bromide     | ND                        | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-58 | 7R1-58 | Bromide     | ND                        | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-59 | 7R1-59 | Bromide     | ND                        | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-60 | 7R1-60 | Bromide     | 24.4                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-61 | 7R1-61 | Bromide     | 45.2                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-62 | 7R1-62 | Bromide     | 49.6                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-63 | 7R1-63 | Bromide     | 50.3                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-64 | 7R1-64 | Bromide     | 50.2                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-65 | 7R1-65 | Bromide     | 50.3                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-66 | 7R1-66 | Bromide     | 50.2                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-68 | 7R1-68 | Bromide     | 50.1                      | ug/mL    | 5                 | Anions by IC-<br>NP |
| 1602094-70 | 7R1-70 | Bromide     | 50.2                      | ug/mL    | 5                 | Anions by IC-       |

| 1602094-72 | 7R1-72 | Bromide | 50.2 | ug/mL | 5 | Anions by IC-<br>NP |
|------------|--------|---------|------|-------|---|---------------------|
| 1602094-74 | 7R1-74 | Bromide | 50   | ug/mL | 5 | Anions by IC-<br>NP |
| 1602094-76 | 7R1-76 | Bromide | 49.8 | ug/mL | 5 | Anions by IC-<br>NP |
| 1602094-79 | 7R1-79 | Bromide | 50   | ug/mL | 5 | Anions by IC-<br>NP |

### Pore Volume and stop flow data for <2mm column B347R1

| Vial # | Pore volumes | COMMENTS          |
|--------|--------------|-------------------|
| 1      | 0.22         | Start             |
| 2      | 0.45         |                   |
| 3      | 0.69         |                   |
| 4      | 0.91         |                   |
| 5      | 1.14         |                   |
| 6      | 1.38         |                   |
| 7      | 1.61         |                   |
| 8      | 1.85         |                   |
| 9      | 2.08         |                   |
| 10     | 2.32         |                   |
| 11     | 2.56         |                   |
| 12     | 2.79         |                   |
| 13     | 3.02         |                   |
| 14     | 3.25         |                   |
| 15     | 3.48         |                   |
| 16     | 3.71         |                   |
| 17     | 3.95         |                   |
| 18     | 4.19         |                   |
| 19     | 4.33         | 48 hour stop flow |
| 20     | 4.55         |                   |
| 21     | 4.79         |                   |
| 22     | 5.02         |                   |
| 23     | 5.26         |                   |
| 24     | 5.49         |                   |
| 25     | 5.73         |                   |
| 26     | 5.96         |                   |
| 27     | 6.20         |                   |
| 28     | 6.43         |                   |
| 29     | 6.66         |                   |
| 30     | 6.90         |                   |
| 31     | 7.13         |                   |
| 32     | 7.13         |                   |
| 33     | 7.37         | 72 hour stop flow |
| 34     | 7.43         | 72 nour stop now  |
| 25     | 7.04         |                   |
| 35     | 2.00         |                   |
| 30     | 8.00         |                   |
| 37     | 0.50         |                   |
| 30     | 0.32         |                   |
| 39     | 0./4         |                   |
| 40     | 0.90         |                   |
| 41     | 9.10         |                   |
| 42     | 9.40         |                   |
| 43     | 9.03         |                   |
| 44     | 7.84         |                   |
| 45     | 10.07        |                   |
| 46     | 10.29        |                   |
| 47     | 10.50        |                   |
| 48     | 10.72        |                   |
| 49     | 10.95        |                   |
| 50     | 11.17        |                   |
| 51     | 11.39        |                   |
| 52     | 11.62        |                   |
| 53     | 11.84        |                   |
| 54     | 12.06        |                   |
| 55     | 12.28        |                   |
| 56     | 12.37        | stop              |

| Analytical Data for <2mm column B347T7 |
|----------------------------------------|
|----------------------------------------|

| LabNumbe   | SampleNam   | Analyte     | Result | Units        | EQL   | Analysis          |
|------------|-------------|-------------|--------|--------------|-------|-------------------|
| r          | e<br>TTTT 1 |             |        | ** **        |       | U.ND              |
| 1602095-01 | /1/-1       | pH          | /.6/   | pH Units     | 0.071 | pH-NP             |
| 1602095-01 | /1/-1       | Uranium 238 | 2.39   | ug/L         | 0.071 | ICPMS-IC_U-NP     |
| 1602095-02 | 717-2       | Diamum 238  | 4.38   | ug/L         | 0.071 | nu ND             |
| 1602095-03 | 717-3       | Uranium 238 | 5.45   |              | 0.071 | ICPMS-Te U-NP     |
| 1602095-04 | 717-3       | Uranium 238 | 5.45   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-04 | 717-5       | nH          | 8.06   | nH Units     | 0.071 | nH-NP             |
| 1602095-05 | 717-5       | Uranium 238 | 5.72   |              | 0.071 | ICPMS-Te U-NP     |
| 1602095-06 | 7T7-6       | Uranium 238 | 5.9    | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-07 | 7T7-7       | Uranium 238 | 5.89   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-08 | 7T7-8       | Uranium 238 | 5.85   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-09 | 7T7-9       | Uranium 238 | 5.85   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-10 | 7T7-10      | pH          | 8.17   | pH Units     |       | pH-NP             |
| 1602095-10 | 7T7-10      | Uranium 238 | 5.66   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-12 | 7T7-12      | Uranium 238 | 5.67   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-15 | 7T7-15      | pH          | 8.19   | pH Units     |       | pH-NP             |
| 1602095-15 | 7T7-15      | Uranium 238 | 5.58   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-18 | 7T7-18      | Uranium 238 | 5.55   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-20 | 7T7-20      | pH          | 8.25   | pH Units     |       | pH-NP             |
| 1602095-20 | 717-20      | Uranium 238 | 6.81   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-21 | 717-21      | Uranium 238 | 6.35   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-22 | 717-22      | pH          | 8.2    | pH Units     | 0.071 | pH-NP             |
| 1602095-22 | /1/-22      | Uranium 238 | 6.29   | ug/L         | 0.071 | ICPMS-Ic_U-NP     |
| 1602095-23 | 717-23      | Uranium 238 | 5.95   | ug/L         | 0.071 | ICPMS-IC_U-NP     |
| 1602095-24 | 717-24      | Uranium 238 | 8.21   | pH Units     | 0.071 | ICDMS To U ND     |
| 1602093-24 | 717-24      | Uranium 238 | 5.67   | ug/L         | 0.071 | ICPMS To U NP     |
| 1602095-25 | 717-25      | Uranium 238 | 5.65   | ug/L         | 0.071 | ICPMS-TC_U-NP     |
| 1602095-27 | 717-20      | Uranium 238 | 5.05   | ug/L<br>ug/I | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-27 | 7T7-28      | Uranium 238 | 5 33   | ug/L<br>ug/L | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-29 | 7T7-29      | nH          | 8.21   | nH Units     | 0.071 | nH-NP             |
| 1602095-29 | 7T7-29      | Uranium 238 | 5.29   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-32 | 7T7-32      | Uranium 238 | 5.34   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-34 | 7T7-34      | pH          | 8.24   | pH Units     |       | pH-NP             |
| 1602095-34 | 7T7-34      | Uranium 238 | 6.48   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-35 | 7T7-35      | Uranium 238 | 6.42   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-36 | 7T7-36      | pН          | 8.26   | pH Units     |       | pH-NP             |
| 1602095-36 | 7T7-36      | Uranium 238 | 5.72   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-37 | 7T7-37      | Uranium 238 | 5.51   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-38 | 7T7-38      | pH          | 8.33   | pH Units     |       | pH-NP             |
| 1602095-38 | 717-38      | Uranium 238 | 5.9    | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-39 | 717-39      | Uranium 238 | 6.27   | ug/L         | 0.071 | ICPMS-Ic_U-NP     |
| 1602095-40 | /1/-40      | Uranium 238 | 6.04   | ug/L         | 0.071 | ICPMS-IC_U-NP     |
| 1602095-41 | /1/-41      | Uranium 238 | 6.03   | ug/L         | 0.071 | ICPMS-IC_U-NP     |
| 1602093-42 | 717-42      | nH          | 8.21   | nH Unite     | 0.071 | pH ND             |
| 1602095-43 | 717-43      | Uranium 238 | 6.09   |              | 0.071 | ICPMS-Tc U-NP     |
| 1602095-45 | 7T7-45      | Uranium 238 | 6.48   | ug/L         | 0.071 | ICPMS-Tc_U-NP     |
| 1602095-43 | 717-43      | nH          | 8.42   | nH Units     | 0.071 | pH-NP             |
| 1602095-47 | 7T7-47      | Uranium 238 | 6.83   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-50 | 7T7-50      | Uranium 238 | 7.68   | ug/L<br>ug/L | 0.071 | ICPMS-Tc U-NP     |
| 1602095-51 | 7T7-51      | pH          | 8.37   | pH Units     |       | pH-NP             |
| 1602095-55 | 7T7-55      | Uranium 238 | 9.56   | ug/L         | 0.071 | ICPMS-Tc U-NP     |
| 1602095-56 | 7T7-56      | pH          | 8.3    | pH Units     |       | pH-NP             |
| 1602095-57 | 7T7-57      | Bromide     | ND     | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-58 | 7T7-58      | Bromide     | ND     | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-59 | 7T7-59      | Bromide     | ND     | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-60 | 7T7-60      | Bromide     | 14.5   | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-61 | 7T7-61      | Bromide     | 41.5   | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-62 | 7T7-62      | Bromide     | 49.2   | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-63 | 7T7-63      | Bromide     | 50.1   | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-64 | 717-64      | Bromide     | 50     | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-65 | 717-65      | Bromide     | 50     | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-66 | 717-66      | Bromide     | 50.1   | ug/mL        | 5     | Anions by IC-NP   |
| 1602095-68 | /1/-68      | Bromide     | 50.1   | ug/mL        | . 5   | ⊥ Anions by IC-NP |

| 1602095-70 | 7T7-70 | Bromide | 50   | ug/mL | 5 | Anions by IC-NP |
|------------|--------|---------|------|-------|---|-----------------|
| 1602095-72 | 7T7-72 | Bromide | 50   | ug/mL | 5 | Anions by IC-NP |
| 1602095-74 | 7T7-74 | Bromide | 50   | ug/mL | 5 | Anions by IC-NP |
| 1602095-76 | 7T7-76 | Bromide | 49.8 | ug/mL | 5 | Anions by IC-NP |
| 1602095-79 | 7T7-79 | Bromide | 49.8 | ug/mL | 5 | Anions by IC-NP |

| low |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
| low |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
| _   |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

# Pore Volume and stop flow data for <2mm column B347T7

Analytical Data for in-tact column B347P4

| LabNumber     | SampleName    | Analyte     | Result     | Units         | EQL  | Analysis             |
|---------------|---------------|-------------|------------|---------------|------|----------------------|
| 1602051-01    | B347P4 vial 1 | Aluminum    | ND         | ug/L          | 165  | ICP-OES              |
|               |               |             |            |               |      | Vadose-NP            |
| 1602051-01    | B347P4 vial 1 | Calcium     | 26400      | ug/L          | 336  | ICP-OES              |
|               |               |             |            |               |      | Vadose-NP            |
| 1602051-01    | B347P4 vial 1 | Chloride    | 67         | ug/mL         | 2.5  | Anions by IC-NP      |
| 1602051-01    | B347P4 vial 1 | Iron        | ND         | ug/L          | 100  | ICP-OES              |
| 1/02021 01    | D247D4 11     | X           | ND         | /¥            | 22.0 | Vadose-NP            |
| 1602051-01    | B34/P4 vial 1 | Manganese   | ND         | ug/L          | 23.9 | ICP-OES              |
| 1602051 01    | D247D4 wiel 1 | Nitroto     | 20.7       | n a/maI       | 5    | Aniona by IC ND      |
| 1602051-01    | B347P4 vial 1 | nillate     | 20.7       | nH Unite      | 5    | nH ND                |
| 1602051-01    | B347P4 vial 1 | Dhosphate   | 0.42<br>ND | pri Onits     | 7.5  | Anions by IC NP      |
| 1602051-01    | B347P4 vial 1 | Phosphorus  | ND         | ug/IIL        | /.5  | ICP-OFS              |
| 1002031-01    | DJ4/14 viai 1 | Thosphorus  | ND         | ug/L          | 400  | Vadose-NP            |
| 1602051-01    | B347P4 vial 1 | Sulfate     | 50.3       | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-01    | B347P4 vial 1 | Uranium 238 | 1760       | ug/L          | 14.2 | ICPMS-Tc U-NP        |
| 1602051-03    | B347P4 vial 3 | Aluminum    | ND         | ug/L          | 165  | ICP-OES              |
| 1002001 00    | 201111110     |             | 112        | "B"           | 100  | Vadose-NP            |
| 1602051-03    | B347P4 vial 3 | Calcium     | 17100      | ug/L          | 336  | ICP-OES              |
|               |               |             |            | Ŭ             |      | Vadose-NP            |
| 1602051-03    | B347P4 vial 3 | Chloride    | 65.6       | ug/mL         | 2.5  | Anions by IC-NP      |
| 1602051-03    | B347P4 vial 3 | Iron        | ND         | ug/L          | 100  | ICP-OES              |
|               |               |             |            |               |      | Vadose-NP            |
| 1602051-03    | B347P4 vial 3 | Manganese   | ND         | ug/L          | 23.9 | ICP-OES              |
| 1 (0.00) = 1  |               |             |            |               |      | Vadose-NP            |
| 1602051-03    | B347P4 vial 3 | Nıtrate     | 28         | ug/mL         | 5    | Anions by IC-NP      |
| 1602051-03    | B347P4 vial 3 | Phosphate   | ND         | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-03    | B347P4 vial 3 | Phosphorus  | ND         | ug/L          | 408  | ICP-OES              |
| 1(02051 02    | D247D4 1 2    | 0.16.4      | 56.2       | / •           | 7.6  | Vadose-NP            |
| 1602051-03    | B34/P4 Vial 3 | Sulfate     | 2700       | ug/mL         | /.5  | Anions by IC-NP      |
| 1602051-05    | B34/P4 Vial 3 | Uranium 238 | 3790       | ug/L          | 14.2 | ICPMS-IC_U-NP        |
| 1602051-05    | B34/P4 Vial 5 | Aluminum    | ND         | ug/L          | 165  | ICP-OES<br>Vedere NB |
| 1602051 05    | D247D4 viol 5 | Calaium     | 17000      | uc/I          | 226  |                      |
| 1002051-05    | D34/P4 Vial 3 | Calcium     | 17000      | ug/L          | 550  | Vadose-NP            |
| 1602051-05    | B347P4 vial 5 | Chloride    | 67.5       | ug/mI         | 2.5  | Anions by IC-NP      |
| 1602051-05    | B347P4 vial 5 | Iron        | ND         | ug/IIL        | 100  | ICP-OES              |
| 1002001 00    | 20111111110   |             | 112        | <b>"</b> B, 2 | 100  | Vadose-NP            |
| 1602051-05    | B347P4 vial 5 | Manganese   | ND         | ug/L          | 23.9 | ICP-OES              |
|               |               |             |            |               |      | Vadose-NP            |
| 1602051-05    | B347P4 vial 5 | Nitrate     | 27.5       | ug/mL         | 5    | Anions by IC-NP      |
| 1602051-05    | B347P4 vial 5 | pH          | 8.58       | pH Units      |      | pH-NP                |
| 1602051-05    | B347P4 vial 5 | Phosphate   | ND         | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-05    | B347P4 vial 5 | Phosphorus  | ND         | ug/L          | 408  | ICP-OES              |
|               |               |             |            |               |      | Vadose-NP            |
| 1602051-05    | B347P4 vial 5 | Sulfate     | 57.5       | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-05    | B347P4 vial 5 | Uranium 238 | 3920       | ug/L          | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-07    | B347P4 vial 7 | Aluminum    | ND         | ug/L          | 165  | ICP-OES              |
| 1(00051.05    | D247D4 17     | 0.1.        | 20100      | /*            | 227  | Vadose-NP            |
| 1602051-07    | B34/P4 vial / | Calcium     | 20100      | ug/L          | 336  | ICP-OES              |
| 1602051 07    | D247D4 vial 7 | Chlorida    | 65.6       | 110/maT       | 2.5  | vadose-NP            |
| 1602051-07    | D34/P4 Vial / | Iron        | 03.0<br>ND | ug/mL         | 2.3  | AIIIOIIS DY IC-NP    |
| 1002031-07    | DJ4/P4 Viai / | 11011       | ND         | ug/L          | 100  | Vadose-NP            |
| 1602051-07    | B347P4 vial 7 | Manganese   | ND         | 110/I         | 23.9 | ICP-OFS              |
| 1002031-07    | D34/14 Viai / | wianganese  | ND         | ug/L          | 25.7 | Vadose-NP            |
| 1602051-07    | B347P4 vial 7 | Nitrate     | 27.6       | ug/mL         | 5    | Anions by IC-NP      |
| 1602051-07    | B347P4 vial 7 | Phosphate   | ND         | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-07    | B347P4 vial 7 | Phosphorus  | ND         | ug/L          | 408  | ICP-OES              |
|               |               | I           |            |               |      | Vadose-NP            |
| 1602051-07    | B347P4 vial 7 | Sulfate     | 51.8       | ug/mL         | 7.5  | Anions by IC-NP      |
| 1602051-07    | B347P4 vial 7 | Uranium 238 | 2650       | ug/L          | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-09    | B347P4 vial 9 | Aluminum    | ND         | ug/L          | 165  | ICP-OES              |
|               |               |             |            | -             |      | Vadose-NP            |
| 1602051-09    | B347P4 vial 9 | Calcium     | 23700      | ug/L          | 336  | ICP-OES              |
| 4 4000 - 1 00 |               |             |            |               |      | Vadose-NP            |
| 1602051-09    | B347P4 vial 9 | Chloride    | 66.3       | ug/mL         | 2.5  | Anions by IC-NP      |
| 1602051-09    | B347P4 vial 9 | Iron        | ND         | ug/L          | 100  | ICP-OES              |
| 1(03051 00    | D247D4 10     | M           | ND         | /T            | 22.0 | vadose-NP            |
| 1002051-09    | B34/P4 Vial 9 | wanganese   | ND         | ug/L          | 23.9 | ICP-UES<br>Vadore ND |
|               |               |             |            | 1             | 1    | vauosc-inp           |

| 1602051-09 | B347P4 vial 9   | Nitrate      | 27.5       | ug/mL        | 5    | Anions by IC-NP |
|------------|-----------------|--------------|------------|--------------|------|-----------------|
| 1602051-09 | B347P4 vial 9   | pН           | 8.29       | pH Units     |      | pH-NP           |
| 1602051-09 | B347P4 vial 9   | Phosphate    | ND         | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-09 | B347P4 vial 9   | Phosphorus   | ND         | ug/L         | 408  | ICP-OES         |
|            |                 | ··· F        |            |              |      | Vadose-NP       |
| 1602051-09 | B347P4 vial 9   | Sulfate      | 49         | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-09 | B347P4 vial 9   | Uranium 238  | 2220       | ug/L         | 14.2 | ICPMS-Tc U-NP   |
| 1602051-11 | B347P4 vial 11  | Aluminum     | ND         | ug/L<br>ug/I | 165  | ICP-OFS         |
| 1002031-11 | D54/14 viai 11  | 7 Hummun     | ND         | ug/L         | 105  | Vadose-NP       |
| 1602051-11 | B347P4 vial 11  | Calcium      | 24900      | 110/I        | 336  | ICP-OFS         |
| 1002031-11 | D34/14 viai 11  | Calcium      | 24900      | ug/L         | 550  | Vadose-NP       |
| 1602051-11 | B3/7P/ vial 11  | Chloride     | 64.6       | ug/mI        | 2.5  | Anions by IC-NP |
| 1602051-11 | D34714 vial 11  | Iron         | 04.0<br>ND | ug/IIL       | 100  |                 |
| 1002031-11 | D34/F4 viai 11  | 11011        | ND         | ug/L         | 100  | Vadose NP       |
| 1602051 11 | D247D4 vial 11  | Managanaga   | ND         | na/I         | 22.0 |                 |
| 1002051-11 | D34/P4 viai 11  | Wanganese    | ND         | ug/L         | 23.9 | Vedece NP       |
| 1602051 11 | D247D4 viol 11  | Nitroto      | 27.5       | ua/mI        | 5    | Aniona by IC ND |
| 1602051-11 | D34/F4 vial 11  | Dhoamhata    | 27.5<br>ND | ug/mL        | 7.5  | Anions by IC-NP |
| 1002051-11 | D34/P4 vial 11  | Phosphate    | ND         | ug/mL        | 1.5  | Amons by IC-NP  |
| 1602051-11 | B34/P4 vial 11  | Phosphorus   | ND         | ug/L         | 408  | ICP-OES         |
| 1(03051 11 | D247D4 111      | 0.10.4       | 47.7       | / T          | 7.6  | Vadose-NP       |
| 1602051-11 | B34/P4 vial 11  | Suitate      | 4/./       | ug/mL        | /.5  | Anions by IC-NP |
| 1602051-11 | B347P4 vial 11  | Uranium 238  | 1900       | ug/L         | 14.2 | ICPMS-Tc_U-NP   |
| 1602051-13 | B347P4 vial 13  | Aluminum     | ND         | ug/L         | 165  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-13 | B347P4 vial 13  | Calcium      | 26400      | ug/L         | 336  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-13 | B347P4 vial 13  | Chloride     | 64.8       | ug/mL        | 2.5  | Anions by IC-NP |
| 1602051-13 | B347P4 vial 13  | Iron         | ND         | ug/L         | 100  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-13 | B347P4 vial 13  | Manganese    | ND         | ug/L         | 23.9 | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-13 | B347P4 vial 13  | Nitrate      | 27.8       | ug/mL        | 5    | Anions by IC-NP |
| 1602051-13 | B347P4 vial 13  | Phosphate    | ND         | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-13 | B347P4 vial 13  | Phosphorus   | ND         | ug/L         | 408  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-13 | B347P4 vial 13  | Sulfate      | 47.1       | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-13 | B347P4 vial 13  | Uranium 238  | 1550       | ug/L         | 14.2 | ICPMS-Tc_U-NP   |
| 1602051-15 | B347P4 vial 15  | Aluminum     | ND         | ug/L         | 165  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-15 | B347P4 vial 15  | Calcium      | 28000      | ug/L         | 336  | ICP-OES         |
|            |                 |              |            | -            |      | Vadose-NP       |
| 1602051-15 | B347P4 vial 15  | Chloride     | 65.7       | ug/mL        | 2.5  | Anions by IC-NP |
| 1602051-15 | B347P4 vial 15  | Iron         | ND         | ug/L         | 100  | ICP-OES         |
|            |                 |              |            | -            |      | Vadose-NP       |
| 1602051-15 | B347P4 vial 15  | Manganese    | ND         | ug/L         | 23.9 | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-15 | B347P4 vial 15  | Nitrate      | 27.8       | ug/mL        | 5    | Anions by IC-NP |
| 1602051-15 | B347P4 vial 15  | pН           | 8.11       | pH Units     |      | pH-NP           |
| 1602051-15 | B347P4 vial 15  | Phosphate    | ND         | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-15 | B347P4 vial 15  | Phosphorus   | ND         | ug/L         | 408  | ICP-OES         |
|            |                 | •            |            |              |      | Vadose-NP       |
| 1602051-15 | B347P4 vial 15  | Sulfate      | 46.4       | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-15 | B347P4 vial 15  | Uranium 238  | 1420       | ug/L         | 14.2 | ICPMS-Tc U-NP   |
| 1602051-20 | B347P4 vial 20  | Aluminum     | ND         | ug/L         | 165  | ICP-OES         |
|            |                 |              |            | Ľ ľ          |      | Vadose-NP       |
| 1602051-20 | B347P4 vial 20  | Calcium      | 30700      | ug/L         | 336  | ICP-OES         |
|            |                 |              |            | Ľ            |      | Vadose-NP       |
| 1602051-20 | B347P4 vial 20  | Chloride     | 65.6       | ug/mL        | 2.5  | Anions by IC-NP |
| 1602051-20 | B347P4 vial 20  | Iron         | ND         | ug/L         | 100  | ICP-OES         |
|            |                 |              |            | Ŭ            |      | Vadose-NP       |
| 1602051-20 | B347P4 vial 20  | Manganese    | ND         | ug/L         | 23.9 | ICP-OES         |
|            |                 | Ŭ            |            | Ĭ            |      | Vadose-NP       |
| 1602051-20 | B347P4 vial 20  | Nitrate      | 27.8       | ug/mL        | 5    | Anions by IC-NP |
| 1602051-20 | B347P4 vial 20  | pН           | 8.1        | pH Units     |      | pH-NP           |
| 1602051-20 | B347P4 vial 20  | Phosphate    | ND         | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-20 | B347P4 vial 20  | Phosphorus   | ND         | ug/L         | 408  | ICP-OES         |
|            |                 |              |            |              |      | Vadose-NP       |
| 1602051-20 | B347P4 vial 20  | Sulfate      | 45.4       | ug/mL        | 7.5  | Anions by IC-NP |
| 1602051-20 | B347P4 vial 20  | Uranium 238  | 1230       | 110/I        | 14.2 | ICPMS-Te U-NP   |
| 1602051-25 | B347P4 vial 25  | Aluminum     | ND         | 100/I        | 165  | ICP-OFS         |
| 1002031-23 | 1007/17 viai 20 | 1 signifiant |            | ug/L         | 105  | Vadose-NP       |
| 1602051-25 | B347P4 vial 25  | Calcium      | 32200      | ησ/Ι         | 336  | ICP-OFS         |
| 1002031-23 | 1007/17 Viai 20 | Cultum       | 52200      | 46/L         | 550  | Vadose-NP       |
| 1602051-25 | B347P4 vial 25  | Chloride     | 64.2       | ug/mL        | 2.5  | Anions by IC-NP |
|            |                 |              | • • • =    |              |      |                 |

| 1602051-25 | B347P4 vial 25                   | Iron        | ND         | ug/L       | 100  | ICP-OES              |
|------------|----------------------------------|-------------|------------|------------|------|----------------------|
| 1602051-25 | B347P4 vial 25                   | Manganese   | ND         | ug/L       | 23.9 | ICP-OES              |
| 1602051 25 | D247D4 vial 25                   | Nitrata     | 27.9       | u a /m I   | 5    | Vadose-NP            |
| 1602051-25 | B34/P4 Vial 25<br>B347P4 vial 25 | Phosphate   | 27.8<br>ND | ug/mL      | 75   | Anions by IC-NP      |
| 1602051-25 | B347P4 vial 25                   | Phospharus  | ND         | ug/IIL     | 408  | ICP-OES              |
| 1002001 20 | 201711111120                     | Theophorus  | 112        | 48, 23     | 100  | Vadose-NP            |
| 1602051-25 | B347P4 vial 25                   | Sulfate     | 44.6       | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-25 | B347P4 vial 25                   | Uranium 238 | 1050       | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-30 | B347P4 vial 30                   | Aluminum    | ND         | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-30 | B347P4 vial 30                   | Calcium     | 32600      | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-30 | B347P4 vial 30                   | Chloride    | 65         | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-30 | B347P4 vial 30                   | Iron        | ND         | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-30 | B347P4 vial 30                   | Manganese   | ND         | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-30 | B347P4 vial 30                   | Nitrate     | 27.8       | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-30 | B347P4 vial 30                   | pН          | 7.98       | pH Units   |      | pH-NP                |
| 1602051-30 | B347P4 vial 30                   | Phosphate   | ND         | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-30 | B347P4 vial 30                   | Phosphorus  | ND         | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-30 | B347P4 vial 30                   | Sulfate     | 44.2       | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-30 | B347P4 vial 30                   | Uranium 238 | 920        | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-35 | B347P4 vial 35                   | Aluminum    | ND         | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-35 | B347P4 vial 35                   | Calcium     | 32700      | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-35 | B347P4 vial 35                   | Chloride    | 63.9       | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-35 | B347P4 vial 35                   | Iron        | ND         | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-35 | B347P4 vial 35                   | Manganese   | ND         | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-35 | B347P4 vial 35                   | Nitrate     | 27.8       | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-35 | B347P4 vial 35                   | Phosphate   | ND         | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-35 | B347P4 vial 35                   | Phosphorus  | ND         | ug/L       | 408  | ICP-OES              |
| 1(02051.25 | D247D4 : 1.25                    | 0.10.4      | 4.4        | / <b>T</b> | 7.6  | Vadose-NP            |
| 1602051-35 | B34/P4 Vial 35<br>B347P4 vial 35 | Uranium 238 | 803        | ug/mL      | /.5  | ICPMS To U NP        |
| 1602051-55 | B347P4 vial 40                   | Aluminum    | ND         | ug/L       | 165  | ICP-OES              |
| 1002001 10 | 251711111111                     |             | 112        | «B/ 12     | 100  | Vadose-NP            |
| 1602051-40 | B347P4 vial 40                   | Calcium     | 34000      | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-40 | B347P4 vial 40                   | Chloride    | 65         | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-40 | B347P4 vial 40                   | Iron        | ND         | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-40 | B347P4 vial 40                   | Manganese   | ND         | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-40 | B347P4 vial 40                   | Nitrate     | 27.9       | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-40 | B347P4 vial 40                   | pН          | 8.12       | pH Units   | i    | pH-NP                |
| 1602051-40 | B347P4 vial 40                   | Phosphate   | ND         | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-40 | B347P4 vial 40                   | Phosphorus  | ND         | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-40 | B347P4 vial 40                   | Sulfate     | 43.8       | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-40 | B347P4 vial 40                   | Uranium 238 | 782        | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-50 | B34/P4 vial 50                   | Aluminum    | ND         | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-50 | B347P4 vial 50                   | Calcium     | 35300      | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-50 | B347P4 vial 50                   | Chloride    | 66.1       | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-50 | B347P4 vial 50                   | Iron        | ND         | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-50 | B347P4 vial 50                   | Manganese   | ND         | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-50 | B347P4 vial 50                   | Nitrate     | 28.4       | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-50 | B347P4 vial 50                   | рН          | 8.09       | pH Units   |      | pH-NP                |
| 1602051-50 | B347P4 vial 50                   | Phosphate   | ND         | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-50 | B347P4 vial 50                   | Phosphorus  | ND         | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-50 | B347P4 vial 50                   | Sulfate     | 44.2       | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-50 | B347P4 vial 50                   | Uranium 238 | 722        | ug/L       | 14.2 | ICPMS-Tc U-NP        |

| 1602051-60 | B347P4 vial 60  | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP         |
|------------|-----------------|-------------|-------|----------|------|------------------------------|
| 1602051-60 | B347P4 vial 60  | Calcium     | 35300 | ug/L     | 336  | ICP-OES<br>Vadose-NP         |
| 1602051-60 | B347P4 vial 60  | Chloride    | 65.7  | ug/mL    | 2.5  | Anions by IC-NP              |
| 1602051-60 | B347P4 vial 60  | Iron        | ND    | ug/L     | 100  | ICP-OES                      |
|            |                 |             |       |          |      | Vadose-NP                    |
| 1602051-60 | B347P4 vial 60  | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP         |
| 1602051-60 | B347P4 vial 60  | Nitrate     | 28.2  | ug/mL    | 5    | Anions by IC-NP              |
| 1602051-60 | B347P4 vial 60  | pН          | 8.15  | pH Units |      | pH-NP                        |
| 1602051-60 | B347P4 vial 60  | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-60 | B347P4 vial 60  | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP         |
| 1602051-60 | B347P4 vial 60  | Sulfate     | 43.4  | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-60 | B347P4 vial 60  | Uranium 238 | 643   | ug/L     | 14.2 | ICPMS-Tc_U-NP                |
| 1602051-70 | B347P4 vial 70  | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP         |
| 1602051-70 | B347P4 vial 70  | Calcium     | 36200 | ug/L     | 336  | ICP-OES<br>Vadose-NP         |
| 1602051-70 | B347P4 vial 70  | Chloride    | 65.1  | ug/mL    | 2.5  | Anions by IC-NP              |
| 1602051-70 | B347P4 vial 70  | Iron        | ND    | ug/L     | 100  | ICP-OES                      |
| 1602051-70 | B347P4 vial 70  | Manganese   | ND    | ug/L     | 23.9 | Vadose-NP<br>ICP-OES         |
|            |                 |             |       |          |      | Vadose-NP                    |
| 1602051-70 | B347P4 vial 70  | Nitrate     | 28    | ug/mL    | 5    | Anions by IC-NP              |
| 1602051-70 | B347P4 vial 70  | pН          | 8.1   | pH Units |      | pH-NP                        |
| 1602051-70 | B347P4 vial 70  | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-70 | B347P4 vial 70  | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP         |
| 1602051-70 | B347P4 vial 70  | Sulfate     | 42.9  | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-70 | B347P4 vial 70  | Uranium 238 | 560   | ug/L     | 14.2 | ICPMS-Tc_U-NP                |
| 1602051-80 | B34/P4 vial 80  | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP         |
| 1602051-80 | B347P4 vial 80  | Calcium     | 36800 | ug/L     | 336  | ICP-OES<br>Vadose-NP         |
| 1602051-80 | B347P4 vial 80  | Chloride    | 65.6  | ug/mL    | 2.5  | Anions by IC-NP              |
| 1602051-80 | B347P4 vial 80  | Iron        | ND    | ug/L     | 100  | ICP-OES                      |
|            |                 |             |       |          |      | Vadose-NP                    |
| 1602051-80 | B347P4 vial 80  | Manganese   | ND    | ug/L     | 23.9 | ICP-OES                      |
| 1602051 80 | B347D4 vial 80  | Nitrata     | 28.2  | ua/mI    | 5    | Anions by IC NP              |
| 1602051-80 | B347P4 vial 80  | nH          | 8.09  | nH Units | 5    | nH-NP                        |
| 1602051-80 | B347P4 vial 80  | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-80 | B347P4 vial 80  | Phosphorus  | ND    | ug/IL    | 408  | ICP-OES                      |
| 1602051-80 | B347P4 vial 80  | Sulfate     | 43    | ug/mL    | 7.5  | Vadose-NP<br>Anions by IC-NP |
| 1602051-80 | B347P4 vial 80  | Uranium 238 | 502   | ug/L     | 14.2 | ICPMS-Tc U-NP                |
| 1602051-90 | B347P4 vial 90  | Aluminum    | ND    | ug/L     | 165  | ICP-OES                      |
| 1(02051.00 | D247D4 : 100    | <u> </u>    | 2(500 |          | 226  | Vadose-NP                    |
| 1602051-90 | B34/P4 vial 90  | Calcium     | 36500 | ug/L     | 336  | Vadose-NP                    |
| 1602051-90 | B347P4 vial 90  | Chloride    | 65    | ug/mL    | 2.5  | Anions by IC-NP              |
| 1602051-90 | B347P4 vial 90  | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP         |
| 1602051-90 | B347P4 vial 90  | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP         |
| 1602051-90 | B347P4 vial 90  | Nitrate     | 28.1  | ug/mL    | 5    | Anions by IC-NP              |
| 1602051-90 | B347P4 vial 90  | pH          | 8.05  | pH Units |      | pH-NP                        |
| 1602051-90 | B347P4 vial 90  | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-90 | B347P4 vial 90  | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP         |
| 1602051-90 | B347P4 vial 90  | Sulfate     | 42.8  | ug/mL    | 7.5  | Anions by IC-NP              |
| 1602051-90 | B347P4 vial 90  | Uranium 238 | 487   | ug/L     | 14.2 | ICPMS-Tc_U-NP                |
| 1602051-AA | B347P4 vial 100 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP         |
| 1602051-AA | B347P4 vial 100 | Calcium     | 36200 | ug/L     | 336  | ICP-OES<br>Vadose-NP         |
| 1602051-AA | B347P4 vial 100 | Chloride    | 65.5  | ug/mL    | 2.5  | Anions by IC-NP              |
| 1602051-AA | B347P4 vial 100 | Iron        | ND    | ug/L     | 100  | ICP-OES                      |
|            | <u> </u>        |             |       | -        |      | Vadose-NP                    |
| 1602051-AA | B347P4 vial 100 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP         |
| 1602051-AA | B347P4 vial 100 | Nitrate     | 28.1  | ug/mL    | 5    | Anions by IC-NP              |

| 1602051-AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.02                                                                                                                                                                                                                                                                                                                                            | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1602051-AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.8                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 502                                                                                                                                                                                                                                                                                                                                             | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICPMS-Tc_U-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37100                                                                                                                                                                                                                                                                                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.5                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D0/001 11/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.2                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B34/P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.0/                                                                                                                                                                                                                                                                                                                                            | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1(00051 41/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D247D4 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.0                                                                                                                                                                                                                                                                                                                                            | / <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B34/P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Suitate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.9                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-INP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1602051-AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B34/P4 vial 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/2                                                                                                                                                                                                                                                                                                                                             | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICPMS-IC_U-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B34/P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES<br>Vedere NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1602051 AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D247D4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calaium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24700                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B34/P4 viai 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24700                                                                                                                                                                                                                                                                                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES<br>Vadasa NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1602051 AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D247D4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chlorida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.6                                                                                                                                                                                                                                                                                                                                            | ua/mI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aniona by IC ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D34/F4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05.0<br>ND                                                                                                                                                                                                                                                                                                                                      | ug/IIIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1002031-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D34/14 viai 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | <u>ησ/Ι</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICP-OFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1002031-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D54/14 viai 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wanganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.5                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                              | nH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                              | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.3                                                                                                                                                                                                                                                                                                                                            | ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uranium 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1640                                                                                                                                                                                                                                                                                                                                            | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICPMS-Tc U-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1602051-AU<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B347P4 vial 120<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uranium 238<br>Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1640<br>ND                                                                                                                                                                                                                                                                                                                                      | ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICPMS-Tc_U-NP<br>ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1602051-AU<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B347P4 vial 120<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uranium 238<br>Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1640<br>ND                                                                                                                                                                                                                                                                                                                                      | ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>14.2</u><br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1602051-AU<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uranium 238<br>Aluminum<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1640<br>ND<br>25400                                                                                                                                                                                                                                                                                                                             | ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2<br>165<br>336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1602051-AU<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B347P4 vial 120           B347P4 vial 122           B347P4 vial 122           B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uranium 238<br>Aluminum<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1640<br>ND<br>25400                                                                                                                                                                                                                                                                                                                             | ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2           165           336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B347P4 vial 120           B347P4 vial 122           B347P4 vial 122           B347P4 vial 122           B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uranium 238<br>Aluminum<br>Calcium<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1640<br>ND<br>25400<br>65.3                                                                                                                                                                                                                                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2<br>165<br>336<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B347P4 vial 120           B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1640<br>ND<br>25400<br>65.3<br>ND                                                                                                                                                                                                                                                                                                               | ug/L<br>ug/L<br>ug/L<br>ug/mL<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.2           165           336           2.5           100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1640<br>ND<br>25400<br>65.3<br>ND                                                                                                                                                                                                                                                                                                               | ug/L<br>ug/L<br>ug/L<br>ug/mL<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2<br>165<br>336<br>2.5<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B347P4 vial 120           B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND                                                                                                                                                                                                                                                                                                         | ug/L<br>ug/L<br>ug/L<br>ug/mL<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2<br>165<br>336<br>2.5<br>100<br>23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND                                                                                                                                                                                                                                                                                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.2<br>165<br>336<br>2.5<br>100<br>23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2                                                                                                                                                                                                                                                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2<br>165<br>336<br>2.5<br>100<br>23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND                                                                                                                                                                                                                                                                                           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/mL<br>ug/mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.2<br>165<br>336<br>2.5<br>100<br>23.9<br>5<br>7.5<br>408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B347P4 vial 120         B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                               | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/mL<br>ug/mL<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.2           165           336           2.5           100           23.9           5           7.5           408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadoase NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>28.2<br>ND<br>ND                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2           165           336           2.5           100           23.9           5           7.5           408           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520                                                                                                                                                                                                                                                                     | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.2           165           336           2.5           100           23.9           5           7.5           408           7.5           14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                                     | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum                                                                                                                                                                                                                                                                                                                                                                                                          | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.2<br>165<br>336<br>2.5<br>100<br>23.9<br>5<br>7.5<br>408<br>7.5<br>14.2<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW                                                                                                                                                                                                                                                                                                                                                                                                                       | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                       | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.2           165           336           2.5           100           23.9           5           7.5           408           7.5           14.2           165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICPMS-Tc_U-NP<br>ICPMS-Tc_U-NP<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                                                                       | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum                                                                                                                                                                                                                                                                                                                                                                                                          | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400                                                                                                                                                                                                                                                      | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                                                         | B347P4 vial 120         B347P4 vial 122         B347P4 vial 124         B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                            | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400                                                                                                                                                                                                                                                      | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICPMS-Tc_U-NP<br>ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                                                         | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                   | 1640           ND           25400           65.3           ND           ND           28.2           ND           ND           48.7           1520           ND           28400           65.2                                                                                                                                                   | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                                           | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                   | 1640           ND           25400           65.3           ND           ND           28.2           ND           48.7           1520           ND           28400           65.2           ND                                                                                                                                                   | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                                           | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron                                                                                                                                                                                                                                                                                                                                                                                        | 1640           ND           25400           65.3           ND           ND           28.2           ND           48.7           1520           ND           28400           65.2           ND                                                                                                                                                   | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                             | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese                                                                                                                                                                                                                                                                                                                                                              | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400<br>65.2<br>ND<br>28400<br>65.2<br>ND                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.2         165         336         2.5         100         23.9         5         7.5         408         7.5         14.2         165         336         2.5         100         23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                                             | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese                                                                                                                                                                                                                                                                                                                                                              | 1640           ND           25400           65.3           ND           ND           28.2           ND           48.7           1520           ND           28400           65.2           ND           ND                                                                                                                                      | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                               | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate                                                                                                                                                                                                                                                                                                                                                   | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>28400<br>28400<br>28400<br>28400<br>28400<br>28400                                                                                                                                                                  | ug/L         ug/L </th <th><math display="block"> \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     </math></th> <th>ICPMS-Tc_U-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>Anions by IC-NP<br/>Anions by IC-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>ICP-OES<br/>Vadose-NP<br/>Anions by IC-NP<br/>ICP-OES<br/>Vadose-NP<br/>Anions by IC-NP<br/>ICP-OES<br/>Vadose-NP<br/>Anions by IC-NP</th>                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     $ | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                                               | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate                                                                                                                                                                                                                                                                                                                                      | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>28400<br>65.2<br>ND                                                                                                                                                                                                 | ug/L         ug/L </th <th><math display="block"> \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.</math></th> <th>ICPMS-Tc_U-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPICP-OESVadose-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPAnions by IC-NP</th>                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.5 \\     7.$                                               | ICPMS-Tc_U-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPICP-OESVadose-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPAnions by IC-NP                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                                   | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate                                                                                                                                                                                                                                                                                                                                      | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>ND                                                                                                                                                                        | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anion              |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                                     | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate                                                                                                                                                                                                                                                                                                                                      | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>85.2<br>ND<br>ND                                                                                                                                                                        | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r}     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     7.5 \\     14.2 \\     165 \\     336 \\     2.5 \\     100 \\     23.9 \\     5 \\     7.5 \\     408 \\     408 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anion              |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                                       | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate                                                                                                                                                                                                                                                                                                            | 1640<br>ND<br>25400<br>65.3<br>ND<br>ND<br>28.2<br>ND<br>ND<br>48.7<br>1520<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>65.2<br>ND<br>ND<br>28400<br>47.1                                                                                                                                                                                    | ug/L         ug/L </th <th><math display="block">     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       7.5 \\       408 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       </math></th> <th>ICPMS-Tc_U-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NP</th>                                                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       7.5 \\       408 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       $                                                                                  | ICPMS-Tc_U-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NPAnions by IC-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPICP-OESVadose-NPAnions by IC-NPAnions by IC-NP                                                                                                                                                                                                                                                                                                                                                                               |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                                                                         | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238                                                                                                                                                                                                                                                       | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         ND         28.2         ND         28400         65.2         ND         ND         28.2         ND         ND         47.1         1120                            | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2$                                                                                             | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP                  |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                                                                 | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Uranium 238                                                                                                                                                                                                                                                                                             | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         28400         65.2         ND         ND         28.2         ND         ND         47.1         1120         8.41                                                  | ug/L         ug/L </th <th><math display="block">     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\   </math></th> <th>ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICPMS-Tc_U-NP     </th> | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\   $                                                                                             | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICPMS-Tc_U-NP  |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 12 | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         28400         65.2         ND         28.2         ND         28.2         ND         28.2         ND         47.1         1120         8.41         ND             | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\  $                                                                                          | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICPOMS-Tc_U-NP |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY                                                                                                                                                                                       | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 125<br>B347P4 vial 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>pH<br>Aluminum                                                                                                                                                                                                                                     | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         28400         65.2         ND         28.2         ND         28.2         ND         47.1         1120         8.41         ND                                     | ug/L         ug/L </th <th><math display="block">     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\    </math></th> <th>ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICPMS-Tc_U-NP         PH-NP         ICP-OES         Vadose-NP    </th>        | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       165 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\       14.2 \\    $                                                                                         | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICPMS-Tc_U-NP         PH-NP         ICP-OES         Vadose-NP            |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AZ<br>1602051-AZ<br>1602051-BA                                                                                                                                                                                                                                                                           | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 125<br>B347P4 vial 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>pH<br>Aluminum<br>Calcium                                                                                                                                                                                                                          | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         28400         65.2         ND         28.2         ND         28.2         ND         47.1         1120         8.41         ND         29800                       | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       7.5 \\       14.2 \\       165 \\       7.5 \\       7.5 \\       14.2 \\       165 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\    $                                                                                   | ICPMS-Tc_U-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>Anions by IC-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES<br>Vadose-NP<br>ICP-OES                                                                                                                                                                        |
| 1602051-AU<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AW<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AY<br>1602051-AZ<br>1602051-BA<br>1602051-BA                                                                                                                                                                                                                                                                           | B347P4 vial 120<br>B347P4 vial 122<br>B347P4 vial 124<br>B347P4 vial 125<br>B347P4 vial 126<br>B347P4 vial 126<br>B347P4 vial 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphorus<br>Sulfate<br>Uranium 238<br>Aluminum<br>Calcium<br>Chloride<br>Iron<br>Manganese<br>Nitrate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate<br>Phosphate                                                                                                                                                                                                                                                        | 1640         ND         25400         65.3         ND         ND         28.2         ND         48.7         1520         ND         28400         65.2         ND         28400         65.2         ND         28.2         ND         28.2         ND         28.2         ND         28.2         ND         28.1         ND         29800 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       2.5 \\       100 \\       23.9 \\       5 \\       7.5 \\       408 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       336 \\       7.5 \\       14.2 \\       165 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       100 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 \\       7.5 $                                                                                    | ICPMS-Tc_U-NP         ICP-OES         Vadose-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         ICP-OES         Vadose-NP         Anions by IC-NP         Anions by IC-NP         Anions by IC-NP         ICP-OES         Vadose-NP         ICP-OES </th                     |

| 1602051-BA | B347P4 vial 126                    | Iron        | ND    | ug/L       | 100  | ICP-OES<br>Vadose-NP |
|------------|------------------------------------|-------------|-------|------------|------|----------------------|
| 1602051-BA | B347P4 vial 126                    | Manganese   | ND    | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-BA | B347P4 vial 126                    | Nitrate     | 28.2  | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-BA | B347P4 vial 126                    | Phosphate   | ND    | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BA | B347P4 vial 126                    | Phosphorus  | ND    | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-BA | B347P4 vial 126                    | Sulfate     | 46.2  | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BA | B347P4 vial 126                    | Uranium 238 | 1020  | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-BC | B347P4 vial 128                    | Aluminum    | 942   | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-BC | B347P4 vial 128                    | Calcium     | 31800 | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-BC | B347P4 vial 128                    | Chloride    | 64.7  | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-BC | B347P4 vial 128                    | Iron        | 3550  | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-BC | B347P4 vial 128                    | Manganese   | 73.8  | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-BC | B347P4 vial 128                    | Nitrate     | 28.3  | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-BC | B347P4 vial 128                    | Phosphate   | ND    | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BC | B347P4 vial 128                    | Phosphorus  | ND    | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-BC | B347P4 vial 128                    | Sulfate     | 45.6  | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BC | B347P4 vial 128                    | Uranium 238 | 864   | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-BE | B347P4 vial 130                    | Aluminum    | ND    | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-BE | B347P4 vial 130                    | Calcium     | 32700 | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-BE | B347P4 vial 130                    | Chloride    | 64.5  | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-BE | B347P4 vial 130                    | Iron        | ND    | ug/L       | 100  | ICP-OES              |
| 1602051-BE | B347P4 vial 130                    | Manganese   | ND    | ug/L       | 23.9 | ICP-OES              |
| 1(03051 DE | D247D4 1120                        |             | 20.2  | / <b>T</b> | -    | Vadose-NP            |
| 1602051-BE | B34/P4 Vial 130<br>B347P4 vial 130 | nitrate     | 28.3  | ug/mL      | 3    | Anions by IC-NP      |
| 1602051-BE | B347P4 vial 130                    | Phosphate   | ND    | ug/mI      | 7.5  | Anions by IC-NP      |
| 1602051-BE | B347P4 vial 130                    | Phosphorus  | ND    | ug/L       | 408  | ICP-OES              |
|            |                                    |             |       |            |      | Vadose-NP            |
| 1602051-BE | B347P4 vial 130                    | Sulfate     | 45    | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BE | B347P4 vial 130                    | Uranium 238 | 749   | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-BG | B347P4 vial 132                    | Aluminum    | ND    | ug/L       | 165  | ICP-OES<br>Vadose-NP |
| 1602051-BG | B347P4 vial 132                    | Calcium     | 33900 | ug/L       | 336  | ICP-OES<br>Vadose-NP |
| 1602051-BG | B347P4 vial 132                    | Chloride    | 64.3  | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-BG | B347P4 vial 132                    | Iron        | ND    | ug/L       | 100  | ICP-OES<br>Vadose-NP |
| 1602051-BG | B347P4 vial 132                    | Manganese   | ND    | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-BG | B347P4 vial 132                    | Nitrate     | 28.4  | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-BG | B347P4 vial 132                    | Phosphate   | ND    | ug/mL      | 7.5  | Anions by IC-NP      |
| 1002051-BG | B34/P4 vial 132                    | Phosphorus  | ND    | ug/L       | 408  | Vadose-NP            |
| 1602051-BG | B347P4 vial 132                    | Sulfate     | 44.6  | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BG | B34/P4 Vial 132                    | Uranium 238 | /12   | ug/L       | 14.2 | ICPMS-IC_U-NP        |
| 1(02051-BJ | D247P4 vial 135                    | Calainum    | 25000 | ug/L       | 226  | Vadose-NP            |
| 1602051-BJ | B34/P4 vial 135                    | Calcium     | 35000 | ug/L       | 336  | Vadose-NP            |
| 1602051-BJ | B347P4 vial 135                    | Chloride    | 64.5  | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-BJ | B34/P4 vial 135                    | Iron        | ND    | ug/L       | 100  | ICP-OES<br>Vadose NP |
| 1602051-BJ | B347P4 vial 135                    | Manganese   | ND    | ug/L       | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-RJ | B347P4 vial 135                    | Nitrate     | 28.5  | uø/mL      | 5    | Anions by IC-NP      |
| 1602051-BJ | B347P4 vial 135                    | pH          | 8.23  | pH Units   | 5    | pH-NP                |
| 1602051-BJ | B347P4 vial 135                    | Phosphate   | ND    | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BJ | B347P4 vial 135                    | Phosphorus  | ND    | ug/L       | 408  | ICP-OES<br>Vadose-NP |
| 1602051-BJ | B347P4 vial 135                    | Sulfate     | 44.3  | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-BJ | B347P4 vial 135                    | Uranium 238 | 615   | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-BO | B347P4 vial 140                    | Aluminum    | ND    | ug/L       | 165  | ICP-OES<br>Vadose-NP |

| 1602051-BO                       | B347P4 vial 140                    | Calcium              | 35000      | ug/L     | 336  | ICP-OES              |
|----------------------------------|------------------------------------|----------------------|------------|----------|------|----------------------|
| 1(02051 DO                       | D247D4                             | Chlorida             | (4.2       |          | 2.5  | Vadose-NP            |
| 1602051-BO                       | B34/P4 Vial 140                    | Iron                 | 04.3<br>ND | ug/mL    | 2.5  | Anions by IC-NP      |
| 1002031-BO                       | D34/14 viai 140                    | 11011                | ND         | ug/L     | 100  | Vadose-NP            |
| 1602051-BO                       | B347P4 vial 140                    | Manganese            | ND         | ug/L     | 23.9 | ICP-OES              |
|                                  |                                    |                      |            | -        |      | Vadose-NP            |
| 1602051-BO                       | B347P4 vial 140                    | Nitrate              | 28.4       | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-BO                       | B347P4 vial 140                    | pH<br>Dhaanhata      | 8.23       | pH Units | 7.5  | pH-NP                |
| 1602051-BO                       | B34/P4 Vial 140<br>B347P4 vial 140 | Phosphate            | ND         | ug/mL    | /.5  | ICP-OFS              |
| 1002031-DO                       | D54/14 viai 140                    | Thosphorus           | ND         | ug/L     | 400  | Vadose-NP            |
| 1602051-BO                       | B347P4 vial 140                    | Sulfate              | 43.9       | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-BO                       | B347P4 vial 140                    | Uranium 238          | 525        | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-BT                       | B347P4 vial 145                    | Aluminum             | ND         | ug/L     | 165  | ICP-OES              |
| 1602051_RT                       | B347P4 vial 145                    | Calcium              | 37000      | 11g/I    | 336  | ICP-OFS              |
| 1002031-01                       | D54/14 viai 145                    | Calcium              | 57000      | ug/12    | 550  | Vadose-NP            |
| 1602051-BT                       | B347P4 vial 145                    | Chloride             | 64.4       | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-BT                       | B347P4 vial 145                    | Iron                 | ND         | ug/L     | 100  | ICP-OES              |
| 1602051 DT                       | D247D4 viol 145                    | Manaanaaa            | ND         |          | 22.0 | Vadose-NP            |
| 1002051-В1                       | D34/P4 viai 143                    | Manganese            | ND         | ug/L     | 23.9 | Vadose-NP            |
| 1602051-BT                       | B347P4 vial 145                    | Nitrate              | 28.5       | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-BT                       | B347P4 vial 145                    | Phosphate            | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-BT                       | B347P4 vial 145                    | Phosphorus           | ND         | ug/L     | 408  | ICP-OES              |
| 1602051 PT                       | B3/7D/ wiel 1/5                    | Sulfate              | 12.8       | ug/mI    | 75   | Anions by IC NP      |
| 1602051-ВТ<br>1602051-ВТ         | B347P4 vial 145                    | Uranium 238          | 45.8       | ug/mL    | 14.2 | ICPMS-Tc U-NP        |
| 1602051-BY                       | B347P4 vial 150                    | Aluminum             | ND         | ug/L     | 165  | ICP-OES              |
|                                  |                                    |                      |            |          |      | Vadose-NP            |
| 1602051-BY                       | B347P4 vial 150                    | Calcium              | 37300      | ug/L     | 336  | ICP-OES              |
| 1602051 BV                       | B347D4 vial 150                    | Chlorida             | 64.2       | ug/mI    | 2.5  | Vadose-NP            |
| 1602051-BY                       | B347P4 vial 150                    | Iron                 | ND         |          | 100  | ICP-OES              |
| 1002001 21                       | 201111111111100                    |                      | 112        | "B'      | 100  | Vadose-NP            |
| 1602051-BY                       | B347P4 vial 150                    | Manganese            | ND         | ug/L     | 23.9 | ICP-OES              |
| 1/02071 DV                       | D247D4 : 1150                      | <b>N</b> T' ( )      | 20.7       | · · · ·  |      | Vadose-NP            |
| 1602051-BY                       | B34/P4 vial 150<br>B347P4 vial 150 | Nitrate              | 28.5       | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-BY                       | B347P4 vial 150                    | Phosphate            | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-BY                       | B347P4 vial 150                    | Phosphorus           | ND         | ug/L     | 408  | ICP-OES              |
|                                  |                                    |                      |            | -        |      | Vadose-NP            |
| 1602051-BY                       | B347P4 vial 150                    | Sulfate              | 43.5       | ug/mL    | 7.5  | Anions by IC-NP      |
| <u>1602051-В Ү</u><br>1602051-СД | B34/P4 Vial 150<br>B347P4 vial 155 | Aluminum             | 420<br>ND  | ug/L     | 14.2 | ICPMS-IC_U-NP        |
| 1002031-CD                       | D54/14 viai 155                    | 7 Hummuni            | ND         | ug/12    | 105  | Vadose-NP            |
| 1602051-CD                       | B347P4 vial 155                    | Calcium              | 37500      | ug/L     | 336  | ICP-OES              |
| 1(00051 CD                       | D247D4 1155                        | <u> </u>             | (4.1       |          |      | Vadose-NP            |
| 1602051-CD                       | B34/P4 Vial 155<br>B347P4 vial 155 | Iron                 | 64.1<br>ND | ug/mL    | 2.5  | Anions by IC-NP      |
| 1002031-CD                       |                                    | 11011                | 14D        | ug/L     | 100  | Vadose-NP            |
| 1602051-CD                       | B347P4 vial 155                    | Manganese            | ND         | ug/L     | 23.9 | ICP-OES              |
| 1/04084 05                       | D147D4 11155                       | 27.                  | 20.2       | 1 -      |      | Vadose-NP            |
| 1602051-CD                       | B34/P4 vial 155                    | Nitrate<br>Phosphata | 28.3<br>ND | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-CD                       | B347P4 vial 155                    | Phosphorus           | ND         |          | 408  | ICP-OES              |
| 1002001 02                       | 25 171 1 184 100                   | Theophorus           |            | "B'      |      | Vadose-NP            |
| 1602051-CD                       | B347P4 vial 155                    | Sulfate              | 43.4       | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-CD                       | B347P4 vial 155                    | Uranium 238          | 392        | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-CI                       | B347P4 vial 160                    | Aluminum             | ND         | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-CI                       | B347P4 vial 160                    | Calcium              | 37300      | ug/L     | 336  | ICP-OES              |
|                                  |                                    |                      | 2.200      |          |      | Vadose-NP            |
| 1602051-CI                       | B347P4 vial 160                    | Chloride             | 64.1       | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-CI                       | B347P4 vial 160                    | Iron                 | ND         | ug/L     | 100  | ICP-OES              |
| 1602051-CI                       | B347P4 vial 160                    | Manganese            | ND         |          | 23.9 | ICP-OFS              |
| 1002031-C1                       |                                    | manganese            | 14D        | ug/L     | 23.3 | Vadose-NP            |
| 1602051-CI                       | B347P4 vial 160                    | Nitrate              | 28.3       | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-CI                       | B347P4 vial 160                    | pH                   | 8.21       | pH Units |      | pH-NP                |
| 1602051-CI                       | B347P4 vial 160                    | Phosphate Dhagen1    | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-CI                       | B34/P4 vial 160                    | Phosphorus           | ND         | ug/L     | 408  | ICP-OES<br>Vadose-NP |
|                                  |                                    |                      |            | -        |      |                      |

| 1602051-CI   | B347P4 vial 160     | Sulfate     | 43.2      | ug/mL      | 7.5  | Anions by IC-NP      |
|--------------|---------------------|-------------|-----------|------------|------|----------------------|
| 1602051-CI   | B347P4 vial 160     | Uranium 238 | 399       | ug/L       | 14.2 | ICPMS-Tc U-NP        |
| 1602051-CS   | B347P4 vial 170     | Aluminum    | ND        | ug/L       | 165  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-CS   | B347P4 vial 170     | Calcium     | 38900     | 119/L      | 336  | ICP-OES              |
| 1002001 00   | 201111111111110     | culturi     | 20700     | "B' 12     |      | Vadose-NP            |
| 1602051-CS   | B347P4 vial 170     | Chloride    | 64.4      | ug/mI      | 2.5  | Anions by IC-NP      |
| 1602051-CS   | D34714 vial 170     | Iron        | ND        | ug/IIL     | 100  |                      |
| 1002031-03   | D34/F4 viai 1/0     | non         | ND        | ug/L       | 100  | Vedere ND            |
| 1(02051 CE   | D247D4              | Managara    | ND        | / <b>T</b> | 22.0 |                      |
| 1002051-CS   | B34/P4 Vial 1/0     | Manganese   | ND        | ug/L       | 23.9 | ICP-OES              |
| 1(00051 00   | D245D4 1150         |             | 20.4      | / <b>T</b> |      | vadose-INP           |
| 1602051-CS   | B34/P4 vial 1/0     | Nitrate     | 28.4      | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-CS   | B347P4 vial 170     | pH          | 8.19      | pH Units   |      | pH-NP                |
| 1602051-CS   | B347P4 vial 170     | Phosphate   | ND        | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-CS   | B347P4 vial 170     | Phosphorus  | ND        | ug/L       | 408  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-CS   | B347P4 vial 170     | Sulfate     | 43.4      | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-CS   | B347P4 vial 170     | Uranium 238 | 371       | ug/L       | 14.2 | ICPMS-Tc U-NP        |
| 1602051-DC   | B347P4 vial 180     | Aluminum    | ND        | ug/L       | 165  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DC   | B347P4 vial 180     | Calcium     | 39300     | 110/L      | 336  | ICP-OES              |
| 1002001 DC   | D51711 Viai 100     | Cultin      | 57500     | ug/ L      | 550  | Vadose-NP            |
| 1602051-DC   | B347P4 vial 180     | Chloride    | 64.3      | ug/mI      | 2.5  | Anions by IC-NP      |
| 1602051-DC   | D34714 vial 100     | Iron        | ND        | ug/IIL     | 100  |                      |
| 1002031-DC   | D34/F4 Viai 160     | 11011       | ND        | ug/L       | 100  | Vedere ND            |
| 1602051 DC   | D247D4 wiel 190     | Manganasa   | ND        | uc/I       | 22.0 |                      |
| 1602051-DC   | B34/P4 Vial 180     | Manganese   | ND        | ug/L       | 23.9 | ICP-OES<br>Vadaaa ND |
| 1(00051 D.C  | D247D4 1100         |             | 20.4      | / <b>T</b> | ~    | vadose-NP            |
| 1602051-DC   | B34/P4 vial 180     | Nitrate     | 28.4      | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-DC   | B347P4 vial 180     | pH          | 8.28      | pH Units   |      | pH-NP                |
| 1602051-DC   | B347P4 vial 180     | Phosphate   | ND        | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-DC   | B347P4 vial 180     | Phosphorus  | ND        | ug/L       | 408  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DC   | B347P4 vial 180     | Sulfate     | 43.3      | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-DC   | B347P4 vial 180     | Uranium 238 | 341       | ug/L       | 14.2 | ICPMS-Tc U-NP        |
| 1602051-DM   | B347P4 vial 190     | Aluminum    | ND        | ug/L       | 165  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DM   | B347P4 vial 190     | Calcium     | 39100     | 119/L      | 336  | ICP-OES              |
| 1002001 0.01 | D51/11 1 1101 190   | Cultin      | 57100     | ug/ L      | 550  | Vadose-NP            |
| 1602051-DM   | B347P4 vial 190     | Chloride    | 64.4      | uø/mL      | 2.5  | Anions by IC-NP      |
| 1602051_DM   | B3/7P/ vial 190     | Iron        | ND        | ug/IIL     | 100  | ICP-OFS              |
| 1002031-DM   | D34/14 viai 190     | non         | ND        | ug/L       | 100  | Vadose-NP            |
| 1602051 DM   | D247D4 vial 100     | Manganasa   | ND        | ug/I       | 22.0 |                      |
| 1002031-DM   | D34/14 viai 190     | Manganese   | ND        | ug/L       | 23.9 | Vadose NP            |
| 1602051 DM   | D247D4 wiel 100     | Nitroto     | 28.5      | ug/mI      | 5    | Aniona by IC ND      |
| 1(02051-DM   | D34/F4 vial 190     | INITIALE    | 20.3      | ug/IIIL    | 5    | Allions by IC-INF    |
| 1602051-DM   | B34/P4 Vial 190     |             | 8.27      | pH Units   | 7.5  | pH-NP                |
| 1602051-DM   | B34/P4 vial 190     | Phosphate   | ND        | ug/mL      | /.5  | Anions by IC-NP      |
| 1602051-DM   | B347P4 vial 190     | Phosphorus  | ND        | ug/L       | 408  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DM   | B347P4 vial 190     | Sulfate     | 43.3      | ug/mL      | 7.5  | Anions by IC-NP      |
| 1602051-DM   | B347P4 vial 190     | Uranium 238 | 301       | ug/L       | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-DW   | B347P4 vial 200     | Aluminum    | ND        | ug/L       | 165  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DW   | B347P4 vial 200     | Calcium     | 39000     | ug/L       | 336  | ICP-OES              |
|              |                     |             |           |            |      | Vadose-NP            |
| 1602051-DW   | B347P4 vial 200     | Chloride    | 64.2      | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-DW   | B347P4 vial 200     | Iron        | ND        | ug/L       | 100  | ICP-OES              |
|              |                     |             |           | l c        |      | Vadose-NP            |
| 1602051-DW   | B347P4 vial 200     | Manganese   | ND        | ug/L       | 23.9 | ICP-OES              |
|              |                     | U           |           | Ŭ          |      | Vadose-NP            |
| 1602051-DW   | B347P4 vial 200     | Nitrate     | 28.4      | ug/mL      | 5    | Anions by IC-NP      |
| 1602051-DW   | B347P4 vial 200     | рН          | 8.16      | pH Units   | 1    | pH-NP                |
| 1602051-DW   | B347P4 vial 200     | Phosphate   | ND        | ug/mL      | 75   | Anions by IC-NP      |
| 1602051-DW   | B347P4 vial 200     | Phosphorus  | ND        | 110/I      | 408  | ICP_OFS              |
| 1002031-0 W  |                     | rnosphorus  | нD        | ug/L       | +00  | Vadose-NP            |
| 1602051, DW  | B347P4 vial 200     | Sulfate     | 13.2      | ug/mI      | 75   | Anione by IC ND      |
| 1602031-DW   | $D_{34/14} via 200$ | Uropium 220 | 73.2      | ug/IIIL    | 1.3  | ICDMC To UND         |
| 1002031-DW   | D34/F4 Vial 200     |             | 303<br>ND | ug/L       | 14.2 |                      |
| 1002031-EF   | D34/P4 Viai 209     | Alumnum     | ND        | ug/L       | 105  | ICF-UES<br>Vodere ND |
| 1(02071 55   | D247D4 1 2000       | 0.1.1       | 24100     | /*         | 226  | vadose-NP            |
| 1602051-EF   | B34/P4 vial 209     | Calcium     | 34100     | ug/L       | 336  | ICP-OES              |
| 1 (040-1     |                     | 011         | 15.1      | l          |      | vadose-NP            |
| 1602051-EF   | B34/P4 vial 209     | Chloride    | 65.6      | ug/mL      | 2.5  | Anions by IC-NP      |
| 1602051-EF   | B347P4 vial 209     | Iron        | ND        | ug/L       | 100  | ICP-OES              |
|              | 1                   |             |           | 1          | 1    | Vadose-NP            |

| 1602051-EF  | B347P4 vial 209   | Manganese   | ND    | ug/L         | 23.9 | ICP-OES<br>Vadose-NP |
|-------------|-------------------|-------------|-------|--------------|------|----------------------|
| 1602051-EF  | B347P4 vial 209   | Nitrate     | 28    | ug/mL        | 5    | Anions by IC-NP      |
| 1602051-EF  | B347P4 vial 209   | pH          | 8.21  | pH Units     |      | pH-NP                |
| 1602051-EF  | B347P4 vial 209   | Phosphate   | ND    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EF  | B347P4 vial 209   | Phosphorus  | ND    | ug/L         | 408  | ICP-OES              |
|             |                   |             |       |              |      | Vadose-NP            |
| 1602051-EF  | B347P4 vial 209   | Sulfate     | 47    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EF  | B347P4 vial 209   | Uranium 238 | 898   | ug/L         | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EH  | B347P4 vial 211   | Aluminum    | ND    | ug/L         | 165  | ICP-OES<br>Vadose-NP |
| 1602051-EH  | B347P4 vial 211   | Calcium     | 33400 | ug/L         | 336  | ICP-OES<br>Vadose-NP |
| 1602051_EH  | B347P4 vial 211   | Chloride    | 66.6  | ug/mI        | 2.5  | Anions by IC-NP      |
| 1602051-EH  | B347P4 vial 211   | Iron        | ND    | ug/III.      | 100  | ICP-OES              |
| 1002001 211 | 201111111211      | non         | 112   | <b>"</b> B 2 | 100  | Vadose-NP            |
| 1602051-EH  | B347P4 vial 211   | Manganese   | 24.6  | ug/L         | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-EH  | B347P4 vial 211   | Nitrate     | 28.2  | ug/mL        | 5    | Anions by IC-NP      |
| 1602051-EH  | B347P4 vial 211   | Phosphate   | ND    | ug/mL        | 75   | Anions by IC-NP      |
| 1602051-EH  | B347P4 vial 211   | Phosphorus  | ND    | ug/L         | 408  | ICP-OES              |
|             |                   |             |       |              |      | Vadose-NP            |
| 1602051-EH  | B347P4 vial 211   | Sulfate     | 47    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EH  | B347P4 vial 211   | Uranium 238 | 813   | ug/L         | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EJ  | B347P4 vial 213   | Aluminum    | ND    | ug/L         | 165  | ICP-OES              |
|             |                   |             |       | -            |      | Vadose-NP            |
| 1602051-EJ  | B347P4 vial 213   | Calcium     | 36500 | ug/L         | 336  | ICP-OES<br>Vadose-NP |
| 1602051-EJ  | B347P4 vial 213   | Chloride    | 64.5  | ug/mL        | 2.5  | Anions by IC-NP      |
| 1602051-EJ  | B347P4 vial 213   | Iron        | ND    | ug/L         | 100  | ICP-OES              |
|             |                   |             |       |              |      | Vadose-NP            |
| 1602051-EJ  | B347P4 vial 213   | Manganese   | 23.9  | ug/L         | 23.9 | ICP-OES<br>Vedere NB |
| 1602051-F.I | B347P4 vial 213   | Nitrate     | 28.2  | ug/mL        | 5    | Anions by IC-NP      |
| 1602051-EJ  | B347P4 vial 213   | Phosphate   | ND    | ug/mL        | 75   | Anions by IC-NP      |
| 1602051-EJ  | B347P4 vial 213   | Phosphorus  | ND    | ug/L         | 408  | ICP-OES              |
|             |                   | P #2        |       |              |      | Vadose-NP            |
| 1602051-EJ  | B347P4 vial 213   | Sulfate     | 45.6  | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EJ  | B347P4 vial 213   | Uranium 238 | 700   | ug/L         | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EL  | B347P4 vial 215   | Aluminum    | ND    | ug/L         | 165  | ICP-OES<br>Vadose NP |
| 1602051-FL  | B347P4 vial 215   | Calcium     | 36000 | ug/I         | 336  | ICP-OFS              |
|             | B51/11 (Mai 215   | Culotum     | 50000 | ugit         | 550  | Vadose-NP            |
| 1602051-EL  | B347P4 vial 215   | Chloride    | 63.7  | ug/mL        | 2.5  | Anions by IC-NP      |
| 1602051-EL  | B347P4 vial 215   | Iron        | ND    | ug/L         | 100  | ICP-OES<br>Vadose-NP |
| 1602051-EL  | B347P4 vial 215   | Manganese   | ND    | ug/L         | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FL  | B347P4 vial 215   | Nitrate     | 28.4  | uø/mI        | 5    | Anions by IC-NP      |
| 1602051-EL  | B347P4 vial 215   | nH          | 8.27  | pH Units     |      | nH-NP                |
| 1602051-EL  | B347P4 vial 215   | Phosphate   | ND    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EL  | B347P4 vial 215   | Phosphorus  | ND    | ug/L         | 408  | ICP-OES              |
|             |                   | •           |       | Ľ.           |      | Vadose-NP            |
| 1602051-EL  | B347P4 vial 215   | Sulfate     | 45.3  | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EL  | B347P4 vial 215   | Uranium 238 | 606   | ug/L         | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EN  | B347P4 vial 217   | Aluminum    | ND    | ug/L         | 165  | ICP-OES<br>Vadose-NP |
| 1602051-EN  | B347P4 vial 217   | Calcium     | 37400 | ug/L         | 336  | ICP-OES<br>Vedoce ND |
| 1602051_FN  | B347P4 vial 217   | Chloride    | 63    | ug/mI        | 2.5  | Anions by IC-NP      |
| 1602051-EN  | B347P4 vial 217   | Iron        | ND    | ug/IL        | 100  | ICP-OES              |
|             |                   |             |       |              | 100  | Vadose-NP            |
| 1602051-EN  | B347P4 vial 217   | Manganese   | 24    | ug/L         | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-EN  | B347P4 vial 217   | Nitrate     | 28.4  | ug/mL        | 5    | Anions by IC-NP      |
| 1602051-EN  | B347P4 vial 217   | Phosphate   | ND    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EN  | B347P4 vial 217   | Phosphorus  | ND    | ug/L         | 408  | ICP-OES              |
| 1/04081     | D147D4 11415      | 0.10        | 17    |              |      | Vadose-NP            |
| 1602051-EN  | B347P4 vial 217   | Sulfate     | 45    | ug/mL        | 7.5  | Anions by IC-NP      |
| 1602051-EN  | B34/P4 vial 217   | Uranium 238 | 540   | ug/L         | 14.2 | ICPMS-IC_U-NP        |
| 1602051-EP  | B347P4 vial 219   | Aluminum    | ND    | ug/L         | 165  | ICP-OES<br>Vadose-NP |
| 1602051-EP  | B347P4 vial 219   | Calcium     | 39200 | ug/L         | 336  | ICP-OES              |
| 1002001 11  | 551,11 ( Mar 21 ) | Curtuin     | 5,200 |              |      | Vadose-NP            |

| 1602051-EP | B347P4 vial 219 | Chloride    | 63.2  | ug/mL    | 2.5  | Anions by IC-NP      |
|------------|-----------------|-------------|-------|----------|------|----------------------|
| 1602051-EP | B347P4 vial 219 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-EP | B347P4 vial 219 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-EP | B347P4 vial 219 | Nitrate     | 28.5  | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-EP | B347P4 vial 219 | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-EP | B347P4 vial 219 | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-EP | B347P4 vial 219 | Sulfate     | 44.8  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-EP | B347P4 vial 219 | Uranium 238 | 507   | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EQ | B347P4 vial 220 | pН          | 8.36  | pH Units |      | pH-NP                |
| 1602051-ER | B347P4 vial 221 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-ER | B347P4 vial 221 | Calcium     | 37700 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-ER | B347P4 vial 221 | Chloride    | 62.3  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-ER | B347P4 vial 221 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-ER | B347P4 vial 221 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-ER | B347P4 vial 221 | Nitrate     | 28.4  | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-ER | B347P4 vial 221 | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-ER | B347P4 vial 221 | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-ER | B347P4 vial 221 | Sulfate     | 44.7  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-ER | B347P4 vial 221 | Uranium 238 | 489   | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-ET | B347P4 vial 223 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-ET | B347P4 vial 223 | Calcium     | 38300 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-ET | B347P4 vial 223 | Chloride    | 62.3  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-ET | B347P4 vial 223 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-ET | B347P4 vial 223 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-ET | B347P4 vial 223 | Nitrate     | 28.5  | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-ET | B347P4 vial 223 | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-ET | B347P4 vial 223 | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-ET | B347P4 vial 223 | Sulfate     | 44.2  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-ET | B347P4 vial 223 | Uranium 238 | 466   | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-EV | B347P4 vial 225 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-EV | B347P4 vial 225 | Calcium     | 38900 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-EV | B347P4 vial 225 | Chloride    | 62.3  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-EV | B347P4 vial 225 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-EV | B347P4 vial 225 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-EV | B347P4 vial 225 | Nitrate     | 28.6  | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-EV | B347P4 vial 225 | pH          | 8.21  | pH Units |      | pH-NP                |
| 1602051-EV | B347P4 vial 225 | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-EV | B347P4 vial 225 | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-EV | B347P4 vial 225 | Sulfate     | 44.3  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-EV | B347P4 vial 225 | Uranium 238 | 436   | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-FA | B347P4 vial 230 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-FA | B347P4 vial 230 | Calcium     | 39400 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-FA | B347P4 vial 230 | Chloride    | 62.1  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-FA | B347P4 vial 230 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-FA | B347P4 vial 230 | Manganese   | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FA | B347P4 vial 230 | Nitrate     | 28.7  | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-FA | B347P4 vial 230 | pH          | 8.2   | pH Units |      | pH-NP                |
| 1602051-FA | B347P4 vial 230 | Phosphate   | ND    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FA | B347P4 vial 230 | Phosphorus  | ND    | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-FA | B347P4 vial 230 | Sulfate     | 44    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FA | B347P4 vial 230 | Uranium 238 | 387   | ug/L     | 14.2 | ICPMS-Tc_U-NP        |

| 1602051-FF | B347P4 vial 235                    | Aluminum    | ND          | ug/L     | 165  | ICP-OES<br>Vadose-NP |
|------------|------------------------------------|-------------|-------------|----------|------|----------------------|
| 1602051-FF | B347P4 vial 235                    | Calcium     | 39000       | ug/L     | 336  | ICP-OES              |
| 1(03071 FE | D247D4 : 1025                      | <u> </u>    | (1.(        | / 1      | 2.5  | Vadose-NP            |
| 1602051-FF | B34/P4 Vial 235<br>B347P4 vial 235 | Iron        | 01.0<br>ND  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1002031-11 | D34714 viai 233                    | non         | ND          | ug/L     | 100  | Vadose-NP            |
| 1602051-FF | B347P4 vial 235                    | Manganese   | ND          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FF | B347P4 vial 235                    | Nitrate     | 28.5        | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-FF | B347P4 vial 235                    | Phosphate   | ND          | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FF | B347P4 vial 235                    | Phosphorus  | ND          | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-FF | B347P4 vial 235                    | Sulfate     | 43.6        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FF | B347P4 vial 235                    | Uranium 238 | 346         | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-FK | B34/P4 viai 240                    | Aluminum    | ND          | ug/L     | 165  | Vadose-NP            |
| 1602051-FK | B347P4 vial 240                    | Calcium     | 39600       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-FK | B347P4 vial 240                    | Chloride    | 61.8        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-FK | B347P4 vial 240                    | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-FK | B347P4 vial 240                    | Manganese   | ND          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FK | B347P4 vial 240                    | Nitrate     | 28.6        | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-FK | B347P4 vial 240                    | pH          | 8.22        | pH Units |      | pH-NP                |
| 1602051-FK | B347P4 vial 240                    | Phosphate   | ND          | ug/mL    | 7.5  | Anions by IC-NP      |
| 1002051-FK | D34/P4 viai 240                    | Phosphorus  | ND          | ug/L     | 408  | Vadose-NP            |
| 1602051-FK | B347P4 vial 240                    | Sulfate     | 43.7        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FK | B347P4 vial 240                    | Uranium 238 | 329         | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-FP | B347P4 vial 245                    | Aluminum    | ND          | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602051-FP | B347P4 vial 245                    | Calcium     | 39400       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-FP | B347P4 vial 245                    | Chloride    | 61.4        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-FP | B347P4 vial 245                    | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-FP | B347P4 vial 245                    | Manganese   | ND          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FP | B347P4 vial 245                    | Nitrate     | 28.7        | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-FP | B347P4 vial 245                    | Phosphate   | ND          | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FP | B34/P4 vial 245                    | Phosphorus  | ND          | ug/L     | 408  | Vadose-NP            |
| 1602051-FP | B347P4 vial 245                    | Sulfate     | 43.6        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FP | B34/P4 Vial 245<br>B347P4 vial 250 | Uranium 238 | 316<br>ND   | ug/L     | 14.2 | ICPMS-IC_U-NP        |
| 1602051-FU | D34714 viai 230                    | Aluminum    | 20000       | ug/L     | 226  | Vadose-NP            |
| 1602051-FU | B34/P4 vial 250                    | Calcium     | 39900       | ug/L     | 336  | Vadose-NP            |
| 1602051-FU | B347P4 vial 250                    | Chloride    | 61.8        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-FU | B34/P4 vial 250                    | Iron        | ND          | ug/L     | 100  | Vadose-NP            |
| 1602051-FU | B347P4 vial 250                    | Manganese   | ND          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-FU | B347P4 vial 250                    | Nitrate     | 28.7        | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-FU | B347P4 vial 250                    | pН          | 8.24        | pH Units |      | pH-NP                |
| 1602051-FU | B347P4 vial 250                    | Phosphate   | ND          | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FU | B347P4 vial 250                    | Phosphorus  | ND          | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602051-FU | B347P4 vial 250                    | Sulfate     | 43.6        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602051-FU | B347P4 vial 250                    | Uranium 238 | 284         | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1002051-GE | B34/P4 Vial 260                    | Aluminum    | ND<br>40200 | ug/L     | 165  | Vadose-NP            |
| 1602051-GE | B34/P4 vial 260                    | Calcium     | 40200       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602051-GE | B347P4 vial 260                    | Chloride    | 61.4        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602051-GE | B34/P4 vial 260                    | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602051-GE | B347P4 vial 260                    | Manganese   | ND          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-GE | B347P4 vial 260                    | Nitrate     | 28.5        | ug/mL    | 5    | Anions by IC-NP      |
| 1602051-GE | B347P4 vial 260                    | pH          | 8.25        | pH Units | 75   | pH-NP                |
| 1002051-GE | B34/P4 Vial 260                    | rnospnate   | ND          | ug/mL    | 1.5  | Anions by IC-NP      |

| 1602051-GE   | B347P4 vial 260    | Phosphorus  | ND          | ug/L             | 408  | ICP-OES              |
|--------------|--------------------|-------------|-------------|------------------|------|----------------------|
| 1602051-GE   | B347P4 vial 260    | Sulfate     | 43.4        | ug/mI            | 7.5  | Anions by IC-NP      |
| 1602051-GE   | B347P4 vial 260    | Uranium 238 | 267         | ug/IIL<br>ug/I   | 14.2 | ICPMS-Tc U-NP        |
| 1602051-GE   | B347P4 vial 200    | Aluminum    | ND          | ug/L             | 165  | ICP-OFS              |
| 1002031-00   | D54/14 Viai 2/0    | Alumnum     | ND          | ug/L             | 105  | Vadose-NP            |
| 1602051-GO   | B347P4 vial 270    | Calcium     | 38800       | ug/L             | 336  | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GO   | B347P4 vial 270    | Chloride    | 61.4        | ug/mL            | 2.5  | Anions by IC-NP      |
| 1602051-GO   | B347P4 vial 270    | Iron        | ND          | ug/L             | 100  | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GO   | B347P4 vial 270    | Manganese   | ND          | ug/L             | 23.9 | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GO   | B347P4 vial 270    | Nıtrate     | 28.5        | ug/mL            | 5    | Anions by IC-NP      |
| 1602051-GO   | B347P4 vial 270    | pH          | 8.2         | pH Units         |      | pH-NP                |
| 1602051-GO   | B347P4 vial 270    | Phosphate   | ND          | ug/mL            | 7.5  | Anions by IC-NP      |
| 1602051-GO   | B34/P4 vial 2/0    | Phosphorus  | ND          | ug/L             | 408  | ICP-OES<br>Vedere NB |
| 1602051 CO   | D247D4 viol 270    | Sulfata     | 12.2        | ug/mI            | 7.5  | Aniona by IC ND      |
| 1602031-GO   | B347P4 vial 270    | Uranium 238 | 230         | ug/IIIL          | 14.2 | ICPMS To U NP        |
| 1602051-GO   | B347P4 vial 270    | Aluminum    | ND          | ug/L             | 14.2 |                      |
| 1002031-01   | D34/14 Vial 200    | Alummum     | ND          | ug/L             | 105  | Vadose-NP            |
| 1602051-GY   | B347P4 vial 280    | Calcium     | 41100       | ug/L             | 336  | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GY   | B347P4 vial 280    | Chloride    | 61.4        | ug/mL            | 2.5  | Anions by IC-NP      |
| 1602051-GY   | B347P4 vial 280    | Iron        | ND          | ug/L             | 100  | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GY   | B347P4 vial 280    | Manganese   | ND          | ug/L             | 23.9 | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-GY   | B347P4 vial 280    | Nitrate     | 28.4        | ug/mL            | 5    | Anions by IC-NP      |
| 1602051-GY   | B347P4 vial 280    | pH          | 8.28        | pH Units         |      | pH-NP                |
| 1602051-GY   | B34/P4 vial 280    | Phosphate   | ND          | ug/mL            | /.5  | Anions by IC-NP      |
| 1002051-GY   | B34/P4 Vial 280    | Phosphorus  | ND          | ug/L             | 408  | Vadose NP            |
| 1602051-CV   | B3/7P/ vial 280    | Sulfate     | 13.3        | ug/mI            | 7.5  | Anions by IC-NP      |
| 1602051-GY   | B347P4 vial 280    | Uranium 238 | 227         | ug/IIL           | 14.2 | ICPMS-Tc U-NP        |
| 1602051-HI   | B347P4 vial 290    | Aluminum    | ND          | ug/L             | 165  | ICP-OES              |
| 1002001 111  | 255 171 1 1141 250 |             | 112         | «g/2             | 100  | Vadose-NP            |
| 1602051-HI   | B347P4 vial 290    | Calcium     | 41900       | ug/L             | 336  | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-HI   | B347P4 vial 290    | Chloride    | 61.6        | ug/mL            | 2.5  | Anions by IC-NP      |
| 1602051-HI   | B347P4 vial 290    | Iron        | ND          | ug/L             | 100  | ICP-OES              |
| 1(02051 111  | D247D4 1 200       | М           | ND          | /1               | 22.0 | Vadose-NP            |
| 1002051-HI   | B34/P4 Vial 290    | Manganese   | ND          | ug/L             | 23.9 | ICP-OES<br>Vadose-NP |
| 1602051-HI   | B347P4 vial 290    | Nitrate     | 28.5        | ug/mL            | 5    | Anions by IC-NP      |
| 1602051-HI   | B347P4 vial 290    | nH          | 8 23        | nH Units         | 5    | nH-NP                |
| 1602051-HI   | B347P4 vial 290    | Phosphate   | ND          | ug/mL            | 7.5  | Anions by IC-NP      |
| 1602051-HI   | B347P4 vial 290    | Phosphorus  | ND          | ug/L             | 408  | ICP-OES              |
|              |                    |             |             | 8                |      | Vadose-NP            |
| 1602051-HI   | B347P4 vial 290    | Sulfate     | 43.4        | ug/mL            | 7.5  | Anions by IC-NP      |
| 1602051-HI   | B347P4 vial 290    | Uranium 238 | 213         | ug/L             | 14.2 | ICPMS-Tc_U-NP        |
| 1602051-HR   | B347P4 vial 299    | Aluminum    | ND          | ug/L             | 165  | ICP-OES              |
| 1/00051 110  | D247D4 11000       | D 1         | ND          | / <b>T</b>       |      | Vadose-NP            |
| 1602051-HK   | B34/P4 Vial 299    | Galaium     | ND<br>41200 | ug/mL            | 226  | Anions by IC-NP      |
| 1002051-HK   | D34/P4 Viai 299    | Calcium     | 41200       | ug/L             | 550  | Vadose-NP            |
| 1602051-HR   | B347P4 vial 299    | Iron        | ND          | ng/L             | 100  | ICP-OES              |
| 1002001 1110 | 255 171 1 1141 255 | non         | 112         | «g/2             | 100  | Vadose-NP            |
| 1602051-HR   | B347P4 vial 299    | Manganese   | ND          | ug/L             | 23.9 | ICP-OES              |
|              |                    |             |             |                  |      | Vadose-NP            |
| 1602051-HR   | B347P4 vial 299    | pH          | 8.18        | pH Units         |      | pH-NP                |
| 1602051-HR   | B347P4 vial 299    | Phosphorus  | ND          | ug/L             | 408  | ICP-OES              |
| 1603051 HD   | D247D4 wist 200    | Uronium 229 | 210         | ua/I             | 14.2 | Vadose-NP            |
| 1602051-HK   | B347P4 vial 299    | Bromida     | 210<br>ND   | ug/L             | 14.2 | Anions by IC ND      |
| 1602031-HI   | B347P4 vial 301    | Bromide     | 177         | ug/IIIL<br>ug/mI | 5    | Anions by IC-NP      |
| 1602051-HY   | B347P4 vial 305    | Bromide     | 26.3        | ug/mL            | 5    | Anions by IC-NP      |
| 1602051-HZ   | B347P4 vial 303    | Bromide     | 32.0.5      | ug/IIIL<br>ug/mI | 5    | Anions by IC-NP      |
| 1602051-IIZ  | B347P4 vial 309    | Bromide     | 36.4        | 10/mL            | 5    | Anions by IC-NP      |
| 1602051-ID   | B347P4 vial 311    | Bromide     | 38.9        | ug/mL            | 5    | Anions by IC-NP      |
| 1602051-IF   | B347P4 vial 313    | Bromide     | 40.6        | ug/mL            | 5    | Anions by IC-NP      |
| 1002001 11   | D247D4 1 1 215     | Dromido     | 40.1        | ug/mI            | 5    | Aniona by IC ND      |

| 1602051-IJ | B347P4 vial 317 | Bromide | 43.1 | ug/mL | 5 | Anions by IC-NP |
|------------|-----------------|---------|------|-------|---|-----------------|
| 1602051-IL | B347P4 vial 319 | Bromide | 43.9 | ug/mL | 5 | Anions by IC-NP |
| 1602051-IN | B347P4 vial 321 | Bromide | 44.5 | ug/mL | 5 | Anions by IC-NP |
| 1602051-IP | B347P4 vial 323 | Bromide | 45.4 | ug/mL | 5 | Anions by IC-NP |
| 1602051-IR | B347P4 vial 325 | Bromide | 45.7 | ug/mL | 5 | Anions by IC-NP |
| 1602051-IT | B347P4 vial 327 | Bromide | 46   | ug/mL | 5 | Anions by IC-NP |
| 1602051-IV | B347P4 vial 329 | Bromide | 46.1 | ug/mL | 5 | Anions by IC-NP |
| 1602051-JB | B347P4 vial 335 | Bromide | 46.8 | ug/mL | 5 | Anions by IC-NP |
| 1602051-JG | B347P4 vial 340 | Bromide | 47.3 | ug/mL | 5 | Anions by IC-NP |
| 1602051-JL | B347P4 vial 345 | Bromide | 47.5 | ug/mL | 5 | Anions by IC-NP |
| 1602051-JQ | B347P4 vial 350 | Bromide | 47.5 | ug/mL | 5 | Anions by IC-NP |
| 1602051-JV | B347P4 vial 355 | Bromide | 47.7 | ug/mL | 5 | Anions by IC-NP |
| 1602051-KA | B347P4 vial 360 | Bromide | 47.8 | ug/mL | 5 | Anions by IC-NP |
| 1602051-KK | B347P4 vial 370 | Bromide | 48   | ug/mL | 5 | Anions by IC-NP |
| 1602051-KU | B347P4 vial 380 | Bromide | 48.3 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LE | B347P4 vial 390 | Bromide | 48.3 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LM | B347P4 vial 398 | Bromide | 43   | ug/mL | 5 | Anions by IC-NP |
| 1602051-LO | B347P4 vial 400 | Bromide | 29.9 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LQ | B347P4 vial 402 | Bromide | 19.8 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LS | B347P4 vial 404 | Bromide | 14.7 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LU | B347P4 vial 406 | Bromide | 11.3 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LW | B347P4 vial 408 | Bromide | 9.01 | ug/mL | 5 | Anions by IC-NP |
| 1602051-LY | B347P4 vial 410 | Bromide | 7.36 | ug/mL | 5 | Anions by IC-NP |
| 1602051-MA | B347P4 vial 412 | Bromide | 6.16 | ug/mL | 5 | Anions by IC-NP |
| 1602051-MC | B347P4 vial 414 | Bromide | 5.25 | ug/mL | 5 | Anions by IC-NP |
| 1602051-ME | B347P4 vial 416 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-MG | B347P4 vial 418 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-MI | B347P4 vial 420 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-MN | B347P4 vial 425 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-MS | B347P4 vial 430 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-MX | B347P4 vial 435 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-NC | B347P4 vial 440 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-NM | B347P4 vial 450 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-NW | B347P4 vial 460 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-OG | B347P4 vial 470 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-OQ | B347P4 vial 480 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |
| 1602051-PA | B347P4 vial 490 | Bromide | ND   | ug/mL | 5 | Anions by IC-NP |

# Pore Volume and stop flow data for in-tact column B347P4

| Vial # | Pore volume | Comments          |
|--------|-------------|-------------------|
| 1      | 0.00        | saturating column |
| 2      | 0.01        |                   |
| 3      | 0.01        | start column      |
| 4      | 0.02        |                   |
| 5      | 0.02        |                   |
| 6      | 0.02        |                   |
| 7      | 0.03        |                   |
| 8      | 0.03        |                   |
| 9      | 0.03        |                   |
| 10     | 0.04        |                   |
| 11     | 0.04        |                   |
| 12     | 0.05        |                   |
| 13     | 0.05        |                   |
| 14     | 0.05        |                   |
| 15     | 0.06        |                   |
| 16     | 0.06        |                   |
| 17     | 0.06        |                   |
| 18     | 0.07        |                   |
| 19     | 0.07        |                   |
| 20     | 0.08        |                   |
| 21     | 0.08        |                   |
| 22     | 0.08        |                   |
| 23     | 0.09        |                   |
| 24     | 0.09        |                   |
| 25     | 0.10        |                   |
| 26     | 0.10        |                   |
| 27     | 0.10        |                   |

| 28 | 0.11 |  |
|----|------|--|
| 29 | 0.11 |  |
| 30 | 0.11 |  |
| 31 | 0.12 |  |
| 51 | 0.12 |  |
| 32 | 0.12 |  |
| 33 | 0.13 |  |
| 34 | 0.13 |  |
| 35 | 0.13 |  |
| 26 | 0.10 |  |
| 30 | 0.14 |  |
| 37 | 0.14 |  |
| 38 | 0.14 |  |
| 39 | 0.15 |  |
| 10 | 0.15 |  |
|    | 0.10 |  |
| 41 | 0.16 |  |
| 42 | 0.16 |  |
| 43 | 0.16 |  |
| 44 | 0.17 |  |
| 45 | 0.17 |  |
| 45 | 0.17 |  |
| 46 | 0.18 |  |
| 47 | 0.18 |  |
| 48 | 0.18 |  |
| 49 | 0.19 |  |
|    | 0.10 |  |
| 50 | 0.19 |  |
| 51 | 0.19 |  |
| 52 | 0.20 |  |
| 53 | 0.20 |  |
| 54 | 0.21 |  |
| 54 | 0.21 |  |
| 55 | 0.21 |  |
| 56 | 0.21 |  |
| 57 | 0.22 |  |
| 58 | 0.22 |  |
| 50 | 0.22 |  |
| 59 | 0.22 |  |
| 60 | 0.23 |  |
| 61 | 0.23 |  |
| 62 | 0.24 |  |
| 63 | 0.24 |  |
| 64 | 0.24 |  |
| 04 | 0.24 |  |
| 65 | 0.25 |  |
| 66 | 0.25 |  |
| 67 | 0.26 |  |
| 68 | 0.26 |  |
| 60 | 0.26 |  |
| 09 | 0.20 |  |
| /0 | 0.27 |  |
| 71 | 0.27 |  |
| 72 | 0.27 |  |
| 73 | 0.28 |  |
| 74 | 0.28 |  |
| 75 | 0.20 |  |
| /5 | 0.29 |  |
| 76 | 0.29 |  |
| 77 | 0.29 |  |
| 78 | 0.30 |  |
| 70 | 0.00 |  |
| 19 | 0.30 |  |
| 80 | 0.30 |  |
| 81 | 0.31 |  |
| 82 | 0.31 |  |
| 83 | 0.32 |  |
| 04 | 0.22 |  |
| 04 | 0.32 |  |
| 85 | 0.32 |  |
| 86 | 0.33 |  |
| 87 | 0.33 |  |
| 89 | 0.34 |  |
| 00 | 0.34 |  |
| 89 | 0.34 |  |
| 90 | 0.34 |  |
| 91 | 0.35 |  |
| 92 | 0.35 |  |
| 02 | 0.25 |  |
| 30 | 0.00 |  |

| 94                       | 0.36                         |                   |
|--------------------------|------------------------------|-------------------|
| 95                       | 0.36                         |                   |
| 96                       | 0.37                         |                   |
| 97                       | 0.37                         |                   |
| 98                       | 0.37                         |                   |
| 99                       | 0.38                         |                   |
| 100                      | 0.38                         |                   |
| 101                      | 0.38                         |                   |
| 102                      | 0.30                         |                   |
| 102                      | 0.39                         |                   |
| 103                      | 0.39                         |                   |
| 104                      | 0.40                         |                   |
| 105                      | 0.40                         |                   |
| 106                      | 0.40                         |                   |
| 107                      | 0.41                         |                   |
| 108                      | 0.41                         |                   |
| 109                      | 0.42                         |                   |
| 110                      | 0.42                         |                   |
| 111                      | 0.42                         |                   |
| 112                      | 0.43                         |                   |
| 113                      | 0.43                         |                   |
| 114                      | 0.43                         |                   |
| 115                      | 0.44                         |                   |
| 116                      | 0.44                         |                   |
| 117                      | 0.44                         |                   |
| 117                      | 0.45                         |                   |
| 110                      | 0.40                         | 10 hour stor flau |
| 119                      | 0.45                         | 40 HOUL SLOP HOW  |
| 120                      | 0.40                         |                   |
| 121                      | 0.46                         |                   |
| 122                      | 0.46                         |                   |
| 123                      | 0.47                         |                   |
| 124                      | 0.47                         |                   |
| 125                      | 0.48                         |                   |
| 126                      | 0.48                         |                   |
| 127                      | 0.48                         |                   |
| 128                      | 0.49                         |                   |
| 129                      | 0.49                         |                   |
| 130                      | 0.50                         |                   |
| 131                      | 0.50                         |                   |
| 132                      | 0.50                         |                   |
| 133                      | 0.51                         |                   |
| 134                      | 0.51                         |                   |
| 135                      | 0.51                         |                   |
| 136                      | 0.52                         |                   |
| 137                      | 0.52                         |                   |
| 138                      | 0.52                         |                   |
| 120                      | 0.55                         |                   |
| 133                      | 0.55                         |                   |
| 140                      | 0.00                         |                   |
| 141                      | 0.54                         |                   |
| 142                      | 0.54                         |                   |
| 143                      | 0.54                         |                   |
| 144                      | 0.55                         |                   |
| 145                      | 0.55                         |                   |
| 146                      | 0.56                         |                   |
| 147                      | 0.56                         |                   |
| 148                      | 0.56                         |                   |
| 149                      | 0.57                         |                   |
| 150                      | 0.57                         |                   |
| 151                      | 0.58                         |                   |
| 152                      | 0.58                         |                   |
| 153                      | 0.58                         |                   |
| 154                      | 0.59                         |                   |
| 155                      | 0.50                         |                   |
|                          | 0.09                         |                   |
| 156                      | 0.59                         |                   |
| 156                      | 0.59                         |                   |
| 156<br>157<br>158        | 0.59 0.59 0.60 0.60          |                   |
| 156<br>157<br>158<br>159 | 0.59<br>0.59<br>0.60<br>0.60 |                   |

| 160      | 0.61 |                   |
|----------|------|-------------------|
| 161      | 0.61 |                   |
| 160      | 0.01 |                   |
| 102      | 0.02 |                   |
| 163      | 0.62 |                   |
| 164      | 0.62 |                   |
| 165      | 0.63 |                   |
| 400      | 0.00 |                   |
| 100      | 0.63 |                   |
| 167      | 0.64 |                   |
| 168      | 0.64 |                   |
| 160      | 0.64 |                   |
| 109      | 0.04 |                   |
| 170      | 0.65 |                   |
| 171      | 0.65 |                   |
| 172      | 0.66 |                   |
| 173      | 0.66 |                   |
| 175      | 0.00 |                   |
| 1/4      | 0.66 |                   |
| 175      | 0.67 |                   |
| 176      | 0.67 |                   |
| 177      | 0.67 |                   |
| 177      | 0.07 |                   |
| 1/8      | 0.68 |                   |
| 179      | 0.68 |                   |
| 180      | 0.69 |                   |
| 181      | 0.60 |                   |
| 101      | 0.09 |                   |
| 182      | 0.69 |                   |
| 183      | 0.70 |                   |
| 184      | 0.70 |                   |
| 195      | 0.70 |                   |
| 105      | 0.70 |                   |
| 186      | 0.71 |                   |
| 187      | 0.71 |                   |
| 188      | 0.72 |                   |
| 490      | 0.72 |                   |
| 109      | 0.72 |                   |
| 190      | 0.72 |                   |
| 191      | 0.73 |                   |
| 192      | 0.73 |                   |
| 402      | 0.74 |                   |
| 193      | 0.74 |                   |
| 194      | 0.74 |                   |
| 195      | 0.74 |                   |
| 196      | 0.75 |                   |
| 407      | 0.75 |                   |
| 197      | 0.75 |                   |
| 198      | 0.75 |                   |
| 199      | 0.76 |                   |
| 200      | 0.76 |                   |
| 200      | 0.70 |                   |
| 201      | 0.77 |                   |
| 202      | 0.77 |                   |
| 203      | 0.77 |                   |
| 204      | 0.78 |                   |
|          | 0.70 |                   |
| 205      | 0.78 |                   |
| 206      | 0.78 |                   |
| 207      | 0.79 |                   |
| 208      | 0.79 | 72 hour stop flow |
| 200      | 0.00 | 72 Hour stop how  |
| 209      | 0.80 |                   |
| 210      | 0.80 |                   |
| 211      | 0.80 |                   |
| 212      | 0.81 |                   |
| 212      | 0.01 |                   |
| 213      | 0.81 |                   |
| 214      | 0.81 |                   |
| 215      | 0.82 |                   |
| 216      | 0.82 |                   |
| 210      | 0.02 |                   |
| 217      | 0.83 |                   |
| 218      | 0.83 |                   |
| 219      | 0.83 |                   |
| 220      | 0.84 |                   |
| 220      | 0.04 |                   |
| 221      | 0.84 |                   |
| 222      | 0.85 |                   |
| 223      | 0.85 |                   |
| 224      | 0.85 |                   |
| <u> </u> | 0.00 |                   |
| 225      | 0.86 |                   |

| 226 | 0.86 |  |
|-----|------|--|
| 227 | 0.86 |  |
| 228 | 0.87 |  |
| 229 | 0.87 |  |
| 230 | 0.88 |  |
| 230 | 0.00 |  |
| 231 | 0.88 |  |
| 232 | 0.88 |  |
| 233 | 0.89 |  |
| 234 | 0.89 |  |
| 235 | 0.89 |  |
| 236 | 0.00 |  |
| 200 | 0.90 |  |
| 231 | 0.90 |  |
| 238 | 0.91 |  |
| 239 | 0.91 |  |
| 240 | 0.91 |  |
| 241 | 0.92 |  |
| 242 | 0.92 |  |
| 242 | 0.02 |  |
| 243 | 0.93 |  |
| 244 | 0.93 |  |
| 245 | 0.93 |  |
| 246 | 0.94 |  |
| 247 | 0.94 |  |
| 248 | 0.94 |  |
| 240 | 0.04 |  |
| 243 | 0.95 |  |
| 250 | 0.95 |  |
| 251 | 0.96 |  |
| 252 | 0.96 |  |
| 253 | 0.96 |  |
| 254 | 0.97 |  |
| 255 | 0.07 |  |
| 255 | 0.97 |  |
| 256 | 0.97 |  |
| 257 | 0.98 |  |
| 258 | 0.98 |  |
| 259 | 0.99 |  |
| 260 | 0.99 |  |
| 200 | 0.00 |  |
| 261 | 0.99 |  |
| 262 | 1.00 |  |
| 263 | 1.00 |  |
| 264 | 1.01 |  |
| 265 | 1.01 |  |
| 266 | 1 01 |  |
| 267 | 1.07 |  |
| 207 | 1.02 |  |
| 208 | 1.02 |  |
| 269 | 1.02 |  |
| 270 | 1.03 |  |
| 271 | 1.03 |  |
| 272 | 1.04 |  |
| 273 | 1 04 |  |
| 274 | 1.04 |  |
| 214 | 1.04 |  |
| 2/5 | 1.05 |  |
| 276 | 1.05 |  |
| 277 | 1.05 |  |
| 278 | 1.06 |  |
| 279 | 1.06 |  |
| 280 | 1 07 |  |
| 284 | 1.07 |  |
| 201 | 1.07 |  |
| 282 | 1.07 |  |
| 283 | 1.08 |  |
| 284 | 1.08 |  |
| 285 | 1.09 |  |
| 286 | 1 09 |  |
| 287 | 1 00 |  |
| 201 | 1.00 |  |
| 200 | 1.10 |  |
| 289 | 1.10 |  |
| 290 | 1.10 |  |
|     | 4 44 |  |

| 292 | 1.11 |      |
|-----|------|------|
| 293 | 1.12 |      |
| 294 | 1.12 |      |
| 295 | 1.12 |      |
| 296 | 1.13 |      |
| 297 | 1.13 |      |
| 298 | 1.13 |      |
| 299 | 1.14 | stop |

### Analytical Data for in-tact column B347R0

| LabNumber                                 | SampleName     | Analyte     | Result     | Units    | EOL  | Analysis        |
|-------------------------------------------|----------------|-------------|------------|----------|------|-----------------|
| 1602052-01                                | B347R0 vial 1  | Aluminum    | ND         | ug/L     | 165  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-01                                | B347R0 vial 1  | Calcium     | 12000      | ug/L     | 336  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-01                                | B347R0 vial 1  | Chloride    | 70.4       | ug/mL    | 2.5  | Anions by IC-NP |
| 1602052-01                                | B347R0 vial 1  | Iron        | ND         | ug/L     | 100  | ICP-OES         |
|                                           |                | -           |            |          |      | Vadose-NP       |
| 1602052-01                                | B347R0 vial 1  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES         |
|                                           |                | 0           |            | U        |      | Vadose-NP       |
| 1602052-01                                | B347R0 vial 1  | Nitrate     | 29.2       | ug/mL    | 5    | Anions by IC-NP |
| 1602052-01                                | B347R0 vial 1  | pН          | 8.47       | pH Units |      | pH-NP           |
| 1602052-01                                | B347R0 vial 1  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-01                                | B347R0 vial 1  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES         |
|                                           |                | 1           |            | Ũ        |      | Vadose-NP       |
| 1602052-01                                | B347R0 vial 1  | Sulfate     | 46.3       | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-01                                | B347R0 vial 1  | Uranium 238 | 3110       | ug/L     | 14.2 | ICPMS-Tc U-NP   |
| 1602052-03                                | B347R0 vial 3  | Aluminum    | ND         | ug/L     | 165  | ICP-OES         |
|                                           |                |             |            | C C      |      | Vadose-NP       |
| 1602052-03                                | B347R0 vial 3  | Calcium     | 14700      | ug/L     | 336  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-03                                | B347R0 vial 3  | Chloride    | 65.8       | ug/mL    | 2.5  | Anions by IC-NP |
| 1602052-03                                | B347R0 vial 3  | Iron        | ND         | ug/L     | 100  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-03                                | B347R0 vial 3  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-03                                | B347R0 vial 3  | Nitrate     | 27.3       | ug/mL    | 5    | Anions by IC-NP |
| 1602052-03                                | B347R0 vial 3  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-03                                | B347R0 vial 3  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES         |
| 1 (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. |                | 0.10        | 10. (      |          |      | Vadose-NP       |
| 1602052-03                                | B34/R0 vial 3  | Sulfate     | 43.6       | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-03                                | B347R0 vial 3  | Uranium 238 | 3290       | ug/L     | 14.2 | ICPMS-Tc_U-NP   |
| 1602052-05                                | B347R0 vial 5  | Aluminum    | ND         | ug/L     | 165  | ICP-OES         |
| 1(02052.05                                | D247D0 15      | 0.1.        | 15000      | /T       | 226  | Vadose-NP       |
| 1602052-05                                | B34/R0 vial 5  | Calcium     | 15800      | ug/L     | 336  | ICP-OES         |
| 1602052.05                                | D247D0 wiel 5  | Chlarida    | 66.4       | uo/mI    | 2.5  | Aniona by IC ND |
| 1602052-05                                | D347R0 vial 5  | Iron        | 00.4<br>ND | ug/IIIL  | 2.3  |                 |
| 1002032-03                                | D34/K0 viai 3  | 11011       | ND         | ug/L     | 100  | Vadose-NP       |
| 1602052-05                                | B3//7R0 vial 5 | Manganese   | ND         | ug/I     | 23.0 | ICP-OFS         |
| 1002032-05                                | DJ47R0 Viai J  | Wanganese   | ПЪ         | ug/L     | 25.9 | Vadose-NP       |
| 1602052-05                                | B347R0 vial 5  | Nitrate     | 27.3       | 119/mL   | 5    | Anions by IC-NP |
| 1602052-05                                | B347R0 vial 5  | nH          | 8 48       | nH Units |      | pH-NP           |
| 1602052-05                                | B347R0 vial 5  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-05                                | B347R0 vial 5  | Phosphare   | ND         | ug/L     | 408  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-05                                | B347R0 vial 5  | Sulfate     | 42.8       | ug/mL    | 7.5  | Anions by IC-NP |
| 1602052-05                                | B347R0 vial 5  | Uranium 238 | 3650       | ug/L     | 14.2 | ICPMS-Tc U-NP   |
| 1602052-07                                | B347R0 vial 7  | Aluminum    | ND         | ug/L     | 165  | ICP-OES         |
|                                           |                |             |            | -        |      | Vadose-NP       |
| 1602052-07                                | B347R0 vial 7  | Calcium     | 16100      | ug/L     | 336  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-07                                | B347R0 vial 7  | Chloride    | 64.5       | ug/mL    | 2.5  | Anions by IC-NP |
| 1602052-07                                | B347R0 vial 7  | Iron        | ND         | ug/L     | 100  | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-07                                | B347R0 vial 7  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES         |
|                                           |                |             |            |          |      | Vadose-NP       |
| 1602052-07                                | B347R0 vial 7  | Nitrate     | 27.3       | ug/mL    | 5    | Anions by IC-NP |

| 1602052-07   | B347R0 vial 7   | Phosphate    | ND         | ug/mL           | 7.5  | Anions by IC-NP      |
|--------------|-----------------|--------------|------------|-----------------|------|----------------------|
| 1602052-07   | B347R0 vial 7   | Phosphorus   | ND         | ug/L            | 408  | ICP-OES              |
|              |                 |              |            |                 |      | Vadose-NP            |
| 1602052-07   | B347R0 vial 7   | Sulfate      | 42.8       | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602052-07   | B347R0 vial 7   | Uranium 238  | 4100       | ug/L            | 14.2 | ICPMS-Tc U-NP        |
| 1602052-09   | B347R0 vial 9   | Aluminum     | ND         | ug/L            | 165  | ICP-OES              |
|              |                 |              |            |                 |      | Vadose-NP            |
| 1602052-09   | B347R0 vial 9   | Calcium      | 15700      | 110/L           | 336  | ICP-OES              |
|              |                 |              |            |                 |      | Vadose-NP            |
| 1602052-09   | B347R0 vial 9   | Chloride     | 65.8       | ug/mL           | 2.5  | Anions by IC-NP      |
| 1602052-09   | B347R0 vial 9   | Iron         | ND         | ug/III          | 100  | ICP-OES              |
| 1002002 05   | 251110 (101)    |              | 112        | "B' 2           | 100  | Vadose-NP            |
| 1602052-09   | B347R0 vial 9   | Manganese    | ND         | 110/L           | 23.9 | ICP-OES              |
| 1002002 07   | D5 1/100 (hai ) | manganese    | T(D)       | ug/L            | 25.7 | Vadose-NP            |
| 1602052-09   | B347R0 vial 9   | Nitrate      | 27.5       | ug/mI           | 5    | Anions by IC-NP      |
| 1602052-09   | B347R0 vial 9   | nH           | 8 57       | nH Unite        | 5    | nH-NP                |
| 1602052-09   | B347R0 vial 0   | Phoenhate    | ND         | ug/mI           | 7.5  | Anions by IC NP      |
| 1602052-09   | D347R0 vial 9   | Dhoophorus   | ND         | ug/IIIL         | 1.5  |                      |
| 1002032-09   | D34/KU viai 9   | rnosphorus   | ND         | ug/L            | 408  | Vadose NP            |
| 1602052 00   | D247D0 vial 0   | Sulfata      | 12         | ua/mI           | 7.5  | Anions by IC ND      |
| 1602052-09   | D34/K0 vial 9   | Uronium 229  | 2010       | ug/IIIL         | 14.2 | ICDMS To U ND        |
| 1602052-09   | D34/R0 vial 9   |              | 3910<br>ND | ug/L            | 14.2 | ICPMIS-IC_U-NP       |
| 1602052-11   | B34/K0 viai 11  | Aluminum     | ND         | ug/L            | 105  | ICP-OES              |
| 1(02052 11   | D247D0          | Calaina      | 14600      |                 | 226  |                      |
| 1602052-11   | B34/K0 Viai 11  | Calcium      | 14600      | ug/L            | 530  | ICP-OES<br>Vedece NB |
| 1602052 11   | D247D0          | Chland-      | 65 1       | na/mT           | 25   | Aniona har IC MD     |
| 1602052-11   | B34/R0 vial 11  | Chloride     | 65.1       | ug/mL           | 2.5  | Anions by IC-NP      |
| 1602052-11   | B34/R0 Vial 11  | Iron         | ND         | ug/L            | 100  | ICP-OES              |
| 1602052 11   | D247D0          | Manazzzzzz   | ND         |                 | 22.0 | Vauose-NP            |
| 1602052-11   | B34/K0 viai 11  | Manganese    | ND         | ug/L            | 25.9 | ICP-OES              |
| 1(02052 11   | D247D0          | Niturta      | 27.0       |                 | 5    | A minute has IC NID  |
| 1602052-11   | B34/R0 vial 11  | Nitrate      | 27.8       | ug/mL           | 5    | Anions by IC-NP      |
| 1602052-11   | B34/R0 vial 11  | Phosphate    | ND         | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602052-11   | B34/R0 vial 11  | Phosphorus   | ND         | ug/L            | 408  | ICP-OES              |
| 1(02052 11   | D247D0 111      | 0.10.4       | 42.2       | / T             | 7.6  | Vadose-NP            |
| 1602052-11   | B34/R0 vial 11  | Suitate      | 43.2       | ug/mL           | /.5  | Anions by IC-NP      |
| 1602052-11   | B34/R0 vial 11  | Uranium 238  | 3800       | ug/L            | 14.2 | ICPMS-IC_U-NP        |
| 1602052-13   | B347R0 vial 13  | Aluminum     | ND         | ug/L            | 165  | ICP-OES              |
| 1 (000000 10 |                 |              | 1.4000     |                 |      | Vadose-NP            |
| 1602052-13   | B347R0 vial 13  | Calcium      | 14000      | ug/L            | 336  | ICP-OES              |
| 1 (00050 10  | D245D0 1112     | 011 1        | (5.1       | / <b>T</b>      | 2.5  | Vadose-NP            |
| 1602052-13   | B34/R0 vial 13  | Chloride     | 65.1       | ug/mL           | 2.5  | Anions by IC-NP      |
| 1602052-13   | B34/R0 vial 13  | Iron         | ND         | ug/L            | 100  | ICP-OES              |
| 1(02052.12   | D247D0 112      | 14           | ND         | /T              | 22.0 | Vadose-NP            |
| 1602052-13   | B34/R0 vial 13  | Manganese    | ND         | ug/L            | 23.9 | ICP-OES              |
| 1(02052.12   | D247D0          | Niturta      | 20.1       |                 | 5    | Vauose-INP           |
| 1002052-15   | D34/K0 vial 15  | Disculate    | 20.1       | ug/mL           | 3    | Amons by IC-NP       |
| 1602052-13   | B34/R0 vial 13  | Phosphate    | ND         | ug/mL           | /.5  | Anions by IC-NP      |
| 1602052-13   | B34/R0 vial 13  | Phosphorus   | ND         | ug/L            | 408  | ICP-OES<br>Vodece ND |
| 1(02052 12   | D247D0          | C-16-4-      | 42.1       |                 | 7.5  | A minute has LC NID  |
| 1602052-13   | D34/R0 vial 15  | Junaina 229  | 43.1       | ug/mL           | 14.2 | Amons by IC-INP      |
| 1002052-15   | D34/R0 vial 15  |              | 5460<br>ND | ug/L            | 14.2 | ICPMIS-IC_U-NP       |
| 1002052-15   | D34/K0 viai 13  | Aluminum     | ND         | ug/L            | 103  | Vedece ND            |
| 1602052 15   | B347D0 viol 15  | Calaium      | 13100      | uc/I            | 326  |                      |
| 1002052-15   | D34/KU viai 13  | Calcium      | 13100      | ug/L            | 330  | ICF-UES<br>Vedoce ND |
| 1602052 15   | D247D0 viol 15  | Chlorida     | 66.0       | ua/mI           | 2.5  | Aniona by IC ND      |
| 1602052-15   | B347R0 vial 15  | Iron         | ND         | ug/IIIL<br>ug/I | 2.5  |                      |
| 1002032-13   | D34/K0 viai 13  | 11011        | ND         | ug/L            | 100  | Vadose-NP            |
| 1602052-15   | B347R0 vial 15  | Manganece    | ND         | ug/I            | 23.0 |                      |
| 1002032-13   | D34/10 viai 13  | wanganese    | ND         | ug/L            | 23.) | Vadose-NP            |
| 1602052-15   | B347R0 vial 15  | Nitrate      | 28.4       | ug/mI           | 5    | Anions by IC-ND      |
| 1602052-15   | B347R0 vial 15  | nH           | 8 / 3      | nH Unite        | 5    | nH-NP                |
| 1602052-15   | B347R0 vial 15  | Phosphate    | ND         | ug/mI           | 75   | Anions by IC-ND      |
| 1602052-15   | B347R0 vial 15  | Phosphorus   | ND         | ug/IIL<br>ug/I  | 408  |                      |
| 1002032-13   |                 | r nosphorus  |            | ug/L            | +00  | Vadose-NP            |
| 1602052-15   | B347R0 vial 15  | Sulfate      | 43.3       | ug/mI           | 75   | Anions by IC-ND      |
| 1602052-15   | B347R0 vial 15  | Uranium 228  | 3280       | ug/IIL<br>ug/I  | 14.2 | ICPMS_To_U_ND        |
| 1602052-15   | B3/7R0 vial 13  |              |            | ug/L<br>ug/I    | 14.2 |                      |
| 1002032-20   | DJ4/ KU viai 20 | AndriningIII | ND         | ug/L            | 103  | Vadose-NP            |
| 1602052 20   | B3//7R0 vial 20 | Calcium      | 11600      | uc/I            | 326  |                      |
| 1002052-20   | D34/KU Viai 20  | Calcium      | 11000      | ug/L            | 330  | Vadose ND            |
| 1602052 20   | B3/7P0 vial 20  | Chlorida     | 65 7       | ug/mI           | 2.5  | Anions by IC ND      |
| 1602052-20   | B347R0 vial 20  | Iron         | ND         | ug/IIIL<br>ug/I | 2.3  |                      |
| 1002032-20   |                 | 11011        |            | ug/L            | 100  | Vadose-NP            |

| 1602052-20  | B347R0 vial 20  | Manganese     | ND         | ug/L                 | 23.9 | ICP-OES<br>Vadose-NP |
|-------------|-----------------|---------------|------------|----------------------|------|----------------------|
| 1602052-20  | B347R0 vial 20  | Nitrate       | 28.3       | ug/mL                | 5    | Anions by IC-NP      |
| 1602052-20  | B347R0 vial 20  | pH            | 8.43       | pH Units             |      | pH-NP                |
| 1602052-20  | B347R0 vial 20  | Phosphate     | ND         | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-20  | B347R0 vial 20  | Phosphorus    | ND         | ug/L                 | 408  | ICP-OES              |
|             |                 | 1             |            | U U                  |      | Vadose-NP            |
| 1602052-20  | B347R0 vial 20  | Sulfate       | 42.4       | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-20  | B347R0 vial 20  | Uranium 238   | 2600       | ug/L                 | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-25  | B347R0 vial 25  | Aluminum      | ND         | ug/L                 | 165  | ICP-OES              |
|             |                 |               |            |                      |      | Vadose-NP            |
| 1602052-25  | B347R0 vial 25  | Calcium       | 10900      | ug/L                 | 336  | ICP-OES              |
| 1(02052.25  | D247D0          | Chlanida      | (1)        |                      | 2.5  | Vadose-NP            |
| 1602052-25  | B34/R0 Vial 25  | Iron          | 04.3<br>ND | ug/mL                | 2.5  | Anions by IC-INP     |
| 1002052-25  | D54/K0 viai 25  | 11011         | ND         | ug/L                 | 100  | Vadose-NP            |
| 1602052-25  | B347R0 vial 25  | Manganese     | ND         | 119/L                | 23.9 | ICP-OES              |
| 1002002 20  | 201110110120    | IntallBallebe | 112        | <b>"</b> B" <u>–</u> |      | Vadose-NP            |
| 1602052-25  | B347R0 vial 25  | Nitrate       | 28.3       | ug/mL                | 5    | Anions by IC-NP      |
| 1602052-25  | B347R0 vial 25  | Phosphate     | ND         | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-25  | B347R0 vial 25  | Phosphorus    | ND         | ug/L                 | 408  | ICP-OES              |
|             |                 | <u> </u>      |            |                      |      | Vadose-NP            |
| 1602052-25  | B347R0 vial 25  | Sulfate       | 42.1       | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-25  | B34/R0 vial 25  | Uranium 238   | 2130       | ug/L                 | 14.2 | ICPMS-Ic_U-NP        |
| 1602052-30  | B34/K0 Vial 30  | Aluminum      | ND         | ug/L                 | 165  | ICP-OES<br>Vadose NP |
| 1602052-30  | B347R0 vial 30  | Calcium       | 10400      | ug/I                 | 336  | ICP-OFS              |
| 1002002 00  | 251,100 1141 50 | Cultium       | 10100      | "B 1                 |      | Vadose-NP            |
| 1602052-30  | B347R0 vial 30  | Chloride      | 66.5       | ug/mL                | 2.5  | Anions by IC-NP      |
| 1602052-30  | B347R0 vial 30  | Iron          | ND         | ug/L                 | 100  | ICP-OES              |
| 1 (02052 20 | D247D0 1120     |               | ND         | /*                   | 22.0 | Vadose-NP            |
| 1602052-30  | B34/R0 vial 30  | Manganese     | ND         | ug/L                 | 23.9 | ICP-OES<br>Vadose NP |
| 1602052-30  | B347R0 vial 30  | Nitrate       | 28.4       | ug/mL                | 5    | Anions by IC-NP      |
| 1602052-30  | B347R0 vial 30  | pH            | 8.3        | pH Units             | 0    | pH-NP                |
| 1602052-30  | B347R0 vial 30  | Phosphate     | ND         | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-30  | B347R0 vial 30  | Phosphorus    | ND         | ug/L                 | 408  | ICP-OES              |
|             |                 |               |            |                      |      | Vadose-NP            |
| 1602052-30  | B347R0 vial 30  | Sulfate       | 42.3       | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-30  | B347R0 vial 30  | Uranium 238   | 2070       | ug/L                 | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-40  | B347R0 vial 40  | Aluminum      | ND         | ug/L                 | 165  | ICP-OES              |
| 1602052 40  | D247D0 vial 40  | Calaium       | 10200      |                      | 226  | Vadose-NP            |
| 1002032-40  | D347R0 Viai 40  | Calcium       | 10500      | ug/L                 | 550  | Vadose-NP            |
| 1602052-40  | B347R0 vial 40  | Chloride      | 65.3       | ug/mL                | 2.5  | Anions by IC-NP      |
| 1602052-40  | B347R0 vial 40  | Iron          | ND         | ug/L                 | 100  | ICP-OES              |
|             |                 |               |            | Ū                    |      | Vadose-NP            |
| 1602052-40  | B347R0 vial 40  | Manganese     | ND         | ug/L                 | 23.9 | ICP-OES              |
| 1602052 40  | D247D0 vial 40  | Nitrata       | 20.2       | ug/mI                | 5    | A nions by IC NP     |
| 1602052-40  | B347R0 vial 40  | nH            | 8 27       | nH Units             | 5    | nH-NP                |
| 1602052-40  | B347R0 vial 40  | Phosphate     | ND         | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-40  | B347R0 vial 40  | Phosphorus    | ND         | 119/L                | 408  | ICP-OES              |
|             |                 | p             |            | -6-                  |      | Vadose-NP            |
| 1602052-40  | B347R0 vial 40  | Sulfate       | 41.8       | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-40  | B347R0 vial 40  | Uranium 238   | 1580       | ug/L                 | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-50  | B347R0 vial 50  | Aluminum      | ND         | ug/L                 | 165  | ICP-OES              |
| 1 (0000 = 0 | D0.(5D0 : 1.50  |               | 10500      |                      |      | Vadose-NP            |
| 1602052-50  | B34/R0 vial 50  | Calcium       | 10/00      | ug/L                 | 336  | ICP-OES<br>Vadose NP |
| 1602052-50  | B347R0 vial 50  | Chloride      | 65.3       | ug/mI                | 2.5  | Anions by IC-NP      |
| 1602052-50  | B347R0 vial 50  | Iron          | ND         | ug/L                 | 100  | ICP-OES              |
|             |                 | -             |            |                      |      | Vadose-NP            |
| 1602052-50  | B347R0 vial 50  | Manganese     | ND         | ug/L                 | 23.9 | ICP-OES              |
| 1602052 50  | D247D01 50      | Niterta       | 28.2       |                      | E    | Vadose-NP            |
| 1602052-50  | B34/R0 vial 50  | Nitrate       | 28.5       | ug/mL                | 5    | Anions by IC-NP      |
| 1602032-50  | B347R0 vial 50  | Phosphate     | 0.24<br>ND |                      | 75   | Anions by IC-ND      |
| 1602052-50  | B347R0 vial 50  | Phosphorus    | ND         | ug/L                 | 408  | ICP-OES              |
|             |                 | r             |            |                      |      | Vadose-NP            |
| 1602052-50  | B347R0 vial 50  | Sulfate       | 42         | ug/mL                | 7.5  | Anions by IC-NP      |
| 1602052-50  | B347R0 vial 50  | Uranium 238   | 1380       | ug/L                 | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-60  | B347R0 vial 60  | Aluminum      | ND         | ug/L                 | 165  | ICP-OES              |
|             |                 |               |            |                      |      | vadose-NP            |

| 1602052-60 | B347R0 vial 60  | Calcium     | 11200      | ug/L     | 336  | ICP-OES              |
|------------|-----------------|-------------|------------|----------|------|----------------------|
|            |                 |             |            |          |      | Vadose-NP            |
| 1602052-60 | B347R0 vial 60  | Chloride    | 65         | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602052-60 | B347R0 vial 60  | Iron        | ND         | ug/L     | 100  | ICP-OES<br>Vadasa NB |
| 1602052_60 | B347R0 vial 60  | Manganese   | ND         |          | 23.9 | ICP-OFS              |
| 1002032-00 | D34/100 viai 00 | Wanganese   | ND         | ug/L     | 23.9 | Vadose-NP            |
| 1602052-60 | B347R0 vial 60  | Nitrate     | 28.2       | ug/mL    | 5    | Anions by IC-NP      |
| 1602052-60 | B347R0 vial 60  | pH          | 8.2        | pH Units |      | pH-NP                |
| 1602052-60 | B347R0 vial 60  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-60 | B347R0 vial 60  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES              |
|            |                 | 1           |            |          |      | Vadose-NP            |
| 1602052-60 | B347R0 vial 60  | Sulfate     | 41.8       | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-60 | B347R0 vial 60  | Uranium 238 | 1130       | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-70 | B347R0 vial 70  | Aluminum    | ND         | ug/L     | 165  | ICP-OES              |
| 1(02052 50 | D247D0 170      | 0.1.        | 11700      | /1       | 226  | Vadose-NP            |
| 1602052-70 | B34/R0 Vial /0  | Calcium     | 11/00      | ug/L     | 336  | ICP-OES<br>Vadose NP |
| 1602052-70 | B347R0 vial 70  | Chloride    | 64.8       | ug/mI    | 2.5  | Anions by IC-NP      |
| 1602052-70 | B347R0 vial 70  | Iron        | ND         | ug/IL    | 100  | ICP-OES              |
| 1002002 /0 | 25 1710 1141 70 | non         | 112        | «g/ 2    | 100  | Vadose-NP            |
| 1602052-70 | B347R0 vial 70  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES              |
|            |                 | -           |            |          |      | Vadose-NP            |
| 1602052-70 | B347R0 vial 70  | Nitrate     | 28.1       | ug/mL    | 5    | Anions by IC-NP      |
| 1602052-70 | B347R0 vial 70  | pH          | 8.21       | pH Units |      | pH-NP                |
| 1602052-70 | B347R0 vial 70  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-70 | B34/R0 vial /0  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES              |
| 1602052 70 | B347P0 vial 70  | Sulfate     | 41.6       | ua/mI    | 7.5  | Anions by IC NP      |
| 1602052-70 | B347R0 vial 70  | Uranium 238 | 1030       | ug/IIL   | 14.2 | ICPMS-Tc U-NP        |
| 1602052-78 | B347R0 vial 78  | Aluminum    | ND         | ug/L     | 165  | ICP-OES              |
|            |                 |             |            |          |      | Vadose-NP            |
| 1602052-78 | B347R0 vial 78  | Calcium     | 15700      | ug/L     | 336  | ICP-OES              |
|            |                 |             |            |          |      | Vadose-NP            |
| 1602052-78 | B347R0 vial 78  | Chloride    | 65         | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602052-78 | B347R0 vial 78  | Iron        | ND         | ug/L     | 100  | ICP-OES              |
| 1602052 78 | B347P0 vial 78  | Manganasa   | ND         | ug/I     | 23.0 |                      |
| 1002032-78 | D34/K0 viai /o  | Manganese   | ND         | ug/L     | 23.9 | Vadose-NP            |
| 1602052-78 | B347R0 vial 78  | Nitrate     | 28.5       | ug/mL    | 5    | Anions by IC-NP      |
| 1602052-78 | B347R0 vial 78  | pН          | 8.31       | pH Units |      | pH-NP                |
| 1602052-78 | B347R0 vial 78  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-78 | B347R0 vial 78  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES              |
|            |                 | ~ 10        | 40.0       |          |      | Vadose-NP            |
| 1602052-78 | B34/R0 vial /8  | Sulfate     | 42.8       | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-78 | B34/R0 Vial /8  | Oranium 238 | 1640<br>ND | ug/L     | 14.2 | ICPMS-IC_U-NP        |
| 1002052-00 | D34/K0 viai 80  | Aluminum    | ND         | ug/L     | 105  | Vadose-NP            |
| 1602052-80 | B347R0 vial 80  | Calcium     | 15300      | ug/L     | 336  | ICP-OES              |
| 1002002 00 | 25 1710 1141 00 | cultum      | 10000      | «g/ 2    | 2200 | Vadose-NP            |
| 1602052-80 | B347R0 vial 80  | Chloride    | 64.2       | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602052-80 | B347R0 vial 80  | Iron        | ND         | ug/L     | 100  | ICP-OES              |
|            |                 |             |            | ~        |      | Vadose-NP            |
| 1602052-80 | B347R0 vial 80  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES              |
| 1602052-80 | B3/7R0 vial 80  | Nitrate     | 28.3       | ug/mI    | 5    | A nions by IC-NP     |
| 1602052-80 | B347R0 vial 80  | nH          | 8 37       | nH Units | 5    | nH-NP                |
| 1602052-80 | B347R0 vial 80  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-80 | B347R0 vial 80  | Phosphorus  | ND         | ug/L     | 408  | ICP-OES              |
|            |                 |             |            |          |      | Vadose-NP            |
| 1602052-80 | B347R0 vial 80  | Sulfate     | 42.4       | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602052-80 | B347R0 vial 80  | Uranium 238 | 1760       | ug/L     | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-82 | B347R0 vial 82  | Aluminum    | ND         | ug/L     | 165  | ICP-OES              |
| 1602052 92 | B3/7D0 vial 00  | Calainer    | 15100      | ug/I     | 226  | Vadose-NP            |
| 1002052-82 | D34/KU VIAI 82  | Calcium     | 15100      | ug/L     | 330  | ICP-UES<br>Vadose-NP |
| 1602052-82 | B347R0 vial 82  | Chloride    | 64 3       | 110/mI   | 2.5  | Anions by IC-NP      |
| 1602052-82 | B347R0 vial 82  | Iron        | ND         | ug/L     | 100  | ICP-OES              |
|            |                 |             |            |          |      | Vadose-NP            |
| 1602052-82 | B347R0 vial 82  | Manganese   | ND         | ug/L     | 23.9 | ICP-OES              |
|            |                 |             |            |          | -    | Vadose-NP            |
| 1602052-82 | B347R0 vial 82  | Nitrate     | 28.2       | ug/mL    | 5    | Anions by IC-NP      |
| 1602052-82 | B347R0 vial 82  | Phosphate   | ND         | ug/mL    | 7.5  | Anions by IC-NP      |

| 1602052-82 | B347R0 vial 82     | Phosphorus  | ND         | ug/L           | 408      | ICP-OES              |
|------------|--------------------|-------------|------------|----------------|----------|----------------------|
| 1602052 82 | D247D0 vial 82     | Sulfata     | 12.6       | ug/mI          | 7.5      | Vadose-NP            |
| 1602052-82 | B347R0 vial 82     | Uranium 238 | 42.0       | ug/IIL         | 14.2     | ICPMS To U NP        |
| 1602052-82 | B347R0 vial 82     | Aluminum    | ND         | ug/L           | 14.2     | ICP-OFS              |
| 1002032-04 | D34/100 viai 04    | Aluminum    | ND         | ug/L           | 105      | Vadose-NP            |
| 1602052-84 | B347R0 vial 84     | Calcium     | 15200      | ug/L           | 336      | ICP-OES              |
|            |                    |             |            |                |          | Vadose-NP            |
| 1602052-84 | B347R0 vial 84     | Chloride    | 65.1       | ug/mL          | 2.5      | Anions by IC-NP      |
| 1602052-84 | B347R0 vial 84     | Iron        | ND         | ug/L           | 100      | ICP-OES              |
|            | D247D2 1104        |             | ND         |                | 22.0     | Vadose-NP            |
| 1602052-84 | B34/R0 vial 84     | Manganese   | ND         | ug/L           | 23.9     | ICP-OES<br>Vadaga ND |
| 1602052 84 | B347P0 vial 84     | Nitrata     | 28.4       | ug/mI          | 5        | Anions by IC NP      |
| 1602052-84 | B347R0 vial 84     | Phosphate   | ND         | ug/mL          | 75       | Anions by IC-NP      |
| 1602052-84 | B347R0 vial 84     | Phosphorus  | ND         | 119/L          | 408      | ICP-OES              |
|            |                    | p           |            | 8              |          | Vadose-NP            |
| 1602052-84 | B347R0 vial 84     | Sulfate     | 43         | ug/mL          | 7.5      | Anions by IC-NP      |
| 1602052-84 | B347R0 vial 84     | Uranium 238 | 1640       | ug/L           | 14.2     | ICPMS-Tc_U-NP        |
| 1602052-85 | B347R0 vial 85     | pН          | 8.43       | pH Units       |          | pH-NP                |
| 1602052-86 | B347R0 vial 86     | Aluminum    | ND         | ug/L           | 165      | ICP-OES              |
| 1(02052.9( | D247D0             | Calaina     | 14500      | /T             | 226      | Vadose-NP            |
| 1002052-80 | D34/K0 viai 80     | Calcium     | 14300      | ug/L           | 550      | Vadose-NP            |
| 1602052-86 | B347R0 vial 86     | Chloride    | 64.5       | ug/mL          | 2.5      | Anions by IC-NP      |
| 1602052-86 | B347R0 vial 86     | Iron        | ND         | ug/L           | 100      | ICP-OES              |
|            |                    | -           |            |                |          | Vadose-NP            |
| 1602052-86 | B347R0 vial 86     | Manganese   | ND         | ug/L           | 23.9     | ICP-OES              |
|            |                    |             |            |                |          | Vadose-NP            |
| 1602052-86 | B347R0 vial 86     | Nitrate     | 28.4       | ug/mL          | 5        | Anions by IC-NP      |
| 1602052-86 | B34/R0 vial 86     | Phosphate   | ND         | ug/mL          | 7.5      | Anions by IC-NP      |
| 1002052-80 | B34/K0 Vial 80     | Phosphorus  | ND         | ug/L           | 408      | Vadose-NP            |
| 1602052-86 | B347R0 vial 86     | Sulfate     | 42.7       | ug/mL          | 7.5      | Anions by IC-NP      |
| 1602052-86 | B347R0 vial 86     | Uranium 238 | 1630       | ug/L           | 14.2     | ICPMS-Tc U-NP        |
| 1602052-88 | B347R0 vial 88     | Aluminum    | ND         | ug/L           | 165      | ICP-OES              |
|            |                    |             |            | -              |          | Vadose-NP            |
| 1602052-88 | B347R0 vial 88     | Calcium     | 14700      | ug/L           | 336      | ICP-OES              |
| 1(02052.00 | D247D0 100         | C11 1       | (4.0       | / <b>T</b>     | 2.5      | Vadose-NP            |
| 1602052-88 | B34/R0 Vial 88     | Iron        | 64.8<br>ND | ug/mL          | 2.5      | Anions by IC-NP      |
| 1002032-00 | D34/K0 viai 88     | 11011       | ND         | ug/L           | 100      | Vadose-NP            |
| 1602052-88 | B347R0 vial 88     | Manganese   | ND         | ug/L           | 23.9     | ICP-OES              |
|            |                    |             |            |                |          | Vadose-NP            |
| 1602052-88 | B347R0 vial 88     | Nitrate     | 28.5       | ug/mL          | 5        | Anions by IC-NP      |
| 1602052-88 | B347R0 vial 88     | Phosphate   | ND         | ug/mL          | 7.5      | Anions by IC-NP      |
| 1602052-88 | B347R0 vial 88     | Phosphorus  | ND         | ug/L           | 408      | ICP-OES              |
| 1602052 88 | D247D0 vial 88     | Sulfata     | 42.8       | ug/mI          | 7.5      | Anions by IC ND      |
| 1602052-88 | B347R0 vial 88     | Uranium 238 | 42.8       | ug/IIL<br>ug/I | 14.2     | ICPMS-Tc U-NP        |
| 1602052-00 | B347R0 vial 90     | Aluminum    | ND         | 11g/L          | 165      | ICP-OES              |
| 1002002 90 | 25111011010        | 1           | 112        | "B'            | 100      | Vadose-NP            |
| 1602052-90 | B347R0 vial 90     | Calcium     | 14300      | ug/L           | 336      | ICP-OES              |
|            |                    |             |            |                |          | Vadose-NP            |
| 1602052-90 | B347R0 vial 90     | Chloride    | 64.8       | ug/mL          | 2.5      | Anions by IC-NP      |
| 1602052-90 | B34/R0 vial 90     | Iron        | ND         | ug/L           | 100      | ICP-OES<br>Vadose NP |
| 1602052-90 | B347R0 vial 90     | Manganese   | ND         | 11g/I          | 23.9     | ICP-OFS              |
| 1002032-90 | D54/100 viai 70    | Widingunese | nD         | ug/ 12         | 25.9     | Vadose-NP            |
| 1602052-90 | B347R0 vial 90     | Nitrate     | 28.5       | ug/mL          | 5        | Anions by IC-NP      |
| 1602052-90 | B347R0 vial 90     | pH          | 8.29       | pH Units       |          | pH-NP                |
| 1602052-90 | B347R0 vial 90     | Phosphate   | ND         | ug/mL          | 7.5      | Anions by IC-NP      |
| 1602052-90 | B347R0 vial 90     | Phosphorus  | ND         | ug/L           | 408      | ICP-OES              |
| 1602052 00 | D247D0             | Sulfat-     | 40.7       |                | 75       | Vadose-NP            |
| 1602052-90 | B3/7R0 vial 90     | Uranium 238 | 42.7       | ug/mL          | 1.5      | ICPMS. To UND        |
| 1602052-90 | B347R0 vial 90     | Aluminum    | ND         | ug/L<br>110/L  | 14.2     | ICP-OES              |
| 1002002-70 | 155 T T CO VIUL 75 | 2 maningin  |            | 46/ L          | 105      | Vadose-NP            |
| 1602052-95 | B347R0 vial 95     | Calcium     | 13900      | ug/L           | 336      | ICP-OES              |
|            |                    |             |            | ļ              | <u> </u> | Vadose-NP            |
| 1602052-95 | B347R0 vial 95     | Chloride    | 64.4       | ug/mL          | 2.5      | Anions by IC-NP      |
| 1602052-95 | B347R0 vial 95     | Iron        | ND         | ug/L           | 100      | ICP-OES<br>Vadese NP |
|            |                    |             |            | 1              | 1        | vacose-NP            |

| 1602052-95   | B347R0 vial 95   | Manganese   | ND         | ug/L           | 23.9 | ICP-OES              |
|--------------|------------------|-------------|------------|----------------|------|----------------------|
| 1602052-95   | B347R0 vial 95   | Nitrate     | 28.3       | ug/mI          | 5    | Anions by IC-NP      |
| 1602052-95   | B347R0 vial 95   | Phosphate   | ND         | ug/mL          | 75   | Anions by IC-NP      |
| 1602052-95   | B347R0 vial 95   | Phosphorus  | ND         | ug/IIL<br>ug/L | 408  | ICP-OES              |
|              |                  | 1           |            | 6              |      | Vadose-NP            |
| 1602052-95   | B347R0 vial 95   | Sulfate     | 42.2       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-95   | B347R0 vial 95   | Uranium 238 | 1210       | ug/L           | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-AA   | B34/R0 vial 100  | Aluminum    | ND         | ug/L           | 165  | ICP-OES<br>Vadose NP |
| 1602052-A A  | B347R0 vial 100  | Calcium     | 1/100      | 110/I          | 336  | ICP-OFS              |
| 1002032-111  | D54/100 Viai 100 | Culcium     | 14100      | ug/L           | 550  | Vadose-NP            |
| 1602052-AA   | B347R0 vial 100  | Chloride    | 64.4       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602052-AA   | B347R0 vial 100  | Iron        | ND         | ug/L           | 100  | ICP-OES              |
| 1(02052 + +  | D247D0 1100      |             | ND         |                | 22.0 | Vadose-NP            |
| 1602052-AA   | B34/R0 vial 100  | Manganese   | ND         | ug/L           | 23.9 | ICP-OES<br>Vadose-NP |
| 1602052-AA   | B347R0 vial 100  | Nitrate     | 28.3       | ug/mL          | 5    | Anions by IC-NP      |
| 1602052-AA   | B347R0 vial 100  | pН          | 8.23       | pH Units       |      | pH-NP                |
| 1602052-AA   | B347R0 vial 100  | Phosphate   | ND         | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AA   | B347R0 vial 100  | Phosphorus  | ND         | ug/L           | 408  | ICP-OES              |
|              |                  |             |            |                |      | Vadose-NP            |
| 1602052-AA   | B347R0 vial 100  | Sulfate     | 41.9       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AA   | B34/R0 vial 100  | Uranium 238 | 1070       | ug/L           | 14.2 | ICPMS-Ic_U-NP        |
| 1602052-AF   | B34/K0 Vial 105  | Aluminum    | ND         | ug/L           | 165  | ICP-OES<br>Vadose-NP |
| 1602052-AF   | B347R0 vial 105  | Calcium     | 14100      | ug/L           | 336  | ICP-OES              |
|              |                  |             |            | -8-            |      | Vadose-NP            |
| 1602052-AF   | B347R0 vial 105  | Chloride    | 64.1       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602052-AF   | B347R0 vial 105  | Iron        | ND         | ug/L           | 100  | ICP-OES              |
| 1602052 AE   | D247D0 vial 105  | Manganasa   | ND         | ug/I           | 22.0 | Vadose-NP            |
| 1002032-AF   | D34/10 viai 103  | Manganese   | ND         | ug/L           | 23.9 | Vadose-NP            |
| 1602052-AF   | B347R0 vial 105  | Nitrate     | 28.2       | ug/mL          | 5    | Anions by IC-NP      |
| 1602052-AF   | B347R0 vial 105  | Phosphate   | ND         | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AF   | B347R0 vial 105  | Phosphorus  | ND         | ug/L           | 408  | ICP-OES              |
| 1(02052 4 5  | D247D0 1105      | 0.10.4      | 41.0       | / <b>T</b>     | 7.6  | Vadose-NP            |
| 1602052-AF   | B34/R0 vial 105  | Sulfate     | 41.8       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AF   | B347R0 vial 105  | Aluminum    | 939<br>ND  | ug/L           | 14.2 | ICP-OFS              |
| 1002052-711  | D54/100 viai 110 | 7 traininum | ND         | ug/L           | 105  | Vadose-NP            |
| 1602052-AK   | B347R0 vial 110  | Calcium     | 14800      | ug/L           | 336  | ICP-OES              |
|              | D247D0 11410     | <u> </u>    | (1.2       |                |      | Vadose-NP            |
| 1602052-AK   | B34/R0 vial 110  | Chloride    | 64.3       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1002052-AK   | B34/K0 Viai 110  | Iron        | ND         | ug/L           | 100  | Vadose-NP            |
| 1602052-AK   | B347R0 vial 110  | Manganese   | ND         | ug/L           | 23.9 | ICP-OES              |
|              |                  |             |            |                |      | Vadose-NP            |
| 1602052-AK   | B347R0 vial 110  | Nitrate     | 28.3       | ug/mL          | 5    | Anions by IC-NP      |
| 1602052-AK   | B347R0 vial 110  | pH          | 8.22       | pH Units       |      | pH-NP                |
| 1602052-AK   | B34/R0 vial 110  | Phosphate   | ND         | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AK   | B34/K0 Vial 110  | Phosphorus  | ND         | ug/L           | 408  | ICP-OES<br>Vadose-NP |
| 1602052-AK   | B347R0 vial 110  | Sulfate     | 41.9       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AK   | B347R0 vial 110  | Uranium 238 | 953        | ug/L           | 14.2 | ICPMS-Tc U-NP        |
| 1602052-AU   | B347R0 vial 120  | Aluminum    | ND         | ug/L           | 165  | ICP-OES              |
|              |                  | ~ ( )       | 1 0 0      | ~              |      | Vadose-NP            |
| 1602052-AU   | B347R0 vial 120  | Calcium     | 15700      | ug/L           | 336  | ICP-OES              |
| 1602052-41   | B347R0 vial 120  | Chloride    | 64.5       | ug/mI          | 2.5  | Anions by IC-NP      |
| 1602052-AU   | B347R0 vial 120  | Iron        | ND         |                | 100  | ICP-OES              |
|              |                  |             |            |                |      | Vadose-NP            |
| 1602052-AU   | B347R0 vial 120  | Manganese   | ND         | ug/L           | 23.9 | ICP-OES              |
| 1(02052 + 1) | D247B0 1120      | Ντ.         | 20.4       | / *            |      | Vadose-NP            |
| 1602052-AU   | B34/K0 vial 120  | Nitrate     | 28.4       | ug/mL          | 5    | Anions by IC-NP      |
| 1602052-AU   | B347R0 vial 120  | Phosphate   | 0.22<br>ND |                | 75   | Anions by IC-NP      |
| 1602052-AU   | B347R0 vial 120  | Phospharus  | ND         | ug/IL          | 408  | ICP-OES              |
|              | 20               | 1 noophorus |            |                | 100  | Vadose-NP            |
| 1602052-AU   | B347R0 vial 120  | Sulfate     | 42.1       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602052-AU   | B347R0 vial 120  | Uranium 238 | 819        | ug/L           | 14.2 | ICPMS-Tc_U-NP        |
| 1602052-BE   | B347R0 vial 130  | Aluminum    | ND         | ug/L           | 165  | ICP-OES              |
|              | 1                |             |            | 1              | 1    | vauose-inp           |
| 1602052-BE                             | B347R0 vial 130                                       | Calcium                            | 17000            | ug/L                   | 336             | ICP-OES                                       |
|----------------------------------------|-------------------------------------------------------|------------------------------------|------------------|------------------------|-----------------|-----------------------------------------------|
| 1(02052 DE                             | D247D0                                                | Chland                             | (4.2             |                        | 2.5             | Vadose-NP                                     |
| 1602052-BE                             | B34/R0 Vial 130                                       | Iron                               | 04.3<br>ND       | ug/mL                  | 2.5             | Anions by IC-NP                               |
| 1002032-BE                             | D34/10 viai 130                                       | non                                | ND               | ug/L                   | 100             | Vadose-NP                                     |
| 1602052-BE                             | B347R0 vial 130                                       | Manganese                          | ND               | ug/L                   | 23.9            | ICP-OES                                       |
|                                        |                                                       |                                    |                  |                        |                 | Vadose-NP                                     |
| 1602052-BE                             | B347R0 vial 130                                       | Nitrate                            | 28.4             | ug/mL                  | 5               | Anions by IC-NP                               |
| 1602052-BE                             | B347R0 vial 130                                       | pH                                 | 8.1              | pH Units               |                 | pH-NP                                         |
| 1602052-BE                             | B34/R0 vial 130                                       | Phosphate                          | ND               | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1002052-DE                             | D34/K0 Viai 150                                       | Phosphorus                         | ND               | ug/L                   | 408             | Vadose-NP                                     |
| 1602052-BE                             | B347R0 vial 130                                       | Sulfate                            | 42.2             | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1602052-BE                             | B347R0 vial 130                                       | Uranium 238                        | 787              | ug/L                   | 14.2            | ICPMS-Tc U-NP                                 |
| 1602052-BJ                             | B347R0 vial 135                                       | Aluminum                           | ND               | ug/L                   | 165             | ICP-OES                                       |
|                                        |                                                       | ~                                  | 1.0.0.0          |                        |                 | Vadose-NP                                     |
| 1602052-BJ                             | B347R0 vial 135                                       | Calcium                            | 19200            | ug/L                   | 336             | ICP-OES                                       |
| 1602052-RI                             | B347R0 vial 135                                       | Chloride                           | 64               | ug/mI                  | 2.5             | Anions by IC-NP                               |
| 1602052-BJ                             | B347R0 vial 135                                       | Iron                               | ND               | ug/L                   | 100             | ICP-OES                                       |
| 1002002 20                             | 251,110 1141 150                                      |                                    | 112              | "B/ 2                  | 100             | Vadose-NP                                     |
| 1602052-BJ                             | B347R0 vial 135                                       | Manganese                          | ND               | ug/L                   | 23.9            | ICP-OES                                       |
| 1 (040 - 5 -                           | D0/500 11/05                                          |                                    | 20.2             |                        | -               | Vadose-NP                                     |
| 1602052-BJ                             | B34/R0 vial 135                                       | Nitrate                            | 28.3             | ug/mL                  | 5               | Anions by IC-NP                               |
| 1602052-DJ                             | B347R0 vial 135                                       | рп<br>Phosphate                    | 0.24<br>ND       | pri Units              | 7.5             | Anions by IC NP                               |
| 1602052-BJ                             | B347R0 vial 135                                       | Phosphorus                         | ND               | ug/IIL<br>ug/L         | 408             | ICP-OES                                       |
| 1002002 20                             | 251,110 1141 155                                      | Theophorus                         | 112              | "B/2                   | 100             | Vadose-NP                                     |
| 1602052-BJ                             | B347R0 vial 135                                       | Sulfate                            | 42.3             | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1602052-BJ                             | B347R0 vial 135                                       | Uranium 238                        | 1150             | ug/L                   | 14.2            | ICPMS-Tc_U-NP                                 |
| 1602052-BL                             | B347R0 vial 137                                       | Aluminum                           | ND               | ug/L                   | 165             | ICP-OES                                       |
| 1602052-RL                             | B347R0 vial 137                                       | Calcium                            | 19100            | 11g/I                  | 336             | ICP-OFS                                       |
| 1002032-DE                             | D54/100 viai 15/                                      | Calcium                            | 17100            | ug/L                   | 550             | Vadose-NP                                     |
| 1602052-BL                             | B347R0 vial 137                                       | Chloride                           | 64               | ug/mL                  | 2.5             | Anions by IC-NP                               |
| 1602052-BL                             | B347R0 vial 137                                       | Iron                               | ND               | ug/L                   | 100             | ICP-OES                                       |
| 1(02052 DI                             | D247D0                                                | Managara                           | ND               |                        | 22.0            | Vadose-NP                                     |
| 1002052-BL                             | B34/K0 Vial 13/                                       | Manganese                          | ND               | ug/L                   | 25.9            | Vadose-NP                                     |
| 1602052-BL                             | B347R0 vial 137                                       | Nitrate                            | 28.2             | ug/mL                  | 5               | Anions by IC-NP                               |
| 1602052-BL                             | B347R0 vial 137                                       | Phosphate                          | ND               | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1602052-BL                             | B347R0 vial 137                                       | Phosphorus                         | ND               | ug/L                   | 408             | ICP-OES                                       |
| 1602052 DI                             | D247D0 vial 127                                       | Sulfata                            | 42.2             | na/mI                  | 7.5             | Vadose-NP                                     |
| 1602052-BL                             | B347R0 vial 137                                       | Uranium 238                        | 42.5             | ug/IIL                 | 14.2            | ICPMS-Tc U-NP                                 |
| 1602052-BE                             | B347R0 vial 137                                       | Aluminum                           | ND               | ug/L                   | 165             | ICP-OES                                       |
|                                        |                                                       |                                    |                  |                        |                 | Vadose-NP                                     |
| 1602052-BN                             | B347R0 vial 139                                       | Calcium                            | 18300            | ug/L                   | 336             | ICP-OES                                       |
| 1(02052 DN                             | D247D0                                                | Chlande                            | (4.1             |                        | 2.5             | Vadose-NP                                     |
| 1602052-BIN<br>1602052-BN              | B347R0 vial 139<br>B347R0 vial 139                    | Iron                               | 04.1<br>ND       | ug/mL                  | 2.5             | ICP-OFS                                       |
| 1002032-D1                             | D34/100 viai 137                                      | non                                | ND               | ug/L                   | 100             | Vadose-NP                                     |
| 1602052-BN                             | B347R0 vial 139                                       | Manganese                          | ND               | ug/L                   | 23.9            | ICP-OES                                       |
|                                        |                                                       |                                    |                  |                        |                 | Vadose-NP                                     |
| 1602052-BN                             | B347R0 vial 139                                       | Nitrate                            | 28.2             | ug/mL                  | 5               | Anions by IC-NP                               |
| 1602052-BN                             | B34/R0 vial 139                                       | Phosphate                          | ND               | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1002032-BIN                            | D34/KU viai 139                                       | rnosphorus                         | IND              | ug/L                   | 408             | Vadose-NP                                     |
| 1602052-BN                             | B347R0 vial 139                                       | Sulfate                            | 42.5             | ug/mL                  | 7.5             | Anions by IC-NP                               |
| 1602052-BN                             | B347R0 vial 139                                       | Uranium 238                        | 1170             | ug/L                   | 14.2            | ICPMS-Tc_U-NP                                 |
| 1602052-BO                             | B347R0 vial 140                                       | pН                                 | 8.42             | pH Units               |                 | pH-NP                                         |
| 1602052-BP                             | B347R0 vial 141                                       | Aluminum                           | ND               | ug/L                   | 165             | ICP-OES                                       |
| 1602022 DD                             | B347D0 viel 141                                       | Calaium                            | 18400            | ug/I                   | 226             | Vadose-NP                                     |
| 1002032-DF                             | D34/IC0 VIal 141                                      | Calciulii                          | 10400            | ug/L                   | 550             | Vadose-NP                                     |
| 1602052-BP                             | B347R0 vial 141                                       | Chloride                           | 63.1             | ug/mL                  | 2.5             | Anions by IC-NP                               |
| 1602052-BP                             | B347R0 vial 141                                       | Iron                               | ND               | ug/L                   | 100             | ICP-OES                                       |
| 1/00070 55                             | D247D0 11111                                          | M                                  |                  | ~                      | 22.0            | Vadose-NP                                     |
| 1602052-BP                             | B347R0 vial 141                                       | Manganese                          | ND               | ug/L                   | 23.9            | ICP-OES<br>Vadose NP                          |
| 1602052 DD                             | 1                                                     |                                    |                  |                        | 1               | VauOSC-INF                                    |
| 1002057-68                             | B347R0 vial 141                                       | Nitrate                            | 28.4             | ug/mL                  | 5               | Anions by IC-NP                               |
| 1602052-BP                             | B347R0 vial 141<br>B347R0 vial 141                    | Nitrate<br>Phosphate               | 28.4<br>ND       | ug/mL<br>ug/mL         | 5               | Anions by IC-NP<br>Anions by IC-NP            |
| 1602052-BP<br>1602052-BP<br>1602052-BP | B347R0 vial 141<br>B347R0 vial 141<br>B347R0 vial 141 | Nitrate<br>Phosphate<br>Phosphorus | 28.4<br>ND<br>ND | ug/mL<br>ug/mL<br>ug/L | 5<br>7.5<br>408 | Anions by IC-NP<br>Anions by IC-NP<br>ICP-OES |

| 1602052-BP          | B347R0 vial 141  | Sulfate        | 42.7        | ug/mL      | 7.5     | Anions by IC-NP      |
|---------------------|------------------|----------------|-------------|------------|---------|----------------------|
| 1602052-BP          | B347R0 vial 141  | Uranium 238    | 1150        | ug/L       | 14.2    | ICPMS-Tc U-NP        |
| 1602052-BR          | B347R0 vial 143  | Aluminum       | ND          | ug/L       | 165     | ICP-OES              |
|                     |                  |                |             | 0          |         | Vadose-NP            |
| 1602052-BR          | B347R0 vial 143  | Calcium        | 18000       | ug/L       | 336     | ICP-OES              |
| 1002002 DIC         | 20011100110110   | cultum         | 10000       | "B' L      | 220     | Vadose-NP            |
| 1602052-BR          | B347R0 vial 143  | Chloride       | 61.3        | ug/mI      | 2.5     | Anions by IC-NP      |
| 1602052-DR          | D347R0 vial 143  | Iron           | 564         | ug/IIL     | 100     |                      |
| 1002052-DK          | D34/K0 Viai 143  | IIOII          | 304         | ug/L       | 100     | ICP-OES<br>Vadaga ND |
| 1(02052 DD          | D247D0 1142      | M              | ND          | /T         | 22.0    |                      |
| 1002052-BK          | B34/K0 Vial 145  | Manganese      | ND          | ug/L       | 23.9    | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BR          | B34/R0 vial 143  | Nitrate        | 28.7        | ug/mL      | 5       | Anions by IC-NP      |
| 1602052-BR          | B347R0 vial 143  | Phosphate      | ND          | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BR          | B347R0 vial 143  | Phosphorus     | ND          | ug/L       | 408     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BR          | B347R0 vial 143  | Sulfate        | 43.1        | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BR          | B347R0 vial 143  | Uranium 238    | 1140        | ug/L       | 14.2    | ICPMS-Tc U-NP        |
| 1602052-BT          | B347R0 vial 145  | Aluminum       | ND          | ug/L       | 165     | ICP-OES              |
|                     |                  |                |             | 0          |         | Vadose-NP            |
| 1602052-BT          | B347R0 vial 145  | Calcium        | 17400       | ug/L       | 336     | ICP-OES              |
|                     |                  |                | - ,         |            |         | Vadose-NP            |
| 1602052-RT          | B347R0 vial 145  | Chloride       | 58          | ug/mI      | 2.5     | Anions by IC-NP      |
| 1602052-BT          | B347R0 vial 145  | Iron           | ND          | 110/I      | 100     | ICP-OFS              |
| 1002032-D1          |                  | 11011          |             | ug/ L      | 100     | Vadose-NP            |
| 1602052 BT          | B3/7R0 vial 1/5  | Manganasa      | ND          | ug/I       | 22.0    | ICP OFC              |
| 1002032 <b>-D</b> 1 | D34/10 Viai 143  | mangaliese     | IND.        | ug/L       | 23.9    | Vadose ND            |
| 1603053 DT          | D247D0           | Nite-t-        | 20 4        | 110/T      | 5       | Aniona ber IC ND     |
| 1002052-B1          | B34/KU Vial 145  | Initrate       | 28.4        | ug/mL      | 5       | Anions by IC-NP      |
| 1602052-BT          | B34/R0 vial 145  | pH             | 8.29        | pH Units   |         | pH-NP                |
| 1602052-BT          | B347R0 vial 145  | Phosphate      | ND          | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BT          | B347R0 vial 145  | Phosphorus     | ND          | ug/L       | 408     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BT          | B347R0 vial 145  | Sulfate        | 42.7        | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BT          | B347R0 vial 145  | Uranium 238    | 1070        | ug/L       | 14.2    | ICPMS-Tc_U-NP        |
| 1602052-BV          | B347R0 vial 147  | Aluminum       | ND          | ug/L       | 165     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BV          | B347R0 vial 147  | Calcium        | 17200       | ug/L       | 336     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BV          | B347R0 vial 147  | Chloride       | 55          | ug/mL      | 2.5     | Anions by IC-NP      |
| 1602052-BV          | B347R0 vial 147  | Iron           | ND          | ug/L       | 100     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BV          | B347R0 vial 147  | Manganese      | ND          | ug/L       | 23.9    | ICP-OES              |
| 1002002 21          | 25 1110 1101 111 | Intelligencese | 112         | "B' L      | 20.9    | Vadose-NP            |
| 1602052-BV          | B347R0 vial 147  | Nitrate        | 28.5        | ug/mL      | 5       | Anions by IC-NP      |
| 1602052-BV          | B347R0 vial 147  | Phosphate      | ND          | ug/mI      | 7.5     | Anions by IC-NP      |
| 1602052-BV          | B347R0 vial 147  | Phospharus     | ND          | ug/IIL     | 408     | ICP-OFS              |
| 1002032-DV          | DJ4/100 viai 14/ | Thosphorus     | IND.        | ug/L       | 400     | Vadose-NP            |
| 1602052_RV          | B347R0 vial 147  | Sulfate        | 42.6        | ug/mI      | 7.5     | Anions by IC-NP      |
| 1602052-DV          | D347R0 vial 147  | Uranium 229    | 1020        | ug/IIL     | 14.2    | ICDMS To U ND        |
| 1002032-DV          | D34/K0 vial 14/  |                | 1020        | ug/L       | 14.2    |                      |
| 1002052-ВА          | B54/K0 Vial 149  | Aluminum       | ND          | ug/L       | 165     | ICP-OES<br>Vodece ND |
| 1(00050 DV          | D247D0 1140      | 0.1.           | 17100       | /T         | 226     |                      |
| 1602052-BX          | B34/K0 Vial 149  | Calcium        | 1/100       | ug/L       | 336     | ICP-OES              |
| 1(00050 DV          | D247D0 1140      | 011 1          | <b>53</b> 0 | / <b>T</b> | 2.5     | vadose-NP            |
| 1602052-BX          | B34/R0 Vial 149  | Chloride       | 52.8        | ug/mL      | 2.5     | Anions by IC-NP      |
| 1602052-BX          | B347R0 vial 149  | Iron           | ND          | ug/L       | 100     | ICP-OES              |
|                     |                  |                |             |            | _ · · · | Vadose-NP            |
| 1602052-BX          | B347R0 vial 149  | Manganese      | ND          | ug/L       | 23.9    | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BX          | B347R0 vial 149  | Nitrate        | 28.4        | ug/mL      | 5       | Anions by IC-NP      |
| 1602052-BX          | B347R0 vial 149  | Phosphate      | ND          | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BX          | B347R0 vial 149  | Phosphorus     | ND          | ug/L       | 408     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BX          | B347R0 vial 149  | Sulfate        | 42.5        | ug/mL      | 7.5     | Anions by IC-NP      |
| 1602052-BX          | B347R0 vial 149  | Uranium 238    | 996         | ug/L       | 14.2    | ICPMS-Tc U-NP        |
| 1602052-BY          | B347R0 vial 150  | pН             | 8.41        | pH Units   |         | pH-NP                |
| 1602052-BZ          | B347R0 vial 151  | Aluminum       | ND          | ug/L       | 165     | ICP-OES              |
|                     |                  |                | -           |            |         | Vadose-NP            |
| 1602052-BZ          | B347R0 vial 151  | Calcium        | 16800       | ug/L       | 336     | ICP-OES              |
|                     |                  |                |             |            |         | Vadose-NP            |
| 1602052-BZ          | B347R0 vial 151  | Chloride       | 51.2        | ug/mL      | 2.5     | Anions by IC-NP      |
| 1602052-BZ          | B347R0 vial 151  | Iron           | ND          | 11g/L      | 100     | ICP-OES              |
| 100#00#"DL          | 10 1, 10 101 101 | non            |             | 46/12      | 100     | Vadose-NP            |
| 1602052_R7          | B347R0 vial 151  | Manganese      | ND          | 11σ/Ι      | 23.0    |                      |
| 1002032-DL          | D34/10 Viai 131  | mangaliese     |             | ug/L       | 23.9    | Vadose-NP            |
| 1602052 BZ          | B3//7R0 vial 151 | Nitrata        | 28.5        | ug/mI      | 5       | Anions by IC ND      |
| 1002032-DL          | DJ4/KU vial 131  | initiate       | 20.3        | ug/IIIL    | 3       | PAILOUS UY IC-INP    |

| 1602052-BZ  | B347R0 vial 151  | Phosphate   | ND         | ug/mL        | 7.5  | Anions by IC-NP     |
|-------------|------------------|-------------|------------|--------------|------|---------------------|
| 1602052-BZ  | B347R0 vial 151  | Phosphorus  | ND         | ug/L         | 408  | ICP-OES             |
|             |                  | 1           |            |              |      | Vadose-NP           |
| 1602052-BZ  | B347R0 vial 151  | Sulfate     | 42.6       | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-BZ  | B347R0 vial 151  | Uranium 238 | 960        | ug/I         | 14.2 | ICPMS-Tc U-NP       |
| 1602052-DE  | B347R0 vial 155  | Aluminum    | ND         | ug/L<br>ug/I | 165  | ICP-OFS             |
| 1002032-CD  | D34/10 viai 155  | Aluminum    | ND         | ug/L         | 105  | Vadose-NP           |
| 1(02052 CD  | D247D0 vial 155  | Calaium     | 16000      |              | 226  |                     |
| 1602052-CD  | B34/K0 Vial 155  | Calcium     | 16900      | ug/L         | 330  | ICP-OES             |
| 1(02052 CD  | D247D0           | Chlanida    | 40         |              | 2.5  | A minute has IC NID |
| 1602052-CD  | B34/R0 Vial 155  | Chloride    | 49         | ug/mL        | 2.5  | Anions by IC-NP     |
| 1602052-CD  | B34/R0 vial 155  | Iron        | ND         | ug/L         | 100  | ICP-OES             |
|             | DA (50 - 11455   |             | 115        |              |      | Vadose-NP           |
| 1602052-CD  | B347R0 vial 155  | Manganese   | ND         | ug/L         | 23.9 | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CD  | B347R0 vial 155  | Nitrate     | 28.4       | ug/mL        | 5    | Anions by IC-NP     |
| 1602052-CD  | B347R0 vial 155  | Phosphate   | ND         | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CD  | B347R0 vial 155  | Phosphorus  | ND         | ug/L         | 408  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CD  | B347R0 vial 155  | Sulfate     | 42.3       | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CD  | B347R0 vial 155  | Uranium 238 | 883        | ug/L         | 14.2 | ICPMS-Tc U-NP       |
| 1602052-CI  | B347R0 vial 160  | Aluminum    | ND         | ug/L         | 165  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CI  | B347R0 vial 160  | Calcium     | 17400      | ug/L         | 336  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CI  | B347R0 vial 160  | Chloride    | 47.5       | ug/mL        | 2.5  | Anions by IC-NP     |
| 1602052-CI  | B347R0 vial 160  | Iron        | ND         | ug/IIL       | 100  | ICP-OFS             |
| 1002032-01  | D34/100 viai 100 | non         | ND         | ug/L         | 100  | Vadose-NP           |
| 1602052 CT  | B347P0 viol 160  | Manganasa   | ND         | uc/I         | 22.0 |                     |
| 1002032-CI  | D34/K0 viai 100  | Manganese   | ND         | ug/L         | 23.9 | Vedece ND           |
| 1(02052 (1  | D247D0           | Niturta     | 20.2       |              | 5    | A minute has IC ND  |
| 1602052-CI  | B34/R0 Vial 160  | Nitrate     | 28.3       | ug/mL        | 3    | Anions by IC-NP     |
| 1602052-CI  | B34/R0 vial 160  | pH          | 8.27       | pH Units     |      | pH-NP               |
| 1602052-CI  | B347R0 vial 160  | Phosphate   | ND         | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CI  | B347R0 vial 160  | Phosphorus  | ND         | ug/L         | 408  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CI  | B347R0 vial 160  | Sulfate     | 41.8       | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CI  | B347R0 vial 160  | Uranium 238 | 779        | ug/L         | 14.2 | ICPMS-Tc_U-NP       |
| 1602052-CN  | B347R0 vial 165  | Aluminum    | ND         | ug/L         | 165  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CN  | B347R0 vial 165  | Calcium     | 18100      | ug/L         | 336  | ICP-OES             |
|             |                  |             |            | -            |      | Vadose-NP           |
| 1602052-CN  | B347R0 vial 165  | Chloride    | 47.1       | ug/mL        | 2.5  | Anions by IC-NP     |
| 1602052-CN  | B347R0 vial 165  | Iron        | ND         | ug/L         | 100  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CN  | B347R0 vial 165  | Manganese   | ND         | ug/L         | 23.9 | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CN  | B347R0 vial 165  | Nitrate     | 28.2       | ug/mL        | 5    | Anions by IC-NP     |
| 1602052-CN  | B347R0 vial 165  | Phosphate   | ND         | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CN  | B347R0 vial 165  | Phosphorus  | ND         | ug/I         | 408  | ICP-OFS             |
| 1002032-011 | D547100 viai 105 | 1 nosphorus | ND         | ug/L         | 400  | Vadose-NP           |
| 1602052-CN  | B347R0 vial 165  | Sulfate     | 41.8       | ug/mI        | 7.5  | Anions by IC-NP     |
| 1602052-CN  | B347R0 vial 165  | Uranium 238 | 804        | ug/IIL       | 14.2 | ICPMS-Te U-NP       |
| 1602052-CN  | B347R0 vial 105  | Aluminum    | ND         | ug/L<br>ug/I | 165  |                     |
| 1002032-CS  | D34/K0 viai 1/0  | Aluminum    | ND         | ug/L         | 105  | Vadose-NP           |
| 1602052 68  | B3//7P0 viol 170 | Calaium     | 19900      | ug/I         | 226  | ICD OFS             |
| 1002032-03  | DJ4/KU vial 1/U  | Calciulli   | 10000      | ug/L         | 330  | Vadose ND           |
| 1602052 (15 | D247D0 viol 170  | Chlorida    | 16.9       | ug/mI        | 2.5  | Aniona by IC ND     |
| 1602052-05  | D34/K0 Vial 1/0  | Tron        | 40.8<br>ND | ug/IIIL      | 2.3  |                     |
| 1002052-CS  | B34/K0 Vial 1/0  | Iron        | ND         | ug/L         | 100  | ICP-OES             |
| 1(02052 CS  | D247D0           | Managara    | ND         | /T           | 22.0 |                     |
| 1602052-CS  | B34/R0 Vial 1/0  | Manganese   | ND         | ug/L         | 23.9 | ICP-OES             |
| 1(02052 00  | D247D0 11170     |             | 20.2       | / <b>T</b>   |      |                     |
| 1602052-CS  | B34/KU VIAL 1/0  | Nitrate     | 28.2       | ug/mL        | 5    | Anions by IC-NP     |
| 1602052-CS  | B347R0 vial 170  | pH          | 8.23       | pH Units     |      | pH-NP               |
| 1602052-CS  | B34/R0 vial 170  | Phosphate   | ND         | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CS  | B347R0 vial 170  | Phosphorus  | ND         | ug/L         | 408  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-CS  | B347R0 vial 170  | Sulfate     | 41.6       | ug/mL        | 7.5  | Anions by IC-NP     |
| 1602052-CS  | B347R0 vial 170  | Uranium 238 | 750        | ug/L         | 14.2 | ICPMS-Tc_U-NP       |
| 1602052-DC  | B347R0 vial 180  | Aluminum    | ND         | ug/L         | 165  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-DC  | B347R0 vial 180  | Calcium     | 20400      | ug/L         | 336  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |
| 1602052-DC  | B347R0 vial 180  | Chloride    | 46.6       | ug/mL        | 2.5  | Anions by IC-NP     |
| 1602052-DC  | B347R0 vial 180  | Iron        | ND         | 110/L        | 100  | ICP-OES             |
|             |                  |             |            |              |      | Vadose-NP           |

| 1602052-DC  | B347R0 vial 180  | Manganese   | ND        | ug/L              | 23.9 | ICP-OES              |
|-------------|------------------|-------------|-----------|-------------------|------|----------------------|
|             |                  |             |           |                   |      | Vadose-NP            |
| 1602052-DC  | B347R0 vial 180  | Nitrate     | 28.2      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DC  | B347R0 vial 180  | pH          | 8.26      | pH Units          |      | pH-NP                |
| 1602052-DC  | B347R0 vial 180  | Phosphate   | ND        | ug/mL             | 7.5  | Anions by IC-NP      |
| 1602052-DC  | B347R0 vial 180  | Phosphorus  | ND        | ug/L              | 408  | ICP-OES              |
| 1(02052 DC  | D247D0           | 0-16-4-     | 41.5      |                   | 7.5  | Vadose-INP           |
| 1602052-DC  | B34/R0 vial 180  | Suitate     | 41.5      | ug/mL             | /.5  | Anions by IC-NP      |
| 1602052-DC  | B34/R0 Vial 180  | Oranium 238 | 095<br>ND | ug/L              | 14.2 | ICPMIS-IC_U-NP       |
| 1002052-DM  | D34/K0 viai 190  | Aluminum    | ND        | ug/L              | 105  | Vadose-NP            |
| 1602052-DM  | B347R0 vial 190  | Calcium     | 21500     | ug/L              | 336  | ICP-OES              |
|             |                  |             |           | -8-               |      | Vadose-NP            |
| 1602052-DM  | B347R0 vial 190  | Chloride    | 46.5      | ug/mL             | 2.5  | Anions by IC-NP      |
| 1602052-DM  | B347R0 vial 190  | Iron        | ND        | ug/L              | 100  | ICP-OES              |
|             |                  |             |           | _                 |      | Vadose-NP            |
| 1602052-DM  | B347R0 vial 190  | Manganese   | ND        | ug/L              | 23.9 | ICP-OES              |
|             | D0.470.0.1.1.000 | 2.75        |           |                   |      | Vadose-NP            |
| 1602052-DM  | B347R0 vial 190  | Nitrate     | 28.2      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DM  | B34/R0 vial 190  | pH          | 8.26      | pH Units          | 7.5  | pH-NP                |
| 1602052-DM  | B34/R0 vial 190  | Phosphate   | ND        | ug/mL             | 7.5  | Anions by IC-NP      |
| 1602052-DM  | B34/R0 Vial 190  | Phosphorus  | ND        | ug/L              | 408  | ICP-OES<br>Vedere NB |
| 1602052_DM  | B3//7R0 vial 190 | Sulfate     | 41.6      | ug/mI             | 7.5  | Anions by IC-NP      |
| 1602052-DM  | B347R0 vial 190  | Uranium 238 | 41.0      | ug/IIL            | 14.2 | ICPMS To U NP        |
| 1602052-DM  | B347R0 vial 190  | Bromide     | ND        | ug/nL             | 5    | Anions by IC-NP      |
| 1602052-DT  | B347R0 vial 195  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DR  | B347R0 vial 193  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DV  | B347R0 vial 199  | Bromide     | 6.16      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DX  | B347R0 vial 201  | Bromide     | 14.1      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-DZ  | B347R0 vial 203  | Bromide     | 22.6      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EB  | B347R0 vial 205  | Bromide     | 29.5      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-ED  | B347R0 vial 207  | Bromide     | 34.8      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EF  | B347R0 vial 209  | Bromide     | 38.6      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EH  | B347R0 vial 211  | Bromide     | 41.4      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EJ  | B347R0 vial 213  | Bromide     | 43        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EL  | B347R0 vial 215  | Bromide     | 44.3      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EQ  | B347R0 vial 220  | Bromide     | 46.1      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-EV  | B347R0 vial 225  | Bromide     | 47.2      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-FA  | B347R0 vial 230  | Bromide     | 47.2      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-FF  | B347R0 vial 235  | Bromide     | 47.5      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-FP  | B347R0 vial 245  | Bromide     | 47.9      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-FU  | B347R0 vial 250  | Bromide     | 47.1      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-FW  | B347R0 vial 252  | Bromide     | 46.7      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-F Y | B34/R0 Vial 254  | Bromide     | 44.2      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GA  | B34/R0 Vial 256  | Bromide     | 38.6      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GC  | B34/R0 Vial 258  | Bromide     | 30.4      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GE  | D34/R0 vial 200  | Bromide     | 16.5      | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GG  | D347R0 vial 202  | Bromide     | 11.0      | ug/IIIL           | 5    | Anions by IC-NP      |
| 1602052-GI  | B347R0 vial 204  | Bromide     | 8.61      | ug/mL             | 5    | Anions by IC-NF      |
| 1602052-GK  | B347R0 vial 260  | Bromide     | 636       | ug/IIIL<br>110/mI | 5    | Anions by IC-NP      |
| 1602052-GO  | B347R0 vial 200  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GU  | B347R0 vial 275  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-GY  | B347R0 vial 280  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-HD  | B347R0 vial 285  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-HI  | B347R0 vial 290  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |
| 1602052-HS  | B347R0 vial 300  | Bromide     | ND        | ug/mL             | 5    | Anions by IC-NP      |

### Pore Volume and stop flow data for in-tact column B347R0

| Vial # | Pore volume | Comments          |
|--------|-------------|-------------------|
| 1      | 0.00        | saturating column |
| 2      | 0.01        |                   |
| 3      | 0.01        | Start             |
| 4      | 0.02        |                   |
| 5      | 0.02        |                   |
| 6      | 0.03        |                   |
| 7      | 0.03        |                   |

| 8        | 0.04 |  |
|----------|------|--|
| 9        | 0.04 |  |
| 10       | 0.04 |  |
| 11       | 0.05 |  |
| 12       | 0.05 |  |
| 12       | 0.00 |  |
| 13       | 0.00 |  |
| 14       | 0.06 |  |
| 15       | 0.07 |  |
| 16       | 0.07 |  |
| 17       | 0.08 |  |
| 18       | 0.08 |  |
| 19       | 0.08 |  |
| 20       | 0.09 |  |
| 20       | 0.00 |  |
| 21       | 0.09 |  |
| 22       | 0.10 |  |
| 23       | 0.10 |  |
| 24       | 0.11 |  |
| 25       | 0.11 |  |
| 26       | 0.12 |  |
| 27       | 0.12 |  |
| 28       | 0.12 |  |
| 20       | 0.12 |  |
| 29       | 0.13 |  |
| 30       | 0.13 |  |
| 31       | 0.14 |  |
| 32       | 0.14 |  |
| 33       | 0.15 |  |
| 34       | 0.15 |  |
| 35       | 0.16 |  |
| 36       | 0.16 |  |
| 30       | 0.10 |  |
| 37       | 0.16 |  |
| 38       | 0.17 |  |
| 39       | 0.17 |  |
| 40       | 0.18 |  |
| 41       | 0.18 |  |
| 42       | 0.19 |  |
| 43       | 0.19 |  |
| 44       | 0.10 |  |
| 45       | 0.10 |  |
| 45       | 0.20 |  |
| 40       | 0.20 |  |
| 47       | 0.21 |  |
| 48       | 0.21 |  |
| 49       | 0.22 |  |
| 50       | 0.22 |  |
| 51       | 0.23 |  |
| 52       | 0.23 |  |
| 53       | 0.20 |  |
| 55<br>EA | 0.20 |  |
| 54       | 0.24 |  |
| 55       | 0.24 |  |
| 56       | 0.25 |  |
| 57       | 0.25 |  |
| 58       | 0.26 |  |
| 59       | 0.26 |  |
| 60       | 0.27 |  |
| 61       | 0.27 |  |
| 62       | 0.27 |  |
| 62       | 0.21 |  |
| 03       | 0.20 |  |
| 64       | 0.28 |  |
| 65       | 0.29 |  |
| 66       | 0.29 |  |
| 67       | 0.30 |  |
| 68       | 0.30 |  |
| 69       | 0.31 |  |
| 70       | 0.01 |  |
| 74       | 0.01 |  |
| /1       | 0.31 |  |
| 72       | 0.32 |  |
| 73       | 0.32 |  |

| 74  | 0.33 |                    |
|-----|------|--------------------|
| 75  | 0.33 |                    |
| 76  | 0.34 |                    |
| 77  | 0.34 | 48 hour stop flow  |
| 78  | 0.35 |                    |
| 79  | 0.35 |                    |
| 13  | 0.00 |                    |
| 80  | 0.35 |                    |
| 81  | 0.36 |                    |
| 82  | 0.36 |                    |
| 83  | 0.37 |                    |
| 84  | 0.37 |                    |
| 85  | 0.38 |                    |
| 86  | 0.38 |                    |
| 00  | 0.30 |                    |
| 8/  | 0.39 |                    |
| 88  | 0.39 |                    |
| 89  | 0.39 |                    |
| 90  | 0.40 |                    |
| 91  | 0.40 |                    |
| 92  | 0.41 |                    |
| 03  | 0.41 |                    |
| 04  | 0.42 |                    |
| 94  | 0.42 |                    |
| 95  | 0.42 |                    |
| 96  | 0.43 |                    |
| 97  | 0.43 |                    |
| 98  | 0.43 |                    |
| 99  | 0.44 |                    |
| 100 | 0.44 |                    |
| 101 | 0.45 |                    |
| 101 | 0.45 |                    |
| 102 | 0.45 |                    |
| 103 | 0.46 |                    |
| 104 | 0.46 |                    |
| 105 | 0.47 |                    |
| 106 | 0.47 |                    |
| 107 | 0.47 |                    |
| 108 | 0.48 |                    |
| 100 | 0.40 |                    |
| 109 | 0.40 |                    |
| 110 | 0.49 |                    |
| 111 | 0.49 |                    |
| 112 | 0.50 |                    |
| 113 | 0.50 |                    |
| 114 | 0.50 |                    |
| 115 | 0.51 |                    |
| 116 | 0.51 |                    |
| 117 | 0.52 |                    |
| 440 | 0.52 |                    |
| 118 | 0.52 |                    |
| 119 | 0.53 |                    |
| 120 | 0.53 |                    |
| 121 | 0.54 |                    |
| 122 | 0.54 |                    |
| 123 | 0.54 |                    |
| 124 | 0.55 |                    |
| 125 | 0.55 |                    |
| 120 | 0.55 |                    |
| 120 | 0.50 |                    |
| 12/ | 0.56 |                    |
| 128 | 0.57 |                    |
| 129 | 0.57 |                    |
| 130 | 0.58 |                    |
| 131 | 0.58 |                    |
| 132 | 0.58 |                    |
| 122 | 0.50 |                    |
| 100 | 0.09 | 70 hour stor flour |
| 134 | 0.59 | 7∠ nour stop flow  |
| 135 | 0.60 |                    |
| 136 | 0.60 |                    |
| 137 | 0.61 |                    |
| 138 | 0.61 |                    |
| 139 | 0.62 |                    |
| 100 | 0.02 |                    |

| 140 | 0.62 |      |                                           |
|-----|------|------|-------------------------------------------|
| 141 | 0.62 |      |                                           |
| 142 | 0.63 |      |                                           |
| 143 | 0.63 |      |                                           |
| 144 | 0.64 |      |                                           |
| 145 | 0.64 |      |                                           |
| 146 | 0.65 |      |                                           |
| 147 | 0.65 |      |                                           |
| 148 | 0.66 |      |                                           |
| 149 | 0.66 |      |                                           |
| 150 | 0.66 |      |                                           |
| 151 | 0.67 |      |                                           |
| 152 | 0.67 |      |                                           |
| 153 | 0.68 |      |                                           |
| 154 | 0.68 |      |                                           |
| 155 | 0.69 |      |                                           |
| 156 | 0.69 |      |                                           |
| 157 | 0.70 |      |                                           |
| 158 | 0.70 |      |                                           |
| 159 | 0.70 |      |                                           |
| 160 | 0.70 |      |                                           |
| 161 | 0.71 |      |                                           |
| 167 | 0.71 |      |                                           |
| 162 | 0.72 |      |                                           |
| 103 | 0.72 |      |                                           |
| 104 | 0.73 |      |                                           |
| 105 | 0.73 |      |                                           |
| 100 | 0.74 |      |                                           |
| 16/ | 0.74 |      |                                           |
| 168 | 0.74 |      |                                           |
| 169 | 0.75 |      |                                           |
| 1/0 | 0.75 |      |                                           |
| 1/1 | 0.76 |      |                                           |
| 172 | 0.76 |      |                                           |
| 173 | 0.77 |      |                                           |
| 174 | 0.77 |      |                                           |
| 175 | 0.78 |      |                                           |
| 176 | 0.78 |      |                                           |
| 177 | 0.78 |      |                                           |
| 178 | 0.79 |      |                                           |
| 179 | 0.79 |      |                                           |
| 180 | 0.80 |      |                                           |
| 181 | 0.80 |      |                                           |
| 182 | 0.81 |      |                                           |
| 183 | 0.81 |      |                                           |
| 184 | 0.81 |      |                                           |
| 185 | 0.82 |      |                                           |
| 186 | 0.82 |      |                                           |
| 187 | 0.83 |      |                                           |
| 188 | 0.83 |      |                                           |
| 189 | 0.84 |      |                                           |
| 190 | 0.84 |      |                                           |
| 191 | 0.85 | stop |                                           |
| ÷ . |      |      | L. C. |

#### Analytical Data for in-tact column B347T6

| LabNumber  | SampleName    | Analyte  | Result | Units | EQL | Analysis             |
|------------|---------------|----------|--------|-------|-----|----------------------|
| 1602053-01 | B347T6 vial 1 | Aluminum | ND     | ug/L  | 165 | ICP-OES<br>Vadose-NP |
| 1602053-01 | B347T6 vial 1 | Calcium  | 12600  | ug/L  | 336 | ICP-OES<br>Vadose-NP |
| 1602053-01 | B347T6 vial 1 | Chloride | 59.2   | ug/mL | 2.5 | Anions by IC-NP      |

| 1602053-01 | B347T6 vial 1                  | Iron        | ND                         | ug/L            | 100  | ICP-OES<br>Vadasa NB |
|------------|--------------------------------|-------------|----------------------------|-----------------|------|----------------------|
| 1602053-01 | B347T6 vial 1                  | Manganese   | 44.9                       | ug/L            | 23.9 | ICP-OES              |
|            |                                |             |                            |                 |      | Vadose-NP            |
| 1602053-01 | B347T6 vial 1                  | Nitrate     | 30.1                       | ug/mL           | 5    | Anions by IC-NP      |
| 1602053-01 | B34/16 vial 1                  | pH          | 8.4/                       | pH Units        | 7.6  | pH-NP                |
| 1602053-01 | B34/16 vial 1<br>D247T(-11)    | Phosphate   | 128                        | ug/mL           | /.5  | Anions by IC-NP      |
| 1002053-01 | B34/10 Vial 1                  | Phosphorus  | 40300                      | ug/L            | 408  | Vadose-NP            |
| 1602053-01 | B347T6 vial 1                  | Sulfate     | 65.8                       | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602053-01 | B347T6 vial 1                  | Uranium 238 | 17.6                       | ug/L            | 0.71 | ICPMS-Tc U-NP        |
| 1602053-03 | B347T6 vial 3                  | Aluminum    | ND                         | ug/L            | 165  | ICP-OES              |
|            |                                |             |                            |                 |      | Vadose-NP            |
| 1602053-03 | B347T6 vial 3                  | Calcium     | 11600                      | ug/L            | 336  | ICP-OES              |
| 1602053-03 | B3/17T6 vial 3                 | Chloride    | 18.5                       | ug/mI           | 2.5  | Anions by IC-NP      |
| 1602053-03 | B347T6 vial 3                  | Iron        |                            | ug/IIL          | 100  | ICP-OES              |
| 1002000 00 | D51710 Viai 5                  | non         | n b                        | ug/L            | 100  | Vadose-NP            |
| 1602053-03 | B347T6 vial 3                  | Manganese   | 30.2                       | ug/L            | 23.9 | ICP-OES              |
|            |                                |             |                            |                 |      | Vadose-NP            |
| 1602053-03 | B34/16 vial 3                  | Nitrate     | 28.4                       | ug/mL           | 5    | Anions by IC-NP      |
| 1602053-03 | B34/16 Vial 3                  | Phosphate   | 124                        | ug/mL           | /.5  | Anions by IC-NP      |
| 1002033-03 | D34/10 Vial 3                  | r nospnorus | 39000                      | ug/L            | 408  | Vadose-NP            |
| 1602053-03 | B347T6 vial 3                  | Sulfate     | 84.4                       | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602053-03 | B347T6 vial 3                  | Uranium 238 | 27.4                       | ug/L            | 0.71 | ICPMS-Tc U-NP        |
| 1602053-05 | B347T6 vial 5                  | Aluminum    | ND                         | ug/L            | 165  | ICP-OES              |
|            |                                |             |                            |                 |      | Vadose-NP            |
| 1602053-05 | B347T6 vial 5                  | Calcium     | 11600                      | ug/L            | 336  | ICP-OES<br>Vadasa NB |
| 1602053-05 | B347T6 vial 5                  | Chloride    | 55.2                       | ug/mI           | 2.5  | Anions by IC NP      |
| 1602053-05 | B347T6 vial 5                  | Iron        |                            |                 | 100  | ICP-OES              |
|            |                                |             |                            | -6-             |      | Vadose-NP            |
| 1602053-05 | B347T6 vial 5                  | Manganese   | 29.2                       | ug/L            | 23.9 | ICP-OES              |
|            |                                |             | • •                        |                 |      | Vadose-NP            |
| 1602053-05 | B34716 vial 5                  | Nitrate     | 28                         | ug/mL           | 5    | Anions by IC-NP      |
| 1602053-05 | B34/10 Vial 5<br>P247T6 vial 5 | Dhosphata   | 8.51                       | pH Units        | 7.5  | Anions by IC ND      |
| 1602053-05 | B347T6 vial 5                  | Phosphate   | 34100                      | ug/IIL          | 1.5  | ICP-OFS              |
| 1002035-05 | D54/10 via 5                   | r nosphorus | 54100                      | ug/12           | 400  | Vadose-NP            |
| 1602053-05 | B347T6 vial 5                  | Sulfate     | 69                         | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602053-05 | B347T6 vial 5                  | Uranium 238 | 18.4                       | ug/L            | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-07 | B347T6 vial 7                  | Aluminum    | ND                         | ug/L            | 165  | ICP-OES              |
| 1(02052.05 | D2477( 17                      | 0.1.1       | 11000                      | /*              | 22(  | Vadose-NP            |
| 1602053-07 | B34/16 vial /                  | Calcium     | 11000                      | ug/L            | 336  | ICP-OES<br>Vadose-NP |
| 1602053-07 | B347T6 vial 7                  | Chloride    | 56.6                       | ug/mL           | 2.5  | Anions by IC-NP      |
| 1602053-07 | B347T6 vial 7                  | Iron        | ND                         | ug/L            | 100  | ICP-OES              |
|            |                                |             |                            |                 |      | Vadose-NP            |
| 1602053-07 | B347T6 vial 7                  | Manganese   | 25.8                       | ug/L            | 23.9 | ICP-OES              |
| 1602052 07 | D247T6 vial 7                  | Nitroto     | 27.0                       | ug/mI           | 5    | Aniona by IC ND      |
| 1602053-07 | B34/10 Vial /<br>P247T6 vial 7 | Dhosphato   | 27.9                       | ug/mL           | 75   | Anions by IC-NP      |
| 1602053-07 | B347T6 vial 7                  | Phosphorus  | 32000                      | ug/IIL<br>110/I | 408  | ICP_OFS              |
| 1002035-07 |                                | rnosphorus  | 52000                      | ug/ L           | 007  | Vadose-NP            |
| 1602053-07 | B347T6 vial 7                  | Sulfate     | 62.6                       | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602053-07 | B347T6 vial 7                  | Uranium 238 | 14.6                       | ug/L            | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-09 | B347T6 vial 9                  | Aluminum    | ND                         | ug/L            | 165  | ICP-OES              |
| 1603052 00 | D247T(-10)                     | C-1-i       | 10000                      | /T              | 226  | Vadose-NP            |
| 1002053-09 | B34/16 Vial 9                  | Calcium     | 10800                      | ug/L            | 330  | ICP-OES<br>Vadose-NP |
| 1602053-09 | B347T6 vial 9                  | Chloride    | 58.9                       | ug/mL           | 2.5  | Anions by IC-NP      |
| 1602053-09 | B347T6 vial 9                  | Iron        | ND                         | ug/L            | 100  | ICP-OES              |
|            |                                |             |                            | -               |      | Vadose-NP            |
| 1602053-09 | B347T6 vial 9                  | Manganese   | 25.1                       | ug/L            | 23.9 | ICP-OES              |
| 1602053 00 | B347T6 wiel 0                  | Nitrate     | 27.0                       | ug/mI           | 5    | Anions by IC NP      |
| 1602053-09 | B347T6 vial 9                  | nH          | <u>21.9</u><br><u>8.43</u> | nH Unite        |      | nH-NP                |
| 1602053-09 | B347T6 vial 9                  | Phosphate   | 93.7                       | ug/mL           | 7 5  | Anions by IC-NP      |
| 1602053-09 | B347T6 vial 9                  | Phosphorus  | 28800                      | ug/L            | 408  | ICP-OES              |
|            |                                | 1 1 11      |                            | 5               |      | Vadose-NP            |
| 1602053-09 | B347T6 vial 9                  | Sulfate     | 60.2                       | ug/mL           | 7.5  | Anions by IC-NP      |
| 1602053-09 | B347T6 vial 9                  | Uranium 238 | 13.3                       | ug/L            | 0.71 | ICPMS-Tc U-NP        |

| 1602053-11   | B347T6 vial 11                   | Aluminum             | ND          | ug/L         | 165      | ICP-OES              |
|--------------|----------------------------------|----------------------|-------------|--------------|----------|----------------------|
| 1602053-11   | B347T6 vial 11                   | Calcium              | 10800       | ug/L         | 336      | ICP-OES              |
| 1002000 11   | <i>D31/10</i> (Mi 11             | Culcium              | 10000       | ug/E         | 550      | Vadose-NP            |
| 1602053-11   | B347T6 vial 11                   | Chloride             | 57.4        | ug/mL        | 2.5      | Anions by IC-NP      |
| 1602053-11   | B34/16 vial 11                   | Iron                 | ND          | ug/L         | 100      | ICP-OES<br>Vadose-NP |
| 1602053-11   | B347T6 vial 11                   | Manganese            | 24.3        | ug/L         | 23.9     | ICP-OES              |
| 1.600.000.11 |                                  | N                    | •           |              |          | Vadose-NP            |
| 1602053-11   | B34716 vial 11                   | Nitrate<br>Phosphate | 28          | ug/mL        | 5        | Anions by IC-NP      |
| 1602053-11   | B347T6 vial 11                   | Phosphorus           | 27700       | ug/IIL       | 408      | ICP-OES              |
| 1002000 11   | D3 17 10 Viai 11                 | riospiiorus          | 21100       | ugit         | 100      | Vadose-NP            |
| 1602053-11   | B347T6 vial 11                   | Sulfate              | 59.6        | ug/mL        | 7.5      | Anions by IC-NP      |
| 1602053-11   | B347T6 vial 11                   | Uranium 238          | 13.9        | ug/L         | 0.71     | ICPMS-Tc_U-NP        |
| 1602053-13   | B34/16 Vial 13                   | Aluminum             | ND          | ug/L         | 165      | Vadose-NP            |
| 1602053-13   | B347T6 vial 13                   | Calcium              | 13000       | ug/L         | 336      | ICP-OES              |
| 1(02052.12   | D247T( 112                       | 011 1                | 57.0        | / 1          | 2.5      | Vadose-NP            |
| 1602053-13   | B34/16 Vial 13<br>B247T6 vial 12 | Iron                 | 57.9<br>ND  | ug/mL        | 2.5      | Anions by IC-NP      |
| 1002033-13   | D34/10 viai 13                   | 11011                | ND          | ug/L         | 100      | Vadose-NP            |
| 1602053-13   | B347T6 vial 13                   | Manganese            | 26.6        | ug/L         | 23.9     | ICP-OES              |
| 1(02052.12   | D247T( 112                       | NT (                 | 27.9        |              |          | Vadose-NP            |
| 1602053-13   | B34/16 Vial 13<br>B347T6 vial 13 | Phosphate            | 27.8        | ug/mL        | <u> </u> | Anions by IC-NP      |
| 1602053-13   | B347T6 vial 13                   | Phosphorus           | 25000       | ug/IIL       | 408      | ICP-OES              |
| 1002035-15   | D34710 viai 15                   | r nosphorus          | 25000       | ug/L         | 400      | Vadose-NP            |
| 1602053-13   | B347T6 vial 13                   | Sulfate              | 58.4        | ug/mL        | 7.5      | Anions by IC-NP      |
| 1602053-13   | B347T6 vial 13                   | Uranium 238          | 14.1        | ug/L         | 0.71     | ICPMS-Tc_U-NP        |
| 1602053-15   | B34/16 vial 15                   | Aluminum             | ND          | ug/L         | 165      | ICP-OES<br>Vadose-NP |
| 1602053-15   | B347T6 vial 15                   | Calcium              | 11800       | ug/L         | 336      | ICP-OES              |
|              |                                  |                      |             |              |          | Vadose-NP            |
| 1602053-15   | B347T6 vial 15                   | Chloride             | 60.2        | ug/mL        | 2.5      | Anions by IC-NP      |
| 1002053-15   | B34/10 viai 15                   | Iron                 | ND          | ug/L         | 100      | Vadose-NP            |
| 1602053-15   | B347T6 vial 15                   | Manganese            | ND          | ug/L         | 23.9     | ICP-OES              |
| 1602052 15   | D247T6 vial 15                   | Nitroto              | 27.0        | ug/mI        | 5        | Vadose-NP            |
| 1602053-15   | B347T6 vial 15                   | nH                   | 8 42        | nH Units     | 5        | nH-NP                |
| 1602053-15   | B347T6 vial 15                   | Phosphate            | 75.6        | ug/mL        | 7.5      | Anions by IC-NP      |
| 1602053-15   | B347T6 vial 15                   | Phosphorus           | 23700       | ug/L         | 408      | ICP-OES              |
| 1602052 15   | D247T6 vial 15                   | Sulfata              | 55.6        | ug/mI        | 7.5      | Vadose-NP            |
| 1602053-15   | B347T6 vial 15                   | Uranium 238          | 12          | ug/IIL       | 0.71     | ICPMS-Tc U-NP        |
| 1602053-20   | B347T6 vial 20                   | Aluminum             | ND          | ug/L<br>ug/L | 165      | ICP-OES              |
|              |                                  |                      |             | Ū.           |          | Vadose-NP            |
| 1602053-20   | B34716 vial 20                   | Calcium              | 13700       | ug/L         | 336      | ICP-OES<br>Vadose-NP |
| 1602053-20   | B347T6 vial 20                   | Chloride             | 61.2        | ug/mL        | 2.5      | Anions by IC-NP      |
| 1602053-20   | B347T6 vial 20                   | Iron                 | ND          | ug/L         | 100      | ICP-OES              |
|              |                                  |                      |             | Ĩ            |          | Vadose-NP            |
| 1602053-20   | B34716 vial 20                   | Manganese            | 24.7        | ug/L         | 23.9     | ICP-OES<br>Vadose-NP |
| 1602053-20   | B347T6 vial 20                   | Nitrate              | 28          | ug/mL        | 5        | Anions by IC-NP      |
| 1602053-20   | B347T6 vial 20                   | pН                   | 8.39        | pH Units     |          | pH-NP                |
| 1602053-20   | B347T6 vial 20                   | Phosphate            | 68.5        | ug/mL        | 7.5      | Anions by IC-NP      |
| 1602053-20   | B347T6 vial 20                   | Phosphorus           | 21400       | ug/L         | 408      | ICP-OES<br>Vadose NP |
| 1602053-20   | B347T6 vial 20                   | Sulfate              | 52.8        | ug/mL        | 7.5      | Anions by IC-NP      |
| 1602053-20   | B347T6 vial 20                   | Uranium 238          | 10.7        | ug/L         | 0.71     | ICPMS-Tc_U-NP        |
| 1602053-25   | B347T6 vial 25                   | Aluminum             | ND          | ug/L         | 165      | ICP-OES              |
| 1602053-25   | B347T6 vial 25                   | Calcium              | 15900       | ug/L         | 336      | ICP-OES              |
|              |                                  |                      |             |              |          | Vadose-NP            |
| 1602053-25   | B347T6 vial 25                   | Chloride             | <u>60.7</u> | ug/mL        | 2.5      | Anions by IC-NP      |
| 1602053-25   | B34/16 vial 25                   | Iron                 | ND          | ug/L         | 100      | ICP-UES<br>Vadose-NP |
| 1602053-25   | B347T6 vial 25                   | Manganese            | 25.2        | ug/L         | 23.9     | ICP-OES              |
|              |                                  | -                    |             |              |          | Vadose-NP            |
| 1602053-25   | B347T6 vial 25                   | Nitrate              | 28.1        | ug/mL        | 5        | Anions by IC-NP      |
| 1602053-25   | B34/16 vial 25                   | Phosphate            | 66.5        | ug/mL        | 7.5      | Anions by IC-NP      |

| 1602053-25 | B347T6 vial 25 | Phosphorus  | 20400       | ug/L     | 408  | ICP-OES<br>Vadose-NP |
|------------|----------------|-------------|-------------|----------|------|----------------------|
| 1602053-25 | B347T6 vial 25 | Sulfate     | 50.6        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-25 | B347T6 vial 25 | Uranium 238 | 9.67        | ug/L     | 0.71 | ICPMS-Tc U-NP        |
| 1602053-30 | B347T6 vial 30 | Aluminum    | ND          | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-30 | B347T6 vial 30 | Calcium     | 18700       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-30 | B347T6 vial 30 | Chloride    | 63.6        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-30 | B347T6 vial 30 | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-30 | B347T6 vial 30 | Manganese   | 28.5        | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-30 | B347T6 vial 30 | Nitrate     | 28.2        | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-30 | B347T6 vial 30 | pН          | 8.22        | pH Units |      | pH-NP                |
| 1602053-30 | B347T6 vial 30 | Phosphate   | 60.2        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-30 | B347T6 vial 30 | Phosphorus  | 18500       | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-30 | B347T6 vial 30 | Sulfate     | 48.7        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-30 | B347T6 vial 30 | Uranium 238 | 8.09        | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-35 | B34/16 vial 35 | Aluminum    | ND          | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-35 | B34716 vial 35 | Calcium     | 19100       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-35 | B347T6 vial 35 | Chloride    | 62.2        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-35 | B34/16 vial 35 | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-35 | B34716 vial 35 | Manganese   | 28.2        | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-35 | B347T6 vial 35 | Nitrate     | 27.9        | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-35 | B347T6 vial 35 | Phosphate   | 57.1        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-35 | B34/16 Vial 35 | Phosphorus  | 17/00       | ug/L     | 408  | Vadose-NP            |
| 1602053-35 | B34/16 vial 35 | Sultate     | 4/.1        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-35 | B347T6 vial 33 | A luminum   | 0.12<br>ND  | ug/L     | 165  | ICPMS-IC_U-NP        |
| 1002035-40 | D54/10 Viai 40 | / Hummum    | ND          | ug/12    | 105  | Vadose-NP            |
| 1602053-40 | B347T6 vial 40 | Calcium     | 21200       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-40 | B347T6 vial 40 | Chloride    | 64.1        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-40 | B347T6 vial 40 | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-40 | B347T6 vial 40 | Manganese   | 29          | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-40 | B347T6 vial 40 | Nitrate     | 28.1        | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-40 | B347T6 vial 40 | pH          | 8.23        | pH Units |      | pH-NP                |
| 1602053-40 | B347T6 vial 40 | Phosphate   | 54.6        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-40 | B34/16 vial 40 | Phosphorus  | 16700       | ug/L     | 408  | Vadose-NP            |
| 1602053-40 | B34/16 Vial 40 | Uranium 228 | 46.5        | ug/mL    | /.5  | Anions by IC-NP      |
| 1602053-40 | B347T6 vial 50 | Aluminum    | VD          | ug/L     | 165  | ICPMS-IC_U-NF        |
| 1602055-50 | B347T6 vial 50 | Calcium     | 21900       | ug/L     | 236  | Vadose-NP            |
| 1002033-30 | B34/10 viai 30 | Calcium     | 21900       | ug/L     | 550  | Vadose-NP            |
| 1602053-50 | B347T6 vial 50 | Chloride    | 64.5        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-50 | B347T6 vial 50 | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-50 | B347T6 vial 50 | Manganese   | 30.3        | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-50 | B347T6 vial 50 | Nitrate     | 27.9        | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-50 | B347T6 vial 50 | рН          | 8.24        | pH Units |      | pH-NP                |
| 1602053-50 | B347T6 vial 50 | Phosphate   | 53          | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-50 | B34716 vial 50 | Phosphorus  | 16600       | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-50 | B347T6 vial 50 | Sulfate     | 45.4        | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-50 | B34/16 vial 50 | Uranium 238 | 7.24        | ug/L     | 0./1 | ICPMS-Ic_U-NP        |
| 1002053-60 | D34/10 V1al 60 | Aiuminum    | ND<br>22100 | ug/L     | 100  | Vadose-NP            |
| 1602053-60 | B34/16 vial 60 | Calcium     | 23100       | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-60 | B347T6 vial 60 | Chloride    | 64.1        | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-60 | B34/16 vial 60 | Iron        | ND          | ug/L     | 100  | ICP-OES<br>Vadose-NP |

| 1602053-60    | B347T6 vial 60 | Manganese   | 31.6       | ug/L            | 23.9        | ICP-OES<br>Vadose-NP  |
|---------------|----------------|-------------|------------|-----------------|-------------|-----------------------|
| 1602053-60    | B347T6 vial 60 | Nitrate     | 28         | ug/mL           | 5           | Anions by IC-NP       |
| 1602053-60    | B347T6 vial 60 | nH          | 8.19       | nH Units        |             | pH-NP                 |
| 1602053-60    | B347T6 vial 60 | Phosphate   | 49.2       | ug/mL           | 7 5         | Anions by IC-NP       |
| 1602053-60    | B347T6 vial 60 | Phosphorus  | 15200      | ug/L            | 408         | ICP-OES               |
| 1602053-60    | B347T6 vial 60 | Sulfate     | 44.7       | ug/mI           | 7.5         | Anions by IC-NP       |
| 1602053-60    | B347T6 vial 60 | Uranium 238 | 6.62       | ug/IIIL<br>ug/I | 0.71        | ICPMS-To U-NP         |
| 1602053-00    | B347T6 vial 70 | Aluminum    | 0.02<br>ND | ug/L<br>ug/I    | 165         | ICP_OFS               |
| 1002035-70    | D34/10 viai /0 | Alumnum     | ND         | ug/L            | 105         | Vadose-NP             |
| 1602053-70    | B347T6 vial 70 | Calcium     | 24500      | ug/L            | 336         | ICP-OES<br>Vadose-NP  |
| 1602053-70    | B347T6 vial 70 | Chloride    | 64.5       | ug/mL           | 2.5         | Anions by IC-NP       |
| 1602053-70    | B347T6 vial 70 | Iron        | ND         | ug/L            | 100         | ICP-OES               |
|               |                |             |            |                 |             | Vadose-NP             |
| 1602053-70    | B347T6 vial 70 | Manganese   | 34.8       | ug/L            | 23.9        | ICP-OES<br>Vadose-NP  |
| 1602053-70    | B347T6 vial 70 | Nitrate     | 28         | ug/mL           | 5           | Anions by IC-NP       |
| 1602053-70    | B347T6 vial 70 | pН          | 8.1        | pH Units        |             | pH-NP                 |
| 1602053-70    | B347T6 vial 70 | Phosphate   | 50         | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-70    | B347T6 vial 70 | Phosphorus  | 16200      | ug/L            | 408         | ICP-OES<br>Vadose-NP  |
| 1602053-70    | B347T6 vial 70 | Sulfate     | 44.2       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-70    | B347T6 vial 70 | Uranium 238 | 6.92       | ug/L            | 0.71        | ICPMS-Tc U-NP         |
| 1602053-80    | B347T6 vial 80 | Aluminum    | ND         | ug/L            | 165         | ICP-OES<br>Vadose-NP  |
| 1602053-80    | B347T6 vial 80 | Calcium     | 25000      | ug/L            | 336         | ICP-OES<br>Vadage NIP |
| 1602053 80    | B347T6 vial 80 | Chloride    | 64.2       | ug/mI           | 2.5         | Anions by IC NP       |
| 1602053-80    | B347T6 vial 80 | Iron        | ND         | ug/IIIL<br>ug/I | 100         | ICP-OFS               |
| 1002035-00    | D34710 viai 80 | non         | ND         | ug/L            | 100         | Vadose-NP             |
| 1602053-80    | B347T6 vial 80 | Manganese   | 34.4       | ug/L            | 23.9        | ICP-OES<br>Vadose-NP  |
| 1602053-80    | B347T6 vial 80 | Nitrate     | 28         | ug/mL           | 5           | Anions by IC-NP       |
| 1602053-80    | B347T6 vial 80 | pН          | 8.12       | pH Units        |             | pH-NP                 |
| 1602053-80    | B347T6 vial 80 | Phosphate   | 46.1       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-80    | B347T6 vial 80 | Phosphorus  | 14700      | ug/L            | 408         | ICP-OES<br>Vadose-NP  |
| 1602053-80    | B347T6 vial 80 | Sulfate     | 43.7       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-80    | B347T6 vial 80 | Uranium 238 | 6.9        | ug/L            | 0.71        | ICPMS-Tc U-NP         |
| 1602053-90    | B347T6 vial 90 | Aluminum    | ND         | ug/L            | 165         | ICP-OES               |
|               |                |             |            |                 |             | Vadose-NP             |
| 1602053-90    | B347T6 vial 90 | Calcium     | 26400      | ug/L            | 336         | ICP-OES<br>Vadose-NP  |
| 1602053-90    | B347T6 vial 90 | Chloride    | 64.6       | ug/mL           | 2.5         | Anions by IC-NP       |
| 1602053-90    | B347T6 vial 90 | Iron        | ND         | ug/L            | 100         | ICP-OES               |
| 1 (00.050.00) |                |             | 24.5       |                 | <b>22</b> 0 | Vadose-NP             |
| 1602053-90    | B34/16 vial 90 | Manganese   | 34./       | ug/L            | 23.9        | Vadose-NP             |
| 1602053-90    | B347T6 vial 90 | Nitrate     | 28         | ug/mL           | 5           | Anions by IC-NP       |
| 1602053-90    | B347T6 vial 90 | pН          | 8.09       | pH Units        |             | pH-NP                 |
| 1602053-90    | B347T6 vial 90 | Phosphate   | 40.2       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-90    | B347T6 vial 90 | Phosphorus  | 12300      | ug/L            | 408         | ICP-OES<br>Vadose-NP  |
| 1602053-90    | B347T6 vial 90 | Sulfate     | 43.4       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-90    | B347T6 vial 90 | Uranium 238 | 7.04       | ug/L            | 0.71        | ICPMS-Tc U-NP         |
| 1602053-99    | B347T6 vial 99 | Aluminum    | ND         | ug/L            | 165         | ICP-OES               |
| 1602052 00    | B347T6 viel 00 | Calaium     | 28100      | ug/I            | 226         | Vadose-NP             |
| 1002055-99    | B34/10 viai 99 | Calcium     | 28100      | ug/L            |             | Vadose-NP             |
| 1602053-99    | B347T6 vial 99 | Chloride    | 64.2       | ug/mL           | 2.5         | Anions by IC-NP       |
| 1602053-99    | B347T6 vial 99 | Iron        | ND         | ug/L            | 100         | ICP-OES<br>Vadose-NP  |
| 1602053-99    | B347T6 vial 99 | Manganese   | 38.1       | ug/L            | 23.9        | ICP-OES<br>Vadose-NP  |
| 1602053-99    | B347T6 vial 99 | Nitrate     | 27.7       | ug/mL           | 5           | Anions by IC-NP       |
| 1602053-99    | B347T6 vial 99 | pН          | 8.07       | pH Units        |             | pH-NP                 |
| 1602053-99    | B347T6 vial 99 | Phosphate   | 36         | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-99    | B347T6 vial 99 | Phosphorus  | 11700      | ug/L            | 408         | ICP-OES<br>Vadose-NP  |
| 1602053-99    | B347T6 vial 99 | Sulfate     | 42.9       | ug/mL           | 7.5         | Anions by IC-NP       |
| 1602053-99    | B347T6 vial 99 | Uranium 238 | 6.47       | ug/L            | 0.71        | ICPMS-Tc U-NP         |

| 1602053-AA  | B347T6 vial 100                    | Aluminum               | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
|-------------|------------------------------------|------------------------|-------|----------|------|----------------------|
| 1602053-AA  | B347T6 vial 100                    | Calcium                | 5100  | ug/L     | 336  | ICP-OES              |
| 1602052 4 4 | D247T6 wish 100                    | Chlorida               | 66.9  | ug/mI    | 2.5  | Vadose-NP            |
| 1602053-AA  | B347T6 vial 100                    | Iron                   | 00.8  | ug/IIL   | 2.5  | ICP-OFS              |
| 1002055-AA  | D54/10 viai 100                    | non                    | ND    | ug/L     | 100  | Vadose-NP            |
| 1602053-AA  | B347T6 vial 100                    | Manganese              | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-AA  | B347T6 vial 100                    | Nitrate                | 19.8  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-AA  | B347T6 vial 100                    | pH                     | 7.82  | pH Units |      | pH-NP                |
| 1602053-AA  | B347T6 vial 100                    | Phosphate              | 50.7  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AA  | B347T6 vial 100                    | Phosphorus             | 5050  | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-AA  | B347T6 vial 100                    | Sulfate                | 46.1  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AA  | B347T6 vial 100                    | Uranium 238            | 9.79  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-AB  | B34716 vial 101                    | Chloride               | 63.5  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-AB  | B34/16 Vial 101                    | Nitrate<br>Discontrate | 27.4  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-AB  | B34/10 Vial 101<br>P247T6 vial 101 | Sulfata                | 05.4  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602055-AB  | B347T6 vial 101                    | Uranium 238            | 8 50  | ug/IIL   | 0.71 | ICPMS To U NP        |
| 1602053-AD  | B347T6 vial 101                    | Aluminum               | ND    | ug/L     | 165  | ICP-OFS              |
| 1002030-110 | D54/10 Viai 102                    | 7 traininain           | n b   | ug/ L    | 105  | Vadose-NP            |
| 1602053-AC  | B347T6 vial 102                    | Calcium                | 20400 | ug/L     | 336  | ICP-OES              |
|             |                                    |                        |       | e e      |      | Vadose-NP            |
| 1602053-AC  | B347T6 vial 102                    | Iron                   | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-AC  | B347T6 vial 102                    | Manganese              | ND    | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-AC  | B347T6 vial 102                    | Phosphorus             | 20200 | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-AE  | B347T6 vial 104                    | Aluminum               | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-AE  | B347T6 vial 104                    | Calcium                | 20000 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-AE  | B347T6 vial 104                    | Chloride               | 65.7  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-AE  | B347T6 vial 104                    | Iron                   | ND    | ug/L     | 100  | ICP-OES              |
| 1602053-AE  | B347T6 vial 104                    | Manganese              | 29.6  | ug/L     | 23.9 | ICP-OES              |
| 1602053-AF  | B347T6 vial 104                    | Nitrate                | 28.1  | ug/mI    | 5    | Anions by IC-NP      |
| 1602053-AE  | B347T6 vial 104                    | Phosphate              | 50.2  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AE  | B347T6 vial 104                    | Phosphorus             | 16800 | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-AE  | B347T6 vial 104                    | Sulfate                | 45.6  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AE  | B347T6 vial 104                    | Uranium 238            | 8.45  | ug/L     | 0.71 | ICPMS-Tc U-NP        |
| 1602053-AF  | B347T6 vial 105                    | pН                     | 8.34  | pH Units |      | pH-NP                |
| 1602053-AG  | B347T6 vial 106                    | Aluminum               | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-AG  | B347T6 vial 106                    | Calcium                | 22900 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-AG  | B347T6 vial 106                    | Chloride               | 65.8  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-AG  | B347T6 vial 106                    | Iron                   | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-AG  | B347T6 vial 106                    | Manganese              | 29.6  | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-AG  | B347T6 vial 106                    | Nitrate                | 27.9  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-AG  | B347T6 vial 106                    | Phosphate              | 46.4  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AG  | B34/16 vial 106                    | Phosphorus             | 14800 | ug/L     | 408  | Vadose-NP            |
| 1602053-AG  | B34716 vial 106                    | Sulfate                | 44.7  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-AG  | B34/16 vial 106                    | Uranium 238            | 7.38  | ug/L     | 0.71 | ICPMS-Ic_U-NP        |
| 1602053-AI  | B34/16 vial 108                    | Aluminum               | ND    | ug/L     | 105  | Vadose-NP            |
| 1002053-AI  | B34/16 vial 108                    | Calcium                | 23300 | ug/L     | 330  | Vadose-NP            |
| 1002053-AI  | B34/16 vial 108                    | Unioride               | 66.2  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1002053-AI  | D34/10 VIAI 108                    | Iron                   | ND    | ug/L     | 100  | ICP-UES<br>Vadose-NP |
| 1602053-AI  | B347T6 vial 108                    | Manganese              | 30.2  | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-AI  | B347T6 vial 108                    | Nitrate                | 28.4  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-AI  | B347T6 vial 108                    | Phosphate              | 44.3  | ug/mL    | 7.5  | Anions by IC-NP      |

| 1602053-AI  | B347T6 vial 108                    | Phosphorus   | 14100 | ug/L           | 408         | ICP-OES<br>Vadose NP |
|-------------|------------------------------------|--------------|-------|----------------|-------------|----------------------|
| 1602053-AI  | B347T6 vial 108                    | Sulfate      | 44 3  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AI  | B347T6 vial 108                    | Uranium 238  | 7 59  | ug/L           | 0.71        | ICPMS-Tc U-NP        |
| 1602053-AK  | B347T6 vial 110                    | Aluminum     | ND    | ug/L           | 165         | ICP-OES              |
| 1(02052 41/ | D247T( 1110                        | 0.1.         | 24100 | /T             | 22(         | Vadose-NP            |
| 1602053-AK  | B34/16 vial 110                    | Calcium      | 24100 | ug/L           | 336         | Vadose-NP            |
| 1602053-AK  | B347T6 vial 110                    | Chloride     | 66.5  | ug/mL          | 2.5         | Anions by IC-NP      |
| 1602053-AK  | B347T6 vial 110                    | Iron         | ND    | ug/L           | 100         | ICP-OES              |
|             | D0 (57) ( 1 1 1 1 0                |              | 21.6  | 1-             | <b>22</b> 0 | Vadose-NP            |
| 1602053-AK  | B34/16 vial 110                    | Manganese    | 31.6  | ug/L           | 23.9        | ICP-OES<br>Vadose-NP |
| 1602053-AK  | B347T6 vial 110                    | Nitrate      | 28    | ug/mL          | 5           | Anions by IC-NP      |
| 1602053-AK  | B347T6 vial 110                    | pH           | 8.03  | pH Units       | 0           | pH-NP                |
| 1602053-AK  | B347T6 vial 110                    | Phosphate    | 42.8  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AK  | B347T6 vial 110                    | Phosphorus   | 14000 | ug/L           | 408         | ICP-OES              |
|             |                                    | <u> </u>     |       |                |             | Vadose-NP            |
| 1602053-AK  | B347T6 vial 110                    | Sulfate      | 44    | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AK  | B34/16 Vial 110                    | Uranium 238  | /.10  | ug/L           | 0./1        | ICPMS-IC_U-NP        |
| 1002053-ANI | B34/16 viai 112                    | Aluminum     | ND    | ug/L           | 105         | Vadose-NP            |
| 1602053-AM  | B347T6 vial 112                    | Calcium      | 24300 | ug/L           | 336         | ICP-OES              |
| 1602053-AM  | B347T6 vial 112                    | Chloride     | 66.8  | ug/mL          | 2.5         | Anions by IC-NP      |
| 1602053-AM  | B347T6 vial 112                    | Iron         | ND    | ug/L           | 100         | ICP-OES              |
|             |                                    |              |       | -              |             | Vadose-NP            |
| 1602053-AM  | B347T6 vial 112                    | Manganese    | 32.2  | ug/L           | 23.9        | ICP-OES<br>Vadose NP |
| 1602053-AM  | B347T6 vial 112                    | Nitrate      | 27.8  | ug/mI          | 5           | Anions by IC-NP      |
| 1602053-AM  | B347T6 vial 112                    | Phosphate    | 41.7  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AM  | B347T6 vial 112                    | Phosphorus   | 13200 | ug/L           | 408         | ICP-OES              |
| 1602052 AM  | D247T6 vial 112                    | Sulfata      | 42.9  | u a/m I        | 7.5         | Vadose-NP            |
| 1602053-AM  | B34/10 Vial 112<br>B247T6 vial 112 | Uranium 228  | 43.8  | ug/mL          | /.5         | ICDMS To U ND        |
| 1602053-AM  | B347T6 vial 112                    | Aluminum     | ND    | ug/L           | 165         | ICP-OES              |
| 1002000 110 | 201710 1111                        |              |       | "B'            | 100         | Vadose-NP            |
| 1602053-AO  | B347T6 vial 114                    | Calcium      | 24900 | ug/L           | 336         | ICP-OES              |
| 1602053 40  | B347T6 vial 114                    | Chlorida     | 67    | ug/mI          | 2.5         | Vadose-NP            |
| 1602053-AO  | B347T6 vial 114                    | Iron         | ND    | ug/IIL<br>ug/L | 100         | ICP-OES              |
| 1002000 110 | 251710 via 111                     | non          | T(D)  | ugit           | 100         | Vadose-NP            |
| 1602053-AO  | B347T6 vial 114                    | Manganese    | 31.6  | ug/L           | 23.9        | ICP-OES              |
| 1602052 40  | D247T6 vial 114                    | Nitroto      | 20.1  | na/mal         | 5           | Vadose-NP            |
| 1602055-AU  | B347T6 vial 114                    | Phosphate    | 20.1  | ug/mL          | 75          | Anions by IC-NP      |
| 1602053-AO  | B347T6 vial 114                    | Phosphorus   | 12800 | ug/IL          | 408         | ICP-OES              |
|             |                                    | ···F · · ··· |       |                |             | Vadose-NP            |
| 1602053-AO  | B347T6 vial 114                    | Sulfate      | 44.3  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AO  | B347T6 vial 114                    | Uranium 238  | 7.27  | ug/L           | 0.71        | ICPMS-Tc_U-NP        |
| 1602053-AP  | B34716 vial 115                    | pH           | 8.24  | pH Units       | 1(5         | pH-NP                |
| 1602053-AU  | B34/16 viai 120                    | Aluminum     | ND    | ug/L           | 105         | Vadose-NP            |
| 1602053-AU  | B347T6 vial 120                    | Calcium      | 26600 | ug/L           | 336         | ICP-OES              |
| 1602052 AU  | D247T6 vial 120                    | Chlorida     | 66.0  | ug/mI          | 2.5         | Vadose-NP            |
| 1602053-AU  | B347T6 vial 120                    | Iron         | ND    |                | 100         | ICP-OES              |
|             |                                    |              |       | -8-            |             | Vadose-NP            |
| 1602053-AU  | B347T6 vial 120                    | Manganese    | 32.5  | ug/L           | 23.9        | ICP-OES<br>Vadasa NB |
| 1602053-AU  | B347T6 vial 120                    | Nitrate      | 28.1  | ug/mL          | 5           | Anions by IC-NP      |
| 1602053-AU  | B347T6 vial 120                    | pH           | 8.03  | pH Units       |             | pH-NP                |
| 1602053-AU  | B347T6 vial 120                    | Phosphate    | 39.7  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AU  | B347T6 vial 120                    | Phosphorus   | 12800 | ug/L           | 408         | ICP-OES<br>Vadose NP |
| 1602053-AU  | B347T6 vial 120                    | Sulfate      | 43.4  | ug/mL          | 7.5         | Anions by IC-NP      |
| 1602053-AU  | B347T6 vial 120                    | Uranium 238  | 6.98  | ug/L           | 0.71        | ICPMS-Tc U-NP        |
| 1602053-AZ  | B347T6 vial 125                    | Aluminum     | ND    | ug/L           | 165         | ICP-OES              |
|             |                                    | 0.1.1        |       | -              |             | Vadose-NP            |
| 1602053-AZ  | B347T6 vial 125                    | Calcium      | 28300 | ug/L           | 336         | ICP-OES<br>Vadose-NP |
| 1602053-AZ  | B347T6 vial 125                    | Chloride     | 66.6  | ug/mL          | 2.5         | Anions by IC-NP      |
| 1602053-AZ  | B347T6 vial 125                    | Iron         | ND    | ug/L           | 100         | ICP-OES              |
|             |                                    |              |       |                |             | Vadose-NP            |

| 1602053-AZ               | B347T6 vial 125 | Manganese       | 36.8  | ug/L     | 23.9 | ICP-OES              |
|--------------------------|-----------------|-----------------|-------|----------|------|----------------------|
| 1602053 47               | B347T6 vial 125 | Nitrate         | 27.8  | ug/mI    | 5    | Anions by IC NP      |
| 1602055-AZ               | D34710 vial 125 | Dhognhoto       | 27.0  | ug/mL    | 75   | Anions by IC-INF     |
| 1602055-AZ               | B347T6 vial 125 | Phosphare       | 12200 | ug/IIIL  | 1.5  | ICP OFS              |
| 1002033-AL               | D34/10 Vial 123 | Thosphorus      | 12200 | ug/L     | 400  | Vadose-NP            |
| 1602053-AZ               | B347T6 vial 125 | Sulfate         | 42.9  | ug/mL    | 7 5  | Anions by IC-NP      |
| 1602053-AZ               | B347T6 vial 125 | Uranium 238     | 6 74  | ug/IIL   | 0.71 | ICPMS-Tc U-NP        |
| 1602053-BE               | B347T6 vial 130 | Aluminum        | ND    | ug/L     | 165  | ICP-OES              |
| 1002000 22               | 201110 1141 100 |                 | 112   | ug/12    | 100  | Vadose-NP            |
| 1602053-BE               | B347T6 vial 130 | Calcium         | 27400 | ug/L     | 336  | ICP-OES              |
|                          |                 |                 |       | 0        |      | Vadose-NP            |
| 1602053-BE               | B347T6 vial 130 | Chloride        | 66.9  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-BE               | B347T6 vial 130 | Iron            | ND    | ug/L     | 100  | ICP-OES              |
|                          |                 |                 |       |          |      | Vadose-NP            |
| 1602053-BE               | B347T6 vial 130 | Manganese       | 34    | ug/L     | 23.9 | ICP-OES              |
| 1(02052 DE               | D247T( 1120     |                 | 20    | / T      | 5    | Vadose-NP            |
| 1002053-BE               | B34/16 Vial 130 | Nitrate         | 28    | ug/mL    | 3    | Anions by IC-NP      |
| 1602053-BE               | B34/16 Vial 130 | pH<br>Dhaanhata | 8.03  | pH Units | 7.5  | pH-NP                |
| 1602053-BE               | B34/16 Vial 130 | Phosphate       | 37.3  | ug/mL    | /.5  | Anions by IC-NP      |
| 1002053-BE               | B34/10 Vial 130 | Phosphorus      | 11600 | ug/L     | 408  | Vadose-NP            |
| 1602053-BE               | B347T6 vial 130 | Sulfate         | 43.3  | ug/mI    | 7.5  | Anions by IC-NP      |
| 1602053-BE               | B347T6 vial 130 | Uranium 238     | 6.93  | 119/L    | 0.71 | ICPMS-Tc U-NP        |
| 1602053-BJ               | B347T6 vial 135 | Aluminum        | ND    | ug/L     | 165  | ICP-OES              |
|                          |                 |                 |       | -8-      |      | Vadose-NP            |
| 1602053-BJ               | B347T6 vial 135 | Calcium         | 28900 | ug/L     | 336  | ICP-OES              |
|                          |                 |                 |       |          |      | Vadose-NP            |
| 1602053-BJ               | B347T6 vial 135 | Chloride        | 66.7  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-BJ               | B347T6 vial 135 | Iron            | ND    | ug/L     | 100  | ICP-OES              |
| 1602052 DI               | D247T6 vial 125 | Manaanaaa       | 21.6  |          | 22.0 | Vadose-NP            |
| 1002055-BJ               | D34/10 viai 133 | wanganese       | 51.0  | ug/L     | 23.9 | Vadose-NP            |
| 1602053-BJ               | B347T6 vial 135 | Nitrate         | 27.7  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-BJ               | B347T6 vial 135 | Phosphate       | 35.8  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-BJ               | B347T6 vial 135 | Phosphorus      | 11300 | ug/L     | 408  | ICP-OES              |
|                          |                 | <b>r</b>        |       |          |      | Vadose-NP            |
| 1602053-BJ               | B347T6 vial 135 | Sulfate         | 42.8  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-BJ               | B347T6 vial 135 | Uranium 238     | 7.09  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-BO               | B347T6 vial 140 | Aluminum        | ND    | ug/L     | 165  | ICP-OES              |
|                          |                 |                 |       |          |      | Vadose-NP            |
| 1602053-BO               | B34716 vial 140 | Calcium         | 29400 | ug/L     | 336  | ICP-OES<br>Vodece ND |
| 1602053 BO               | B347T6 vial 140 | Chlorida        | 66.7  | ug/mI    | 2.5  | Anions by IC NP      |
| 1602053-BO               | B347T6 vial 140 | Iron            | ND    | ug/IIIL  | 100  | ICP-OFS              |
| 1002035-00               | D34710 Viai 140 | 11011           | ND    | ug/L     | 100  | Vadose-NP            |
| 1602053-BO               | B347T6 vial 140 | Manganese       | 35.7  | ug/L     | 23.9 | ICP-OES              |
|                          |                 | e               |       |          |      | Vadose-NP            |
| 1602053-BO               | B347T6 vial 140 | Nitrate         | 27.9  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-BO               | B347T6 vial 140 | pН              | 8.06  | pH Units |      | pH-NP                |
| 1602053-ВО               | B347T6 vial 140 | Phosphate       | 33.8  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-BO               | B347T6 vial 140 | Phosphorus      | 10600 | ug/L     | 408  | ICP-OES              |
| 1 (000 50 50             |                 | 0.10            | 12.0  |          |      | Vadose-NP            |
| 1602053-BO               | B34/16 vial 140 | Sulfate         | 42.8  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-BO               | B34/16 Vial 140 | Uranium 238     | /.11  | ug/L     | 0./1 | ICPMS-IC_U-NP        |
| 1602053-BY               | B34/16 Vial 150 | Aluminum        | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-BV               | B347T6 vial 150 | Calcium         | 29900 | 110/L    | 336  | ICP-OES              |
| 1002000 01               | 201110 1141 100 | Curvium         | 2//00 | "B' -    | 550  | Vadose-NP            |
| 1602053-BY               | B347T6 vial 150 | Chloride        | 66.9  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-BY               | B347T6 vial 150 | Iron            | ND    | ug/L     | 100  | ICP-OES              |
| 4 (02 0 - 2              |                 |                 | • •   | ~        |      | Vadose-NP            |
| 1602053-BY               | B347T6 vial 150 | Manganese       | 39    | ug/L     | 23.9 | ICP-OES              |
| 1602053 BV               | B347T6 vial 150 | Nitroto         | 27.8  | ug/mI    | 5    | Anions by IC NP      |
| 1602055-D1<br>1602053 RV | B347T6 vial 150 | nH              | 27.0  | nH Unite | 5    | nH_ND                |
| 1602053-BT               | B347T6 vial 150 | Phosphate       | 35.05 | jjø/mL   | 75   | Anions by IC-NP      |
| 1602053-BY               | B347T6 vial 150 | Phosphorus      | 11200 | ug/L     | 408  | ICP-OES              |
|                          |                 | r               |       |          |      | Vadose-NP            |
| 1602053-BY               | B347T6 vial 150 | Sulfate         | 43    | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-BY               | B347T6 vial 150 | Uranium 238     | 7.23  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-CI               | B347T6 vial 160 | Aluminum        | ND    | ug/L     | 165  | ICP-OES              |
|                          |                 |                 |       |          |      | vadose-NP            |

| 1602053-CI  | B347T6 vial 160                    | Calcium              | 10700      | ug/L           | 336  | ICP-OES              |
|-------------|------------------------------------|----------------------|------------|----------------|------|----------------------|
| 1602053 CI  | D247T6 vial 160                    | Chlorida             | 66.5       | ug/mI          | 2.5  | Vadose-NP            |
| 1602053-CI  | B347T6 vial 160                    | Iron                 | 00.5<br>ND | ug/IIL         | 2.3  | ICP-OFS              |
| 1002035-01  | D54/10 viai 100                    | non                  | ND         | ug/L           | 100  | Vadose-NP            |
| 1602053-CI  | B347T6 vial 160                    | Manganese            | ND         | ug/L           | 23.9 | ICP-OES              |
|             |                                    |                      |            |                |      | Vadose-NP            |
| 1602053-CI  | B347T6 vial 160                    | Nitrate              | 27.6       | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-CI  | B34/16 Vial 160<br>B347T6 vial 160 | Phosphate            | 8.01       | pH Units       | 75   | pH-NP                |
| 1602053-CI  | B347T6 vial 160                    | Phosphorus           | 4000       | ug/IIL         | 408  | ICP-OES              |
| 1002030 01  | D51710 Mai 100                     | r nosphorus          | 1000       | ug/ E          | 100  | Vadose-NP            |
| 1602053-CI  | B347T6 vial 160                    | Sulfate              | 42.5       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-CI  | B347T6 vial 160                    | Uranium 238          | 6.94       | ug/L           | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-CS  | B34716 vial 170                    | Aluminum             | ND         | ug/L           | 165  | ICP-OES<br>Vadaaa ND |
| 1602053-CS  | B347T6 vial 170                    | Calcium              | 26200      | ug/L           | 336  | ICP-OES              |
| 1002000 00  | D51/10 Mai 1/0                     | Culorum              | 20200      | ug/ E          | 550  | Vadose-NP            |
| 1602053-CS  | B347T6 vial 170                    | Chloride             | 66.5       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-CS  | B347T6 vial 170                    | Iron                 | ND         | ug/L           | 100  | ICP-OES              |
| 1602053 CS  | B347T6 vial 170                    | Manganasa            | 41.9       |                | 23.0 | Vadose-NP            |
| 1002035-C3  | D54/10 viai 1/0                    | Manganese            | 41.9       | ug/L           | 23.9 | Vadose-NP            |
| 1602053-CS  | B347T6 vial 170                    | Nitrate              | 27.5       | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-CS  | B347T6 vial 170                    | pH                   | 8.02       | pH Units       |      | pH-NP                |
| 1602053-CS  | B347T6 vial 170                    | Phosphate            | 32.6       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-CS  | B34/16 vial 1/0                    | Phosphorus           | 10600      | ug/L           | 408  | ICP-OES<br>Vadose-NP |
| 1602053-CS  | B347T6 vial 170                    | Sulfate              | 42.3       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-CS  | B347T6 vial 170                    | Uranium 238          | 7.68       | ug/L           | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-CY  | B347T6 vial 176                    | Aluminum             | ND         | ug/L           | 165  | ICP-OES              |
| 1602053 CV  | B347T6 vial 176                    | Calcium              | 23800      |                | 336  | ICP OFS              |
| 1002035-01  | D34/10 viai 1/0                    | Calcium              | 23800      | ug/L           | 550  | Vadose-NP            |
| 1602053-CY  | B347T6 vial 176                    | Chloride             | 67.7       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-CY  | B347T6 vial 176                    | Iron                 | ND         | ug/L           | 100  | ICP-OES              |
| 1602053_CV  | B347T6 vial 176                    | Manganese            | ND         | uα/I           | 23.0 | ICP-OFS              |
| 1002035-01  | D34710 viai 170                    | Wanganese            | ND         | ug/ E          | 25.9 | Vadose-NP            |
| 1602053-CY  | B347T6 vial 176                    | Nitrate              | 12.2       | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-CY  | B347T6 vial 176                    | pH                   | 7.98       | pH Units       | 7.5  | pH-NP                |
| 1602053-CY  | B34/16 Vial 1/6<br>B347T6 vial 176 | Phosphorus           | 49.3       | ug/mL          | /.5  | Anions by IC-NP      |
| 1002035-01  | D34/10 viai 1/0                    | Thosphorus           | 15000      | ug/L           | 400  | Vadose-NP            |
| 1602053-CY  | B347T6 vial 176                    | Sulfate              | 43.9       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-CY  | B347T6 vial 176                    | Uranium 238          | 10.7       | ug/L           | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-DA  | B34716 vial 178                    | Aluminum             | ND         | ug/L           | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DA  | B347T6 vial 178                    | Calcium              | 23600      | ug/L           | 336  | ICP-OES              |
|             |                                    |                      |            |                |      | Vadose-NP            |
| 1602053-DA  | B347T6 vial 178                    | Chloride             | 60.4       | ug/mL          | 2.5  | Anions by IC-NP      |
| 1002055-DA  | D34/10 viai 1/8                    | IIOII                | ND         | ug/L           | 100  | Vadose-NP            |
| 1602053-DA  | B347T6 vial 178                    | Manganese            | 24.4       | ug/L           | 23.9 | ICP-OES              |
|             |                                    |                      |            |                |      | Vadose-NP            |
| 1602053-DA  | B34/16 vial 1/8                    | Nitrate<br>Dhoamhata | 27         | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-DA  | B347T6 vial 178                    | Phosphare            | 47.5       | ug/IIL         | 408  | ICP-OFS              |
| 1002000 D11 | D51/10 Mai 1/0                     | r nosphorus          | 11000      | ug/E           | 100  | Vadose-NP            |
| 1602053-DA  | B347T6 vial 178                    | Sulfate              | 44.9       | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-DA  | B347T6 vial 178                    | Uranium 238          | 9.98       | ug/L           | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-DC  | B34/16 vial 180                    | Aluminum             | ND         | ug/L           | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DC  | B347T6 vial 180                    | Calcium              | 24000      | ug/L           | 336  | ICP-OES              |
| 1602053 DC  | B347T6 vial 180                    | Chloride             | 54.0       | ug/mI          | 2.5  | Anions by IC NP      |
| 1602053-DC  | B347T6 vial 180                    | Iron                 | ND         | ug/IIL<br>ug/L | 100  | ICP-OES              |
|             |                                    |                      |            |                |      | Vadose-NP            |
| 1602053-DC  | B347T6 vial 180                    | Manganese            | 28.1       | ug/L           | 23.9 | ICP-OES              |
| 1602053 DC  | B3/7T6 viel 190                    | Nitrato              | 27 /       | ug/mI          | 5    | Anions by IC NP      |
| 1602053-DC  | B347T6 vial 180                    | pH                   | 8.1        | pH Units       | 5    | pH-NP                |
| 1602053-DC  | B347T6 vial 180                    | Phosphate            | 43         | ug/mL          | 7.5  | Anions by IC-NP      |

| 1602053-DC | B347T6 vial 180 | Phosphorus  | 14100 | ug/L     | 408  | ICP-OES<br>Vadose NP |
|------------|-----------------|-------------|-------|----------|------|----------------------|
| 1602053-DC | B347T6 vial 180 | Sulfate     | 44.4  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DC | B347T6 vial 180 | Uranium 238 | 10.1  | ug/L     | 0.71 | ICPMS-Tc U-NP        |
| 1602053-DE | B347T6 vial 182 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DE | B347T6 vial 182 | Calcium     | 23900 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-DE | B347T6 vial 182 | Chloride    | 52    | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-DE | B347T6 vial 182 | Iron        | ND    | ug/L     | 100  | ICP-OES              |
| 1602053 DF | B347T6 vial 182 | Manganasa   | 28    | ug/I     | 23.0 |                      |
| 1002035-DE | B34710 viai 182 | Wanganese   | 20    | ug/L     | 23.9 | Vadose-NP            |
| 1602053-DE | B347T6 vial 182 | Nitrate     | 27.6  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-DE | B347T6 vial 182 | Phosphate   | 40.2  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DE | B347T6 vial 182 | Phosphorus  | 12700 | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-DE | B347T6 vial 182 | Sulfate     | 43.9  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DE | B347T6 vial 182 | Uranium 238 | 10.7  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-DG | B347T6 vial 184 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DG | B347T6 vial 184 | Calcium     | 24000 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-DG | B347T6 vial 184 | Chloride    | 49.9  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-DG | B347T6 vial 184 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose NP |
| 1602053-DG | B347T6 vial 184 | Manganese   | 30.5  | ug/L     | 23.9 | ICP-OES              |
|            |                 |             |       |          |      | Vadose-NP            |
| 1602053-DG | B347T6 vial 184 | Nitrate     | 27.6  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-DG | B34/16 vial 184 | Phosphate   | 39    | ug/mL    | /.5  | Anions by IC-NP      |
| 1002055-DG | B34/10 Vial 184 | Phosphorus  | 12200 | ug/L     | 408  | Vadose-NP            |
| 1602053-DG | B347T6 vial 184 | Sulfate     | 43.4  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DG | B347T6 vial 184 | Uranium 238 | 10.8  | ug/L     | 0.71 | ICPMS-Tc U-NP        |
| 1602053-DH | B347T6 vial 185 | pН          | 8.31  | pH Units |      | pH-NP                |
| 1602053-DI | B347T6 vial 186 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DI | B347T6 vial 186 | Calcium     | 24400 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-DI | B347T6 vial 186 | Chloride    | 48.6  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-DI | B347T6 vial 186 | Iron        | ND    | ug/L     | 100  | ICP-OES<br>Vadose-NP |
| 1602053-DI | B347T6 vial 186 | Manganese   | 24.4  | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-DI | B347T6 vial 186 | Nitrate     | 27.3  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-DI | B347T6 vial 186 | Phosphate   | 37.7  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DI | B347T6 vial 186 | Phosphorus  | 11800 | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-DI | B347T6 vial 186 | Sulfate     | 43.1  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DI | B347T6 vial 186 | Uranium 238 | 11.1  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-DK | B347T6 vial 188 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DK | B347T6 vial 188 | Calcium     | 24600 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-DK | B347T6 vial 188 | Chloride    | 47.7  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-DK | B347T6 vial 188 | Iron        | ND    | ug/L     | 100  | ICP-OES              |
|            |                 |             |       |          |      | Vadose-NP            |
| 1602053-DK | B347T6 vial 188 | Manganese   | 28.5  | ug/L     | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-DK | B347T6 vial 188 | Nitrate     | 27.7  | ug/mL    | 5    | Anions by IC-NP      |
| 1602053-DK | B347T6 vial 188 | Phosphate   | 36.9  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DK | B347T6 vial 188 | Phosphorus  | 11700 | ug/L     | 408  | ICP-OES<br>Vadose-NP |
| 1602053-DK | B347T6 vial 188 | Sulfate     | 43.1  | ug/mL    | 7.5  | Anions by IC-NP      |
| 1602053-DK | B347T6 vial 188 | Uranium 238 | 10.6  | ug/L     | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-DM | B347T6 vial 190 | Aluminum    | ND    | ug/L     | 165  | ICP-OES<br>Vadose-NP |
| 1602053-DM | B347T6 vial 190 | Calcium     | 25500 | ug/L     | 336  | ICP-OES<br>Vadose-NP |
| 1602053-DM | B347T6 vial 190 | Chloride    | 47.1  | ug/mL    | 2.5  | Anions by IC-NP      |
| 1602053-DM | B347T6 vial 190 | Iron        | ND    | ug/L     | 100  | ICP-OES              |
| 1602053-DM | B347T6 vial 190 | Manganese   | 27.2  | ug/L     | 23.9 | Vadose-NP<br>ICP-OES |
|            |                 |             |       |          |      | Vadose-NP            |

| 1602053-DM           | B347T6 vial 190   | Nitrate      | 27.4       | ug/mL           | 5    | Anions by IC-NP |
|----------------------|-------------------|--------------|------------|-----------------|------|-----------------|
| 1602053-DM           | B347T6 vial 190   | pН           | 8.17       | pH Units        |      | pH-NP           |
| 1602053-DM           | B347T6 vial 190   | Phosphate    | 36.7       | ug/mL           | 7.5  | Anions by IC-NP |
| 1602053-DM           | B347T6 vial 190   | Phosphorus   | 11300      | ug/L            | 408  | ICP-OES         |
|                      |                   | 1            |            | Ŭ               |      | Vadose-NP       |
| 1602053-DM           | B347T6 vial 190   | Sulfate      | 42.8       | ug/mL           | 7.5  | Anions by IC-NP |
| 1602053-DM           | B347T6 vial 190   | Uranium 238  | 10.8       | ug/L            | 0.71 | ICPMS-Tc U-NP   |
| 1602053-DR           | B347T6 vial 195   | Aluminum     | ND         | ug/L            | 165  | ICP-OES         |
|                      |                   |              |            |                 |      | Vadose-NP       |
| 1602053-DR           | B347T6 vial 195   | Calcium      | 25800      | ug/L            | 336  | ICP-OES         |
|                      |                   |              |            |                 |      | Vadose-NP       |
| 1602053-DR           | B347T6 vial 195   | Chloride     | 46.3       | ug/mL           | 2.5  | Anions by IC-NP |
| 1602053-DR           | B347T6 vial 195   | Iron         | ND         | 119/L           | 100  | ICP-OES         |
| 1002000 DIC          | 201110110100      |              | 112        | "B' L           | 100  | Vadose-NP       |
| 1602053-DR           | B347T6 vial 195   | Manganese    | 30.2       | 119/L           | 23.9 | ICP-OES         |
| 1002000 DR           | D5 17 10 Viai 195 | manganese    | 50.2       | ug/ L           | 25.9 | Vadose-NP       |
| 1602053-DR           | B347T6 vial 195   | Nitrate      | 27.6       | uø/mL           | 5    | Anions by IC-NP |
| 1602053-DR           | B347T6 vial 195   | Phosphate    | 36.3       | ug/mL           | 75   | Anions by IC-NP |
| 1602053-DR           | B3/17T6 vial 195  | Phosphorus   | 11100      | ug/III2         | 408  | ICP-OFS         |
| 100203 <b>5-</b> DIX | D54/10 Viai 175   | 1 nosphorus  | 11100      | ug/L            | 400  | Vadose-NP       |
| 1602053-DR           | B347T6 vial 195   | Sulfate      | 42.9       | ug/mI           | 7.5  | Anions by IC-NP |
| 1602053-DR           | B347T6 vial 105   | Uranium 238  | 10.5       | ug/IIL          | 0.71 | ICPMS To U NP   |
| 1602055-DK           | B347T6 vial 200   | Aluminum     | ND         | ug/L<br>ug/I    | 165  |                 |
| 1002033-D W          | D34/10 Viai 200   | Auminium     | ND         | ug/L            | 105  | Vadose-NP       |
| 1602053 DW           | B347T6 vial 200   | Calcium      | 26200      | ug/I            | 336  |                 |
| 1002033-D W          | D34/10 Viai 200   | Calciulii    | 20200      | ug/L            | 550  | Vadose-NP       |
| 1602053 DW           | B347T6 vial 200   | Chlorida     | 45.5       | ug/mI           | 2.5  | Anions by IC NP |
| 1602055-DW           | B347T6 vial 200   | Iron         |            | ug/IIL          | 100  | ICP OFS         |
| 1002035-D W          | D34/10 viai 200   | non          | ND         | ug/L            | 100  | Vadose-NP       |
| 1602053_DW           | B347T6 vial 200   | Manganese    | 20.2       | ug/I            | 23.0 | ICP-OFS         |
| 1002035-D W          | D54/10 Viai 200   | Manganese    | 2).2       | ug/L            | 25.7 | Vadose-NP       |
| 1602053_DW           | B347T6 vial 200   | Nitrate      | 27.3       | ug/mI           | 5    | Anions by IC-NP |
| 1602055-DW           | B347T6 vial 200   | nH           | 8 11       | nH Unite        | 5    | nH ND           |
| 1602053-DW           | B347T6 vial 200   | Phoenhate    | 36.4       | pri Units       | 7.5  | Anions by IC NP |
| 1602055-DW           | D34710 vial 200   | Dhoopharus   | 11200      | ug/IIIL         | 1.5  |                 |
| 100203 <b>5-D</b> W  | D34/10 Vial 200   | rnosphorus   | 11200      | ug/L            | 400  | Vadose NP       |
| 1602052 DW           | D247T6 viel 200   | Sulfata      | 12.6       | ug/mI           | 75   | Aniona by IC ND |
| 1602033-DW           | D34710 Vial 200   | Lironium 228 | 42.0       | ug/IIIL         | 7.5  | ICDMS To U ND   |
| 1602055-DW           | D34/10 vial 200   |              | 10.5<br>ND | ug/L            | 0./1 | ICPNIS-IC_U-NP  |
| 1002055-EB           | B34/16 Vial 205   | Aluminum     | ND         | ug/L            | 105  | Vedece ND       |
| 1602052 ED           | D247T6 viol 205   | Calaium      | 27400      | ug/I            | 226  |                 |
| 1002055-EB           | D34/10 Vial 203   | Calcium      | 27400      | ug/L            | 550  | Vadose NP       |
| 1602053 FR           | B347T6 vial 205   | Chlorida     | 15.3       | ug/mI           | 2.5  | Anions by IC NP |
| 1602055-ED           | B347T6 vial 205   | Iron         | ND         | ug/IIIL<br>ug/I | 100  | ICP OFS         |
| 1002035-ED           | D34/10 viai 203   | non          | ND         | ug/L            | 100  | Vadose-NP       |
| 1602053_FR           | B347T6 vial 205   | Manganese    | 30.7       |                 | 23.9 | ICP-OFS         |
| 1002035-110          | D54710 Viai 205   | Manganese    | 50.7       | ug/L            | 25.9 | Vadose-NP       |
| 1602053-FR           | B347T6 vial 205   | Nitrate      | 27.4       | ug/mI           | 5    | Anions by IC-NP |
| 1602053-EB           | B347T6 vial 205   | Phosphate    | 36.2       | ug/mL           | 75   | Anions by IC-NP |
| 1602053-EB           | B347T6 vial 205   | Phosphorus   | 11600      | ug/III2         | 408  | ICP-OFS         |
| 1002000 110          | D5 17 10 Viai 200 | rnosphorus   | 11000      | ugr             | 100  | Vadose-NP       |
| 1602053-EB           | B347T6 vial 205   | Sulfate      | 42.5       | ug/mL           | 7.5  | Anions by IC-NP |
| 1602053-EB           | B347T6 vial 205   | Uranium 238  | 11         | 119/L           | 0.71 | ICPMS-Tc U-NP   |
| 1602053-EG           | B347T6 vial 210   | Aluminum     | ND         | ug/L            | 165  | ICP-OES         |
|                      |                   |              |            | 82              | 100  | Vadose-NP       |
| 1602053-EG           | B347T6 vial 210   | Calcium      | 29300      | ug/L            | 336  | ICP-OES         |
|                      |                   |              |            |                 |      | Vadose-NP       |
| 1602053-EG           | B347T6 vial 210   | Chloride     | 44.9       | ug/mL           | 2.5  | Anions by IC-NP |
| 1602053-EG           | B347T6 vial 210   | Iron         | ND         | ug/L            | 100  | ICP-OES         |
|                      |                   | -            |            |                 |      | Vadose-NP       |
| 1602053-EG           | B347T6 vial 210   | Manganese    | 31.7       | ug/L            | 23.9 | ICP-OES         |
|                      |                   | c            |            | l c             |      | Vadose-NP       |
| 1602053-EG           | B347T6 vial 210   | Nitrate      | 27.4       | ug/mL           | 5    | Anions by IC-NP |
| 1602053-EG           | B347T6 vial 210   | pН           | 8.06       | pH Units        |      | pH-NP           |
| 1602053-EG           | B347T6 vial 210   | Phosphate    | 33.5       | ug/mL           | 7.5  | Anions by IC-NP |
| 1602053-EG           | B347T6 vial 210   | Phosphorus   | 10800      | ug/L            | 408  | ICP-OES         |
|                      |                   |              |            | 6               |      | Vadose-NP       |
| 1602053-EG           | B347T6 vial 210   | Sulfate      | 42.5       | ug/mL           | 7.5  | Anions by IC-NP |
| 1602053-EG           | B347T6 vial 210   | Uranium 238  | 10.7       | ug/L            | 0.71 | ICPMS-Tc U-NP   |
| 1602053-EO           | B347T6 vial 220   | Aluminum     | ND         | ug/L            | 165  | ICP-OES         |
|                      |                   |              |            |                 |      | Vadose-NP       |
| 1602053-EO           | B347T6 vial 220   | Calcium      | 28200      | ug/L            | 336  | ICP-OES         |
| ····                 |                   |              | •          |                 |      | Vadose-NP       |
| 1602053 EO           | B347T6 vial 220   | Chloride     | 45.1       | ug/mL           | 2.5  | Anions by IC-NP |
| 1002035-EQ           |                   |              |            |                 |      |                 |

| 1602053-EQ  | B347T6 vial 220                    | Iron         | ND            | ug/L           | 100  | ICP-OES<br>Vadose-NP |
|-------------|------------------------------------|--------------|---------------|----------------|------|----------------------|
| 1602053-EQ  | B347T6 vial 220                    | Manganese    | 33.6          | ug/L           | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-EO  | B347T6 vial 220                    | Nitrate      | 27.8          | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-EQ  | B347T6 vial 220                    | nH           | 8 24          | pH Units       | 5    | nH-NP                |
| 1602053-EO  | B347T6 vial 220                    | Phosphate    | 36            | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-EQ  | B347T6 vial 220                    | Phosphorus   | 11100         | ug/L           | 408  | ICP-OES<br>Vadose-NP |
| 1602053-EO  | B347T6 vial 220                    | Sulfate      | 43            | ug/mI          | 7.5  | Anions by IC-NP      |
| 1602053-EQ  | B347T6 vial 220                    | Uranium 238  | 10.8          | ug/IIL<br>ug/I | 0.71 | ICPMS-Tc U-NP        |
| 1602053-EQ  | B347T6 vial 230                    | Aluminum     | ND            | ug/L           | 165  | ICP-OES              |
| 1002000 111 | 251710 1141 250                    |              | 112           | "g 2           | 100  | Vadose-NP            |
| 1602053-FA  | B347T6 vial 230                    | Calcium      | 10400         | ug/L           | 336  | ICP-OES<br>Vadose-NP |
| 1602053-FA  | B347T6 vial 230                    | Chloride     | 44.3          | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-FA  | B347T6 vial 230                    | Iron         | ND            | ug/L           | 100  | ICP-OES<br>Vadose-NP |
| 1602053-FA  | B347T6 vial 230                    | Manganese    | 30.7          | ug/L           | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-FA  | B347T6 vial 230                    | Nitrate      | 27.7          | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-FA  | B347T6 vial 230                    | pН           | 8.14          | pH Units       |      | pH-NP                |
| 1602053-FA  | B347T6 vial 230                    | Phosphate    | 34.8          | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-FA  | B347T6 vial 230                    | Phosphorus   | 7700          | ug/L           | 408  | ICP-OES<br>Vadose-NP |
| 1602053-FA  | B347T6 vial 230                    | Sulfate      | 42.3          | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-FA  | B347T6 vial 230                    | Uranium 238  | 11.2          | ug/L           | 0.71 | ICPMS-Tc U-NP        |
| 1602053-FK  | B347T6 vial 240                    | Aluminum     | ND            | ug/L           | 165  | ICP-OES              |
|             |                                    | ~            |               |                |      | Vadose-NP            |
| 1602053-FK  | B34716 vial 240                    | Calcium      | 9650          | ug/L           | 336  | ICP-OES<br>Vadose-NP |
| 1602053-FK  | B347T6 vial 240                    | Chloride     | 43.8          | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-FK  | B347T6 vial 240                    | Iron         | ND            | ug/L           | 100  | ICP-OES<br>Vadose-NP |
| 1602053-FK  | B347T6 vial 240                    | Manganese    | ND            | ug/L           | 23.9 | ICP-OES<br>Vadose-NP |
| 1602053-FK  | B347T6 vial 240                    | Nitrate      | 27.4          | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-FK  | B347T6 vial 240                    | pH           | 8.19          | pH Units       |      | pH-NP                |
| 1602053-FK  | B347T6 vial 240                    | Phosphate    | 35.6          | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-FK  | B347T6 vial 240                    | Phosphorus   | 4780          | ug/L           | 408  | ICP-OES<br>Vadose-NP |
| 1602053-FK  | B347T6 vial 240                    | Sulfate      | 42            | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-FK  | B347T6 vial 240                    | Uranium 238  | 12.1          | ug/L           | 0.71 | ICPMS-Tc U-NP        |
| 1602053-FU  | B347T6 vial 250                    | Aluminum     | ND            | ug/L           | 165  | ICP-OES              |
|             |                                    | <b>2</b> 4 1 |               |                |      | Vadose-NP            |
| 1602053-FU  | B34716 vial 250                    | Calcium      | 29500         | ug/L           | 336  | ICP-OES<br>Vadose-NP |
| 1602053-FU  | B347T6 vial 250                    | Chloride     | 43.5          | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-FU  | B347T6 vial 250                    | Iron         | ND            | ug/L           | 100  | ICP-OES              |
| 1(02052 EU  | D247T(                             | Manager      | 20.1          |                | 22.0 | Vadose-NP            |
| 1602055-FU  | B34/10 viai 230                    | Manganese    | 39.1          | ug/L           | 23.9 | Vadose-NP            |
| 1602053-FU  | B34/16 vial 250                    | Nitrate      | 27.4          | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-FU  | B34/16 vial 250                    | pH           | 8.15          | pH Units       |      | pH-NP                |
| 1602053-FU  | B34/16 vial 250                    | Phosphate    | 35.5          | ug/mL          | /.5  | Anions by IC-NP      |
| 1602053-FU  | B34/16 vial 250                    | Phosphorus   | 11300         | ug/L           | 408  | Vadose-NP            |
| 1602053-FU  | B347T6 vial 250                    | Sulfate      | 42            | ug/mL          | 7.5  | Anions by IC-NP      |
| 1602053-FU  | B347T6 vial 250                    | Uranium 238  | 11.7          | ug/L           | 0.71 | ICPMS-Tc_U-NP        |
| 1602053-GE  | B347T6 vial 260                    | Aluminum     | ND            | ug/L           | 165  | ICP-OES<br>Vadose-NP |
| 1602053-GE  | B347T6 vial 260                    | Calcium      | 29800         | ug/L           | 336  | ICP-OES<br>Vadose-NP |
| 1602053-GE  | B347T6 vial 260                    | Chloride     | 43.6          | ug/mL          | 2.5  | Anions by IC-NP      |
| 1602053-GE  | B347T6 vial 260                    | Iron         | ND            | ug/L           | 100  | ICP-OES              |
| 1602053-GE  | B347T6 vial 260                    | Manganese    | 39.7          | ug/L           | 23.9 | Vadose-NP<br>ICP-OES |
| 1(02052 CE  | D247T( 12(0                        | - Nite t     | 27.2          |                |      | Vadose-NP            |
| 1602053-GE  | D34/10 Vial 200                    | INITATE      | 27.5          | ug/mL          | 5    | Anions by IC-NP      |
| 1602053-GE  | D34/10 Vial 200<br>D347T6 vist 200 | Phoenhate    | 0.12          |                | 75   | Aniona hy IC MD      |
| 1602053-GE  | B347T6 viel 260                    | Phosphare    | 33.9<br>10000 | ug/mL          | /.5  |                      |
| 1002033-GE  | D34710 vial 200                    | 1 nosphorus  | 10000         | ug/L           | 400  | Vadose-NP            |
| 1602053-GE  | B347T6 vial 260                    | Sulfate      | 42.1          | ug/mL          | 7.5  | Anions by IC-NP      |

| 1602053-GE                | B347T6 vial 260                    | Uranium 238        | 12         | ug/L             | 0.71 | ICPMS-Tc_U-NP        |
|---------------------------|------------------------------------|--------------------|------------|------------------|------|----------------------|
| 1602053-GN                | B347T6 vial 269                    | Aluminum           | ND         | ug/L             | 165  | ICP-OES              |
|                           |                                    |                    |            | _                |      | Vadose-NP            |
| 1602053-GN                | B347T6 vial 269                    | Calcium            | 28200      | ug/L             | 336  | ICP-OES              |
|                           |                                    |                    |            |                  |      | Vadose-NP            |
| 1602053-GN                | B347T6 vial 269                    | Chloride           | 43.3       | ug/mL            | 2.5  | Anions by IC-NP      |
| 1602053-GN                | B347T6 vial 269                    | Iron               | ND         | ug/L             | 100  | ICP-OES              |
|                           |                                    |                    |            |                  |      | Vadose-NP            |
| 1602053-GN                | B347T6 vial 269                    | Manganese          | 35.3       | ug/L             | 23.9 | ICP-OES              |
| 1(02052 CN                | D247T( 12(0                        |                    | 27.2       | / •              | 5    | Vadose-NP            |
| 1602053-GN                | B34/16 vial 269                    | Nitrate            | 27.2       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GN                | B34/16 vial 269                    | pH                 | 8.14       | pH Units         | 7.6  | pH-NP                |
| 1602053-GN                | B34/16 Vial 269                    | Phosphate          | 30.0       | ug/mL            | /.5  | Anions by IC-NP      |
| 1602053-GN                | B34/16 vial 269                    | Phosphorus         | 11100      | ug/L             | 408  | ICP-OES<br>Vadasa ND |
| 1602053 CN                | D247T6 vial 260                    | Sulfata            | 42         | ug/mI            | 7.5  | Anions by IC NP      |
| 1602053-GN                | D34/10 vial 209<br>D247T6 vial 260 | Liranium 228       | 42         | ug/IIL           | 7.5  | ICDMS To U ND        |
| 1602053-GN                | D34/10 Vial 209                    | Dramida<br>Dramida | 12.1<br>ND | ug/L             | 0.71 | Anions by IC NP      |
| 1002053-GP                | D34/10 vial 2/1<br>D247T6 vial 272 | Dioinide           | 19.2       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GK                | D34/10 vial 2/3<br>D247T6 vial 275 | Bromide            | 10.5       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GI                | D34/10 vial 2/3<br>D247T6 vial 277 | Dioinide           | 27.1       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GV                | D34/10 vial 2//<br>D247T6 vial 270 | Bromide            | 32.0       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GA                | D34/10 vial 2/9<br>D247T6 vial 291 | Dioinide           | 33.3       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-GZ                | D34/10 vial 201<br>D247T6 vial 202 | Bromida            | 20.5       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-HD                | D34/10 vial 203                    | Dramida            | 39.5       | ug/mL            | 5    | Anions by IC-INF     |
| 1602053-HD                | D34/10 Vial 283                    | Bromide            | 40.7       | ug/mL            | 5    | Anions by IC-NP      |
| 1602055-HF                | D34/10 vial 28/                    | Bromida            | 41.3       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-HH<br>1602053 HN  | D34/10 vial 209                    | Bromide            | 41.0       | ug/IIIL<br>ug/mI | 5    | Anions by IC-NP      |
| 1602053-IIN<br>1602053 HS | D34/10 vial 293                    | Bromida            | 43.3       | ug/mL            | 5    | Anions by IC-NP      |
| 1602055-115<br>1602052 UV | D34/10 vial 300                    | Bromide            | 44.1       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-IIA               | B347T6 vial 310                    | Bromide            | 44.0       | ug/mL            | 5    | Anions by IC-NI      |
| 1602053-IC                | B347T6 vial 315                    | Bromide            | 45.4       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-IM                | B347T6 vial 320                    | Bromide            | 46.1       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-IW                | B347T6 vial 330                    | Bromide            | 46.8       | ug/mL            | 5    | Anions by IC-NP      |
| 1602050 IV                | B347T6 vial 340                    | Bromide            | 47         | ug/mL            | 5    | Anions by IC-NP      |
| 1602052 JG                | B347T6 vial 348                    | Bromide            | 42.6       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-JO                | B347T6 vial 350                    | Bromide            | 29.6       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-JS                | B347T6 vial 352                    | Bromide            | 20.5       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-JU                | B347T6 vial 354                    | Bromide            | 15.6       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-JW                | B347T6 vial 356                    | Bromide            | 12.3       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-JY                | B347T6 vial 358                    | Bromide            | 10.3       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KA                | B347T6 vial 360                    | Bromide            | 8.99       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KC                | B347T6 vial 362                    | Bromide            | 7.85       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KE                | B347T6 vial 364                    | Bromide            | 7.05       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KG                | B347T6 vial 366                    | Bromide            | 6.12       | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KK                | B347T6 vial 370                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KP                | B347T6 vial 375                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KU                | B347T6 vial 380                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-KZ                | B347T6 vial 385                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-LE                | B347T6 vial 390                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-LO                | B347T6 vial 400                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-LY                | B347T6 vial 410                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |
| 1602053-MI                | B347T6 vial 420                    | Bromide            | ND         | ug/mL            | 5    | Anions by IC-NP      |

### Pore Volume and stop flow data for in-tact column B347T6

| Vial # | Pore volume | Comments          |
|--------|-------------|-------------------|
| 1      | 0.00        | saturating column |
| 2      | 0.01        | start column      |
| 3      | 0.01        |                   |
| 4      | 0.02        |                   |
| 5      | 0.02        |                   |
| 6      | 0.02        |                   |
| 7      | 0.03        |                   |
| 8      | 0.03        |                   |
| 9      | 0.04        |                   |
| 10     | 0.04        |                   |
| 11     | 0.05        |                   |
| 12     | 0.05        |                   |

| 13 | 0.05 |  |
|----|------|--|
| 14 | 0.06 |  |
| 15 | 0.06 |  |
| 16 | 0.07 |  |
| 17 | 0.07 |  |
| 18 | 0.07 |  |
| 10 | 0.09 |  |
| 19 | 0.08 |  |
| 20 | 0.08 |  |
| 21 | 0.09 |  |
| 22 | 0.09 |  |
| 23 | 0.10 |  |
| 24 | 0.10 |  |
| 25 | 0.10 |  |
| 26 | 0 11 |  |
| 27 | 0.11 |  |
| 20 | 0.12 |  |
| 20 | 0.12 |  |
| 29 | 0.12 |  |
| 30 | 0.12 |  |
| 31 | 0.13 |  |
| 32 | 0.13 |  |
| 33 | 0.14 |  |
| 34 | 0 14 |  |
| 35 | 0.15 |  |
| 26 | 0.15 |  |
| 30 | 0.15 |  |
| 3/ | 0.15 |  |
| 38 | 0.16 |  |
| 39 | 0.16 |  |
| 40 | 0.17 |  |
| 41 | 0.17 |  |
| 42 | 0.17 |  |
| 43 | 0.18 |  |
| 40 | 0.10 |  |
| 44 | 0.10 |  |
| 45 | 0.19 |  |
| 46 | 0.19 |  |
| 47 | 0.19 |  |
| 48 | 0.20 |  |
| 49 | 0.20 |  |
| 50 | 0.21 |  |
| 51 | 0.21 |  |
| 52 | 0.22 |  |
| 53 | 0.22 |  |
| 55 | 0.22 |  |
| 54 | 0.22 |  |
| 55 | 0.23 |  |
| 56 | 0.23 |  |
| 57 | 0.24 |  |
| 58 | 0.24 |  |
| 59 | 0.24 |  |
| 60 | 0.25 |  |
| 61 | 0.25 |  |
| 62 | 0.26 |  |
| 62 | 0.20 |  |
| 63 | 0.20 |  |
| 64 | 0.27 |  |
| 65 | 0.27 |  |
| 66 | 0.27 |  |
| 67 | 0.28 |  |
| 68 | 0.28 |  |
| 69 | 0.29 |  |
| 70 | 0.20 |  |
| 74 | 0.23 |  |
| 71 | 0.29 |  |
| 12 | 0.30 |  |
| 73 | 0.30 |  |
| 74 | 0.31 |  |
| 75 | 0.31 |  |
| 76 | 0.32 |  |
| 77 | 0.32 |  |
| 78 | 0.32 |  |
| 10 | 0.02 |  |

| 79                                                              | 0.33                                                                                                                 |                   |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|
| 80                                                              | 0.33                                                                                                                 |                   |
| 81                                                              | 0.34                                                                                                                 |                   |
| 82                                                              | 0.34                                                                                                                 |                   |
| 83                                                              | 0.34                                                                                                                 |                   |
| 84                                                              | 0.35                                                                                                                 |                   |
| 85                                                              | 0.35                                                                                                                 |                   |
| 00                                                              | 0.00                                                                                                                 |                   |
| 00                                                              | 0.30                                                                                                                 |                   |
| 87                                                              | 0.36                                                                                                                 |                   |
| 88                                                              | 0.37                                                                                                                 |                   |
| 89                                                              | 0.37                                                                                                                 |                   |
| 90                                                              | 0.37                                                                                                                 |                   |
| 91                                                              | 0.38                                                                                                                 |                   |
| 92                                                              | 0.38                                                                                                                 |                   |
| 93                                                              | 0.39                                                                                                                 |                   |
| 94                                                              | 0.00                                                                                                                 |                   |
| 05                                                              | 0.00                                                                                                                 |                   |
| 95                                                              | 0.39                                                                                                                 |                   |
| 96                                                              | 0.40                                                                                                                 |                   |
| 97                                                              | 0.40                                                                                                                 |                   |
| 98                                                              | 0.41                                                                                                                 |                   |
| 99                                                              | 0.41                                                                                                                 | 48 hour stop flow |
| 100                                                             | 0.41                                                                                                                 |                   |
| 101                                                             | 0.42                                                                                                                 |                   |
| 102                                                             | 0.42                                                                                                                 |                   |
| 102                                                             | 0.43                                                                                                                 |                   |
| 103                                                             | 0.43                                                                                                                 |                   |
| 104                                                             | 0.43                                                                                                                 |                   |
| 105                                                             | 0.44                                                                                                                 |                   |
| 106                                                             | 0.44                                                                                                                 |                   |
| 107                                                             | 0.44                                                                                                                 |                   |
| 108                                                             | 0.45                                                                                                                 |                   |
| 109                                                             | 0.45                                                                                                                 |                   |
| 110                                                             | 0.46                                                                                                                 |                   |
| 111                                                             | 0.46                                                                                                                 |                   |
| 112                                                             | 0.46                                                                                                                 |                   |
| 112                                                             | 0.40                                                                                                                 |                   |
| 113                                                             | 0.47                                                                                                                 |                   |
| 114                                                             | 0.47                                                                                                                 |                   |
| 115                                                             | 0.48                                                                                                                 |                   |
| 116                                                             | 0.48                                                                                                                 |                   |
| 117                                                             | 0.49                                                                                                                 |                   |
| 118                                                             | 0.49                                                                                                                 |                   |
| 119                                                             | 0.49                                                                                                                 |                   |
| 120                                                             | 0.50                                                                                                                 |                   |
| 121                                                             | 0.50                                                                                                                 |                   |
| 122                                                             | 0.00                                                                                                                 |                   |
| 122                                                             | 0.51                                                                                                                 |                   |
| 123                                                             | 0.51                                                                                                                 |                   |
| 124                                                             | 0.51                                                                                                                 |                   |
| 125                                                             | 0.52                                                                                                                 |                   |
| 126                                                             | 0.52                                                                                                                 |                   |
| 127                                                             | 0.53                                                                                                                 |                   |
| 128                                                             | 0.53                                                                                                                 |                   |
| 129                                                             | 0.54                                                                                                                 |                   |
| 130                                                             | 0.54                                                                                                                 |                   |
| 131                                                             | 0.01                                                                                                                 |                   |
| 132                                                             | 0.54                                                                                                                 |                   |
| 134                                                             | 0.54                                                                                                                 |                   |
| 400                                                             | 0.55                                                                                                                 |                   |
| 133                                                             | 0.54<br>0.55<br>0.55                                                                                                 |                   |
| 133<br>134                                                      | 0.54<br>0.55<br>0.55<br>0.56                                                                                         |                   |
| 133<br>134<br>135                                               | 0.54<br>0.55<br>0.55<br>0.56<br>0.56                                                                                 |                   |
| 133<br>134<br>135<br>136                                        | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56                                                                         |                   |
| 133<br>134<br>135<br>136<br>137                                 | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.56<br>0.57                                                         |                   |
| 133<br>134<br>135<br>136<br>137<br>138                          | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57                                                 |                   |
| 133<br>134<br>135<br>136<br>137<br>138<br>139                   | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57                                                 |                   |
| 133<br>134<br>135<br>136<br>137<br>138<br>139<br>140            | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57                                                 |                   |
| 133<br>134<br>135<br>136<br>137<br>138<br>139<br>140            | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57<br>0.58<br>0.58                                 |                   |
| 133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141     | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.58<br>0.58<br>0.58<br>0.58                         |                   |
| 133   134   135   136   137   138   139   140   141   142       | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57<br>0.58<br>0.58<br>0.58<br>0.58                 |                   |
| 133   134   135   136   137   138   139   140   141   142   143 | 0.54<br>0.55<br>0.55<br>0.56<br>0.56<br>0.56<br>0.57<br>0.57<br>0.57<br>0.58<br>0.58<br>0.58<br>0.58<br>0.59<br>0.59 |                   |

| 145                                           | 0.60                                                                         |                   |
|-----------------------------------------------|------------------------------------------------------------------------------|-------------------|
| 146                                           | 0.61                                                                         |                   |
| 147                                           | 0.61                                                                         |                   |
| 148                                           | 0.61                                                                         |                   |
| 1/9                                           | 0.62                                                                         |                   |
| 150                                           | 0.02                                                                         |                   |
| 150                                           | 0.02                                                                         |                   |
| 151                                           | 0.63                                                                         |                   |
| 152                                           | 0.63                                                                         |                   |
| 153                                           | 0.63                                                                         |                   |
| 154                                           | 0.64                                                                         |                   |
| 155                                           | 0.64                                                                         |                   |
| 156                                           | 0.65                                                                         |                   |
| 150                                           | 0.05                                                                         |                   |
| 15/                                           | 0.65                                                                         |                   |
| 158                                           | 0.66                                                                         |                   |
| 159                                           | 0.66                                                                         |                   |
| 160                                           | 0.66                                                                         |                   |
| 161                                           | 0.67                                                                         |                   |
| 162                                           | 0.67                                                                         |                   |
| 462                                           | 0.69                                                                         |                   |
| 103                                           | 0.00                                                                         |                   |
| 164                                           | 0.68                                                                         |                   |
| 165                                           | 0.68                                                                         |                   |
| 166                                           | 0.69                                                                         |                   |
| 167                                           | 0.69                                                                         |                   |
| 168                                           | 0.70                                                                         |                   |
| 169                                           | 0.70                                                                         |                   |
| 170                                           | 0.70                                                                         |                   |
| 170                                           | 0.71                                                                         |                   |
| 1/1                                           | 0.71                                                                         |                   |
| 172                                           | 0.71                                                                         |                   |
| 173                                           | 0.72                                                                         |                   |
| 174                                           | 0.72                                                                         |                   |
| 175                                           | 0.73                                                                         | 72 hour stop flow |
| 176                                           | 0.73                                                                         |                   |
| 177                                           | 0.73                                                                         |                   |
| 177                                           | 0.73                                                                         |                   |
| 178                                           | 0.74                                                                         |                   |
| 179                                           | 0.74                                                                         |                   |
| 180                                           | 0.75                                                                         |                   |
| 181                                           | 0.75                                                                         |                   |
| 182                                           | 0.75                                                                         |                   |
| 183                                           | 0.76                                                                         |                   |
| 18/                                           | 0.76                                                                         |                   |
| 495                                           | 0.70                                                                         |                   |
| 100                                           | 0.77                                                                         |                   |
| 186                                           | 0.77                                                                         |                   |
| 187                                           | 0.78                                                                         |                   |
| 188                                           | 0.78                                                                         |                   |
| 189                                           | 0.78                                                                         |                   |
| 190                                           | 0.79                                                                         |                   |
| 191                                           | 0.79                                                                         |                   |
| 102                                           | 0.00                                                                         |                   |
| 194                                           | 0.00                                                                         |                   |
| 193                                           | 0.80                                                                         |                   |
| 194                                           | 0.80                                                                         |                   |
| 195                                           | 0.81                                                                         |                   |
| 196                                           | 0.81                                                                         |                   |
| 197                                           | 0.82                                                                         |                   |
| 198                                           | 0.82                                                                         |                   |
| 199                                           | 0.83                                                                         |                   |
| 200                                           | 0.00                                                                         |                   |
| 200                                           | 0.00                                                                         |                   |
| 201                                           | 0.83                                                                         |                   |
| 202                                           | 0.84                                                                         |                   |
| 203                                           | 0.0.                                                                         |                   |
|                                               | 0.84                                                                         |                   |
| 204                                           | 0.84                                                                         |                   |
| 204                                           | 0.84<br>0.85<br>0.85                                                         |                   |
| 204<br>205<br>206                             | 0.84<br>0.85<br>0.85                                                         |                   |
| 204<br>205<br>206                             | 0.84<br>0.85<br>0.85<br>0.85<br>0.85                                         |                   |
| 204<br>205<br>206<br>207                      | 0.84<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.86                         |                   |
| 204<br>205<br>206<br>207<br>208               | 0.84<br>0.85<br>0.85<br>0.85<br>0.85<br>0.86<br>0.86                         |                   |
| 204<br>205<br>206<br>207<br>208<br>209        | 0.84<br>0.85<br>0.85<br>0.85<br>0.85<br>0.86<br>0.86<br>0.86                 |                   |
| 204<br>205<br>206<br>207<br>208<br>209<br>210 | 0.84<br>0.85<br>0.85<br>0.85<br>0.85<br>0.86<br>0.86<br>0.86<br>0.87<br>0.87 |                   |

| 211 | 0.88 |      |
|-----|------|------|
| 212 | 0.88 |      |
| 213 | 0.88 |      |
| 214 | 0.89 |      |
| 215 | 0.89 |      |
| 216 | 0.90 |      |
| 217 | 0.00 |      |
| 217 | 0.00 |      |
| 210 | 0.90 |      |
| 219 | 0.91 |      |
| 220 | 0.91 |      |
| 221 | 0.92 |      |
| 222 | 0.92 |      |
| 223 | 0.92 |      |
| 224 | 0.93 |      |
| 225 | 0.93 |      |
| 226 | 0.94 |      |
| 227 | 0.94 |      |
| 228 | 0.95 |      |
| 229 | 0.95 |      |
| 230 | 0.95 |      |
| 231 | 0.96 |      |
| 232 | 0.00 |      |
| 202 | 0.07 |      |
| 233 | 0.97 |      |
| 234 | 0.97 |      |
| 235 | 0.97 |      |
| 236 | 0.98 |      |
| 237 | 0.98 |      |
| 238 | 0.99 |      |
| 239 | 0.99 |      |
| 240 | 1.00 |      |
| 241 | 1.00 |      |
| 242 | 1.00 |      |
| 243 | 1.01 |      |
| 244 | 1.01 |      |
| 245 | 1.02 |      |
| 246 | 1.02 |      |
| 247 | 1.02 |      |
| 247 | 1.02 |      |
| 240 | 1.03 |      |
| 249 | 1.03 |      |
| 250 | 1.04 |      |
| 251 | 1.04 |      |
| 252 | 1.05 |      |
| 253 | 1.05 |      |
| 254 | 1.05 |      |
| 255 | 1.06 |      |
| 256 | 1.06 |      |
| 257 | 1.07 |      |
| 258 | 1.07 |      |
| 259 | 1.07 |      |
| 260 | 1.07 |      |
| 261 | 1.00 |      |
| 262 | 1.00 |      |
| 202 | 1.09 |      |
| 263 | 1.09 |      |
| 264 | 1.10 |      |
| 265 | 1.10 |      |
| 266 | 1.10 |      |
| 267 | 1.11 |      |
| 268 | 1.11 |      |
| 269 | 1.12 | Stop |

# Appendix B

## Chain of Custodies, Geologic Descriptions and Sample Photographs

### SGW-59614, REV. 0

| CH2                                 | MHill Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remediation Company                              |                                                                      | CHAIN C           | OF CUS                      | TODY/SAMPLE ANALYSIS REC         | QUEST                           | F15-014-348  |                  | PAGE           | 1 0         | F 1            |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|-------------------|-----------------------------|----------------------------------|---------------------------------|--------------|------------------|----------------|-------------|----------------|
| COLLECTOR<br>J.R. Ag                | gullar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | COMPANY CON<br>TODAK, D                                              | ТАСТ              |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H               |                | DA<br>TURNA | ATA            |
| SAMPLING 1<br>C9580, I-001          | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Solls |                   |                             | ils                              | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |                  | 30 Days<br>Day |             | ys / 30<br>ays |
| ICE CHEST                           | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | FIELD LOGBOON                                                        | KNO.<br>507-33/PS | 24                          | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT V | IPMENT<br>EHICLE |                | ORIC        | GINAL          |
| SHIPPED TO                          | DNNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -331<br>Taboratory-                              | OFFSITE PROPE                                                        | RTY NO.           |                             |                                  | BILL OF LADING/AIR BILL N       | 10.          |                  |                |             |                |
| MATRIX*                             | ATRIX*<br>=Air<br>L=Drum<br>quids<br>S=norum<br>ATRIX*<br>=Air<br>L=Drum<br>adds<br>S=norum<br>ATRIX*<br>=Air<br>L=Drum<br>adds<br>S=norum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>ATRIX*<br>=Air<br>L=Drum<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRIX*<br>ATRX |                                                  | PRESER                                                               | VATION            | None<br>CUDI                | CA 01-0514<br>4°C                |                                 |              |                  |                |             |                |
| Liquids<br>DS=Drum                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | HOLDIN                                                               | IG TIME           | 6 Mor                       | ths                              |                                 |              |                  |                |             |                |
| Solids<br>L=Liquid                  | Goods Regu<br>DOE Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lations but are not releasable per<br>458.1. N/A | TYPE OF C                                                            | ONTAINER          | G/P                         |                                  |                                 |              |                  |                |             |                |
| S=Soil<br>SE=Sediment               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | NO. OF COM                                                           | TAINER(S)         | 1                           | in c                             | and liner A                     | 1            | 2001             | 6 61           |             |                |
| T=Tissue<br>V=Vegetation<br>W=Water | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | VOL                                                                  | UME               | 1L                          | U Z                              |                                 | ane to       | 25 /             | s re           | whe         | 7              |
| WI=Wipe<br>X=Other                  | SPECIAL H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANDLING AND/OR STORAGE                           | SAMPLE                                                               | ANALYSIS          | Generia<br>Testing<br>CAS}; | {No                              |                                 |              | ¢Δ               | 01-0           | 516         |                |
| SAM                                 | PLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MATRIX*                                          | SAMPLE DATE                                                          | SAMPLE TIME       |                             |                                  |                                 |              |                  |                |             |                |
| B347C6                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOIL                                             | 01-05-16                                                             | 1035              | L                           |                                  |                                 |              |                  |                |             |                |

| CHAIN OF POSSES             | SION            | Dilla      | SIGN/ PRINT NAMES     | 2014                | SPECIAL INSTRUCTIONS                    | المراجعة والمغر والمتحد       |         |
|-----------------------------|-----------------|------------|-----------------------|---------------------|-----------------------------------------|-------------------------------|---------|
| RELINQUISHED BY             | SEMOVED FROM    | 2015 1.540 | SSUHI ,               | JAN 0 5-2015 JS40   | homogenized material from Liner B after | er Total Uranium subsampling. | It is   |
| RELINQUISHED BY/F           | JAN 26          | 12016 TIME | R.A. Shepard/CHPRC    | ALJAN 2 6 2016 0930 | Uranium bearing mineral phase analysis  | s. PORTION B                  |         |
| R.A. Shepard/CHPR           | REMOVED FROM    | 2016 1120  | A Lawter a It         | - IAN 7 6 2016 1130 |                                         |                               |         |
| RELINQUISHED BY             | EMOVED FROM     | DATE/TIME  | RECEIVED BY/STORED IN | DATE/TIME           |                                         |                               |         |
| RELINQUISHED BY/F           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN | DATE/TIME           |                                         |                               |         |
| RELINQUISHED BY/F           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN | DATE/TIME           |                                         |                               |         |
| RELINQUISHED BY/F           | REMOVED FROM    | DATE/TIME  | RECEIVED BY/STORED IN | DATE/TIME           |                                         |                               |         |
| LABORATORY<br>SECTION       | RECEIVED BY     |            |                       |                     | TITLE                                   | DATE/TIME                     |         |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |            |                       |                     | DISPOSED BY                             | DATE/TIME                     |         |
| PRINTED ON 1                | 12/29/2015      |            | FSR ID = FSR156       | 548 TI              | RVL NUM = TRVL-16-054                   | A-6003-618                    | (REV 2) |

| CH2                                                                                                                                                           | 2MHill Plateau Remediation Company                                    |                                                                                                                                                  | CHAIN       | OF CUSTODY/S/                   | AMPLE ANALYSIS RE         | QUEST                           | F15-014-354    | PAGE 1 0     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|---------------------------|---------------------------------|----------------|--------------|
| COLLECTOR                                                                                                                                                     | tullar/CHPRC                                                          | COMPANY CONT<br>TODAK, D                                                                                                                         | ACT         | <b>TELEPH</b><br>376-64         | IONE NO.<br>427           | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H  | DA<br>TURNAI |
| SAMPLING LOCATION<br>C9580, 1-002<br>ICE CHEST NO.<br>SHIPPED TO PUNC33<br>Environmental Sciences Laboratory                                                  |                                                                       | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils<br>FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HWF-N-507-53/R 24 24.00'-24.50' |             |                                 | <b>SAF NO.</b><br>F15-014 | AIR QUALITY                     | 30 Days<br>Day |              |
|                                                                                                                                                               |                                                                       |                                                                                                                                                  |             |                                 | COA<br>303492             | GOVERNMENT VEHICLE              | ORIG           |              |
|                                                                                                                                                               |                                                                       | OFFSITE PROPE                                                                                                                                    | RTY NO.     | 8                               |                           | BILL OF LADING/AIR BILL NO.     |                |              |
| MATRIX*<br>A=Air<br>DL=Drum                                                                                                                                   | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at | PRESER                                                                                                                                           | ATION       | LODI 4°C                        | 0-05-16                   |                                 |                |              |
| DL=Drum   *Contains Radioactive Material at<br>Liquids     DS=Drum   concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                       | HOLDIN                                                                                                                                           | G TIME      | 6 Months                        |                           |                                 |                |              |
| L=Liquid<br>O=Oil                                                                                                                                             | DOE Order 458.1. N/A                                                  | TYPE OF CO                                                                                                                                       | ONTAINER    | G/P                             |                           |                                 |                |              |
| S=Soil<br>SE=Sediment<br>T=Tissue                                                                                                                             |                                                                       | NO. OF CON                                                                                                                                       | TAINER(S)   | 1                               |                           |                                 |                |              |
| V=Vegetation<br>W=Water                                                                                                                                       |                                                                       | VOL                                                                                                                                              | JME         | 1L                              |                           |                                 |                |              |
| X=Other                                                                                                                                                       | SPECIAL HANDLING AND/OR STORAGE                                       | SAMPLE A                                                                                                                                         | NALYSIS     | Generic<br>Testing (No<br>CAS); |                           |                                 |                |              |
| SAM                                                                                                                                                           | PLE NO. MATRIX*                                                       | SAMPLE DATE                                                                                                                                      | SAMPLE TIME |                                 |                           |                                 |                |              |
| B347D2                                                                                                                                                        | SOIL                                                                  | 01-05-16                                                                                                                                         | 1105        | 1-                              |                           |                                 |                |              |

| CHAIN OF POSSES             | SION                 | 2016                   | SIGN/ PRINT NAMES                                                                  | 2016              | SPECIAL INSTRUCTIONS                                                                                                                                                            |                                                                                                         |
|-----------------------------|----------------------|------------------------|------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R           | REMOVED FROM JAN 0 5 | 2015 I S40             | RECEIVED BY/STORED IN<br>SSUHI<br>RECEIVED BY/STORED IN<br>R.A. Shepardic APRED IN | AN 0 5-2015 154 0 | ** One liter bottle being sent to ESL is of<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis. | omprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION B |
| RELINQUISHED BY/F           | ECOVED TROM          | DATE/TIME<br>2016 1130 | RECEIVED BY/STORED IN                                                              | AN Z 6 2016 1130  |                                                                                                                                                                                 |                                                                                                         |
| RELINQUISHED BY             | EMONED FROM          | DATE/TIME              | RECEIVED BY/STORED IN                                                              | DATE/TIME         |                                                                                                                                                                                 |                                                                                                         |
| RELINQUISHED BY/R           | REMOVED FROM         | DATE/TIME              | RECEIVED BY/STORED IN                                                              | DATE/TIME         |                                                                                                                                                                                 |                                                                                                         |
| RELINQUISHED BY/R           | REMOVED FROM         | DATE/TIME              | RECEIVED BY/STORED IN                                                              | DATE/TIME         |                                                                                                                                                                                 |                                                                                                         |
| RELINQUISHED BY/R           | REMOVED FROM         | DATE/TIME              | RECEIVED BY/STORED IN                                                              | DATE/TIME         |                                                                                                                                                                                 |                                                                                                         |
| LABORATORY                  | RECEIVED BY          |                        |                                                                                    |                   | TITLE                                                                                                                                                                           | DATE/TIME                                                                                               |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD      |                        |                                                                                    |                   | DISPOSED BY                                                                                                                                                                     | DATE/TIME                                                                                               |
| PRINTED ON 1                | 2/29/2015            |                        | FSR ID = FSR15650                                                                  | 1                 | RVL NUM = TRVL+16-054                                                                                                                                                           | A-6003-618 (REV 2                                                                                       |

| CH2                                                   | 2MHill Plateau Remediation Company                                                                                                           |                                                              | CHAIN O     | F CUSTO                         | DY/SAMPLE ANALYSIS RE                                     | QUEST                     | F15-014-360        |  | PAGE 1 OF 1          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|---------------------------------|-----------------------------------------------------------|---------------------------|--------------------|--|----------------------|
| COLLECTOR                                             | J.R. Aguilar/CHPRC                                                                                                                           | COMPANY CON<br>TODAK, D                                      | ITACT       | TE                              | LEPHONE NO.   PROJECT COORDINATOR     176-6427   TODAK, D |                           | PRICE CODE 8H      |  | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C9580, 1-003                            | LOCATION<br>3                                                                                                                                | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |             | ion - Soils                     |                                                           | <b>SAF NO.</b><br>F15-014 | AIR QUALITY        |  | 30 Days / 30<br>Days |
| ICE CHEST I                                           | NO.                                                                                                                                          | FIELD LOGBOOK NO.<br>HNF-N-507-33 Pc, 24                     |             | AC                              | CTUAL SAMPLE DEPTH                                        | COA<br>303492             | GOVERNMENT VEHICLE |  | ORIGINA              |
| SHIPPED TO PUNL-33                                    |                                                                                                                                              | OFFSITE PROPERTY NO.                                         |             |                                 | BILL OF LADING/AIR BILL NO.                               |                           |                    |  |                      |
| MATRIX*<br>A=Air<br>*Contains Radioactive Material at |                                                                                                                                              | PRESERVATION                                                 |             |                                 | CA 01-05-16                                               |                           |                    |  |                      |
| Liquids<br>DS=Drum                                    | ACONTAINS RADIOACTIVE Material at<br>iquids concentrations that are not be regulated for<br>SS=Drum transportation per 49 CFR/IATA Dangerous |                                                              | NG TIME     | 6 Months                        |                                                           |                           |                    |  |                      |
| Solids<br>L=Liquid<br>O=Oil                           | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                                                                         | TYPE OF C                                                    | ONTAINER    | G/P                             |                                                           |                           |                    |  |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue                     |                                                                                                                                              | NO. OF CO                                                    | NTAINER(S)  | 1                               |                                                           |                           |                    |  |                      |
| V=Vegetation<br>W=Water<br>WI=Wine                    | 1                                                                                                                                            | VOL                                                          | UME         | 11.                             |                                                           |                           |                    |  |                      |
| X=Other                                               | SPECIAL HANDLING AND/OR STORAGE                                                                                                              | SAMPLE                                                       | ANALYSIS    | Generic<br>Testing {No<br>CAS}; |                                                           |                           |                    |  |                      |
| SAME                                                  | PLE NO. MATRIX*                                                                                                                              | SAMPLE DATE                                                  | SAMPLE TIME |                                 |                                                           |                           |                    |  |                      |
| B347D8                                                | SOIL                                                                                                                                         | 01-05-16                                                     | 1320        | 2                               |                                                           |                           |                    |  |                      |

| CHAIN OF POSSES                        | SION                                                             | SIGN/ PRINT NAMES                                                                | 2014                                              | SPECIAL INSTRUCTIONS                                                                                                                                                                                        | delana contra                                                                  |
|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| RELINQUISHED BY/                       | REMOVED FROM JAN 0 5 2015 1540<br>REMOVED FROM JAN 2 6 2016 1540 | RECEIVED BY/STORED IN<br>SSUH JAA<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC | 0 5-2015 1540<br>00 1-7-0416/TIME<br>2 6 2016 393 | ** One liter bottle being sent to ESL is comprise<br>homogenized material from Liner B after Total I<br>to be used for the Leachabilty characteristic test<br>Uranium bearing mineral phase analysis. PORTI | ed of the residual<br>Jranium subsampling. It is<br>is and predominate<br>ON B |
| RELINQUISHED BY/I<br>R.A. Shepard/CHPF | REMOVED FROM DATE/TIME                                           | RECEIVED BY/STORED IN<br>A Lawter a 1-JAN                                        | 1 2 6 2016 133                                    |                                                                                                                                                                                                             |                                                                                |
| RELINQUISHED BY/I                      | MOVED FROM DATE/TIME                                             | RECEIVED BY/STORED IN                                                            | DATE/TIME                                         |                                                                                                                                                                                                             |                                                                                |
| RELINQUISHED BY/                       | REMOVED FROM DATE/TIME                                           | RECEIVED BY/STORED IN                                                            | DATE/TIME                                         |                                                                                                                                                                                                             |                                                                                |
| RELINQUISHED BY/                       | REMOVED FROM DATE/TIME                                           | RECEIVED BY/STORED IN                                                            | DATE/TIME                                         |                                                                                                                                                                                                             |                                                                                |
| RELINQUISHED BY/                       | REMOVED FROM DATE/TIME                                           | RECEIVED BY/STORED IN                                                            | DATE/TIME                                         |                                                                                                                                                                                                             |                                                                                |
| LABORATORY<br>SECTION                  | RECEIVED BY                                                      |                                                                                  |                                                   | TITLE                                                                                                                                                                                                       | DATE/TIME                                                                      |
| FINAL SAMPLE<br>DISPOSITION            | DISPOSAL METHOD                                                  |                                                                                  |                                                   | DISPOSED BY                                                                                                                                                                                                 | DATE/TIME                                                                      |
| PRINTED ON                             | 2/29/2015                                                        | FSR ID = FSR15652                                                                | т                                                 | RVL NUM = TRVL-164054                                                                                                                                                                                       | A-6003-618 (REV 2)-05-                                                         |

| CH                                                            | CH2MHill Plateau Remediation Company                                                                                           |                                                                                                           |                                                              | CHAIN                                                   | OF CUST      | ODY/SAMPLE ANALYSIS RE           | QUEST                                    | F15-014-363 |      | PAGE              | 1 0 | )F 1 |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|--------------|----------------------------------|------------------------------------------|-------------|------|-------------------|-----|------|
| COLLECTOR                                                     | J.R. Aguilar/C                                                                                                                 | CHPRC                                                                                                     | COMPANY CON<br>TODAK, D                                      | COMPANY CONTACT   TELEPHONE NO.     TODAK, D   376-6427 |              | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D          | PRICE CODE  | 8H   |                   | DA  | ATA  |
| SAMPLING<br>C9580, I-00                                       | AMPLING LOCATION<br>29580, 1-004                                                                                               |                                                                                                           | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |                                                         | tion - Soil  | ls                               | <b>SAF NO.</b><br>F15-014                | AIR QUALITY |      | 30 Days /<br>Days |     |      |
| ICE CHEST                                                     | CE CHEST NO.                                                                                                                   |                                                                                                           | FIELD LOGBOOK NO. ACTUAL SA<br>HNF-N-507-33/ R. 24 24.00     |                                                         | 29.00- 29.50 | COA<br>303492                    | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE |             | GINA |                   |     |      |
| SHIPPED TO<br>Environme                                       | HIPPED TO<br>Environmental Sciences Laboratory<br>ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                                           | OFFSITE PROP                                                 | ERTY NO.                                                | 0            |                                  | BILL OF LADING/AIR BILL NO.              |             |      |                   |     |      |
| MATRIX*<br>A=Air<br>DL=Drum                                   |                                                                                                                                |                                                                                                           | PRESER                                                       | VATION                                                  | Cool         | CA 01-05-14<br>4°C               |                                          |             |      |                   |     |      |
| Liquids<br>DS=Drum<br>Solids                                  | concentrati<br>transportat<br>Goods Reg                                                                                        | ons that are not be regulated for<br>ion per 49 CFR/IATA Dangerous<br>ulations but are not releasable per | HOLDI                                                        |                                                         | 6 Month      | hs                               |                                          |             |      |                   |     |      |
| L=Liquid<br>O=Oil<br>S=Soil                                   | DOE Order                                                                                                                      | 458.1. N/A                                                                                                | TYPE OF C                                                    | ONTAINER                                                | Liner        | loon                             |                                          |             |      |                   |     |      |
| SE=Sediment<br>T=Tissue<br>V=Vegetation                       |                                                                                                                                |                                                                                                           | NO. OF CO                                                    | UME                                                     | 1000g        |                                  |                                          |             |      |                   |     |      |
| W=Water<br>MI=Wipe<br>K=Other SPECIAL HANDLING AND/OR STORAGE |                                                                                                                                | SAMPLE                                                                                                    | ANALYSIS                                                     | Generic<br>Testing<br>CAS};                             | (No          |                                  |                                          |             |      |                   |     |      |
| SAM                                                           | PLE NO.                                                                                                                        | MATRIX*                                                                                                   | SAMPLE DATE                                                  | SAMPLE TIME                                             |              |                                  |                                          |             |      |                   |     |      |
| B347F1                                                        |                                                                                                                                | SOIL                                                                                                      | 01-05-16                                                     | 1350                                                    | 4            |                                  |                                          |             |      |                   |     |      |

| CHAIN OF POSSES<br>RELINQUISHED BY/<br>J.R. Aguilar/CHPRE<br>RELINQUISHED BY/<br>RELINQUISHED BY/<br>RELINQUISHED BY/<br>RELINQUISHED BY/<br>RELINQUISHED BY/<br>RELINQUISHED BY/ | REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM | 2014<br>2015 / 540<br>DATE/TIME<br>6 2016 11-30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>S.G.H.J.<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRG<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | 2016<br>Date/time<br>CA 1-2- PATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | SPECIAL INSTRUCTIONS<br>** One liter bottle being sent to ESL is<br>homogenized material from Liner B aft<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analysi | s comprised of the residual<br>er Total Uranium subsampling. It is<br>ristic tests and predominate<br>s. PORTION D |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                   |                                                                                                                              | 100 ( 1 <b>1</b> 100 13                                                                             |                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                                                                               |                                                                                                                    |
| LABORATORY<br>SECTION                                                                                                                                                             | RECEIVED BY                                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                      | TITLE                                                                                                                                                                                         | DATE/TIME                                                                                                          |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                                       | DISPOSAL METHOD                                                                                                              |                                                                                                     | at 2.3                                                                                                                                                                                                                             |                                                                                                                      | DISPOSED BY                                                                                                                                                                                   | DATE/TIME                                                                                                          |
| PRINTED ON                                                                                                                                                                        | 12/29/2015                                                                                                                   |                                                                                                     | FSR ID = FSR15653                                                                                                                                                                                                                  | т                                                                                                                    | RVL NUM = TRVL-16-054                                                                                                                                                                         | A-6003-618 (REV 2)                                                                                                 |

| CH2                                | MHill Plateau Remediation Company                                                        |                         | CHAIN C                               | OF CUSTO            | DDY/SAMPLE ANALYSIS REC         | QUEST                           | F15-014-365  |                  | PAGE 1 OF 1          |    |
|------------------------------------|------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|---------------------|---------------------------------|---------------------------------|--------------|------------------|----------------------|----|
| COLLECTOR                          | J.R. Aguilar/CHPRC                                                                       | COMPANY CON<br>TODAK, D | ТАСТ                                  | Ţ                   | <b>ELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H               | DATA<br>TURNAROUN    | ND |
| SAMPLING 1<br>C9580, I-004         | LOCATION                                                                                 | PROJECT DESIG           | <b>GNATION</b><br>OD Field Investigat | tion - Soils        |                                 | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |                  | 30 Days / 30<br>Days | 0  |
| ICE CHEST                          | NO.                                                                                      | FIELD LOGBOO            | к NO.<br>2-33 / Раз                   | A                   | 29.50'- 30.00'                  | COA<br>303492                   | GOVERNMENT V | IPMENT<br>EHICLE | ORIGIN               | AL |
| SHIPPED TO<br>Environme            | PNNL-331                                                                                 | OFFSITE PROPI           | ERTY NO.                              |                     |                                 | BILL OF LADING/AIR BILL         | 10.          |                  |                      |    |
| MATRIX*<br>A=Air                   | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESER                  | VATION                                | None-<br>Cool       | CA 01-05-14<br>4°C              |                                 |              |                  |                      |    |
| Liquids<br>DS=Drum                 | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDIN                  |                                       | 6 Months            | 6                               |                                 |              |                  |                      |    |
| L=Liquid<br>O=Oil                  | DOE Order 458.1. N/A                                                                     | TYPE OF C               | ONTAINER                              | G/P                 |                                 |                                 |              |                  |                      |    |
| S=Soli<br>SE=Sediment<br>T=Tissue  |                                                                                          | NO. OF COM              | NTAINER(S)                            | T                   |                                 |                                 |              |                  |                      |    |
| V=Vegetation<br>W=Water<br>WI=Wipe |                                                                                          | VOL                     | UME                                   | 1L<br>Conorie       | Sa                              | ale Taken                       | Euro         | 560              | 0                    |    |
| X=Other                            | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE                  | ANALYSIS                              | Testing {N<br>CA5}; | No.                             | -y                              | 1 TOM        | Zrio             |                      |    |
|                                    |                                                                                          |                         |                                       |                     |                                 |                                 | CA O         | 1-05-            | 6                    |    |
| SAM                                | PLE NO. MATRIX*                                                                          | SAMPLE DATE             | SAMPLE TIME                           | State-              | 88.                             |                                 |              |                  |                      |    |
| B347F3                             | SOIL                                                                                     | 01-05-16                | 1350                                  | 4                   |                                 |                                 |              |                  |                      |    |

| CHAIN OF POSSES                         | SION                | 2016        | SIGN/ PRINT NAMES     | 2016             | SPECIAL INSTRUCTIONS                 | a second and address marked and                 |
|-----------------------------------------|---------------------|-------------|-----------------------|------------------|--------------------------------------|-------------------------------------------------|
| RELINQUISHED BY/R                       | REMOVED FROMJAN D 5 | 2010 IS40   | SSUH 1 1              | AN 0 5 2015 1540 | homogenized material from Liner B af | ter Total Uranium subsampling. It is            |
| RELINQUISHED BY/F                       | JAN 2               | 6 2016 33   | RECEIVED BY/STORED IN | N 2 6 2016 0139  | Uranium bearing mineral phase analys | eristic tests and predominate<br>sis. PORTION B |
| RELINQUISHED BY/R<br>R.A. Shepard/CHPRC | REMOVED FROM        | 6 2016 1130 | A Lanter an ItdAN     | 2 6 2016 LI30    |                                      |                                                 |
| RELINQUISHED BY                         | REMOVED FROM        | DATE/TIME   | RECEIVED BY/STORED IN | DATE/TIME        |                                      |                                                 |
| RELINQUISHED BY/F                       | REMOVED FROM        | DATE/TIME   | RECEIVED BY/STORED IN | DATE/TIME        |                                      |                                                 |
| RELINQUISHED BY/F                       | REMOVED FROM        | DATE/TIME   | RECEIVED BY/STORED IN | DATE/TIME        |                                      |                                                 |
| RELINQUISHED BY/F                       | REMOVED FROM        | DATE/TIME   | RECEIVED BY/STORED IN | DATE/TIME        |                                      |                                                 |
| LABORATORY<br>SECTION                   | RECEIVED BY         |             |                       |                  | TITLE                                | DATE/TIME                                       |
| FINAL SAMPLE<br>DISPOSITION             | DISPOSAL METHOD     |             |                       |                  | DISPOSED BY                          | DATE/TIME                                       |
| PRINTED ON 1                            | 2/29/2015           |             | FSR ID = FSR15653     | T                | RVL NUM = TRVL-16-054                | T.c. A-6003-618 (REV 2)                         |

| CH                                 | 2MHill Plateau Remediation Company                                                       |                                          | CHAIN OF                   | CUSTODY/SAMPLE ANALYSIS R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REQUEST                         | F15-014-368                              | PAGE 1 OF 1          |
|------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.R.                  | R<br>Aguilar/CHPRC                                                                       | COMPANY CONTACT<br>TODAK, D              | г                          | <b>TELEPHONE NO.</b><br>376-6427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9580, I-00            | LOCATION<br>5                                                                            | 9ROJECT DESIGNAT<br>300-FF-5 Post ROD Fi | TION<br>ield Investigation | - Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| ICE CHEST                          | NO.                                                                                      | FIELD LOGBOOK NO.<br>14 ハデー やー SU7 - 331 |                            | ACTUAL SAMPLE DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme            | D<br>Intal Sciences Laboratory                                                           | OFFSITE PROPERTY                         | NO. (                      | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BILL OF LADING/AIR BILL         | NO.                                      |                      |
| MATRIX*<br>A=Air<br>DI=Dnim        | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVATI                               | ION C                      | tone da el-osic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                          |                      |
| Liquids<br>DS=Drum                 | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING T                                |                            | Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                          |                      |
| L=Liquid<br>O=Oil                  | DOE Order 458.1. N/A                                                                     | TYPE OF CONTAINER                        |                            | plit Spoon<br>iner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue  |                                                                                          | NO. OF CONTAIN                           | NER(S)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                          |                      |
| V=Vegetation<br>W=Water<br>WI=Wine | Contractor to the second second                                                          | VOLUME                                   | 1                          | 000g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                          |                      |
| X=Other                            | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANAL                              |                            | estric<br>esting (Na<br>AS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                          |                      |
| SAM                                | PLE NO. MATRIX*                                                                          | SAMPLE DATE SA                           |                            | Contract of Contra |                                 |                                          |                      |
| B347F6                             | SOIL                                                                                     | 01-05-16 1                               | 415                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                          |                      |

| CHAIN OF POSSES<br>RELINQUISHED BY/R<br>J.R. Aguilar/CHPR<br>RELINQUISHED BY/R<br>R.A. Shepard/CHPRC<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R | RELINQUISHED BY/REMOVED FROM<br>J.R. Aguilar/CHIPPC JAN<br>RELINQUISHED BY/REMOVED FROM<br>R.A. Shepard/CHIPRC JAN<br>RELINQUISHED BY/REMOVED FROM<br>RELINQUISHED BY/REMOVED FROM |           | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>SGUH  <br>R.A. Shepard/CHPRO<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | 2010<br>N 0 5 2015 154 0<br>AN 2 6 2016 0930<br>Date/time<br>Date/time<br>Date/time<br>Date/time | SPECIAL INSTRUCTIONS<br>** One liter bottle being sent to ESL is a<br>homogenized material from Liner B after<br>to be used for the Leachability character<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION D |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R                                                                                                                              | EMOVED FROM                                                                                                                                                                        | DATE/TIME | RECEIVED BY/STORED IN                                                                                                                                                          | DATE/TIME                                                                                        |                                                                                                                                                                                                       |                                                                                                          |
| RELINQUISHED BY/R                                                                                                                              | EMOVED FROM                                                                                                                                                                        | DATE/TIME | RECEIVED BY/STORED IN                                                                                                                                                          | DATE/TIME                                                                                        |                                                                                                                                                                                                       |                                                                                                          |
| LABORATORY                                                                                                                                     | RECEIVED BY                                                                                                                                                                        |           |                                                                                                                                                                                |                                                                                                  | TITLE                                                                                                                                                                                                 | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                    | DISPOSAL METHOD                                                                                                                                                                    |           |                                                                                                                                                                                |                                                                                                  | DISPOSED BY                                                                                                                                                                                           | DATE/TIME                                                                                                |
| PRINTED ON 1                                                                                                                                   | 2/29/2015                                                                                                                                                                          |           | FSR ID = FSR15654                                                                                                                                                              | 1                                                                                                | RVL NUM = TRVL-16-054                                                                                                                                                                                 | A-6003-618 (REV 2)                                                                                       |

| CH2                     | 2MHill Plateau Remediation Company                                                                                                                                                                                                        |                                  | CHAIN C                            | OF CUSTO            | DY/SAMPLE ANALYSIS RE    | QUEST                           | F15-014-369                              | PAGE 1 OF 1          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|---------------------|--------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR<br>J.I        | R. Aguilar/CHPRC                                                                                                                                                                                                                          | COMPANY CON<br>TODAK, D          | ТАСТ                               | T                   | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9580, I-00 | LOCATION<br>5                                                                                                                                                                                                                             | 9ROJECT DESIG<br>300-FF-5 Post R | SNATION<br>DD Field Investigati    | ion - Soils         |                          | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST               | NO.                                                                                                                                                                                                                                       | FIELD LOGBOON                    | KNO.                               | 24                  | 31.00' - 31.50           | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environme | 0<br>Intal Sciences Laboratory                                                                                                                                                                                                            | OFFSITE PROPE                    | RTY NO. 1 S                        |                     |                          | BILL OF LADING/AIR BILL         | NO.                                      |                      |
| MATRIX*                 | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A | PRESER                           | VATION                             | Hone                | 4°C                      |                                 |                                          |                      |
| Liquids<br>DS=Drum      |                                                                                                                                                                                                                                           | HOLDIN                           | IG TIME                            | 6 Months            |                          |                                 |                                          |                      |
| L=Liquid<br>O=Oil       |                                                                                                                                                                                                                                           | TYPE OF C                        | TYPE OF CONTAINER Split S<br>Liner |                     | n                        |                                 |                                          |                      |
| SE=Sediment<br>T=Tissue |                                                                                                                                                                                                                                           | NO. OF CONTAINER(S)              |                                    | 1                   |                          |                                 |                                          |                      |
| W=Water<br>WI=Wipe      |                                                                                                                                                                                                                                           |                                  |                                    | Generic             |                          |                                 |                                          |                      |
| X=Other                 | SPECIAL HANDLING AND/OR STORAGE                                                                                                                                                                                                           | SAMPLE A                         | ANALYSIS                           | Testing {N<br>CAS}; | σ                        |                                 |                                          |                      |
|                         |                                                                                                                                                                                                                                           |                                  |                                    |                     |                          |                                 |                                          |                      |
| SAMI                    | PLE NO. MATRIX*                                                                                                                                                                                                                           | SAMPLE DATE                      | SAMPLE TIME                        |                     |                          |                                 |                                          |                      |

| CHAIN OF POSSES                                                                                                                                               | SION                                                                    | 20110                                                                                                            | SIGN/ PRINT NAMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2314                   | SPECIAL INSTRUCTIONS                                                                                                                                                   | and the second     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/ChPro<br>RELINQUISHED BY/R<br>SSUE BY/R<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R | EMOVED FROM JAN D<br>EMOVED FROM G<br>JAI<br>EMOVED FROM<br>EMOVED FROM | 5 2013 1540<br>7 DATE/TIME<br>7 DATE/TIME<br>8 2 6 2016<br>2 6 2016 1(:30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSUH<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>M. Shepard/CH | D 5 2015 ISCLO<br>CA , | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B aft<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analysis | s comprised of the residual<br>er Total Uranium subsampling. It is<br>eristic tests and predominate<br>is. PORTION C |
| RELINQUISHED BY/R                                                                                                                                             | EMOVED FROM                                                             | DATE/TIME                                                                                                        | RECEIVED BY/STORED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE/TIME              |                                                                                                                                                                        |                                                                                                                      |
|                                                                                                                                                               |                                                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                                                                                                                                                        |                                                                                                                      |
| LABORATORY<br>SECTION                                                                                                                                         | RECEIVED BY                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | TITLE                                                                                                                                                                  | DATE/TIME                                                                                                            |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                   | DISPOSAL METHOD                                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | DISPOSED BY                                                                                                                                                            | DATE/TIME                                                                                                            |
| PRINTED ON 1                                                                                                                                                  | 2/29/2015                                                               | -110                                                                                                             | FSR ID = FSR15654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE T                  | RVI NUM = TRVI -16-054                                                                                                                                                 | A-6003-618 (REV 2)                                                                                                   |

| СН                                 | CH2MHill Plateau Remediation Company                                  |                                                                   |                                 | CHAIN                         | OF CUS                      | TODY/SAMPLE ANALYSIS RE              | EQUEST                          | F15-014-370   |                | PAGE | 1 (        | OF 1           |
|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------------------|-----------------------------|--------------------------------------|---------------------------------|---------------|----------------|------|------------|----------------|
| COLLECTOR                          | R<br>Aguilar/CHPRC                                                    |                                                                   | COMPANY CON<br>TODAK, D         | TACT                          |                             | <b>TELEPHONE NO.</b><br>376-6427     | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8H             |      | D          | ATA<br>AROUND  |
| SAMPLING<br>C9580, 1-00            | LOCATION                                                              |                                                                   | PROJECT DESI<br>300-FF-5 Post R | GNATION<br>OD Field Investiga | tion - S                    | pils                                 | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |                |      | 30 Da<br>D | ys / 30<br>ays |
| ICE CHEST                          | NO.                                                                   |                                                                   | FIELD LOGBOO                    | к NO.<br>SU2-331 (2           | 24                          | ACTUAL SAMPLE DEPTH<br>30,50'- 31.00 | COA<br>303492                   | GOVERNMENT VE | PMENT<br>HICLE |      | RI         | GINAL          |
| SHIPPED TO<br>Environme            | o Ph                                                                  | NL-33                                                             | OFFSITE PROP                    | ERTY NO.                      | 3                           |                                      | BILL OF LADING/AIR BILL         | 10.           |                |      |            |                |
| MATRIX*<br>A=Air<br>DI=Drum        | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                   | PRESE                           | VATION                        | -None                       | 4°C                                  |                                 |               |                |      |            |                |
| Liquids<br>DS=Drum<br>Solids       | concentration transportation                                          | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDI                           | NG TIME                       | 6 Mor                       | nths                                 |                                 |               |                |      |            |                |
| L=Liquid<br>O=Oil<br>S=Soil        | DOE Order                                                             | 458.1. N/A                                                        | TYPE OF CONTAINER               |                               |                             |                                      |                                 |               |                |      |            |                |
| SE=Sediment<br>T=Tissue            |                                                                       |                                                                   | NO. OF CO                       | NTAINER(S)                    | 1                           |                                      |                                 |               |                |      |            |                |
| V=Vegetation<br>W=Water<br>WI=Wipe |                                                                       |                                                                   | VOI                             | UME                           | 11                          |                                      |                                 |               |                |      |            |                |
| X=Other                            | Other SPECIAL HANDLING AND/OR STORAGE                                 |                                                                   | SAMPLE                          | ANALYSIS                      | Generio<br>Testing<br>CAS}; | (No                                  |                                 |               |                |      |            |                |
| SAM                                | PLE NO.                                                               | MATRIX*                                                           | SAMPLE DATE                     | SAMPLE TIME                   |                             | 100                                  |                                 |               |                |      |            |                |
| B347F8                             |                                                                       | SOIL                                                              | U1-05-14                        | 1415                          |                             | -                                    |                                 |               |                |      |            |                |

| CHAIN OF POSSES             | SION                                     | 2511 -                                                  | SIGN/ PRINT NAMES                                                                                            | 2.11/                                                                       | SPECIAL INSTRUCTIONS                                                                                                                                                           |                                                                                                        |
|-----------------------------|------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F           | REMOVED FROM JAN D<br>REMOVED FROM JAN T | 5 2013 I S40<br>5 2013 I S40<br>6 2016 S30<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSLHI<br>RECEIVED BY/STORED IN<br>R.A. Shepard WHILE<br>PRECEIVED BY/STORED IN<br>A | 2 6 2016 DATE/TIME<br>2 6 2018 DATE/TIME<br>2 6 2018 DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is c<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis. | omprised of the residual<br>Total Uranium subsampling. It is<br>tic tests and predominate<br>PORTION B |
| RELINQUISHED BY             | EMOVED FROM                              | DATE/TIME                                               | RA. Shepardichpech JAN                                                                                       | 2 6 2016 1130<br>DATE/TIME                                                  |                                                                                                                                                                                |                                                                                                        |
| RELINQUISHED BY/R           | REMOVED FROM                             | DATE/TIME                                               | RECEIVED BY/STORED IN                                                                                        | DATE/TIME                                                                   |                                                                                                                                                                                |                                                                                                        |
| RELINQUISHED BY/R           | EMOVED FROM                              | DATE/TIME                                               | RECEIVED BY/STORED IN                                                                                        | DATE/TIME                                                                   |                                                                                                                                                                                |                                                                                                        |
| RELINQUISHED BY/R           | EMOVED FROM                              | DATE/TIME                                               | RECEIVED BY/STORED IN                                                                                        | DATE/TIME                                                                   |                                                                                                                                                                                |                                                                                                        |
| LABORATORY                  | RECEIVED BY                              |                                                         |                                                                                                              |                                                                             | TITLE                                                                                                                                                                          | DATE/TIME                                                                                              |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD                          |                                                         |                                                                                                              |                                                                             | DISPOSED BY                                                                                                                                                                    | DATE/TIME                                                                                              |
| PRINTED ON 1                | 2/29/2015                                |                                                         | FSR ID = FSR15654                                                                                            | 'TI                                                                         | RVL NUM = TRVL-16-054                                                                                                                                                          | A-6003-618 (REV 2)                                                                                     |

| CH                                 | CH2MHill Plateau Remediation Company<br>ECTOR                         |                                                                                                                                          |                                                                         | CHAIN O                         | F CUSTODY/SAMPLE ANALYSIS        | S REQUEST                       | F15-014-373 |      | PAGE | 1 0          | F 1            |
|------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------|------|------|--------------|----------------|
| COLLECTOR                          | J.R. Aguilar/Ch                                                       | IPRC                                                                                                                                     | COMPANY CONT<br>TODAK, D                                                | ACT                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8Н   |      | DA<br>TURNA  | ROUND          |
| SAMPLING<br>C9580, I-00            | LOCATION                                                              |                                                                                                                                          | PROJECT DESIG<br>300-FF-5 Post RO                                       | NATION<br>D Field Investigation | on - Soils                       | <b>SAF NO.</b><br>F15-014       | AIR QUALITY |      |      | 30 Day<br>Da | /s / 30<br>ays |
| ICE CHEST                          | NO.                                                                   |                                                                                                                                          | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>14NF-N-507-33/1224 34.00-34.50 |                                 | COA<br><sup>1</sup> 303492       | GOVERNMENT VEHICLE              |             | SINA |      |              |                |
| SHIPPED TO<br>Environme            | 0<br>ental Sciences                                                   | Laboratory                                                                                                                               | OFFSITE PROPER                                                          | RTY NO. / 0                     |                                  | BILL OF LADING/AIR BILL         | NO.         |      |      |              |                |
| MATRIX*<br>A=Air<br>DI =Drum       | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                                                                          | PRESERV                                                                 | ATION                           | Cost 4"C                         |                                 |             |      |      |              |                |
| Liquids<br>DS=Drum<br>Solids       | concentratio<br>transportati<br>Goods Regi                            | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per |                                                                         | G TIME                          | 6 Months                         |                                 |             |      |      |              |                |
| L=Liquid<br>O=Oil                  | DOE Order                                                             | 458.1. N/A                                                                                                                               | TYPE OF CONTAINER<br>NO. OF CONTAINER(S)<br>VOLUME                      |                                 | Liner                            |                                 |             |      |      |              |                |
| SE=Sediment<br>T=Tissue            | 1.                                                                    |                                                                                                                                          |                                                                         |                                 | 1                                |                                 |             |      |      |              |                |
| V=Vegetation<br>W=Water<br>WI=Wine | l                                                                     |                                                                                                                                          |                                                                         |                                 | 1000g                            |                                 |             |      |      |              |                |
| X=Other                            | SPECIAL H                                                             | SPECIAL HANDLING AND/OR STORAGE                                                                                                          |                                                                         | NALYSIS                         | Generic<br>Testing (No<br>CAS);  |                                 |             |      |      |              |                |
| SAM                                | PLE NO.                                                               | MATRIX*                                                                                                                                  | SAMPLE DATE                                                             | SAMPLE TIME                     |                                  |                                 |             |      |      |              |                |
| B347H1                             |                                                                       | SOIL                                                                                                                                     | 01-05-16                                                                | ILLO                            | -                                |                                 |             |      |      |              |                |

| CHAIN OF POSSES                                                                                                                       |                                                         |                                                                                                                       | SIGN/ PRINT NAMES                                                                                                                                           | 2016                                                                                             | SPECIAL INSTRUCTIONS                                                                                                                                                           |                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/R<br>SSU-1<br>RELINQUISHED BY/R<br>R.A. Shepard/CHPRC<br>RELINQUISHED BY/R | EMOVED FROM JAN D<br>EMOVED FROM JAN<br>EMOVED FROM JAN | рате/тіме<br>2015 / 5 40<br>2015 / 5 40<br>2016 / 5 40<br>2016 / 5 40<br>2016 / 10-30<br>2016 / 10-30<br>2016 / 10-30 | RECEIVED BY/STORED IN<br>SSUH JAN<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>M.S.N.HU/M. Shuth JAN<br>RECEIVED BY/STORED IN | D 5 2015 /540<br>CA / BATE/TIME<br>N 2 6 2016 0130<br>DATE/TIME<br>1 2 6 2016 11 30<br>DATE/TIME | ** One liter bottle being sent to ESL is c<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis. | omprised of the residual<br>Total Uranium subsampling. It is<br>tic tests and predominate<br>PORTION D |  |
| RELINQUISHED BY/R                                                                                                                     | EMOVED FROM                                             | DATE/TIME                                                                                                             | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                                        |                                                                                                                                                                                |                                                                                                        |  |
| RELINQUISHED BY/R                                                                                                                     | EMOVED FROM                                             | DATE/TIME                                                                                                             | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                                        |                                                                                                                                                                                |                                                                                                        |  |
| RELINQUISHED BY/R                                                                                                                     | EMOVED FROM                                             | DATE/TIME                                                                                                             | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                                        |                                                                                                                                                                                |                                                                                                        |  |
| LABORATORY<br>SECTION                                                                                                                 | RECEIVED BY                                             |                                                                                                                       | 1                                                                                                                                                           |                                                                                                  | TITLE                                                                                                                                                                          | DATE/TIME                                                                                              |  |
| FINAL SAMPLE<br>DISPOSITION                                                                                                           | DISPOSAL METHOD                                         |                                                                                                                       |                                                                                                                                                             |                                                                                                  | DISPOSED BY                                                                                                                                                                    | DATE/TIME                                                                                              |  |
| PRINTED ON 1                                                                                                                          | 2/29/2015                                               |                                                                                                                       | FSR ID = FSR15655                                                                                                                                           | Т                                                                                                | RVL NUM = TRVI -16-054                                                                                                                                                         | A-6003-618 (REV 2)                                                                                     |  |

| CH2                               | 2MHill Plateau                                                        | Remediation Company                                                                      |                                 | CHAIN                           | DF CUSTODY           | SAMPLE ANALYSIS REQ  | UEST                            | F15-014-374        | PAGE 1 OF 1          |
|-----------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------|----------------------|---------------------------------|--------------------|----------------------|
| COLLECTOR                         | L<br>J.R. Aguilar/CHPR                                                | 2C                                                                                       | COMPANY CON<br>TODAK, D         | ITACT                           | <b>TELE</b><br>370   | EPHONE NO.<br>6-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |
| SAMPLING (<br>C9580, I-000        | LOCATION<br>6                                                         |                                                                                          | PROJECT DESI<br>300-FF-5 Post R | GNATION<br>COD Field Investigat | tion - Soils         | - 1                  | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                                                   |                                                                                          | FIELD LOGBOO                    | -S07-33/1                       | ACTI                 | HOO - 33             | COA<br>303492                   | GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environme           | o<br>ntal Sciences I                                                  | Laboratory                                                                               | OFFSITE PROP                    | ERTY NO.                        | 5 3                  | 53.50-34.00'         | BILL OF LADING/AIR BILL N       | 10.                |                      |
| MATRIX*<br>A=Air<br>DI=Drum       | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                          | PRESER                          | RVATION                         | None C<br>Cool 4     | ADIOSIL              |                                 |                    |                      |
| Liquids<br>DS=Drum                | concentratio<br>transportatio                                         | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDI                           | NG TIME                         | 6 Months             |                      |                                 |                    |                      |
| L=Liquid<br>O=Oil                 | DOE Order 4                                                           | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                     |                                 | ONTAINER                        | Split Spoon<br>Liner |                      |                                 |                    |                      |
| S=Soll<br>SE=Sediment<br>T=Tissue |                                                                       |                                                                                          |                                 | NTAINER(S)                      | 1                    |                      |                                 |                    |                      |
| V=Vegetation<br>W=Water           |                                                                       |                                                                                          | VOLUME                          |                                 | 1000g                |                      |                                 |                    |                      |
| X=Other                           | SPECIAL HA                                                            | SPECIAL HANDLING AND/OR STORAGE                                                          |                                 | SAMPLE ANALYSIS                 |                      |                      |                                 |                    |                      |
| SAME                              | PLE NO.                                                               | MATRIX*                                                                                  | SAMPLE DATE                     | SAMPLE TIME                     | -                    |                      |                                 |                    |                      |
|                                   |                                                                       |                                                                                          |                                 | a second second second second   | 1                    |                      |                                 |                    |                      |

| CHAIN OF POSSES             | SSION            | 2011         | SIGN/ PRINT NAMES                                            | 2216                         | SPECIAL INSTRUCTIONS                                                                                                                | ALL ALL OTAL ALL OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL                             |        |
|-----------------------------|------------------|--------------|--------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|
| RELINQUISHED BY/J           | REMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN<br>SSU # 1 JA<br>RECEIVED BY/STORED IN | DATE/TIME<br>N 0 5-2013 1540 | ** One liter bottle being sent to ESL is c<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris | omprised of the residual<br>Total Uranium subsampling. I<br>stic tests and predominate | It is  |
| SSU-1                       | REMOVED FROM JAN | 1 2 6 2016 A | R.A. Shepard/CHPRC                                           | JAN 2 6 2016 095             | Uranium bearing mineral phase analysis,                                                                                             | PORTION C                                                                              |        |
| R.A. Shepard/CHPR           | ger V/K/JAN 2    | 6 2016 11 30 | M. Sudwill Schunger J.                                       | AN 2 6 2016 11-30            |                                                                                                                                     |                                                                                        |        |
| RELINQUISHED BY             | REMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                                        | DATE/TIME                    |                                                                                                                                     |                                                                                        |        |
| RELINQUISHED BY/I           | REMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                                        | DATE/TIME                    |                                                                                                                                     |                                                                                        |        |
| RELINQUISHED BY/I           | REMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                                        | DATE/TIME                    |                                                                                                                                     |                                                                                        |        |
| RELINQUISHED BY/            | REMOVED FROM     | DATE/TIME    | RECEIVED BY/STORED IN                                        | DATE/TIME                    |                                                                                                                                     |                                                                                        |        |
| LABORATORY                  | RECEIVED BY      |              |                                                              |                              | TITLE                                                                                                                               | DATE/TIME                                                                              |        |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD  |              |                                                              |                              | DISPOSED BY                                                                                                                         | DATE/TIME                                                                              |        |
| PRINTED ON 1                | 2/29/2015        |              | FSR ID = FSR15655                                            | т                            | RVL NUMD= TRVL-16-054                                                                                                               | A-6003-618 (F                                                                          | REV 2) |

| СН                           | CH2MHill Plateau Remediation Company                                  |                                                                                                           | 1                                         | CHAIN                          | OF CUST    | ODY/SAMPLE ANALYSIS R                 | EQUEST                          | F15-014-375                              | PAG | E 1 (      | OF 1             |
|------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|------------|---------------------------------------|---------------------------------|------------------------------------------|-----|------------|------------------|
| COLLECTOR                    | R<br>J.R. Aguilar/CH                                                  | PRC                                                                                                       | COMPANY CON<br>TODAK, D                   | ITACT                          |            | <b>TELEPHONE NO.</b><br>376-6427      | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            |     | D          | ATA              |
| SAMPLING<br>C9580, I-00      | LOCATION                                                              |                                                                                                           | PROJECT DESI<br>300-FF-5 Post R           | GNATION<br>OD Field Investigat | tion - Soi | ls                                    | SAF NO.<br>F15-014              |                                          |     | 30 Da<br>D | lys / 30<br>lays |
| ICE CHEST                    | NO.                                                                   |                                                                                                           | FIELD LOGBOOK NO.<br>トレニ N-SU7-33 / Pg 24 |                                | 24         | ACTUAL SAMPLE DEPTH<br>33,00'- 33,50' | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE |     | ORIGIN/    |                  |
| SHIPPED TO                   | O PNN                                                                 | SL=331                                                                                                    | OFFSITE PROP                              | ERTY NO. / (                   | 2          | and Acalla                            | BILL OF LADING/AIR BILL         | NO.                                      |     |            |                  |
| MATRIX*<br>A=Air<br>DL=Drum  | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                                           | PRESER                                    | VATION                         | None.      | 4'C                                   |                                 |                                          |     |            |                  |
| Liquids<br>DS=Drum<br>Solids | concentrati<br>transportat<br>Goods Reg                               | ons that are not be regulated for<br>ion per 49 CFR/IATA Dangerous<br>ulations but are not releasable per | HOLDI                                     | NG TIME                        | 6 Mont     | hs                                    |                                 |                                          |     |            |                  |
| L=Liquid<br>O=Oil<br>S=Soil  | DOE Order                                                             | 458.1. N/A                                                                                                | TYPE OF C                                 | ONTAINER                       | G/P        |                                       |                                 |                                          |     |            |                  |
| SE=Sediment<br>T=Tissue      |                                                                       |                                                                                                           | NO. OF CO                                 | NTAINER(S)                     |            |                                       |                                 |                                          |     |            |                  |
| W=Water<br>WI=Wipe           |                                                                       |                                                                                                           | VOL                                       | UME                            | 11.        |                                       |                                 |                                          |     |            |                  |
| X=Other                      | SPECIAL H                                                             | SPECIAL HANDLING AND/OR STORAGE                                                                           |                                           | SAMPLE ANALYSIS                |            | (No                                   |                                 |                                          |     |            |                  |
| SAM                          | PLE NO.                                                               | MATRIX*                                                                                                   | SAMPLE DATE                               | SAMPLE TIME                    | -          |                                       |                                 |                                          |     |            |                  |
| B347H3                       |                                                                       | SOIL                                                                                                      | 01-05-16                                  | 1440                           | V          | -                                     |                                 |                                          |     |            |                  |

| CHAIN OF POSSES                                                                                                            | SSION                                                      | 20(1)                                                                                            | SIGN/ PRINT NAMES                                                                                                                                         | 20110                                                        | SPECIAL INSTRUCTIONS                                                                                                                                                      | Non-the transmission of the                                                                             |         |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|
| RELINQUISHED BY/I<br>J.R. Aguitancuper<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I<br>R.A. Shepard/CHPR<br>RELINQUISHED BY/I | REMOVED FROM<br>JAN<br>REMOVED FROM<br>JAN<br>REMOVED FROM | DATE/TIME<br>5-2010-1540<br>C DATE/TIME<br>4 2 6 2016 53<br>DATE/TIME<br>6 2016 130<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU HI<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | AN 2 6 2016 130<br>DATE/TIME<br>AN 2 6 2016 030<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B after<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis | comprised of the residual<br>r Total Uranium subsampling.<br>istic tests and predominate<br>. PORTION B | It is   |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                               | DATE/TIME                                                                                        | RECEIVED BY/STORED IN                                                                                                                                     | DATE/TIME                                                    |                                                                                                                                                                           |                                                                                                         |         |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                               | DATE/TIME                                                                                        | RECEIVED BY/STORED IN                                                                                                                                     | DATE/TIME                                                    |                                                                                                                                                                           |                                                                                                         |         |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                               | DATE/TIME                                                                                        | RECEIVED BY/STORED IN                                                                                                                                     | DATE/TIME                                                    |                                                                                                                                                                           |                                                                                                         |         |
| LABORATORY<br>SECTION                                                                                                      | RECEIVED BY                                                |                                                                                                  |                                                                                                                                                           |                                                              | TITLE                                                                                                                                                                     | DATE/TIME                                                                                               |         |
| FINAL SAMPLE<br>DISPOSITION                                                                                                | DISPOSAL METHOD                                            |                                                                                                  |                                                                                                                                                           |                                                              | DISPOSED BY                                                                                                                                                               | DATE/TIME                                                                                               |         |
| PRINTED ON 1                                                                                                               | 2/29/2015                                                  | follow.                                                                                          | FSR ID = FSR1565                                                                                                                                          | 5 NO. T                                                      | RVL NUM = TRVL-16-054                                                                                                                                                     | A-6003-618 (                                                                                            | (REV 2) |
| CH2                                | MHill Plateau Remediation Company                                                        | CHAIN O                                                              | OF CUSTOD                       | DY/SAMPLE ANALYSIS RE          | QUEST                           | F15-014-388                           | PAGE 1 OF 1          |
|------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------------|----------------------|
| COLLECTOR<br>J.R. Ag               | ullar/CHPRC                                                                              | COMPANY CONTACT<br>TODAK, D                                          |                                 | <b>LEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8                          | H DATA<br>TURNAROUND |
| SAMPLING 1<br>C9581, I-001         | LOCATION                                                                                 | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |                                 |                                | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                           | 30 Days / 30<br>Days |
| ICE CHEST N                        | NO.                                                                                      | FIELD LOGBOOK NO. A HNF- N-SU7-33 Pax 25 2                           |                                 | 1.50' - 22.00                  | COA<br>303492                   | METHOD OF SHIPME<br>GOVERNMENT VEHICL | E ORIGINAL           |
| SHIPPED TO<br>Environmen           | PUNL-331                                                                                 | OFFSITE PROPERTY NO.                                                 |                                 | BILL OF LADING/AIR BILL NO.    |                                 |                                       |                      |
| MATRIX*12                          | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVATION                                                         | -None 30 1/7/16<br>(a) 6 C      |                                |                                 |                                       |                      |
| Liquids<br>DS=Drum                 | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                                                         | 6 Months                        |                                |                                 |                                       |                      |
| L=Liquid<br>O=Oil                  | DOE Order 458.1. N/A                                                                     | TYPE OF CONTAINER                                                    | Split Spoon<br>Liner            | n                              |                                 |                                       |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue  |                                                                                          | NO. OF CONTAINER(S)                                                  | 1                               |                                |                                 |                                       |                      |
| V=Vegetation<br>W=Water<br>WI=Wine |                                                                                          | VOLUME                                                               | 1000g                           |                                |                                 |                                       |                      |
| X=Other                            | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANALYSIS                                                      | Generic<br>Testing {No<br>CAS}; |                                |                                 |                                       |                      |
| SAME                               | PLE NO. MATRIX*                                                                          | SAMPLE DATE SAMPLE TIME                                              | the second                      |                                |                                 |                                       |                      |
| B347J6                             | SOIL                                                                                     | 01-07-16 1140                                                        | L                               |                                |                                 |                                       |                      |

| CHAIN OF POSSES                                                                                                                              | SION                                                                             | 0 7 2016                                                                                      | SIGN/ PRINT NAMES                                                                                                                                   | JAN 0 7 2016                                                                                                                   | SPECIAL INSTRUCTIONS                                                                                                                                                |                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R<br>J.R. Aguitar/CHPRC<br>RELINQUISHED BY/R<br>CHPRC<br>RELINQUISHED BY/R<br>SSU-1<br>RELINQUISHED BY/R<br>A. Shepard/CHPRO | EMOVED FROM JAN D<br>EMOVED FROM JAN 0<br>EMOVED FROM JAN 2<br>EMOVED FROM JAN 2 | 2016 1/1/1<br>DATE/TIME<br>7 2016 1/1/1<br>DATE/TIME<br>6 2016 6<br>DATE/TIME<br>6 2016 11:30 | RECEIVED BY/STORED IN<br>GHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>MSN/der/M. By/CD | JAN 0 7 2016 DATE/TIME<br>JAN 0 7 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME | ** One liter bottle being sent to ESL i<br>homogenized material from Liner B aft<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analys | s comprised of the residual<br>er Total Uranium subsampling. It is<br>eristic tests and predominate<br>s. PORTION D |
| RELINQUISHED BY R                                                                                                                            | SMOVED FROM                                                                      | DATE/TIME                                                                                     | RECEIVED BY/STORED IN                                                                                                                               | DATE/TIME                                                                                                                      |                                                                                                                                                                     |                                                                                                                     |
| RELINQUISHED BY/R                                                                                                                            | EMOVED FROM                                                                      | DATE/TIME                                                                                     | RECEIVED BY/STORED IN                                                                                                                               | DATE/TIME                                                                                                                      |                                                                                                                                                                     |                                                                                                                     |
| RELINQUISHED BY/R                                                                                                                            | EMOVED FROM                                                                      | DATE/TIME                                                                                     | RECEIVED BY/STORED IN                                                                                                                               | DATE/TIME                                                                                                                      |                                                                                                                                                                     |                                                                                                                     |
| LABORATORY<br>SECTION                                                                                                                        | RECEIVED BY                                                                      |                                                                                               |                                                                                                                                                     |                                                                                                                                | TITLE                                                                                                                                                               | DATE/TIME                                                                                                           |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                  | DISPOSAL METHOD                                                                  |                                                                                               |                                                                                                                                                     |                                                                                                                                | DISPOSED BY                                                                                                                                                         | DATE/TIME                                                                                                           |
| PRINTED ON 1                                                                                                                                 | 2/29/2015                                                                        |                                                                                               | FSR ID = FSR15                                                                                                                                      | 657 1                                                                                                                          | RVL NUM = TRVL-16-055                                                                                                                                               | A-6003-618 (REV 2                                                                                                   |

| CH2                                     | 2MHill Plateau                                                                                | Remediation Company                                               |                                                                | CHAIN                              | OF CUST             | TODY/SAMPLE ANALYSIS R           | EQUEST                          | F15-014-389   |                | PAGE | 1 (        | OF 1             |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|---------------------|----------------------------------|---------------------------------|---------------|----------------|------|------------|------------------|
| COLLECTOR                               | r/CHPRC                                                                                       |                                                                   | COMPANY CON<br>TODAK, D                                        | ТАСТ                               |                     | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8Н             |      | D<br>TURN  | ATA<br>AROUND    |
| SAMPLING I<br>C9581, I-001              | LOCATION                                                                                      |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - |                                    | tion - Soi          | ils                              | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |                |      | 30 Da<br>C | iys / 30<br>Jays |
| ICE CHEST I                             | NO.                                                                                           |                                                                   | FIELD LOGBOOK NO.<br>HNF-N-SU7-33/B2:                          |                                    | ACTUAL SAMPLE DEPTH |                                  | COA<br>303492                   | GOVERNMENT VI | PMENT<br>HICLE | y.   | ORI        | GINA             |
| SHIPPED TO<br>Environme                 | HIPPED TO DNN (-33)<br>Environmental Sciences Laboratory                                      |                                                                   | OFFSITE PROPI                                                  | ERTY NO.                           |                     |                                  | BILL OF LADING/AIR BILL         | NO.           |                |      |            |                  |
| MATRIX*<br>A=Air<br>DL=Dnim             | ATRIX*<br>=Air<br>=Drum POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                   | PRESER                                                         | VATION                             | None-               | D 1/7/100<br>℃                   |                                 |               |                |      |            |                  |
| Liquids<br>DS=Drum                      | concentratio<br>transportatio                                                                 | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                                                         | NG TIME                            | 6 Mont              | hs                               |                                 |               |                |      |            |                  |
| L=Liquid<br>O=Oil                       | DOE Order                                                                                     | 458.1. N/A                                                        | TYPE OF C                                                      | TYPE OF CONTAINER Split S<br>Liner |                     | boon                             |                                 |               |                |      |            |                  |
| S=Soli<br>SE=Sediment<br>T=Tissue       |                                                                                               |                                                                   | NO. OF COM                                                     | NTAINER(S)                         | 1                   |                                  |                                 |               |                |      |            |                  |
| V=Vegetation<br>W=Water<br>WI=Wipe      |                                                                                               |                                                                   | VOL                                                            | UME                                | 1000g               |                                  |                                 |               |                |      |            |                  |
| x=other SPECIAL HANDLING AND/OR STORAGE |                                                                                               | SAMPLE ANALYSIS                                                   |                                                                | Generic<br>Testing<br>CAS};        | {No                 |                                  |                                 |               |                |      |            |                  |
| SAM                                     | PLE NO.                                                                                       | MATRIX*                                                           | SAMPLE DATE                                                    | SAMPLE TIME                        | 1                   |                                  |                                 |               |                |      |            |                  |
| B347J7                                  |                                                                                               | SOIL                                                              | 01-07-16                                                       | 1140                               | V                   | -20                              |                                 |               |                |      |            |                  |

| CHAIN OF POSSESSION<br>RELINQUISHED BY/REMOVED FROM<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/REMOVED FROM<br>RELINQUISHED BY/REMOVED FROM<br>R.A. Shepard/CHPRC<br>RELINQUISHED BY/REMOVED FROM<br>RELINQUISHED BY/REMOVED FROM<br>RELINQUISHED BY/REMOVED FROM | JAN 0, 7, 2016<br>AN 0, 7, 2015<br>JAN 0, 7, 2015<br>JAN 0, 7, 2015<br>JAN 2, 6, 2016<br>AN 2, 6, 2016<br>ATE/TIME<br>DATE/TIME | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>CHEEVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | S<br>N 0 7 2016 date/time<br>N 0 7 2015 1330<br>A 7-2015 1330<br>Date/time<br>AN 0 7 2016 1415<br>Date/time<br>AN 2 6 2016 5130<br>Date/time<br>Date/time<br>Date/time | PECIAL INSTRUCTIONS<br>** One liter bottle being sent to ESL<br>homogenized material from Liner B at<br>to be used for the Leachabilty charact<br>Uranium bearing mineral phase analy | is comprised of the residual<br>fter Total Uranium subsampling. It is<br>teristic tests and predominate<br>sis. PORTION C |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/REMOVED FROM                                                                                                                                                                                                                                    | DATE/TIME                                                                                                                                                                                           | RECEIVED BY/STORED IN                                                                                                                                                                        | DATE/TIME                                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                           |
| LABORATORY RECEIVED BY<br>SECTION                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                                                                                                                                                                                              | т                                                                                                                                                                      | ITLE                                                                                                                                                                                  | DATE/TIME                                                                                                                 |
| FINAL SAMPLE DISPOSAL METHOD                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                   |                                                                                                                                                                                              | D                                                                                                                                                                      | ISPOSED BY                                                                                                                                                                            | DATE/TIME                                                                                                                 |

| CH                           | 2MHill Plateau                                                                                                                                                                                                                                                       | Remediation Company   |                                                                      | CHAIN      | OF CUS                     | TODY/SAMPLE ANALYSIS RI          | EQUEST                                              | F15-014-390 |                | PAGE       | 1 (              | DF 1          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|------------|----------------------------|----------------------------------|-----------------------------------------------------|-------------|----------------|------------|------------------|---------------|
| COLLECTOR                    | gullar/CHPRC                                                                                                                                                                                                                                                         |                       | COMPANY CONTACT<br>TODAK, D                                          |            |                            | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D                     | PRICE CODE  | 8H             |            | D                | ATA<br>AROUND |
| SAMPLING<br>C9581, I-00      | LOCATION                                                                                                                                                                                                                                                             |                       | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |            |                            | <b>SAF NO.</b><br>F15-014        | AIR QUALITY                                         |             |                | 30 Da<br>D | iys / 30<br>Jays |               |
| ICE CHEST                    | NO.                                                                                                                                                                                                                                                                  |                       | FIELD LOGBOOK NO.<br>HNF-N-SU7-33 Ras                                |            | 525                        | ACTUAL SAMPLE DEPTH              | COA METHOD OF SHIPMENT<br>303492 GOVERNMENT VEHICLE |             | PMENT<br>HICLE |            | ORI              | GINAL         |
| SHIPPED TO<br>Epvironme      | PN                                                                                                                                                                                                                                                                   | NL-331                | OFFSITE PROP                                                         | ERTY NO.   | 0 -                        |                                  | BILL OF LADING/AIR BILL                             | NO.         |                |            |                  |               |
| MATRIX*<br>A=Air<br>DI=Drum  | ATRIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>=Air *Contains Radioactive Material at                                                                                                                                                                                    |                       | PRESER                                                               | VATION     | -None<br>Casi              | - 30 1/7/10<br>6°C               |                                                     |             |                |            |                  |               |
| Liquids<br>DS=Drum<br>Solids | DC=Druin         Concentrations that are not be regulated for<br>DS=Drum           DS=Drum         transportation per 49 CFR/IATA Dangerous           Solids         Goods Regulations but are not releasable per<br>L=Liquid           DOE Order 458.1.         N/A |                       | HOLDIN                                                               | NG TIME    | 6 Mor                      | nths                             |                                                     |             |                |            |                  |               |
| L=Liquid<br>O=Oil            |                                                                                                                                                                                                                                                                      |                       | TYPE OF CONTAINER                                                    |            | G/P                        |                                  |                                                     |             |                |            |                  |               |
| SE=Sediment<br>T=Tissue      |                                                                                                                                                                                                                                                                      |                       | NO. OF COM                                                           | NTAINER(S) | 1                          |                                  |                                                     |             |                |            |                  |               |
| V=Vegetation<br>W=Water      |                                                                                                                                                                                                                                                                      |                       | VOL                                                                  | UME        | 11.                        |                                  |                                                     |             |                |            |                  |               |
| X=Other                      | SPECIAL HA                                                                                                                                                                                                                                                           | NDLING AND/OR STORAGE | SAMPLE /                                                             | ANALYSIS   | Generi<br>Testing<br>CAS}; | c<br>j (No                       |                                                     |             |                |            |                  |               |
| SAM                          | PLE NO.                                                                                                                                                                                                                                                              | MATRIX*               | SAMPLE DATE                                                          | SAMPLE TIM |                            |                                  |                                                     |             |                |            |                  |               |
| B347J8                       |                                                                                                                                                                                                                                                                      | SOIL                  | 01-07-16                                                             | 1140       | L                          |                                  |                                                     |             |                |            |                  |               |

| CHAIN OF POSSES                                                                                                                                           | SION                                                                                                                                                                                                | SIGN/ PRINT NAMES                                                                                                                                                                                                   |                                                                                                                                                                      | SPECIAL INSTRUCTIONS                                                                                                                                                     |                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>J.R. Aguilar/CH977<br>RELINQUISHED BY/F<br>CHPRC<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM JAN 0 7 2015 /3<br>JAN 0 7 2015 /3<br>JAN 0 7 2015 /3<br>JAN 0 7 2016 /4<br>ARMOVED FROM JAN 2 6 2016 /4<br>NEMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN<br>Kevin Pattarson<br>RECEIVED BY/STORED IN<br>SUJ-1<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>RA. Shepard/CHPRC<br>A. LANTER D. JAN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | N 0 7 2016 DATE/TIME<br>1 2 2015, 1330<br>DATE/TIME<br>AN 0 7 2016 1411<br>N 2 6 2016 DATE/TIME<br>2 6 2016 DATE/TIME<br>1136<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis | comprised of the residual<br>r Total Uranium subsampling. It is<br>istic tests and predominate<br>PORTION B |
| RELINQUISHED BY/F                                                                                                                                         | REMOVED FROM DATE/TIME                                                                                                                                                                              | RECEIVED BY/STORED IN                                                                                                                                                                                               | DATE/TIME                                                                                                                                                            |                                                                                                                                                                          |                                                                                                             |
| LABORATORY<br>SECTION                                                                                                                                     | RECEIVED BY                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                      | TITLE                                                                                                                                                                    | DATE/TIME                                                                                                   |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                               | DISPOSAL METHOD                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                      | DISPOSED BY                                                                                                                                                              | DATE/TIME                                                                                                   |
| PRINTED ON 1                                                                                                                                              | 2/29/2015                                                                                                                                                                                           | FSRID = FSR15657                                                                                                                                                                                                    | 1.7                                                                                                                                                                  | RVL NUM = TRVL-16-055                                                                                                                                                    | A-6003-618 (REV 2)                                                                                          |

| CH                                | 2MHill Plateau Remediation Company                                                       |                                                                      | CHAIN OF    | CUSTO                          | DDY/SAMPLE ANALYSIS RE           | EQUEST                          | F15-014-394 |      | PAGE       | 1 0            | 0F 1 |
|-----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--------------------------------|----------------------------------|---------------------------------|-------------|------|------------|----------------|------|
| COLLECTOR                         | Aguilar/CHPRC                                                                            | COMPANY CONT.<br>TODAK, D                                            | ACT         | T                              | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H   |            | DA             | ATA  |
| SAMPLING<br>C9581, I-00           | LOCATION<br>2                                                                            | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |             |                                | <b>SAF NO.</b><br>F15-014        | AIR QUALITY                     |             |      | 30 Da<br>D | ys / 30<br>ays |      |
| ICE CHEST                         | NO.                                                                                      | FIELD LOGBOOK NO. ACTUAL SAN<br>14NF-N-507-33/PG2524.00-             |             | ACTUAL SAMPLE DEPTH            | COA<br>303492                    | GOVERNMENT VEHICLE              |             | ORIC | GINA       |                |      |
| SHIPPED TO<br>Environme           | PNNL-331                                                                                 | OFFSITE PROPER                                                       | RTY NO. 0   | 001                            |                                  | BILL OF LADING/AIR BILL         | NO.         |      |            |                |      |
| MATRIX*<br>A=Air<br>DI=Drum       | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERV                                                              | ATION       | None<br>Cool C                 | 73 1/4/16<br>"C                  |                                 |             |      |            |                |      |
| Liquids<br>DS=Drum                | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING                                                              | G TIME      | 6 Months                       | 5                                |                                 |             |      |            |                |      |
| L=Liquid<br>O=OII                 | DOE Order 458.1. N/A                                                                     | TYPE OF CONTAINER                                                    |             | Split Spo<br>Liner             | on                               |                                 |             |      |            |                |      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                                          | NO. OF CON                                                           | TAINER(S)   | 1                              |                                  |                                 |             |      |            |                |      |
| V=Vegetation<br>W=Water           |                                                                                          | VOLU                                                                 | JME         | 1000g                          |                                  |                                 |             |      |            |                |      |
| X=Other                           | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE A                                                             | NALYSIS     | Generic<br>Testing {I<br>CAS}; | No                               |                                 |             |      |            |                |      |
| SAM                               | PLE NO. MATRIX*                                                                          | SAMPLE DATE                                                          | SAMPLE TIME |                                |                                  |                                 |             |      |            |                |      |
| B347K2                            | SOIL                                                                                     | 01-07-16                                                             | 1202        | 2                              |                                  |                                 |             |      |            |                |      |

| CHAIN OF POSSES                                                                                      | SION                                           |                                                                                                      | SIGN/ PRINT NAMES                                                                         |                                                                                     | SPECIAL INSTRUCTIONS                                                                                                                                                                 |                                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/I<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/I<br>Kevin Patterson<br>RECHNOLDSHED BY/I | REMOVED FROM JAN 0 7<br>REMOVED FROM JAN 0 7 2 | 2016<br>2015<br>2015<br>2015<br>2015<br>2016<br>2016<br>2016<br>2016<br>2016<br>2016<br>2016<br>2016 | RECEIVED BY/STORED IN<br>CHPRC<br>RECEIVED BY/STORED IN<br>SSU-1<br>BECEIVED BY/STORED IN | D 7 2016 DATE/TIME<br>D 7 2015 DATE/TIME<br>D 7 2016 DATE/TIME<br>14/5<br>DATE/TIME | ** One liter bottle being sent to ESL is co<br>homogenized material from Liner B after T<br>to be used for the Leachabilty characterist<br>Uranium bearing mineral phase analysis. P | mprised of the residual<br>Total Uranium subsampling. It is<br>ic tests and predominate<br>PORTION D |
| SSU-1                                                                                                | JAN                                            | 2 6 2016 83                                                                                          | R.A. Shepard/CHPRC                                                                        | AN 2 6 2016 2930                                                                    |                                                                                                                                                                                      |                                                                                                      |
| RELINQUISHED BY/R                                                                                    | REMOVED FROM BLAN                              | DATE/TIME<br>2 6 2016 11:30                                                                          | M. Sinder IM, Smuch JAI                                                                   | 1 2 6 2016 11 30                                                                    |                                                                                                                                                                                      |                                                                                                      |
| RELINQUISHED BY                                                                                      | REMOVED FROM                                   | DATE/TIME                                                                                            | RECEIVED BY/STORED IN                                                                     | DATE/TIME                                                                           |                                                                                                                                                                                      |                                                                                                      |
| RELINQUISHED BY/                                                                                     | REMOVED FROM                                   | DATE/TIME                                                                                            | RECEIVED BY/STORED IN                                                                     | DATE/TIME                                                                           |                                                                                                                                                                                      |                                                                                                      |
| RELINQUISHED BY/I                                                                                    | REMOVED FROM                                   | DATE/TIME                                                                                            | RECEIVED BY/STORED IN                                                                     | DATE/TIME                                                                           |                                                                                                                                                                                      |                                                                                                      |
| LABORATORY<br>SECTION                                                                                | RECEIVED BY                                    | Ŧ                                                                                                    |                                                                                           |                                                                                     | TITLE                                                                                                                                                                                | DATE/TIME                                                                                            |
| FINAL SAMPLE<br>DISPOSITION                                                                          | DISPOSAL METHOD                                |                                                                                                      |                                                                                           |                                                                                     | DISPOSED BY                                                                                                                                                                          | DATE/TIME                                                                                            |
| PRINTED ON                                                                                           | 12/29/2015                                     |                                                                                                      | FSR ID = FSR15658                                                                         | т                                                                                   | RVL NUM = TRVL+16-055                                                                                                                                                                | A-6003-618 (REV 2)                                                                                   |

| CH2                          | 2MHill Plateau Remediation Company                                                                                                       |                                                                      | CHAIN O     | F CUSTO                        | DY/SAMPLE ANALYSIS R      | EQUEST                          | F15-014-395                              | PAGE 1 OF 1        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--------------------------------|---------------------------|---------------------------------|------------------------------------------|--------------------|
| COLLECTOR                    | J.R. Aguilar/CHPRC                                                                                                                       | COMPANY CONTA<br>TODAK, D                                            | ACT         | T                              | ELEPHONE NO.<br>376-6427  | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND |
| SAMPLING<br>C9581, I-00      | LOCATION<br>2                                                                                                                            | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |             |                                | <b>SAF NO.</b><br>F15-014 |                                 | 30 Days / 30<br>Days                     |                    |
| ICE CHEST                    | NO.                                                                                                                                      | FIELD LOGBOOK NO.<br>HNF-N-507-331PG                                 |             | ACTUAL SAMPLE DEPTH            |                           | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL           |
| SHIPPED TO                   | PNNL-33(                                                                                                                                 | OFFSITE PROPER                                                       | RTY NO. 0   |                                |                           | BILL OF LADING/AIR BILL         | NO.                                      |                    |
| MATRIX*<br>A=Air             | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                                                                    | PRESERVATION -None<br>Call                                           |             | None 3<br>Cal 6°C              | 1/2/16                    |                                 |                                          |                    |
| Liquids<br>DS=Drum<br>Solids | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per | HOLDING TIME                                                         |             | 6 Months                       |                           |                                 |                                          |                    |
| L=Liquid<br>O=Oil<br>S=Soil  | DOE Order 458.1. N/A                                                                                                                     | TYPE OF COM                                                          | NTAINER     | Liner                          |                           |                                 |                                          |                    |
| SE=Sediment<br>T=Tissue      |                                                                                                                                          | NO. OF CONT                                                          | TAINER(S)   | <u> </u>                       |                           |                                 |                                          |                    |
| V=Vegetation<br>W=Water      |                                                                                                                                          | VOLU                                                                 | IME         | 1000g                          |                           |                                 |                                          |                    |
| WI=Wipe<br>X=Other           | SPECIAL HANDLING AND/OR STORAGE                                                                                                          | SAMPLE AN                                                            | NALYSIS     | Generic<br>Testing {N<br>CAS}; | o                         |                                 |                                          |                    |
| SAM                          | PLE NO. MATRIX*                                                                                                                          | SAMPLE DATE                                                          | SAMPLE TIME | line and                       | É                         |                                 |                                          |                    |
| B347K3                       | SOIL                                                                                                                                     | 01-07-16                                                             | 1202        | L                              |                           |                                 |                                          |                    |

| CHAIN OF POSSES                         | SION            |                | SIGN/ PRINT NAMES                        |                 | SPECIAL INSTRUCTIONS                                                                                                          |                                                               |
|-----------------------------------------|-----------------|----------------|------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| RELINQUISHED BY/R<br>J.R. AguilanCHPT   | AND JAND        | 2017-2015-1330 | RECEIVED BY/STORED IN<br>Kevin Patterson | 07-2015 1330    | ** One liter bottle being sent to ESL is homogenized material from Liner B after to be used for the Leachability characterial | comprised of the residual<br>Total Uranium subsampling. It is |
| Kevin Patterson<br>CHPRC                | JAN             | 0 7 2016 1415  | SSU-1 , JAN                              | 1072016 1415    | Uranium bearing mineral phase analysis.                                                                                       | PORTION C                                                     |
| SSU-THED BY/R                           | REMOVED FROM    | N 2 6 2016 33  | RECEIVED BY/STORED IN                    | 2 6 2016 330    |                                                                                                                               |                                                               |
| RELINQUISHED BY/R<br>R.A. Shepard/CHPRC | EMOVED FROM     | 2 6 2016 11-30 | RECEIVED BY/STORED IN                    | 2 6 2016 U1: 30 |                                                                                                                               |                                                               |
| RELINQUISHED BY                         | REMOVED FROM    | DATE/TIME      | RECEIVED BY/STORED IN                    | DATE/TIME       |                                                                                                                               |                                                               |
| RELINQUISHED BY/R                       | REMOVED FROM    | DATE/TIME      | RECEIVED BY/STORED IN                    | DATE/TIME       |                                                                                                                               |                                                               |
| RELINQUISHED BY/R                       | REMOVED FROM    | DATE/TIME      | RECEIVED BY/STORED IN                    | DATE/TIME       | N                                                                                                                             |                                                               |
| LABORATORY<br>SECTION                   | RECEIVED BY     |                |                                          |                 | TITLE                                                                                                                         | DATE/TIME                                                     |
| FINAL SAMPLE<br>DISPOSITION             | DISPOSAL METHOD |                |                                          |                 | DISPOSED BY                                                                                                                   | DATE/TIME                                                     |
| PRINTED ON 1                            | 2/29/2015       | -910           | FSR ID = FSR15658                        | 7               | RVL NUM = TRVL-16-055                                                                                                         | A-6003-618 (REV 2)                                            |

| CH2                                     | MHill Plateau                                                              | Remediation Company                                                                                                                      |                                                                         | CHAIN       | OF CUSTODY                       | SAMPLE ANALYSIS RI   | EQUEST                          | F15-014-396 |              | PAGE 1    | OF   | 1    |
|-----------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|----------------------------------|----------------------|---------------------------------|-------------|--------------|-----------|------|------|
| COLLECTOR                               | ullar/CHPRC                                                                |                                                                                                                                          | COMPANY CONTACT<br>TODAK, D                                             |             | TELI<br>37                       | EPHONE NO.<br>6-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H           | π         | DATA | OUND |
| SAMPLING (<br>C9581, I-002              | LOCATION<br>2                                                              |                                                                                                                                          | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils    |             | <b>SAF NO.</b><br>F15-014        | AIR QUALITY          |                                 | 3           | Days<br>Days | / 30<br>5 |      |      |
| ICE CHEST                               | NO.                                                                        |                                                                                                                                          | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-507-33/19,25 23,00-23,50 |             |                                  | COA<br>303492        | GOVERNMENT V                    | EHICLE      | ORIGIN       |           |      |      |
| SHIPPED TO<br>Environme                 | PNN<br>ntal sciences                                                       | OL-331                                                                                                                                   | OFFSITE PROPI                                                           | ERTY NO.    | 8                                |                      | BILL OF LADING/AIR BILL         | NO.         |              |           |      |      |
| MATRIX*<br>A=Air<br>DL=Drum             | RIX* POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                                                                          | PRESER                                                                  | VATION      | None ED<br>Cool 6°L              | 1/7/16               |                                 |             |              |           |      |      |
| Liquids<br>DS=Drum<br>Solids            | concentration<br>transportation<br>Goods Requ                              | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per |                                                                         | IG TIME     | 6 Months                         |                      |                                 |             |              |           |      |      |
| L=Liquid<br>Ø=Oil<br>S=Soil             | DOE Order                                                                  | 458.1. N/A                                                                                                                               | TYPE OF CONTAINER                                                       |             | 1                                |                      |                                 |             |              |           |      |      |
| SE=Sediment<br>T=Tissue<br>V=Vegetation |                                                                            |                                                                                                                                          | NO. OF CON                                                              | UME         | 11.                              |                      |                                 |             |              |           |      |      |
| W=Water<br>WI=Wipe<br>X=Other           | SPECIAL H                                                                  | ANDLING AND/OR STORAGE                                                                                                                   | SAMPLE                                                                  | ANALYSIS    | Generic<br>Testing (No-<br>CAS); |                      |                                 |             |              |           |      |      |
| SAM                                     | PLE NO.                                                                    | MATRIX*                                                                                                                                  | SAMPLE DATE                                                             | SAMPLE TIME | 1                                |                      |                                 |             |              |           |      |      |
| B347K4                                  |                                                                            | SOIL                                                                                                                                     | 01-07-16                                                                | 1202        | ~                                | 1                    |                                 |             |              |           |      |      |

| RELINQUISHED BY/REMOVED FROM<br>JR. Aguitan/CRPRC<br>VER BY/STORED IN<br>RELINQUISHED BY/REMOVED ROM<br>SSU-1       AN 0 7 2016<br>/// 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 // 14/1 /                          | CHAIN OF POSSES                              | SION                   | SIGN/ PRINT NAMES                        |                | SPECIAL INSTRUCTIONS                                                                    | The Constant State of the State |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|------------------------------------------|----------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/REMOVED FROM DATE/TIME RECEIVED BY/STORED IN D | J.R. Aguilar/CHPRC                           | AN 0 7-2015 1330       | RECEIVED BY/STORED IN<br>Kevin Patterson | 2015 DATE/TIME | ** One liter bottle being sent to ESL is con<br>homogenized material from Liner B after | mprised of the residual<br>Total Uranium subsampling. It is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ReLINQUISHED BY/REMOVED FROM AN 2 6 2016 A | RELINQUISHED BY/F<br>Kevin Patterson<br>CHPR | JAN 0 7 2010 14        | SSU-1                                    | 7 2016 1415    | Uranium bearing mineral phase analysis.                                                 | PORTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reclinquished by/Removed FROM       Date/time       Received by/stored in       Date/time         Relinquished by/Removed FROM       Date/time       Received by/stored in       Date/time         Isborstition       Received By       Section       Date/time       Disposed By       Date/time         FINAL SAMPLE       Disposed By<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSU-1                                        | JAN 2 6 2016           | RA. Shepard/CHPRC                        | 2016 0130      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY/KEMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         RELINQUISHED BY/REMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         RELINQUISHED BY/REMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         RELINQUISHED BY/REMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         LABORATORY<br>SECTION       RECEIVED BY       RECEIVED BY       TITLE       DATE/TIME         FINAL SAMPLE<br>DISPOSAL METHOD       DISPOSAL METHOD       DATE/TIME       DATE/TIME         PRINTED ON 12/29/2015       FSR ID = FSR15658       TRVL NUM = TRVL-16-055       A-6003-618 (REV.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RELINQUISHED BY/F                            | AN 2 6 2016 113        | RECEIVED BY/STORED IN                    | 2016 1135      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY/REMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         RELINQUISHED BY/REMOVED FROM       DATE/TIME       RECEIVED BY/STORED IN       DATE/TIME         LABORATORY<br>SECTION       RECEIVED BY       RECEIVED BY/STORED IN       DATE/TIME         IABORATORY<br>SECTION       RECEIVED BY       TITLE       DATE/TIME         FINAL SAMPLE<br>DISPOSITION       DISPOSAL METHOD       DISPOSED BY       DATE/TIME         PRINTED ON 12/29/2015.       FSR ID = FSR15658       TRVL NUM = TRVL-16-055       A-6003-618 (REV.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELINQUISHED BY                              | EMOVED FROM DATE/TIME  | RECEIVED BY/STORED IN                    | DATE/TIME      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY/REMOVED FROM     DATE/TIME     RECEIVED BY/STORED IN     DATE/TIME       LABORATORY<br>SECTION     RECEIVED BY     TITLE     DATE/TIME       FINAL SAMPLE<br>DISPOSITION     DISPOSAL METHOD     DISPOSAL METHOD     DATE/TIME       PRINTED ON 12/29/2015     FSR ID = FSR15658     TRVL NUM = TRVL-16-055     A-6003-618 (REV.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RELINQUISHED BY/F                            | REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN                    | DATE/TIME      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LABORATORY<br>SECTION     RECEIVED BY     DATE/TIME       FINAL SAMPLE<br>DISPOSITION     DISPOSAL METHOD     DISPOSAL METHOD       PRINTED ON 12/29/2015     FSR ID = FSR15658     TRVL NUM = TRVL=16-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELINQUISHED BY/F                            | REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN                    | DATE/TIME      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FINAL SAMPLE<br>DISPOSAL METHOD         DISPOSAL METHOD         DATE/TIME           PRINTED ON 12/29/2015         FSR ID = FSR15658         TRVL NUM = TRVL=16=055         A-6003-618 (REV.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LABORATORY<br>SECTION                        | RECEIVED BY            |                                          |                | TITLE                                                                                   | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PRINTED ON 12/29/2015 FSR ID = FSR15658 TRVL NUM = TRVL-16-055 A-6003-618 (REV.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FINAL SAMPLE<br>DISPOSITION                  | DISPOSAL METHOD        |                                          |                | DISPOSED BY                                                                             | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRINTED ON 1                                 | 2/29/2015              | FSR ID = FSR15658                        | 1              | RVL NUM = TRVL=16=055                                                                   | A-6003-618 (REV 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| CH2                                     | 2MHill Plateau                                           | Remediation Company                                                                                                                                                                                               |                                                             | CHAIN       | OF CUS                      | TODY/SAMPLE ANALYSIS R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EQUEST                          | F15-014-399                              | PAGE 1 OF 1          |
|-----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                               | Aguilar/CHPRC                                            |                                                                                                                                                                                                                   | COMPANY CON<br>TODAK, D                                     | ТАСТ        |                             | <b>TELEPHONE NO.</b><br>376-6427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9581, I-00                 | LOCATION<br>3                                            |                                                                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigatio |             |                             | ils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                               | HIPPED TO PNNL-33/<br>Environmental Sciences Laboratory/ |                                                                                                                                                                                                                   | FIELD LOGBOOK NO.<br>14NF-N-507-33/ B22                     |             | 25                          | ACTUAL SAMPLE DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme                 |                                                          |                                                                                                                                                                                                                   | OFFSITE PROPERTY NO. 70                                     |             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BILL OF LADING/AIR BILL         | BILL NO.                                 |                      |
| MATRIX*<br>A=Air<br>DL=Drum             | POSSIBLE SA<br>*Contains Ra                              | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not release ha per |                                                             | VATION      | None                        | 19 47/16<br>6°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                          |                      |
| Liquids<br>DS=Drum<br>Solids            | concentration<br>transportatio<br>Goods Regul            |                                                                                                                                                                                                                   |                                                             | IG TIME     | 6 Mor                       | iths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                          |                      |
| L=Liquid<br>O=Oil<br>S=Soil             | DOE Order 4                                              | 58.1. N/A                                                                                                                                                                                                         | TYPE OF CO                                                  | ONTAINER    | Liner                       | poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                          |                      |
| SE=Sediment<br>T=Tissue<br>V=Vegetation |                                                          |                                                                                                                                                                                                                   | NO. OF COM                                                  | UME         | 1000g                       | La Carlo de |                                 |                                          |                      |
| W=Water<br>WI=Wipe<br>X=Other           | SPECIAL HA                                               | NDLING AND/OR STORAGE                                                                                                                                                                                             | SAMPLE A                                                    | ANALYSIS    | Generic<br>Testing<br>CAS}; | ⟨No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                          |                      |
| SAMI                                    | PLE NO.                                                  | MATRIX*                                                                                                                                                                                                           | SAMPLE DATE                                                 | SAMPLE TIME |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                          |                      |
| B347K7                                  |                                                          | SOIL                                                                                                                                                                                                              | 01-07-16                                                    | 1220        | L                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                          |                      |

| CHAIN OF POSSES<br>RELINQUISHED BY/R<br>J.R. AguitakCHPRI<br>RELINQUISHED BY/R<br>Kevin Patterso<br>CHPRC<br>SSU-1<br>RELINQUISHED BY/F<br>SSU-1<br>RELINQUISHED BY/F | REMOVED FROM JAN D<br>REMOVED FROM JAN D<br>REMOVED FROM JAN 2<br>REMOVED FROM JAN 2 | 0 7 2016<br>Date/Time<br>77 2015 / 3780<br>Date/Time<br>7 2016 /4/15<br>Date/Time<br>6 2016 0 300<br>Date/Time<br>6 2016 0 430 | SIGN/ PRINT NAMES<br>RECEIVED BY/STORED IN<br>SSU-1<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>H.C.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>ALL AND 2 6 2016 | 016<br>04TE/TIME<br>1320<br>2016/11ME<br>04TE/TIME<br>04TE/TIME<br>04TE/TIME | <b>SPECIAL INSTRUCTIONS</b><br><b>**</b> One liter bottle being sent to ESL is con<br>homogenized material from Liner B after To<br>to be used for the Leachabilty characteristic<br>Uranium bearing mineral phase analysis. PO | nprised of the residual<br>otal Uranium subsampling. It is<br>c tests and predominate<br>DRTION D |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R                                                                                                                                                     | REMOVED FROM                                                                         | DATE/TIME                                                                                                                      | RECEIVED BY/STORED IN                                                                                                                                                                                                                     | DATE/TIME                                                                    |                                                                                                                                                                                                                                 |                                                                                                   |
| RELINQUISHED BY/R                                                                                                                                                     | REMOVED FROM                                                                         | DATE/TIME                                                                                                                      | RECEIVED BY/STORED IN                                                                                                                                                                                                                     | DATE/TIME                                                                    |                                                                                                                                                                                                                                 |                                                                                                   |
| RELINQUISHED BY/R                                                                                                                                                     | REMOVED FROM                                                                         | DATE/TIME                                                                                                                      | RECEIVED BY/STORED IN                                                                                                                                                                                                                     | DATE/TIME                                                                    |                                                                                                                                                                                                                                 |                                                                                                   |
| LABORATORY<br>SECTION                                                                                                                                                 | RECEIVED BY                                                                          |                                                                                                                                |                                                                                                                                                                                                                                           |                                                                              | TITLE                                                                                                                                                                                                                           | DATE/TIME                                                                                         |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                           | DISPOSAL METHOD                                                                      |                                                                                                                                |                                                                                                                                                                                                                                           |                                                                              | DISPOSED BY                                                                                                                                                                                                                     | DATE/TIME                                                                                         |
| PRINTED ON 1                                                                                                                                                          | 2/29/2015                                                                            |                                                                                                                                | FSR ID = FSR15659                                                                                                                                                                                                                         | Ţ                                                                            | RVL NUM = TRVL-16-055                                                                                                                                                                                                           | A-6003-618 (REV 2                                                                                 |

| CH2                                                                                     | 2MHill Plateau Remediation Company                                                                                                                                                                                                        |                                                    | CHAIN                          | OF CUSTOD                       | Y/SAMPLE ANALYSIS RE    | QUEST                           | F15-014-400        | PAGE | 1 0        | DF 1           |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|---------------------------------|-------------------------|---------------------------------|--------------------|------|------------|----------------|
| COLLECTOR<br>J.R.                                                                       | R<br>Agullar/CHPRC                                                                                                                                                                                                                        | COMPANY CON<br>TODAK, D                            | ITACT                          | TEL<br>37                       | EPHONE NO.<br>76-6427   | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      |      | TURN       | ATA            |
| SAMPLING<br>C9581, I-003                                                                | LOCATION<br>3                                                                                                                                                                                                                             | 9ROJECT DESI<br>300-FF-5 Post R                    | GNATION<br>OD Field Investigat | tion - Soils                    |                         | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        |      | 30 Da<br>D | ys / 30<br>ays |
| ICE CHEST NO.<br>SHIPPED TO PNNL-33<br>Environmental Sciences Laboratory<br>92. 1-24-14 |                                                                                                                                                                                                                                           | FIELD LOGBOOK NO. ACTUAN<br>HNF-N-507-33/P525 26.0 |                                |                                 | UAL SAMPLE DEPTH        | COA<br>303492                   | GOVERNMENT VEHICLE | j.   | ORIGIN     |                |
|                                                                                         |                                                                                                                                                                                                                                           | OFFSITE PROPERTY NO.                               |                                |                                 | BILL OF LADING/AIR BILL | ILL NO.                         |                    |      |            |                |
| MATRIX*<br>A=Air<br>DI =Dnim                                                            | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous<br>Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A | PRESER                                             | RVATION                        | None J                          | ) 1/4/16                |                                 |                    |      |            |                |
| Liquids<br>DS=Drum                                                                      |                                                                                                                                                                                                                                           | HOLDI                                              | NG TIME                        | 6 Months                        |                         |                                 |                    |      |            |                |
| L=Liquid<br>0=Oil                                                                       |                                                                                                                                                                                                                                           | TYPE OF C                                          | ONTAINER                       | Split Spoon<br>Liner            |                         |                                 |                    |      |            |                |
| SE=Sediment<br>T=Tissue                                                                 |                                                                                                                                                                                                                                           | NO. OF CO                                          | NTAINER(S)                     | 1                               |                         |                                 |                    |      |            |                |
| V=Vegetation<br>W=Water<br>WI=Wipe                                                      |                                                                                                                                                                                                                                           | VOL                                                | LUME                           | 1000g                           |                         |                                 |                    |      |            |                |
| X=Other                                                                                 | SPECIAL HANDLING AND/OR STORAGE                                                                                                                                                                                                           | SAMPLE                                             | ANALYSIS                       | Generic<br>Testing {No<br>CAS}; |                         |                                 |                    |      |            |                |
| SAMI                                                                                    | PLE NO. MATRIX*                                                                                                                                                                                                                           | SAMPLE DATE                                        | SAMPLE TIME                    |                                 |                         |                                 |                    |      |            |                |
| D347K9                                                                                  | SOIL                                                                                                                                                                                                                                      | 01                                                 | 12 4 3                         |                                 |                         |                                 |                    |      |            |                |

| CHAIN OF POSSES                                                                                                                                                         | SION                                                                                                                                                                                         | SIGN/ PRINT NAMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPECIAL INSTRUCTIONS                                                                                                                                                                                                                                                                       |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| RELINQUISHED BY/<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/<br>Kevin Patteran<br>CHPRC<br>RELINQUISHED BY/<br>R.A. Shepard/CHPRC<br>RELINQUISHED BY/<br>RELINQUISHED BY/ | REMOVED FROM AN 0.7 2015 1330<br>REMOVED FROM AN 0.7 2015 145<br>REMOVED FROM AN 0.7 2016 145<br>REMOVED FROM AN 2.6 2016 ATE/TIME<br>REMOVED FROM 12.6 2010 11-30<br>REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>SSU-1<br>RECEIVED BY/STORED IN<br>SSU-1<br>RA. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>AN 0 7 2016<br>ATE/TIME<br>AN 0 7 2016<br>ATE/TIME | <ul> <li>** One liter bottle being sent to ESL is comprised of the residual<br/>homogenized material from Liner B after Total Uranium subsampling<br/>to be used for the Leachabilty characteristic tests and predominate<br/>Uranium bearing mineral phase analysis. PORTION C</li> </ul> | g. It is  |
| RELINQUISHED BY/                                                                                                                                                        | REMOVED FROM DATE/TIME                                                                                                                                                                       | RECEIVED BY/STORED IN DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |           |
| RELINQUISHED BY/                                                                                                                                                        | REMOVED FROM DATE/TIME                                                                                                                                                                       | RECEIVED BY/STORED IN DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |           |
| LABORATORY                                                                                                                                                              | RECEIVED BY                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TITLE DATE/TIME                                                                                                                                                                                                                                                                            |           |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                             | DISPOSAL METHOD                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DISPOSED BY DATE/TIME                                                                                                                                                                                                                                                                      |           |
| PRINTED ON                                                                                                                                                              | 2/29/2015                                                                                                                                                                                    | FSR ID = FSR15659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRVL NUM = TRVL-16-055 A-6003-61                                                                                                                                                                                                                                                           | 8 (REV 2) |

| CH                                 | 2MHill Plateau                                                                   | Remediation Company                                               | CHAIN                                                     | OF CUSTODY/SAMPLE ANALYS         | S REQUEST                       | F15-014-401                              | PAGE 1 OF 1          |
|------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                          | J.R. Aguilar/C                                                                   | HPRC                                                              | COMPANY CONTACT<br>TODAK, D                               | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING<br>C9581, I-00            | LOCATION                                                                         |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigat | tion - Soils                     | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days |
| ICE CHEST                          | HIPPED TO DNN 1-321                                                              |                                                                   | FIELD LOGBOOK NO.<br>HNF- N-SO7-33/P                      | ACTUAL SAMPLE DEPTI              | н соа<br>0 <sup>1</sup> 303492  | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |
| SHIPPED TO                         | O PNN                                                                            | L-33                                                              | OFFSITE PROPERTY NO.                                      | 0                                | BILL OF LADING/AIR BILL         | NO.                                      |                      |
| MATRIX*<br>A=Air                   | AATRIX*<br>POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                   | PRESERVATION                                              | None = = 1/7/16                  |                                 |                                          |                      |
| Liquids<br>DS=Drum<br>Solids       | concentratio<br>transportatio                                                    | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                              | 6.Months                         |                                 |                                          |                      |
| L=Liquid<br>O=Oil                  | DOE Order                                                                        | 458.1. N/A                                                        | TYPE OF CONTAINER                                         | G/P                              |                                 |                                          |                      |
| SE=Sediment<br>T=Tissue            |                                                                                  |                                                                   | NO. OF CONTAINER(S)                                       | 1                                |                                 |                                          |                      |
| V=Vegetation<br>W=Water<br>WI=Wine |                                                                                  |                                                                   | VOLUME                                                    | 11.                              |                                 |                                          |                      |
| X=Other                            | SPECIAL HA                                                                       | NDLING AND/OR STORAGE                                             | SAMPLE ANALYSIS                                           | Generic<br>Testing (No<br>CAS);  |                                 |                                          |                      |
| SAM                                | PLE NO.                                                                          | MATRIX*                                                           | SAMPLE DATE SAMPLE TIME                                   |                                  |                                 |                                          |                      |
| B347K9                             |                                                                                  | SOIL                                                              | 01-07-16 1220                                             | ~                                |                                 |                                          |                      |

| CHAIN OF POSSES                               | SION            | 2011.       | SIGN/ PRINT NAMES              | 2011      | SPECIAL INSTRUCTIONS                         | المرابقة بالمغرب               |
|-----------------------------------------------|-----------------|-------------|--------------------------------|-----------|----------------------------------------------|--------------------------------|
| RELINQUISHED BY/R                             | AND 7-          | DATE/TIME   | RECEIVED BY/STORED IN JAN 0 7- | DATE/TIME | homogenized material from Liner B after To   | tal Uranium subsampling. It is |
| RELINQUISHED BY/R<br>Kevin Patterson<br>CHPRC | IAN 0 7         | 7 2016 1415 | SSU-1 / JAN 0 7                | 2016 145  | - Uranium bearing mineral phase analysis. PO | RTION B                        |
| SSU-1                                         | JAN 2 6 2       |             | RA. Shepard/CHPRC              | DATE/TIME |                                              |                                |
| RELINQUISHED BY/R                             | AN 2 6          | 2016 1130   | A Lawter and SHAN 2 6 20       | DATE/TIME |                                              |                                |
| RELINQUISHED BY                               | EMOVED FROM     | DATE/TIME   | RECEIVED BY/STORED IN          | DATE/TIME |                                              |                                |
| RELINQUISHED BY/R                             | EMOVED FROM     | DATE/TIME   | RECEIVED BY/STORED IN          | DATE/TIME |                                              |                                |
| RELINQUISHED BY/R                             | EMOVED FROM     | DATE/TIME   | RECEIVED BY/STORED IN          | DATE/TIME |                                              |                                |
| LABORATORY<br>SECTION                         | RECEIVED BY     |             |                                |           | TITLE                                        | DATE/TIME                      |
| FINAL SAMPLE<br>DISPOSITION                   | DISPOSAL METHOD |             | and the second second          |           | DISPOSED BY                                  | DATE/TIME                      |
|                                               | 2/29/2015       | -outprise   | FSR ID = FSR15659              | T         | RVI NUM = TRVI-16-055                        | A-6003-618 (REV 2)             |

| CH2                                | MHill Plateau                | Remediation Company                                                                                                                                               | 1 mar                                                       | CHAIN C     | OF CUS                      | STODY/SAMPLE ANALYSIS RE         | QUEST                           | F15-014-403   |                | PAGE | 1 (        | OF 1             |
|------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------|----------------------------------|---------------------------------|---------------|----------------|------|------------|------------------|
| COLLECTOR                          | J.R. Aguilar/CH              | PRC                                                                                                                                                               | COMPANY CON<br>TODAK, D                                     | ТАСТ        |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8H             |      | D<br>TURN  | ATA              |
| SAMPLING 1<br>C9581, I-003         | LOCATION<br>3                |                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigatio |             |                             | bils                             | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |                |      | 30 Da<br>C | ays / 30<br>Days |
| ICE CHEST                          | NO.                          |                                                                                                                                                                   | FIELD LOGBOOK NO.<br>HNF-N-507-33/15                        |             | 25                          | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT VE | PMENT<br>HICLE |      | ORI        | GINAI            |
| SHIPPED TO                         | HIPPED TO PNNL-33            |                                                                                                                                                                   | OFFSITE PROPERTY NO.                                        |             |                             |                                  | BILL OF LADING/AIR BILL         | 0.            |                |      |            |                  |
| MATRIX*<br>A=Air                   | POSSIBLE S<br>*Contains R    | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                             | VATION      | -None                       | - 3 1/7/16                       |                                 |               |                |      |            |                  |
| Liquids<br>DS=Drum<br>Solide       | concentratio<br>transportati |                                                                                                                                                                   |                                                             | NG TIME     | 6 Mor                       | hths                             |                                 |               |                |      |            |                  |
| L=Liquid<br>O=Oil                  | DOE Order                    | 458.1. N/A                                                                                                                                                        | TYPE OF CONTAINER                                           |             | Split S<br>Liner            | Spoon                            |                                 |               |                |      |            |                  |
| S=Soil<br>SE=Sediment<br>T=Tissue  |                              |                                                                                                                                                                   | NO. OF CO                                                   | NTAINER(S)  | 1                           |                                  |                                 |               |                |      |            |                  |
| V=Vegetation<br>W=Water<br>WI=Wine |                              |                                                                                                                                                                   | VOL                                                         | UME         | 1000 <u>c</u>               | 1.                               |                                 |               |                |      |            |                  |
| X=Other                            | SPECIAL HA                   | ANDLING AND/OR STORAGE                                                                                                                                            | SAMPLE                                                      | ANALYSIS    | Generic<br>Testing<br>CAS}; | E (No                            |                                 |               |                |      |            |                  |
| SAME                               | PLE NO.                      | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                 | SAMPLE TIME |                             |                                  |                                 |               |                |      |            |                  |
| B347L1                             |                              | SOIL                                                                                                                                                              | 01-07-16                                                    | 1220        | L                           | -                                |                                 |               |                |      |            |                  |

| CHAIN OF POSSES                               | SION               |                   | SIGN/ PRINT NAMES                        |                      | SPECIAL INSTRUCTIONS                                                       |                                                                 |         |
|-----------------------------------------------|--------------------|-------------------|------------------------------------------|----------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|---------|
| RELINQUISHED BY/                              | REMOVED FROMAN 0 7 | 2016<br>PATE/TIME | RECEIVED BY/STORED IN<br>Kevin Patterson | AND 7 2015 1330      | ** One liter bottle being sent to ES homogenized material from Liner B     | L is comprised of the residual after Total Uranium subsampling. | It is   |
| RELINQUISHED BY/R<br>Kevin Patterson<br>CHPRC | LEMOVED FROM JAND  | 7 2016 145        | SU-1 146/16                              | AN 0 7 2016 1415     | to be used for the Leachabilty chara<br>Uranium bearing mineral phase anal | cteristic tests and predominate<br>ysis. PORTION A              |         |
| SSU-1                                         | JAN 2              | 6 2010 0930       | RECEIVED BY/STORED IN                    | AH 2 6 2016 ATE/TIME |                                                                            |                                                                 |         |
| RELINQUISHED BY/F                             | ALAH 2 E           | 2016 11:30        | N. Siver 120 Kny WWW                     | JAN 2 6 2016 11:30   |                                                                            |                                                                 |         |
| RELINQUISHED BY                               | EMOYED FROM        | DATE/TIME         | RECEIVED BY/STORED IN                    | DATE/TIME            |                                                                            |                                                                 |         |
| RELINQUISHED BY/F                             | REMOVED FROM       | DATE/TIME         | RECEIVED BY/STORED IN                    | DATE/TIME            |                                                                            |                                                                 |         |
| RELINQUISHED BY/F                             | REMOVED FROM       | DATE/TIME         | RECEIVED BY/STORED IN                    | DATE/TIME            |                                                                            |                                                                 |         |
| LABORATORY<br>SECTION                         | RECEIVED BY        |                   |                                          |                      | TITLE                                                                      | DATE/TIME                                                       |         |
| FINAL SAMPLE<br>DISPOSITION                   | DISPOSAL METHOD    |                   |                                          |                      | DISPOSED BY                                                                | DATE/TIME                                                       |         |
| PRINTED ON 1                                  | 2/29/2015          | STRE.             | FSR ID = FSR1565                         | 9 TF                 | RVL NUM = TRVL-16-055                                                      | A-6003-618                                                      | (REV 2) |

| CH                                 | 2MHill Plateau                | Remediation Company                                                                                                                                               |                                                              | CHAIN       | OF CUST                      | ODY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-404  |       | PAGE           | 1 ( | OF 1             |
|------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|------------------------------|----------------------------------|---------------------------------|--------------|-------|----------------|-----|------------------|
| COLLECTOR                          | R. Agullar/CHPR               | c                                                                                                                                                                 | COMPANY CON<br>TODAK, D                                      | ТАСТ        |                              | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H    |                | D   | ATA<br>AROUND    |
| SAMPLING<br>C9581, I-00            | LOCATION<br>4                 |                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation |             |                              | Is                               | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |       | 30 Days<br>Day |     | iys / 30<br>Days |
| ICE CHEST                          | CE CHEST NO.                  |                                                                                                                                                                   | FIELD LOGBOOK NO.<br>HNF-N-SU7-33/PX                         |             | 25                           | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT V | EMENT | ORIGI          |     | GINA             |
| SHIPPED TO<br>Environme            | ntal Sciences                 | NL-331                                                                                                                                                            | OFFSITE PROP                                                 | ERTY NO.    | 0                            |                                  | BILL OF LADING/AIR BILL         | NO.          |       |                |     |                  |
| MATRIX*<br>A=Air                   | POSSIBLE S<br>*Contains R     | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                              | VATION      | -None<br>Cool i              | 30 Y716                          |                                 |              |       |                |     |                  |
| Liquids<br>DS=Drum<br>Solide       | concentratio<br>transportatio |                                                                                                                                                                   |                                                              |             | 6 Mont                       | hs                               |                                 |              |       |                |     |                  |
| L=Liquid<br>O=Oil                  | DOE Order 4                   | IS8.1. N/A                                                                                                                                                        | TYPE OF CONTAINER                                            |             | Split Sp<br>Liner            | ioon                             |                                 |              |       |                |     |                  |
| S=Soil<br>SE=Sediment<br>T=Tissue  |                               |                                                                                                                                                                   | NO. OF COM                                                   | NTAINER(S)  | 1                            |                                  |                                 |              |       |                |     |                  |
| V=Vegetation<br>W=Water<br>WI=Wine |                               |                                                                                                                                                                   | VOL                                                          | UME         | 1000g                        | See .                            |                                 |              |       |                |     |                  |
| X=Other                            | SPECIAL HA                    | NDLING AND/OR STORAGE                                                                                                                                             | SAMPLE                                                       | ANALYSIS    | Generic<br>Testing<br>(CAS); | (No-                             |                                 |              |       |                |     |                  |
| SAMI                               | PLE NO.                       | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                  | SAMPLE TIME | 1                            |                                  |                                 |              |       |                |     |                  |
| B347L2                             |                               | SOIL                                                                                                                                                              | 01-07-16                                                     | 1313        | -                            |                                  |                                 |              |       |                |     |                  |

| CHAIN OF POSSES             | SION            |             | SIGN/ PRINT NAMES         | 2.11              | SPECIAL INSTRUCTIONS                                                                    |                                                              |
|-----------------------------|-----------------|-------------|---------------------------|-------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| RELINQUISHED BY/F           | JAN 0 7         | 20151330    | RECEIVED BY/STORED IN JAN | LO 7-2015 1330    | ** One liter bottle being sent to ESL is con<br>homogenized material from Liner B after | omprised of the residual<br>Total Uranium subsampling. It is |
| CHPRC                       | AN DIAN D       | 7 2016 1415 | SSU-1                     | JANO 7 2018TIME   | Uranium bearing mineral phase analysis. I                                               | PORTION D                                                    |
| SSU-1                       | JAN 2           | 6 2016 33   | RECEIVED BY/STORED IN     | AN 2 6 2016 0130  |                                                                                         |                                                              |
| RELINQUISHED BY/F           | REMOVED FROM    | 2016 1130   | RECEIVED BY/STORED IN     | AN 2 6 2016 (1.30 |                                                                                         |                                                              |
| RELINQUISHED BY/F           | REMOVED FROM D  | DATE/TIME   | RECEIVED BY/STORED IN     | DATE/TIME         |                                                                                         |                                                              |
| RELINQUISHED BY/F           | REMOVED FROM    | DATE/TIME   | RECEIVED BY/STORED IN     | DATE/TIME         |                                                                                         |                                                              |
| RELINQUISHED BY/F           | EMOVED FROM     | DATE/TIME   | RECEIVED BY/STORED IN     | DATE/TIME         |                                                                                         |                                                              |
| LABORATORY                  | RECEIVED BY     |             |                           |                   | TITLE                                                                                   | DATE/TIME                                                    |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |             |                           |                   | DISPOSED BY                                                                             | DATE/TIME                                                    |
| PRINTED ON 1                | 2/29/2015       |             | FSR ID = FSR15660         | TF                | RVL NUM = TRVL=16-055                                                                   | A-6003-618 (REV 2)                                           |

| CH                      | 2MHill Plateau Remediation Company                                                       |                                   | CHAIN C                       | OF CUS                      | TODY/SAMPLE ANALYSIS RE          | QUEST                           | F15-014-405   |        | PAGE | 1                | OF 1           |
|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------|--------|------|------------------|----------------|
| COLLECTOR<br>J.R. Agu   | ller/CHPRC                                                                               | COMPANY CONT<br>TODAK, D          | TACT                          |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8H     |      | TURM             | ATA<br>IAROUNI |
| SAMPLING<br>C9581, I-00 | LOCATION<br>4                                                                            | 9ROJECT DESIG<br>300-FF-5 Post RC | NATION<br>DD Field Investigat | ion - Sc                    | bils                             | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |        |      | ays / 30<br>Days |                |
| ICE CHEST               | NO.                                                                                      | FIELD LOGBOON                     | (NO.<br>507-33/R              | 25                          | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | GOVERNMENT VI | EHICLE |      | ORI              | GINA           |
| SHIPPED TO              | PUNC-331                                                                                 | OFFSITE PROPE                     | RTY NO. / D                   |                             |                                  | BILL OF LADING/AIR BILL         | NO.           |        |      |                  |                |
| MATRIX*                 | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESER                            | VATION                        | -None<br>Cool               | - 30 1/7/14<br>UC                |                                 |               |        |      |                  |                |
| Liquids<br>DS=Drum      | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                      |                               | 6 Mor                       | nths                             |                                 |               |        |      |                  |                |
| L=Liquid<br>O=Oil       | DOE Order 458.1. N/A                                                                     |                                   |                               | Split S<br>Liner            | Spoon.                           |                                 |               |        |      |                  |                |
| SE=Sediment<br>T=Tissue |                                                                                          | NO. OF CON                        | TAINER(S)                     | 1                           |                                  |                                 |               |        |      |                  |                |
| V=Vegetation<br>W=Water |                                                                                          | VOL                               | UME                           | 1000g                       | 1                                |                                 |               |        |      |                  |                |
| X=Other                 | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE A                          | NALYSIS                       | Generic<br>Testing<br>CAS}; | C (No                            |                                 |               |        |      |                  |                |
| SAM                     | PLE NO. MATRIX*                                                                          | SAMPLE DATE                       | SAMPLE TIME                   | Const.                      |                                  |                                 |               |        |      |                  |                |
| B347L3                  | SOIL                                                                                     | 01-07-16                          | 1313                          | L                           | -                                |                                 |               |        |      |                  |                |

| CHAIN OF POSSES             | SION            |                          | SIGN/ PRINT NAMES     |                           | SPECIAL INSTRUCTIONS                                                                  |                                                               |
|-----------------------------|-----------------|--------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|
| RELINQUISHED BY/R           | HEMOVED FROM    | BATE/FIME<br>7 2015 1370 | RECEIVED BY/STORED IN | 2016<br>DATE/TIME<br>1330 | ** One liter bottle being sent to ESL is c<br>homogenized material from Liner B after | comprised of the residual<br>Total Uranium subsampling. It is |
| RELINQUISHED BY/R           | JAN             | 7 2016 14                | SSU-1                 | JAN D 7 2016 140-         | Uranium bearing mineral phase analysis.                                               | PORTION C                                                     |
| SSU-1                       | A IAN 7         |                          | RECEIVED BY/STORED IN | 2 6 2016 DATE/TIME        |                                                                                       |                                                               |
| RELINQUISHED BY/R           | AN 2 1          | 5 2016 11-30             | RECEIVED BY/STORED IN | 2 6 2016 11-30            |                                                                                       |                                                               |
| RELINQUISHED BYTR           | REMOVED FROM    | DATE/TIME                | RECEIVED BY/STORED IN | DATE/TIME                 |                                                                                       |                                                               |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME                | RECEIVED BY/STORED IN | DATE/TIME                 |                                                                                       |                                                               |
| RELINQUISHED BY/R           | REMOVED FROM    | DATE/TIME                | RECEIVED BY/STORED IN | DATE/TIME                 |                                                                                       |                                                               |
| LABORATORY<br>SECTION       | RECEIVED BY     |                          |                       |                           | TITLE                                                                                 | DATE/TIME                                                     |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD |                          | 1.1.1.1.1.1.1.1       |                           | DISPOSED BY                                                                           | DATE/TIME                                                     |
| PRINTED ON 1                | 2/29/2015       | -37739 -                 | FSR ID = FSR15660     | TI                        | RVL NUM = TRVL-16-055                                                                 | A-6003-618 (REV 2                                             |

| СН                                 | 2MHill Plateau Remediation Company                                                       | CHAIN                                                     | OF CUSTODY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-406 PAGE 1 OF 1                           |
|------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------------------------|
| COLLECTOR                          | R<br>R. Agullar/CHPRC                                                                    | COMPANY CONTACT<br>TODAK, D                               | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H DATA<br>TURNAROUND                  |
| SAMPLING<br>C9581, I-00            | LOCATION<br>14                                                                           | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigat | ion - Soils                      | <b>SAF NO.</b><br>F15-014       | AIR QUALITY 30 Days / 30<br>Days                  |
| ICE CHEST                          | NO.                                                                                      | FIELD LOGBOOK NO.<br>HNF-N-SO7-33/P                       | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE ORIGINAL |
| SHIPPED T                          | PNINL-33                                                                                 | OFFSITE PROPERTY NO.                                      | 0 2                              | BILL OF LADING/AIR BILL         | NO.                                               |
| MATRIX*<br>A=Air<br>DL=Drum        | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVATION                                              | None 30 1/7/16<br>(201 6°C       |                                 |                                                   |
| Liquids<br>DS=Drum<br>Solide       | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                                              | 6 Months                         |                                 |                                                   |
| L=Liquid<br>O=Oil                  | DOE Order 458.1. N/A                                                                     | TYPE OF CONTAINER                                         | G/P                              |                                 |                                                   |
| S=Soil<br>SE=Sediment<br>T=Tissue  |                                                                                          | NO. OF CONTAINER(S)                                       | 1                                |                                 |                                                   |
| V=Vegetation<br>W=Water<br>WI=Wipe |                                                                                          | VOLUME                                                    | 11                               |                                 |                                                   |
| X=Other                            | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANALYSIS                                           | Generic<br>Testing (No<br>CAS);  |                                 |                                                   |
| SAM                                | PLE NO. MATRIX*                                                                          | SAMPLE DATE SAMPLE TIME                                   |                                  |                                 |                                                   |
| B347L4                             | SOIL                                                                                     | 01-07-16 1313                                             | -                                |                                 |                                                   |

| CHAIN OF POSSES                                                                                                                                                 | SSION                                                                                              | DAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIGN/ PRINT NAMES                                                                                                                                                                    |                                                                                                                                                                                  | SPECIAL INSTRUCTIONS                                                                                                                                                     |                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/I<br>J.R. AgbHar/CHPR<br>RELINQUISHED BY/I<br>CHPRC<br>SSU-1<br>RELINQUISHED BY/I<br>RA. Shepard/CHP/<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I | REMOVED FROM JAN 0 7<br>REMOVED FROM JAN 0<br>REMOVED FROM JAN 2 6<br>REMOVED FROM<br>REMOVED FROM | 2016 / 4/ 5<br>0 2016 / | RECEIVED BY/STORED IN<br>Kevin Pattarson<br>CHERC<br>RECEIVED BY/STORED IN<br>SSU-1<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JAN 0 7 2016 1330<br>JAN 0 7 2016 1415<br>JAN 0 7 2016 1415<br>JAN 2 6 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME<br>JAN 2 6 2016 DATE/TIME<br>JATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis | comprised of the residual<br>r Total Uranium subsampling. It is<br>istic tests and predominate<br>. PORTION B |
| RELINQUISHED BY/F                                                                                                                                               | REMOVED FROM                                                                                       | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RECEIVED BY/STORED IN                                                                                                                                                                | DATE/TIME                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                               |
| LABORATORY                                                                                                                                                      | RECEIVED BY                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                  | TITLE                                                                                                                                                                    | DATE/TIME                                                                                                     |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                     | DISPOSAL METHOD                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                  | DISPOSED BY                                                                                                                                                              | DATE/TIME                                                                                                     |
| PRINTED ON 1                                                                                                                                                    | 2/29/2015                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FSR ID = FSR1                                                                                                                                                                        | 5660 T                                                                                                                                                                           | RVL NUM = TRVL-16-055                                                                                                                                                    | A-6003-618 (REV 2                                                                                             |

| CH                          | 2MHill Plateau Remediation Company                                                       | CHAIN C                                                                 | OF CUSTODY/SAMPLE ANALYSIS RE    | QUEST                           | F15-014-412                              | PAGE 1 OF 1          |  |
|-----------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|--|
| COLLECTOR                   | t<br>R. Aguiler/CHPRC                                                                    | COMPANY CONTACT<br>TODAK, D                                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |  |
| SAMPLING<br>C9581, I-00     | LOCATION<br>5                                                                            | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils    |                                  | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |  |
| ICE CHEST                   | NO.                                                                                      | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF.N-SU7-33/R225 3200 - 32.50 |                                  | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL             |  |
| SHIPPED TO                  | PNN (- 33)<br>Intal Sciences Laboratory                                                  | OFFSITE PROPERTY NO.                                                    |                                  | BILL OF LADING/AIR BILL         | NO.                                      |                      |  |
| MATRIX*<br>A=Air<br>DL=Drum | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVATION                                                            | None J14 117/16<br>Cooi 6C       |                                 |                                          |                      |  |
| Liquids<br>DS=Drum          | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                                                            | 6 Months                         |                                 |                                          |                      |  |
| Solids<br>L=Liquid<br>O=Oil | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                     | TYPE OF CONTAINER                                                       | G/P                              | 2                               |                                          |                      |  |
| S=Soil<br>SE=Sediment       |                                                                                          | NO. OF CONTAINER(S)                                                     | 1                                |                                 |                                          |                      |  |
| V=Vegetation<br>W=Water     |                                                                                          | VOLUME                                                                  | 1L                               |                                 |                                          |                      |  |
| WI=Wipe<br>X=Other          | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANALYSIS                                                         | Generic S.C.                     | aple From '                     |                                          |                      |  |
|                             |                                                                                          |                                                                         | UG <sub>I</sub> r.               | CA                              | 01-07-16                                 |                      |  |
| SAM                         | PLE NO. MATRIX*                                                                          | SAMPLE DATE SAMPLE TIME                                                 |                                  |                                 |                                          |                      |  |
| B347M0                      | SOIL                                                                                     | 01-07-16 1335                                                           | L                                |                                 |                                          |                      |  |

| CHAIN OF POSSES                                                                                                                                   | SSION J         | AN 0 7 2016                                                                                     | SIGN/ PRINT NAMES                                                                                                                                          | JAN 0 7 2016                                                                                                   | SPECIAL INSTRUCTIONS                                                                                                                                                       | Contract of the second                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/I<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I<br>R.A. Shepard/CHPRC<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I | REMOVED FROM JA | N 2 7 205 150S<br>DATE/TIME<br>DATE/TIME<br>2 6 2016 130<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU # 1<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRO<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JAN 0 7 20 BATE/TIME<br>JAN 2 6 2016<br>JAN 2 6 2016<br>JAN 2 6 2016<br>JAN 2 6 2016<br>JATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B after<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION B |
| RELINQUISHED BY/                                                                                                                                  | REMOVED FROM    | DATE/TIME                                                                                       | RECEIVED BY/STORED IN                                                                                                                                      | DATE/TIME                                                                                                      |                                                                                                                                                                            |                                                                                                          |
| RELINQUISHED BY/F                                                                                                                                 | REMOVED FROM    | DATE/TIME                                                                                       | RECEIVED BY/STORED IN                                                                                                                                      | DATE/TIME                                                                                                      |                                                                                                                                                                            |                                                                                                          |
| LABORATORY<br>SECTION                                                                                                                             | RECEIVED BY     |                                                                                                 |                                                                                                                                                            |                                                                                                                | TITLE                                                                                                                                                                      | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                       | DISPOSAL METHOD | þ                                                                                               | 1.77 2.1                                                                                                                                                   |                                                                                                                | DISPOSED BY                                                                                                                                                                | DATE/TIME                                                                                                |
| PRINTED ON 1                                                                                                                                      | 2/29/2015       |                                                                                                 | FSR ID = FSR15                                                                                                                                             | 661 T                                                                                                          | RVL NUM = TRVL+16+055                                                                                                                                                      | A-6003-618 (REV 2)5                                                                                      |

| CH                          | MHill Plateau Remediation Company                                                        |                                                                               | CHAIN C     | F CUSTODY                       | /SAMPLE ANALYSIS RE                      | QUEST                           | F15-014-415   | PAGE 1 OF 1        |
|-----------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|---------------------------------|------------------------------------------|---------------------------------|---------------|--------------------|
| COLLECTOR                   | ugullar/CHPRC                                                                            | COMPANY CONTAC<br>TODAK, D                                                    | ст          | TELI<br>37                      | EPHONE NO.<br>5-6427                     | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H | DATA<br>TURNAROUND |
| SAMPLING<br>C9581, I-00     | LOCATION<br>6                                                                            | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils          |             | <b>SAF NO.</b><br>F15-014       |                                          | 30 Days / 30<br>Days            |               |                    |
| ICE CHEST                   | NO.                                                                                      | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>14 NF-N-S07-33/ Pa 25 34.00'- 34.50' |             | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA                         |               |                    |
| SHIPPED TO<br>Environme     | )<br>ntal Sciences Laboratory                                                            | OFFSITE PROPERTY NO.                                                          |             |                                 | BILL OF LADING/AIR BILL                  | NO.                             |               |                    |
| MATRIX*<br>A=Air<br>DI=Drum | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVA                                                                      | TION        | -None I                         | 1/7/16                                   |                                 |               |                    |
| Liquids<br>DS=Drum          | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING                                                                       | TIME        | 6 Months                        |                                          |                                 |               |                    |
| Solids<br>L=Liquid<br>O=Oil | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                     | TYPE OF CON                                                                   | TAINER      | Split Spoon<br>Liner            |                                          |                                 |               |                    |
| S=Soil<br>SE=Sediment       |                                                                                          | NO. OF CONTAINER(S)                                                           |             | 1                               |                                          |                                 |               |                    |
| V=Vegetation<br>W=Water     |                                                                                          | VOLUME                                                                        |             | 1000g                           |                                          |                                 |               |                    |
| WI=Wipe<br>X=Other          | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE AN                                                                     | ALYSIS      | Generic<br>Testing (No<br>CAS); |                                          |                                 |               |                    |
| SAM                         | PLE NO. MATRIX*                                                                          | SAMPLE DATE S                                                                 | SAMPLE TIME |                                 |                                          |                                 |               |                    |
| B347M3                      | SOIL                                                                                     | 01-07-14                                                                      | 1355        | 4                               |                                          |                                 |               |                    |

| CHAIN OF POSSES             | SION JA       | N D 7 2016       | SIGN/ PRINT NAMES                                                     | JAN D 7 2016                   | SPECIAL INSTRUCTIONS                                                                | and the second second                                            |
|-----------------------------|---------------|------------------|-----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|
| RELINQUISHED BY/F           | REMOVED FROM  | 10 7 2015 /SUS   | RECEIVED BY/STORED IN<br>SSU # ( /                                    | JAN 17 2015 ISUS               | homogenized material from Liner B after<br>to be used for the Leachabilty character | er Total Uranium subsampling. It is ristic tests and predominate |
| RELINQUISHED BY/F           | REMOVED FROM  | JAN 2 6 2016 00  | RECEIVED BY/STORED IN                                                 | ADAN 2 6 2016 3930             | Uranium bearing mineral phase analysi                                               | s. PORTION D                                                     |
| RELINQUISHED BY/F           | REMOVED FROM  | N 2 6 2010 11.30 | RECEIVED BY/STORED IN<br>M. SAYde J.M. Shyle<br>RECEIVED BY/STORED IN | JAN 2 6 2016 U-30<br>DATE/TIME |                                                                                     |                                                                  |
| RELINQUISHED BY/F           | REMOVED FROM  | DATE/TIME        | RECEIVED BY/STORED IN                                                 | DATE/TIME                      |                                                                                     |                                                                  |
| RELINQUISHED BY/F           | REMOVED FROM  | DATE/TIME        | RECEIVED BY/STORED IN                                                 | DATE/TIME                      |                                                                                     |                                                                  |
| RELINQUISHED BY/F           | REMOVED FROM  | DATE/TIME        | RECEIVED BY/STORED IN                                                 | DATE/TIME                      |                                                                                     |                                                                  |
| LABORATORY<br>SECTION       | RECEIVED BY   |                  |                                                                       |                                | TITLE                                                                               | DATE/TIME                                                        |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METH | סכ               |                                                                       |                                | DISPOSED BY                                                                         | DATE/TIME                                                        |
| PRINTED ON                  | 12/29/2015    |                  | FSR ID = FSR156                                                       | 62 T                           | RVL NUM = TRVL-16-055                                                               | A-6003-618 (REV 2)                                               |
|                             |               |                  |                                                                       |                                |                                                                                     |                                                                  |

| CH                                | 2MHill Plateau                                                                                                                                                    | Remediation Company                              |                                                                      | CHAIN       | OF CUSTO                        | DY/SAMPLE ANALYSIS REC          | QUEST                                         | F15-014-430 | P/          | GE             | 1 0 | F 1 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|-------------|---------------------------------|---------------------------------|-----------------------------------------------|-------------|-------------|----------------|-----|-----|
| COLLECTOR                         | ullar/CHPRC                                                                                                                                                       |                                                  | COMPANY CONTACTTELEPHOITODAK, D376-6423                              |             | ELEPHONE NO.<br>376-6427        | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8                                  | 6           | T           | DA             | TA  |     |
| SAMPLING<br>C9582, I-00           | LOCATION                                                                                                                                                          |                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |             | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                     | 1                                             | 3           | 0 Day<br>Da | is / 30<br>iys |     |     |
| ICE CHEST                         | NO.                                                                                                                                                               |                                                  | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH                                |             | CTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE ORIG |             | RIG         | INA            |     |     |
| SHIPPED TO<br>Environme           | D PNN                                                                                                                                                             | Laboratory                                       | OFFSITE PROP                                                         | ERTY NO.    | 9.0                             |                                 | BILL OF LADING/AIR BILL NO.                   |             |             |                |     |     |
| MATRIX*                           | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                  | PRESER                                                               | VATION      | None J<br>Cool 60               | LH 117/16                       |                                               |             |             |                |     |     |
| DL=Drum<br>Liquids<br>DS=Drum     |                                                                                                                                                                   |                                                  | HOLDI                                                                |             | 6 Months                        |                                 |                                               |             |             |                |     |     |
| Solids<br>L=Liquid<br>O=Oil       | Goods Regu<br>DOE Order 4                                                                                                                                         | lations but are not releasable per<br>158.1. N/A | TYPE OF C                                                            | ONTAINER    | Split Spoon<br>Liner<br>1       |                                 |                                               |             |             |                |     |     |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                                                                                                                   |                                                  | NO. OF CO                                                            | NTAINER(S)  |                                 |                                 |                                               |             |             |                |     |     |
| V=Vegetation<br>W=Water           |                                                                                                                                                                   |                                                  | VOL                                                                  | UME         | 1000g                           |                                 |                                               |             |             |                |     |     |
| X=Other                           | SPECIAL HA                                                                                                                                                        | NDLING AND/OR STORAGE                            | SAMPLE                                                               | ANALYSIS    | Generic<br>Testing (No<br>CAS); | x.                              |                                               |             |             |                |     |     |
| SAM                               | PLE NO.                                                                                                                                                           | MATRIX*                                          | SAMPLE DATE                                                          | SAMPLE TIME | 1                               |                                 |                                               |             |             |                |     |     |
|                                   | 347N8 SOIL                                                                                                                                                        |                                                  |                                                                      |             |                                 |                                 |                                               |             |             |                |     |     |

| CHAIN OF POSSES                                                                                                            | SION                                                        |                                                                               | SIGN/ PRINT NAMES                                                                                                                                            | and the second sec | SPECIAL INSTRUCTIONS                                                                                                                                                                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                  |            |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|
| RELINQUISHED BY/F<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>A. Shepard/CHPRC<br>RELINQUISHED BY/F | REMOVED FROM JAN 1 1<br>JAN JAN JAN 2<br>LEMOVED FROM JAN 2 | 2010 / Sos<br>Date/Time<br>2 6 2016<br>Date/Time<br>6 2016 \[-30<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSUH I JA<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>M-SNYdu I M Shudu JAN<br>RECEIVED BY/STORED IN | DATE/TIME<br>N 1 1 2016 /SUS<br>DATE/TIME<br>V 2 6 2016 5130<br>V 2 6 2016 5130<br>V 2 6 2016 5130<br>N 2 6 2016 5130<br>DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ** One liter bottle being sent to ESL is com<br>homogenized material from Liner B after To<br>to be used for the Leachabilty characteristic<br>Uranium bearing mineral phase analysis. PO | prised of the residual<br>tal Uranium subsampling.<br>tests and predominate<br>RTION D | It is      |
| ELINQUISHED BY/F                                                                                                           | REMOVED FROM                                                | DATE/TIME                                                                     | RECEIVED BY/STORED IN                                                                                                                                        | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                        |            |
| ELINQUISHED BY/F                                                                                                           | LINQUISHED BY/REMOVED FROM                                  |                                                                               | DATE/TIME RECEIVED BY/STORED IN                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                        |            |
| ELINQUISHED BY/F                                                                                                           | REMOVED FROM                                                | DATE/TIME                                                                     | RECEIVED BY/STORED IN                                                                                                                                        | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                        |            |
| LABORATORY<br>SECTION                                                                                                      | RECEIVED BY                                                 |                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TITLE                                                                                                                                                                                     | DATE/TIME                                                                              |            |
| FINAL SAMPLE<br>DISPOSITION                                                                                                | DISPOSAL METHOD                                             |                                                                               | 25.4.2.72                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DISPOSED BY                                                                                                                                                                               | DATE/TIME                                                                              |            |
| PRINTED ON 1                                                                                                               | 2/29/2015                                                   |                                                                               | FSR ID = FSR15665                                                                                                                                            | TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RVL NUM = TRVL-16-056                                                                                                                                                                     | A-6003-618                                                                             | (REV 2)5 0 |
|                                                                                                                            |                                                             |                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                        |            |

| CH2                        | 2MHill Plateau                                                                                                             | a Remediation Company                                                                    |                          | CHAIN                           | OF CUSTO                       | DDY/SAMPLE ANALYSIS RE          | QUEST                           | F15-014-431        |    | PAGE 1 OF 1          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|--------------------|----|----------------------|
| COLLECTOR<br>J.R. Ag       | gullar/CHPRC                                                                                                               |                                                                                          | COMPANY CONT<br>TODAK, D | ГАСТ                            | T                              | <b>ELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE         | 8H | DATA<br>TURNAROUND   |
| SAMPLING I<br>C9582, I-001 | LOCATION<br>1                                                                                                              |                                                                                          | 300-FF-5 Post RC         | NATION<br>D Field Investigation | tion - Soils                   |                                 | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        |    | 30 Days / 30<br>Days |
| ICE CHEST I                | IPPED TO PNNL-331                                                                                                          |                                                                                          | HNF-N-S                  | (NO.<br>07-33/P                 | 524                            | 21.00' - 21-50                  | COA<br>303492                   | GOVERNMENT VEHICLE |    | ORIGINAL             |
| SHIPPED TO                 | PPED TO PNNL-33<br>ironimental sciences Laboratory<br>POSSIBLE SAMPLE HAZARDS/ REMARK<br>*Contains Radioactive Material at |                                                                                          | OFFSITE PROPE            | RTY NO.                         | 0                              |                                 | BILL OF LADING/AIR BILL         | NO.                |    |                      |
| MATRIX*<br>A=Air           | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                                                      |                                                                                          | PRESER                   | VATION                          | Cool 60                        | J.H 1/7/16                      |                                 |                    |    |                      |
| Liquids<br>DS=Drum         | concentration<br>transportation                                                                                            | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                          | G TIME                          | 6 Months                       | 5                               |                                 |                    |    |                      |
| L=Liquid<br>O=Oil          | DOE Order                                                                                                                  | 458.1. N/A                                                                               | TYPE OF CO               | ONTAINER                        | Split Spor                     | on                              |                                 |                    |    |                      |
| SE=Sediment<br>T=Tissue    |                                                                                                                            |                                                                                          | NO. OF CON               | TAINER(S)                       | 1                              |                                 |                                 |                    |    |                      |
| V=Vegetation<br>W=Water    |                                                                                                                            |                                                                                          | VOL                      | UME                             | 1000g                          |                                 |                                 |                    |    |                      |
| X=Other                    | SPECIAL H                                                                                                                  | ANDLING AND/OR STORAGE                                                                   | SAMPLE A                 | NALYSIS                         | Generic<br>Testing {N<br>CAS}; | ło                              |                                 |                    |    |                      |
| SAME                       | PLE NO.                                                                                                                    | MATRIX*                                                                                  | SAMPLE DATE              | SAMPLE TIME                     | -                              |                                 |                                 |                    |    |                      |
| B347N9                     |                                                                                                                            | SOIL                                                                                     | 01-11-16                 | 1210                            | L                              | - 50                            |                                 |                    |    |                      |

| RECEIVED BY/STORED IN                                                                                                                                                                                                                                                                                                              | ** One liter bottle being sent to ESL is comprised of                                                                                                                                                                               | the residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>DATE/TIME<br>RECEIVED BY/STORED IN<br>DATE/TIME | to be used for the Leachabilty characteristic tests and<br>Uranium bearing mineral phase analysis. PORTION C                                                                                                                        | n subsampling. It is<br>predominate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RECEIVED BY/STORED IN DATE/TIME                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                    | TITLE                                                                                                                                                                                                                               | ATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                    | DISPOSED BY                                                                                                                                                                                                                         | ATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 1                                                                                                                                                                                                                                                                                                                                | RECEIVED BY/STORED IN DATE/TIME<br>R.A. Shepard/CHPR<br>MECEIVED BY/STORED IN DATE/TIME<br>RECEIVED BY/STORED IN DATE/TIME<br>RECEIVED BY/STORED IN DATE/TIME<br>RECEIVED BY/STORED IN DATE/TIME<br>RECEIVED BY/STORED IN DATE/TIME | RECEIVED BY/STORED IN DATE/TIME<br>RECEIVED BY/STORED IN DATE/TIME |

| CH                          | 2MHill Plateau                | Remediation Company                                                                                                                                               |                                                                      | CHAIN C     | OF CUST                                | ODY/SAMPLE ANALYSIS REC          | QUEST                           | F15-014-432 |                      | PAGE 1 OF 1        |
|-----------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|----------------------------------------|----------------------------------|---------------------------------|-------------|----------------------|--------------------|
| COLLECTOR                   | R<br>Aguilar/CHPRC            |                                                                                                                                                                   | COMPANY CON<br>TODAK, D                                              | ГАСТ        |                                        | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H                   | DATA<br>TURNAROUND |
| SAMPLING<br>C9582, I-00     | MPLING LOCATION<br>582, I-001 |                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Solis |             |                                        | <b>SAF NO.</b><br>F15-014        | AIR QUALITY                     |             | 30 Days / 30<br>Days |                    |
| ICE CHEST                   |                               |                                                                                                                                                                   | FIELD LOGBOOK NO. ACTUAL SA                                          |             | ACTUAL SAMPLE DEPTH<br>えひ. 50' み1. 00' | COA<br>303492                    | GOVERNMENT VEHICLE              |             | ORIGINAL             |                    |
| SHIPPED TO                  | HIPPED TO PUNL-33/            |                                                                                                                                                                   | OFFSITE PROPE                                                        | RTY NO. D   |                                        |                                  | BILL OF LADING/AIR BILL         | NO.         |                      |                    |
| MATRIX*<br>A=Air            | POSSIBLE S<br>*Contains Ra    | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                      | VATION      | None.                                  | Jul 1/7/16                       |                                 |             |                      |                    |
| Liquids<br>DS=Drum          | concentratio<br>transportatio |                                                                                                                                                                   |                                                                      | IG TIME     | 6 Monti                                | hs                               |                                 |             |                      |                    |
| Solids<br>L=Liquid<br>O=Oil | Goods Regul<br>DOE Order 4    | lations but are not releasable per<br>158.1. N/A                                                                                                                  | TYPE OF C                                                            | ONTAINER    | G/P                                    |                                  |                                 |             |                      |                    |
| S=Soil<br>SE=Sediment       |                               |                                                                                                                                                                   | NO. OF COM                                                           | TAINER(S)   | Į.                                     |                                  |                                 |             |                      |                    |
| V=Vegetation<br>W=Water     |                               |                                                                                                                                                                   | VOL                                                                  | UME         | 1L                                     |                                  |                                 |             |                      |                    |
| WI=Wipe<br>X=Other          | SPECIAL HA                    | NDLING AND/OR STORAGE                                                                                                                                             | SAMPLE A                                                             | ANALYSIS    | Generic<br>Testing<br>CAS);            | {No                              |                                 |             |                      |                    |
| SAM                         | PLE NO.                       | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                          | SAMPLE TIME |                                        |                                  |                                 |             |                      |                    |
| B347P0                      |                               | SOIL                                                                                                                                                              | 01-11-16                                                             | 1210        | ~                                      | ~                                |                                 |             |                      |                    |

| CHAIN OF POSSES                                                                                                                                                                                      | SION            |                                                                                                     | SIGN/ PRINT NAMES                                                                                                                                                                                                                                                                                                                          |           | SPECIAL INSTRUCTIONS                                                                                                                    |                                                                                                 |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|
| RELINQUISHED BY/REMOVED FROM JAN 1<br>RELINQUISHED BY/REMOVED FROM JAN 2<br>RELINQUISHED BY/REMOVED FROM JAN 2<br>R.A. Shepard/CHPRO<br>RELINQUISHED BY/REMOVED FROM<br>RELINQUISHED BY/REMOVED FROM |                 | DATE/TIME<br>2016 / Sos<br>DATE/TIME<br>2016 33<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ATE/TIME RECEIVED BY/STORED IN JAN 1 1 2016 ATE/TI<br>(016 30)<br>ATE/TIME RECEIVED BY/STORED IN JAN 2 6 2016 ATE/TI<br>R.A. Shepard/CMPRO<br>R.A. Shepard/CMPRO<br>ATE/TIME RECEIVED BY/STORED IN DATE/TI<br>ATE/TIME RECEIVED BY/STORED IN DATE/TI<br>DATE/TIME RECEIVED BY/STORED IN DATE/TI<br>DATE/TIME RECEIVED BY/STORED IN DATE/TI |           | ** One liter bottle being sent to ESL is considered to be used for the Leachabilty characterist Uranium bearing mineral phase analysis. | mprised of the residual<br>Fotal Uranium subsampling.<br>tic tests and predominate<br>PORTION B | It is     |
| RELINQUISHED BY/                                                                                                                                                                                     | REMOVED FROM    | DATE/TIME                                                                                           | RECEIVED BY/STORED IN                                                                                                                                                                                                                                                                                                                      | DATE/TIME |                                                                                                                                         |                                                                                                 |           |
| LABORATORY                                                                                                                                                                                           | RECEIVED BY     |                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |           | TITLE                                                                                                                                   | DATE/TIME                                                                                       |           |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                                                          | DISPOSAL METHOD |                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |           | DISPOSED BY                                                                                                                             | DATE/TIME                                                                                       |           |
| PRINTED ON                                                                                                                                                                                           | 12/29/2015      |                                                                                                     | FSR ID = FSR15665                                                                                                                                                                                                                                                                                                                          | T         | RVL NUM = TRVL+16-056                                                                                                                   | A-6003-618 (                                                                                    | (REV-2)5- |

| CH2                           | MHill Plateau                                                          | Remediation Company                                                                                                                                               |                                                                         | CHAIN C                        | OF CUST                     | ODY/SAMPLE ANALYSIS RI    | EQUEST                          | F15-014-435 |     | PAGE | 1 0          | F 1           |
|-------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------|---------------------------------|-------------|-----|------|--------------|---------------|
| COLLECTOR<br>J.R. A           | guilar/CHPRC                                                           |                                                                                                                                                                   | COMPANY CON<br>TODAK, D                                                 | ТАСТ                           |                             | TELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H  |      | DA<br>TURNA  | TA<br>ROUND   |
| SAMPLING<br>C9582, I-00       | LOCATION                                                               |                                                                                                                                                                   | PROJECT DESIG                                                           | SNATION<br>DD Field Investigat | ion - Soi                   | Is                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY |     |      | 30 Day<br>Da | s / 30<br>iys |
| ICE CHEST                     |                                                                        |                                                                                                                                                                   | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPT<br>HNF-N-SO7-33/R224, 24,00'-24,50 |                                | ACTUAL SAMPLE DEPTH         | COA<br>303492             | GOVERNMENT VEHICLE              |             | INA |      |              |               |
| SHIPPED TO<br>Environme       | D DNI                                                                  | UL-331                                                                                                                                                            | OFFSITE PROPE                                                           | ERTY NO. 0                     |                             |                           | BILL OF LADING/AIR BILL         | NO.         |     |      |              |               |
| ATRIX*                        | POSSIBLE S                                                             | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                         | VATION                         | None<br>Cool 6              | JIH 1/7/16                |                                 |             |     |      |              |               |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio<br>transportation                                         |                                                                                                                                                                   |                                                                         |                                | 6 Mont                      | hs                        |                                 |             |     |      |              |               |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regu<br>DOE Order                                                | lations but are not releasable per<br>458.1. N/A                                                                                                                  | TYPE OF C                                                               | ONTAINER                       | Split Sp<br>Liner           | boon                      |                                 |             |     |      |              |               |
| S=Soil<br>SE=Sediment         |                                                                        |                                                                                                                                                                   | NO. OF CONTAINER(S)                                                     |                                | 1                           |                           |                                 |             |     |      |              |               |
| V=Vegetation<br>W=Water       |                                                                        |                                                                                                                                                                   | VOLUME                                                                  |                                | 1000g                       |                           |                                 |             |     |      |              |               |
| WI=Wipe<br>X=Other            | Wagetation<br>Water<br>=-Wipe<br>Other SPECIAL HANDLING AND/OR STORAGE |                                                                                                                                                                   | SAMPLE                                                                  | ANALYSIS                       | Generic<br>Testing<br>CAS}; | (No                       |                                 |             |     |      |              |               |
|                               | PLE NO.                                                                | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                             | SAMPLE TIME                    | 1                           |                           |                                 |             |     |      |              |               |
| SAM                           |                                                                        |                                                                                                                                                                   |                                                                         |                                |                             |                           |                                 |             |     |      |              |               |

| CHAIN OF POSSES                                                                                                                                 | SION                                                                                      |                                                                                              | SIGN/ PRINT NAMES                                                                                                                                      |                                                                                                                                   | SPECIAL INSTRUCTIONS                                                                                                                                                  |                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>J.R. Aguilar/CHPR<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM<br>JAN 1<br>JAN 2<br>JAN 2<br>JAN 2<br>JAN 2<br>REMOVED FROM<br>REMOVED FROM | DATE/TIME<br>1 2016 /SUS<br>6 2016/TIME<br>2010 11:30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSUH<br>RA. Shepard/CHPPO<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | AN 1 1 2016 / SOS<br>4 2 6 2010 <sup>60ATE/TIME</sup><br>AN 2 6 2010 <sup>60ATE/TIME</sup><br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B aft<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analysi | s comprised of the residual<br>er Total Uranium subsampling. It is<br>ristic tests and predominate<br>is, PORTION D |
| RELINQUISHED BY/                                                                                                                                | REMOVED FROM                                                                              | DATE/TIME                                                                                    | RECEIVED BY/STORED IN                                                                                                                                  | DATE/TIME                                                                                                                         |                                                                                                                                                                       |                                                                                                                     |
| LABORATORY<br>SECTION                                                                                                                           | RECEIVED BY                                                                               |                                                                                              |                                                                                                                                                        |                                                                                                                                   | TITLE                                                                                                                                                                 | DATE/TIME                                                                                                           |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                     | DISPOSAL METHOD                                                                           |                                                                                              |                                                                                                                                                        |                                                                                                                                   | DISPOSED BY                                                                                                                                                           | DATE/TIME                                                                                                           |
| PRINTED ON                                                                                                                                      | PRINTED ON 12/29/2015                                                                     |                                                                                              | FSR ID = FSR15666 TRV                                                                                                                                  |                                                                                                                                   | RVL NUM = TRVL-16-056                                                                                                                                                 | A-6003-618 (REV 2)                                                                                                  |

| CH2                               | 2MHill Plateau                   | Remediation Company                                              | CHAIN C                                                                        | OF CUSTO                       | DY/SAMPLE ANALYSIS RI    | EQUEST                                         | F15-014-436 |       | PAGE | 1          | OF 1             |
|-----------------------------------|----------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|--------------------------|------------------------------------------------|-------------|-------|------|------------|------------------|
| COLLECTOR                         | t<br>7. Aguilar/CHPRC            |                                                                  | COMPANY CONTACT<br>TODAK, D                                                    | T                              | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D                | PRICE CODE  | 8H    |      | D          | ATA              |
| SAMPLING<br>C9582, I-00           | LOCATION<br>2                    |                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigat                      | tion - Soils                   |                          | <b>SAF NO.</b><br>F15-014                      | AIR QUALITY |       |      | 30 Da<br>C | ays / 30<br>Days |
| ICE CHEST                         | INPPED TO DANAL 22 (             |                                                                  | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF- N-SO7-33   P2 24 23.50' - 24.00' |                                | COA<br>303492            | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE ORIGI |             | GINAL |      |            |                  |
| SHIPPED TO                        | PN                               | NL-331                                                           | OFFSITE PROPERTY NO. / C                                                       | 5                              |                          | BILL OF LADING/AIR BILL                        | NO.         |       |      |            |                  |
| MATRIX*<br>A=Air                  | POSSIBLE SAMPLE HAZARDS/ REMARKS |                                                                  | PRESERVATION                                                                   | -None-                         | 514 1/7/16<br>E          |                                                |             |       |      |            |                  |
| Liquids<br>DS=Drum                | concentratio<br>transportatio    | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                                                   | 6 Months                       |                          |                                                |             |       |      |            |                  |
| Solids<br>L=Liquid<br>O=Oil       | DOE Order                        | ations but are not releasable per<br>158.1. N/A                  | TYPE OF CONTAINER                                                              | Split Spor                     | n<br>-                   |                                                |             |       |      |            |                  |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                  |                                                                  | NO. OF CONTAINER(S)                                                            | 1                              |                          |                                                |             |       |      |            |                  |
| V=Vegetation<br>W=Water           |                                  |                                                                  | VOLUME                                                                         | 1000g                          |                          |                                                |             |       |      |            |                  |
| X=Other                           | SPECIAL HA                       | NDLING AND/OR STORAGE                                            | SAMPLE ANALYSIS                                                                | Generic<br>Testing {N<br>CAS}; | lo                       |                                                |             |       |      |            |                  |
| SAM                               | PLE NO.                          | MATRIX*                                                          | SAMPLE DATE SAMPLE TIME                                                        | -                              |                          |                                                |             |       |      |            |                  |
| B347P4                            | B347P4 SOIL                      |                                                                  | 01-11-16 1232                                                                  | ~                              | 21.                      |                                                |             |       |      |            |                  |

| CHAIN OF POSSES                                                                                                            | SION                                                                           |                                                                                         | SIGN/ PRINT NAMES                                                                                                              |                                                     | SPECIAL INSTRUCTIONS                                                                                                                                                                    | Such a substant                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RA. Shepard/CHPRC<br>RELINQUISHED BY/F | REMOVED FROM JAN 1<br>REMOVED FROM JAN 2<br>REMOVED FROM JAN 2<br>REMOVED FROM | DATE/TIME<br>1 2016 / 505<br>DATE/TIME<br>6 2016 DATE/TIME<br>6 2016 11:30<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSUHI<br>RA. ShepardiCHPRO<br>M. SNAW, STORED IN<br>M. SNAW, JAN SNAW, JAN 2<br>RECEIVED BY/STORED IN | DATE/TIME<br>1 1 2016 /SOS<br>DATE/TIME<br>2 6 2016 | ** One liter bottle being sent to ESL is con-<br>homogenized material from Liner B after 1<br>to be used for the Leachability characterist<br>Uranium bearing mineral phase analysis. F | mprised of the residual<br>Total Uranium subsampling. It is<br>ic tests and predominate<br>PORTION C |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                                                   | DATE/TIME                                                                               | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                                           |                                                                                                                                                                                         |                                                                                                      |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                                                   | DATE/TIME                                                                               | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                                           |                                                                                                                                                                                         |                                                                                                      |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                                                   | DATE/TIME                                                                               | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                                           | *                                                                                                                                                                                       |                                                                                                      |
| LABORATORY<br>SECTION                                                                                                      | RECEIVED BY                                                                    |                                                                                         |                                                                                                                                |                                                     | TITLE                                                                                                                                                                                   | DATE/TIME                                                                                            |
| FINAL SAMPLE<br>DISPOSITION                                                                                                | DISPOSAL METHOD                                                                |                                                                                         |                                                                                                                                |                                                     | DISPOSED BY                                                                                                                                                                             | DATE/TIME                                                                                            |
| PRINTED ON                                                                                                                 | 12/29/2015                                                                     |                                                                                         | FSR ID = FSR15666                                                                                                              | TF                                                  | RVL NUM = TRVL+16-056                                                                                                                                                                   | A-6003-618 (REV 2)                                                                                   |

| CH2                                                   | MHill Plateau Remediation Company                                                        | CHAIN C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OF CUSTODY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-437        | PAGE 1 OF 1          |
|-------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------|----------------------|
| COLLECTOR                                             | J.R. Aguilar/CHPRC                                                                       | COMPANY CONTACT<br>TODAK, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C9582, I-002                            | LOCATION<br>2                                                                            | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion - Soils                      | <b>SAF NO.</b><br>F15-014       | AIR QUALITY        | 30 Days / 30<br>Days |
| ICE CHEST I                                           | NO.                                                                                      | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-507-33 / β-26 23,00'-23,50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | COA<br>303492                   | GOVERNMENT VEHICLE |                      |
| SHIPPED TO<br>Environme                               | PNNL-33)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BILL OF LADING/AIR BILL NO.      |                                 |                    |                      |
| ATRIX*                                                | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at                    | PRESERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None Jelf 1/2/16<br>Cool 6C      |                                 |                    |                      |
| Liquids<br>DS=Drum                                    | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous | HOLDING TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 Months                         |                                 |                    |                      |
| Solids<br>L=Liquid<br>O=Oil                           | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                     | TYPE OF CONTAINER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G/P                              |                                 |                    |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue                     |                                                                                          | NO. OF CONTAINER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                |                                 |                    |                      |
| SE=Sediment<br>T=Tissue<br>V=Vegetation               |                                                                                          | VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1L                               |                                 |                    |                      |
| V=Vegetation<br>W=Water                               | and the second second second                                                             | 1000 million - 10000 million - 1000 million - 10000 |                                  |                                 |                    |                      |
| V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other         | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Genenic<br>Testing (No<br>CAS);  |                                 |                    |                      |
| V=Vegetation<br>W=Water<br>WI=Wipe<br>X=Other<br>SAMI | SPECIAL HANDLING AND/OR STORAGE                                                          | SAMPLE ANALYSIS SAMPLE DATE SAMPLE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Genenic<br>Testing (No<br>CAS);  |                                 |                    |                      |

| CHAIN OF POSSES             | SION                                     |                                                      | SIGN/ PRINT NAMES                                                                                                              |                                       | SPECIAL INSTRUCTIONS                                                                                                                                                 |                                                                                                                  |       |
|-----------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------|
| RELINQUISHED BY/F           | REMOVED FROM JAN 1<br>REMOVED FROM JAN 2 | 1 2016 ISUS<br>DATE/TIME<br>6 2016 CSUS<br>DATE/TIME | RECEIVED BY/STORED IN JA<br>SSU H /<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRCY<br>RA. Shepard/CHPRCY<br>RA. Shepard/CHPRCY | N 1 1 2016 / SDS<br>AN 2 6 2016 - SDS | ** One liter bottle being sent to ESL i<br>homogenized material from Liner B aft<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analys | s comprised of the residual<br>ter Total Uranium subsampling.<br>eristic tests and predominate<br>sis, PORTION B | It is |
| R.A. Shepard/CHPRC          | MARAN 21                                 | 6 2016 1130                                          | Alanter a It IA                                                                                                                | N 2 6 2016 (130                       |                                                                                                                                                                      |                                                                                                                  |       |
| RELINQUISHED BY             | REMOVED FROM                             | DATE/TIME                                            | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                             |                                                                                                                                                                      |                                                                                                                  |       |
| RELINQUISHED BY/F           | REMOVED FROM                             | DATE/TIME                                            | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                             |                                                                                                                                                                      |                                                                                                                  |       |
| RELINQUISHED BY/            | REMOVED FROM                             | DATE/TIME                                            | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                             |                                                                                                                                                                      |                                                                                                                  |       |
| RELINQUISHED BY/            | REMOVED FROM                             | DATE/TIME                                            | RECEIVED BY/STORED IN                                                                                                          | DATE/TIME                             |                                                                                                                                                                      |                                                                                                                  |       |
| LABORATORY<br>SECTION       | RECEIVED BY                              |                                                      |                                                                                                                                |                                       | TITLE                                                                                                                                                                | DATE/TIME                                                                                                        |       |
| FINAL SAMPLE<br>DISPOSITION | DISPOSAL METHOD                          |                                                      |                                                                                                                                |                                       | DISPOSED BY                                                                                                                                                          | DATE/TIME                                                                                                        |       |
| PRINTED ON                  | 12/29/2015                               | 102 9 1                                              | FSR ID = FSR15666                                                                                                              | т                                     | RVL NUM = TRVL-16-056                                                                                                                                                | A-6003-618 (                                                                                                     | REV 2 |

| CH2                               | MHill Plateau                    | Remediation Company                                              |                                                                      | CHAIN OF    | FCUSTOD                            | DY/SAMPLE ANALYSIS RE   | QUEST                                    | F15-014-440   | PAGE 1 OF 1        |
|-----------------------------------|----------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|-------------|------------------------------------|-------------------------|------------------------------------------|---------------|--------------------|
| COLLECTOR                         | J.R. Agullar/                    | CHPRC                                                            | COMPANY CONTA<br>TODAK, D                                            | АСТ         | TEI<br>3                           | LEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D          | PRICE CODE 8H | DATA<br>TURNAROUND |
| SAMPLING 1<br>C9582, I-002        | OCATION                          |                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |             | <b>SAF NO.</b><br>F15-014          | AIR QUALITY             | 30 Days / 30<br>Days                     |               |                    |
| ICE CHEST                         | NO.                              |                                                                  | FIELD LOGBOOK NO. ACTUAL SAM                                         |             | TUAL SAMPLE DEPTH                  | COA<br>303492           | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA       |                    |
| SHIPPED TO                        | PNNI<br>mtal Sciences            | - 33                                                             | OFFSITE PROPER                                                       | TY NO.      | 900                                |                         | BILL OF LADING/AIR BILL                  | NO.           |                    |
| A=Air                             | POSSIBLE SAMPLE HAZARDS/ REMARKS |                                                                  | PRESERV                                                              | ATION       | None J                             | 11/11/16                |                                          |               |                    |
| DL=Drum<br>Liquids<br>DS=Drum     | concentratio                     | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING                                                              | 5 TIME      | 6 Months                           |                         |                                          |               |                    |
| Solids<br>L=Liquid<br>O=Oil       | Goods Regu<br>DOE Order          | lations but are not releasable per<br>458.1. N/A                 | TYPE OF CO                                                           | NTAINER     | Split Spoon<br>Liner<br>1<br>1000g |                         |                                          |               |                    |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                  |                                                                  | NO. OF CONT                                                          | TAINER(S)   |                                    |                         |                                          |               |                    |
| V=Vegetation<br>W=Water           |                                  |                                                                  | VOLU                                                                 | ME          |                                    |                         |                                          |               |                    |
| X=Other                           | SPECIAL HA                       | INDLING AND/OR STORAGE                                           | SAMPLE AN                                                            | NALYSIS     | Generic<br>Testing {No<br>CAS};    |                         |                                          |               |                    |
|                                   |                                  |                                                                  |                                                                      |             |                                    |                         |                                          |               |                    |
| SAM                               | PLE NO.                          | MATRIX*                                                          | SAMPLE DATE                                                          | SAMPLE TIME | -                                  |                         |                                          |               |                    |

| CHAIN OF POSSES                                                                                                                                  | SION                                                                                                                                                                                         | SIGN/ PRINT NAMES                                                                                                                                                    |                                                                                                                  | SPECIAL INSTRUCTIONS                                                                                                                                                    | and the second second                                                                                      |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|
| RELINQUISHED BY/F<br>J.R. Aquilar/CHPRC<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM JAN 1 1 2016 /505<br>REMOVED FROM JAN 2 6 2016 /505<br>ALE/TIME<br>REMOVED FROM JAN 2 6 2016 /130<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN<br>RA. Shepard/CHPRR<br>R.A. Shepard/CHPRR<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | 1 2016 ATE/TIME<br>1 2016 ATE/TIME<br>6 2016 ATE/TIME<br>6 2016 DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analysis | comprised of the residual<br>er Total Uranium subsampling.<br>ristic tests and predominate<br>s. PORTION A | It is   |
| RELINQUISHED BY/F                                                                                                                                | REMOVED FROM DATE/TIME                                                                                                                                                                       | RECEIVED BY/STORED IN                                                                                                                                                | DATE/TIME                                                                                                        |                                                                                                                                                                         |                                                                                                            |         |
| LABORATORY<br>SECTION                                                                                                                            | RECEIVED BY                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                  | τιτιε                                                                                                                                                                   | DATE/TIME                                                                                                  |         |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                      | DISPOSAL METHOD                                                                                                                                                                              |                                                                                                                                                                      | 1                                                                                                                | DISPOSED BY                                                                                                                                                             | DATE/TIME                                                                                                  |         |
| PRINTED ON 1                                                                                                                                     | 2/29/2015                                                                                                                                                                                    | FSR ID = FSR15666                                                                                                                                                    | Jart T                                                                                                           | RVL NUM = TRVL-16-056                                                                                                                                                   | A-6003-618                                                                                                 | (REV 2) |

| CH2                           | MHill Plateau             | Remediation Company                                               | CHAIN                                                    | OF CUSTOD                       | Y/SAMPLE ANALYSIS RE   | QUEST                           | F15-014-441  |        | PAGE 1 OF 1          |
|-------------------------------|---------------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|------------------------|---------------------------------|--------------|--------|----------------------|
| COLLECTOR                     | guilar/CHPRC              |                                                                   | COMPANY CONTACT<br>TODAK, D                              | TEI<br>3                        | LEPHONE NO.<br>76-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H     | DATA<br>TURNAROUND   |
| SAMPLING 1<br>C9582, I-003    | LOCATION                  |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investiga | tion - Soils                    |                        | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |        | 30 Days / 30<br>Days |
| ICE CHEST I                   | NO,                       |                                                                   | FIELD LOGBOOK NO.                                        | AC                              | 6.50'- 27.00           | COA<br>303492                   | GOVERNMENT V | EHICLE | ORIGINAL             |
| SHIPPED TO<br>Environme       | PNI<br>ntal Sciences      | UL-33  <br>Laboratory                                             | OFFSITE PROPERTY NO.                                     | 8-14                            |                        | BILL OF LADING/AIR BILL         | NO.          |        |                      |
| ATRIX*                        | POSSIBLE S                | AMPLE HAZARDS/ REMARKS                                            | PRESERVATION                                             | None Casiloc                    | 117/14                 |                                 |              |        |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio              | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                             | 6 Months                        |                        |                                 |              |        |                      |
| Solids<br>L=Liquid<br>O=Oil   | Goods Regu<br>DOE Order 4 | lations but are not releasable per<br>458.1. N/A                  | TYPE OF CONTAINER                                        | Split Spoon<br>Liner            |                        |                                 |              |        |                      |
| S=Soil<br>SE=Sediment         |                           |                                                                   | NO. OF CONTAINER(S)                                      | 1                               |                        |                                 |              |        |                      |
| V=Vegetation<br>W=Water       |                           |                                                                   | VOLUME                                                   | 1000g                           |                        |                                 |              |        |                      |
| WI=Wipe<br>X=Other            | SPECIAL HA                | NDLING AND/OR STORAGE                                             | SAMPLE ANALYSIS                                          | Generic<br>Testing {No<br>CAS}; |                        |                                 |              |        |                      |
| SAMI                          | PLE NO.                   | MATRIX*                                                           | SAMPLE DATE SAMPLE TIME                                  | 1                               |                        |                                 |              |        |                      |
| B347D0                        |                           | SOIL                                                              | 0111 11 1755                                             | 1.4                             |                        |                                 |              |        |                      |

| CHAIN OF POSSES                                                                                                        | SSION                                                    |                                                                                                           | SIGN/ PRINT NAMES                                                                                                                                  |                                                                                                                    | SPECIAL INSTRUCTIONS                                                                                                                                                           |                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/<br>J.R. Aguilar/CHPI<br>RELINQUISHED BY/<br>R.A. Shepard/CHPR<br>RELINQUISHED BY/<br>RELINQUISHED BY/ | REMOVED FROM JAN<br>REMOVED FROM JAN 2 6<br>REMOVED FROM | DATE/TIME<br>1 2016 /SQ<br>DATE/TIME<br>2 6 2016 (33<br>DATE/TIME<br>2010 11-30<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | JAN 1 1 2016 / JSO 5<br>N 2 6 2016 DATE/TIME<br>N 2 6 2016 DATE/TIME<br>N 2 6 2016 11:30<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is of<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteri<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION D |
| RELINQUISHED BY/                                                                                                       | REMOVED FROM                                             | DATE/TIME                                                                                                 | RECEIVED BY/STORED IN                                                                                                                              | DATE/TIME                                                                                                          |                                                                                                                                                                                |                                                                                                          |
| RELINQUISHED BY/                                                                                                       | REMOVED FROM                                             | DATE/TIME                                                                                                 | RECEIVED BY/STORED IN                                                                                                                              | DATE/TIME                                                                                                          |                                                                                                                                                                                |                                                                                                          |
| LABORATORY                                                                                                             | RECEIVED BY                                              |                                                                                                           |                                                                                                                                                    |                                                                                                                    | TITLE                                                                                                                                                                          | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                                                                            | DISPOSAL METHOD                                          |                                                                                                           |                                                                                                                                                    |                                                                                                                    | DISPOSED BY                                                                                                                                                                    | DATE/TIME                                                                                                |
| PRINTED ON                                                                                                             | 12/29/2015                                               |                                                                                                           | FSR ID = FSR15667                                                                                                                                  | т                                                                                                                  | RVL NUM = TRVL-16-056                                                                                                                                                          | A-6003-618 (REV 2)                                                                                       |

| CH2                         | MHill Platea                                                          | Remediation Company                                                                      |                                                                      | CHAIN O     | F CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE ANALYSIS R    | EQUEST                          | F15-014-442        | PAGE 1 OF 1        |
|-----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|--------------------|--------------------|
| COLLECTOR                   | J.R. Aguila                                                           | /CHPRC                                                                                   | COMPANY CON<br>TODAK, D                                              | ТАСТ        | TEL<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPHONE NO.<br>6-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H      | DATA<br>TURNAROUNI |
| SAMPLING L<br>C9582, I-003  |                                                                       |                                                                                          | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |             | <b>SAF NO.</b><br>F15-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AIR QUALITY          | 30 Days / 30<br>Days            |                    |                    |
| ICE CHEST N                 |                                                                       |                                                                                          | FIELD LOGBOOK NO.<br>HNF-N SOD-33/R.2L                               |             | ACTUAL SAMPLE DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | COA<br>303492                   | GOVERNMENT VEHICLE |                    |
| SHIPPED TO<br>Environmen    | PN                                                                    | NE 33(                                                                                   | OFFSITE PROPE                                                        | RTY NO.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | BILL OF LADING/AIR BILL         | NO.                |                    |
| MATRIX*<br>A=Air            | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                                          | PRESER                                                               | VATION      | None J.<br>Casiloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17116                |                                 |                    |                    |
| Liquids<br>DS=Drum          | concentrati<br>transportat                                            | concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                      | IG TIME     | 6 Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                 |                    |                    |
| Solids<br>L=Liquid<br>O=Oil | Goods Reg<br>DOE Order                                                | Goods Regulations but are not releasable per<br>DOE Order 458.1. N/A                     | TYPE OF C                                                            | ONTAINER    | Split Spoon<br>Liner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                 |                    |                    |
| S=Soil<br>SE=Sediment       |                                                                       |                                                                                          | NO. OF COM                                                           | TAINER(S)   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                 |                    |                    |
| V=Vegetation<br>W=Water     |                                                                       |                                                                                          | VOLUME                                                               |             | 1000g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                 |                    |                    |
| WI=Wipe<br>X=Other          | SPECIAL H                                                             | SPECIAL HANDLING AND/OR STORAGE                                                          |                                                                      | ANALYSIS    | Generic<br>Testing {Nu<br>CAS};                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                    |                    |
| SAME                        | PLE NO.                                                               | MATRIX*                                                                                  | SAMPLE DATE                                                          | SAMPLE TIME |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                    |                    |
|                             | B347R0 SOIL                                                           |                                                                                          |                                                                      |             | 1 manufacture and the second s |                      |                                 |                    |                    |

| CHAIN OF POSSES                                             | SION             |                           | SIGN/ PRINT NAMES                                        |                                              | SPECIAL INSTRUCTIONS                                                                                                                                                           |                                                                                                          |
|-------------------------------------------------------------|------------------|---------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPI<br>RELINQUISHED BY/R | REMOVED FROM JAN | 1 1 DATE TIME<br>2016 ISO | RECEIVED BY/STORED IN<br>SSSは年1<br>RECEIVED BY/STORED IN | JAN 1 12010 JSUS                             | ** One liter bottle being sent to ESL is of<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteri<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION C |
| RELINQUISHED BY/F                                           | REMOVED FROM     | 2016 11:30<br>DATE/TIME   | RECEIVED BY STORED IN                                    | DATE/TIME<br>IAN 2 6 2016 [1:30<br>DATE/TIME |                                                                                                                                                                                |                                                                                                          |
| RELINQUISHED BY/F                                           | REMOVED FROM     | DATE/TIME                 | RECEIVED BY/STORED IN                                    | DATE/TIME                                    |                                                                                                                                                                                |                                                                                                          |
| RELINQUISHED BY/F                                           | REMOVED FROM     | DATE/TIME                 | RECEIVED BY/STORED IN                                    | DATE/TIME                                    |                                                                                                                                                                                |                                                                                                          |
| RELINQUISHED BY/F                                           | REMOVED FROM     | DATE/TIME                 | RECEIVED BY/STORED IN                                    | DATE/TIME                                    |                                                                                                                                                                                |                                                                                                          |
| LABORATORY                                                  | RECEIVED BY      |                           |                                                          |                                              | TITLE                                                                                                                                                                          | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                 | DISPOSAL METHOD  |                           |                                                          |                                              | DISPOSED BY                                                                                                                                                                    | DATE/TIME                                                                                                |
| PRINTED ON                                                  | 12/29/2015       |                           | FSR ID = FSR15667                                        | т                                            | RVL NUM = TRVL+16-056                                                                                                                                                          | A-6003-618 (REV 2)                                                                                       |

| CH                                | 2MHill Plateau                   | Remediation Company                                               | CHAIN                                                                   | OF CUST                                                      | ODY/SAMPLE ANALYSIS RE    | EQUEST                          | F15-014-443  |                      | PAGE 1 OF 1        |
|-----------------------------------|----------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|---------------------------------|--------------|----------------------|--------------------|
| COLLECTOR                         | Agullar/CHPRC                    |                                                                   | COMPANY CONTACT<br>TODAK, D                                             | Y CONTACT         TELEPHONE NO.           D         376-6427 |                           | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H                   | DATA<br>TURNAROUND |
| SAMPLING<br>C9582, I-00           | AMPLING LOCATION<br>C9582, I-003 |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils    |                                                              | <b>SAF NO.</b><br>F15-014 | AIR QUALITY                     |              | 30 Days / 30<br>Days |                    |
| ICE CHEST                         | ICE CHEST NO.                    |                                                                   | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>1+NF-N-S07-33/ R2L 25,50-26.00 |                                                              |                           | COA<br>303492                   | GOVERNMENT V | EHICLE               | ORIGINAL           |
| SHIPPED TO<br>Environme           | D PNK                            | L- 331                                                            | OFFSITE PROPERTY NO.                                                    | 0 +                                                          |                           | BILL OF LADING/AIR BILL         | NO.          |                      |                    |
| MATRIX*<br>A=Air                  | POSSIBLE SAMPLE HAZARDS/ REMARKS |                                                                   | PRESERVATION                                                            | Cast 6                                                       | c 1/7/16                  |                                 |              |                      |                    |
| DL=Drum<br>Liquids<br>DS=Drum     | concentratio<br>transportati     | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                                            | 6 Month                                                      | 15                        |                                 |              |                      |                    |
| Solids<br>L=Liquid<br>O=Oil       | DOE Order                        | ilations but are not releasable per<br>458.1. N/A                 | TYPE OF CONTAINER                                                       | G/P                                                          |                           |                                 |              |                      |                    |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                  |                                                                   | NO. OF CONTAINER(S)                                                     | 1                                                            |                           |                                 |              |                      |                    |
| V=Vegetation<br>W=Water           |                                  |                                                                   | VOLUME                                                                  | iL,                                                          |                           |                                 |              |                      |                    |
| X=Other                           | SPECIAL H                        | ANDLING AND/OR STORAGE                                            | SAMPLE ANALYSIS                                                         | Generic<br>Testing<br>CAS};                                  | (No.                      |                                 |              |                      |                    |
| SAM                               | PLE NO.                          | MATRIX*                                                           | SAMPLE DATE SAMPLE TIME                                                 |                                                              |                           |                                 |              |                      |                    |
| B347R1                            |                                  | SOIL                                                              | 01-11-16 1255                                                           | ~                                                            | -                         |                                 |              |                      |                    |

| CHAIN OF POSSES                                                                                                                                                                                    | HAIN OF POSSESSION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIGN/ PRINT NAMES     |                                                                                                                                                                                                                                                                      | SPECIAL INSTRUCTIONS  | and a star marked  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| RELINQUISHED BY/REMOVED FROM JAN 1 1 2016 /505<br>RELINQUISHED BY/REMOVED FROM DATE/TIME<br>SSU-1 JAN 2 6 2016 38<br>RELINQUISHED BY/REMOVED FROM DATE/TIME<br>R.A. Shepard/CHPRC JAN 2 6 2016 130 |                    | RECEIVED BY/STORED IN<br>SSUHJ<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRC<br>RECEIVED BY/STORED IN<br>A LAN 2 6 2016 DATE/TIME<br>A LANER DUBY STORED IN<br>A LANER DUBY STORED IN |                       | ** One liter bottle being sent to ESL is comprised of the residual<br>homogenized material from Liner B after Total Uranium subsampling<br>to be used for the Leachability characteristic tests and predominate<br>Uranium bearing mineral phase analysis. PORTION B |                       |                    |
| RELINQUISHED BY/I                                                                                                                                                                                  | REMOVED FROM       | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECEIVED BY/STORED IN | DATE/TIME                                                                                                                                                                                                                                                            |                       |                    |
| RELINQUISHED BY/                                                                                                                                                                                   | REMOVED FROM       | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECEIVED BY/STORED IN | DATE/TIME                                                                                                                                                                                                                                                            |                       |                    |
| RELINQUISHED BY/                                                                                                                                                                                   | REMOVED FROM       | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECEIVED BY/STORED IN | DATE/TIME                                                                                                                                                                                                                                                            |                       |                    |
| RELINQUISHED BY/I                                                                                                                                                                                  | REMOVED FROM       | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECEIVED BY/STORED IN | DATE/TIME                                                                                                                                                                                                                                                            |                       |                    |
| LABORATORY<br>SECTION                                                                                                                                                                              | RECEIVED BY        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                                                                                                                                      | TITLE                 | DATE/TIME          |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                                                        | DISPOSAL METHOD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                                                                                                                                      | DISPOSED BY           | DATE/TIME          |
| PRINTED ON                                                                                                                                                                                         | 12/29/2015         | 1(62/4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FSR ID = FSR15667     | 100 T                                                                                                                                                                                                                                                                | RVL NUM = TRVL-16-056 | A-6003-618 (REV 2) |

| CH2                         | MHill Plateau                                                                          | Remediation Company                                               |                                                                             | CHAIN C     | OF CUSTO                       | DY/SAMPLE ANALYSIS RE          | QUEST                                    | F15-014-446 |    | PAGE       | 1 (              | OF 1          |
|-----------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|--------------------------------|--------------------------------|------------------------------------------|-------------|----|------------|------------------|---------------|
| COLLECTOR                   | J.R. Aguilar/0                                                                         | HPRC                                                              | COMPANY CON<br>TODAK, D                                                     | ТАСТ        | т                              | <b>LEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D          | PRICE CODE  | 8H |            | D<br>TURN        | ATA<br>AROUND |
| SAMPLING 1<br>C9582, I-003  | AMPLING LOCATION<br>19582, I-003                                                       |                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils        |             |                                | <b>SAF NO.</b><br>F15-014      | AIR QUALITY                              |             |    | 30 Da<br>D | iys / 30<br>Jays |               |
| ICE CHEST NO.               |                                                                                        |                                                                   | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF- N- SO7-33/ 1224 25:00 - 25:50 |             |                                | COA<br>303492                  | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE |             |    | ORIGIN     |                  |               |
| SHIPPED TO<br>Environme     | PNN                                                                                    | L-33                                                              | OFFSITE PROPE                                                               | RTY NO.     | 0                              |                                | BILL OF LADING/AIR BILL                  | NO.         |    |            |                  |               |
| MATRIX*<br>A=Air            | 9 2- 1-20- 10<br>POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Padioactive Material at |                                                                   | PRESER                                                                      | VATION      | None<br>Coollec                | 114 117/16                     |                                          |             |    |            |                  |               |
| Liquids<br>DS=Drum          | concentratio<br>transportatio                                                          | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                                                                      | IG TIME     | 6 Months                       |                                |                                          |             |    |            |                  |               |
| Solids<br>L=Liquid<br>O=Oil | Goods Regu<br>DOE Order                                                                | lations but are not releasable per<br>458.1. N/A                  | TYPE OF C                                                                   | ONTAINER    | Split Spoon<br>Liner           |                                |                                          |             |    |            |                  |               |
| S=Soil<br>SE=Sediment       |                                                                                        |                                                                   | NO. OF CONTAINER(S)                                                         |             | 1                              |                                |                                          |             |    |            |                  |               |
| V=Vegetation<br>W=Water     |                                                                                        |                                                                   | VOL                                                                         | UME         | 1000g                          |                                |                                          |             |    |            |                  |               |
| X=Other                     | SPECIAL H                                                                              | ANDLING AND/OR STORAGE                                            | SAMPLE                                                                      | ANALYSIS    | Generic<br>Testing (N<br>CAS); | i-                             |                                          |             |    |            |                  |               |
| SAM                         | PLE NO.                                                                                | MATRIX*                                                           | SAMPLE DATE                                                                 | SAMPLE TIME |                                |                                |                                          |             |    |            |                  |               |
| B347R4                      |                                                                                        | SOIL                                                              | 01-11-16                                                                    | 1255        | V                              |                                |                                          |             |    |            |                  |               |

| CHAIN OF POSSES                                                                                                                      | SION                                                                                               |                                                                                           | SIGN/ PRINT NAMES                                                                                                     |                                                                                                      | SPECIAL INSTRUCTIONS                                                                                                                                                   | a second of the residual                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| RELINQUISHED BY/R<br>J.R. Aguilar/CHPRC<br>RELINQUISHED BY/R<br>SSU-1<br>RELINQUISHED BY/R<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM JAN 1 1<br>REMOVED FROM JAN<br>REMOVED FROM JAN<br>REMOVED FROM JAN 2<br>REMOVED FROM | 2016 555<br>DATE/TIME<br>2 6 2016 6<br>6 2016 1:30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>RA. Shepard/CHPRO<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | N 1 1 2016 1.505<br>AN 2 6 2016 3.50<br>N 2 6 2016 5.50<br>N 2 6 2016 5.50<br>Date/time<br>date/time | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty characte<br>Uranium bearing mineral phase analysi | er Total Uranium subsampling. It is<br>ristic tests and predominate<br>s. PORTION A |
| RELINQUISHED BY/F                                                                                                                    | REMOVED FROM                                                                                       | DATE/TIME                                                                                 | RECEIVED BY/STORED IN                                                                                                 | DATE/TIME                                                                                            |                                                                                                                                                                        |                                                                                     |
| RELINQUISHED BY/F                                                                                                                    | REMOVED FROM                                                                                       | DATE/TIME                                                                                 | RECEIVED BY/STORED IN                                                                                                 | DATE/TIME                                                                                            |                                                                                                                                                                        |                                                                                     |
| LABORATORY<br>SECTION                                                                                                                | RECEIVED BY                                                                                        |                                                                                           |                                                                                                                       |                                                                                                      | TITLE                                                                                                                                                                  | DATE/TIME                                                                           |
| FINAL SAMPLE<br>DISPOSITION                                                                                                          | DISPOSAL METHOD                                                                                    |                                                                                           |                                                                                                                       |                                                                                                      | DISPOSED BY                                                                                                                                                            | DATE/TIME                                                                           |
| PRINTED ON 1                                                                                                                         | 12/29/2015                                                                                         | bree                                                                                      | FSR ID = FSR15667                                                                                                     | armos T                                                                                              | RVL NUM = TRVL-16-056                                                                                                                                                  | A-6003-618 (REV 2                                                                   |

| CH2                               | 2MHill Plateau                 | Remediation Company                                                   |                                                                         | CHAIN O      | F CUS                            | TODY/SAMPLE ANALYSIS RE         | QUEST                   | F15-014-447        |            | PAGE               | 1 / | OF 1 |
|-----------------------------------|--------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|----------------------------------|---------------------------------|-------------------------|--------------------|------------|--------------------|-----|------|
| COLLECTOR<br>J.R. A               | gullar/CHPRC                   |                                                                       | COMPANY CONTACT         TELEPHONE I           TODAK, D         376-6427 |              | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H           |                    |            | DATA<br>TURNAROUND |     |      |
| SAMPLING<br>C9582, I-00           | MPLING LOCATION<br>9582, I-004 |                                                                       | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils    |              | <b>SAF NO.</b><br>F15-014        | AIR QUALITY                     |                         |                    | 30 Da<br>C | ays / 30<br>Days   |     |      |
| ICE CHEST                         | CHEST NO.                      |                                                                       | FIELD LOGBOOK NO.<br>HNF-N-507-33/12:                                   |              | ACTUAL SAMPLE DEPTH              |                                 | COA<br>303492           | GOVERNMENT VEHICLE |            | GINA               |     |      |
| SHIPPED TO<br>Environme           | D PNK                          | Laboratory                                                            | OFFSITE PROP                                                            | ERTY NO. 7 0 |                                  |                                 | BILL OF LADING/AIR BILL | NO.                |            |                    |     |      |
| ATRIX*                            | POSSIBLE S                     | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at |                                                                         | VATION       | Cosi 6C 117/10                   |                                 |                         |                    |            |                    |     |      |
| Liquids<br>DS=Drum                | concentratio<br>transportatio  | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous      | HOLDIN                                                                  |              | 6 Mon                            | ths                             |                         |                    |            |                    |     |      |
| L=Liquid<br>O=Oil                 | DOE Order 4                    | ations but are not releasable per<br>158.1. N/A                       | TYPE OF C                                                               | ONTAINER     | Split S<br>Liner                 | poon                            |                         |                    |            |                    |     |      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                |                                                                       | NO. OF CO                                                               | CONTAINER(S) |                                  |                                 |                         |                    |            |                    |     |      |
| V=Vegetation<br>W=Water           | -                              |                                                                       | VOL                                                                     | UME          | 1000g                            |                                 |                         |                    |            |                    |     |      |
| X=Other                           | SPECIAL HA                     | NDLING AND/OR STORAGE                                                 | SAMPLE                                                                  | ANALYSIS     | Generic<br>Testing<br>CAS};      | (No                             |                         |                    |            |                    |     |      |
| SAM                               | PLE NO.                        | MATRIX*                                                               | SAMPLE DATE                                                             | SAMPLE TIME  | 20                               |                                 |                         |                    |            |                    |     |      |
| B347R5                            |                                | SOIL                                                                  | 01-11-16                                                                | 13)8         | ~                                | 2                               |                         |                    |            |                    |     |      |

| CHAIN OF POSSES                                                                                                                                 | HAIN OF POSSESSION                                                   |                                                                                             | SIGN/ PRINT NAMES                                                                                                                                             |                                                                                                                   | SPECIAL INSTRUCTIONS                                                                                                                                                     |                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RA. Shepard/CHPRC<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM JAI<br>REMOVED FROM JAI<br>REMOVED FROM<br>REMOVED FROM | N 1 1 2016 /SES<br>N 2 6 2016 /SES<br>2 6 2016 /IESO<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU H I<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | DATE/TIME<br>1 1 2016 1505<br>2 6 2016 DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis | comprised of the residual<br>r Total Uranium subsampling. It is<br>istic tests and predominate<br>. PORTION D |
| RELINQUISHED BY/F                                                                                                                               | REMOVED FROM                                                         | DATE/TIME                                                                                   | RECEIVED BY/STORED IN                                                                                                                                         | DATE/TIME                                                                                                         |                                                                                                                                                                          |                                                                                                               |
| LABORATORY<br>SECTION                                                                                                                           | RECEIVED BY                                                          |                                                                                             |                                                                                                                                                               |                                                                                                                   | TITLE                                                                                                                                                                    | DATE/TIME                                                                                                     |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                     | DISPOSAL METHOD                                                      | 1                                                                                           |                                                                                                                                                               |                                                                                                                   | DISPOSED BY                                                                                                                                                              | DATE/TIME                                                                                                     |
| PRINTED ON 1                                                                                                                                    | PRINTED ON 12/29/2015                                                |                                                                                             | FSR ID = FSR15668 TR                                                                                                                                          |                                                                                                                   | RVL NUM = TRVL-16-056                                                                                                                                                    | A-6003-618 (REV 2                                                                                             |

| CH2                               | CH2MHill Plateau Remediation Company |                                                                   | CHAIN O                                                                   | F CUSTOD                         | Y/SAMPLE ANALYSIS REQ     | UEST                            | F15-014-448                                    |    | PAGE         | 1 0            | F 1   |
|-----------------------------------|--------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|---------------------------|---------------------------------|------------------------------------------------|----|--------------|----------------|-------|
| COLLECTOR<br>J.R. Ag              | ullar/CHPRC                          |                                                                   | COMPANY CONTACT<br>TODAK, D                                               | <b>TELEPHONE NO.</b><br>376-6427 |                           | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE                                     | 8H |              | DA<br>TURNA    | ROUNI |
| SAMPLING 1<br>C9582, 1-004        | MPLING LOCATION<br>9582, 1-004       |                                                                   | PROJECT DESIGNATION 300-FF-5 Post ROD Field Investigation - Soils         |                                  | <b>SAF NO.</b><br>F15-014 | AIR QUALITY                     |                                                |    | 30 Day<br>Da | /s / 30<br>ays |       |
| ICE CHEST I                       | CE CHEST NO.                         |                                                                   | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>14NF-N-S07-33 (226,26,20'-29,00' |                                  |                           | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE ORIGI |    |              | SINA           |       |
| SHIPPED TO<br>Environme           | Ph<br>ntal Sciences                  | NL-331                                                            | OFFSITE PROPERTY NO.                                                      |                                  |                           | BILL OF LADING/AIR BILL         | NO.                                            |    |              |                |       |
| ATRIX*                            | POSSIBLE SAMPLE HAZARDS/ REMARKS     |                                                                   | PRESERVATION                                                              | None Ju<br>Cool 6 C              | # 117/16                  |                                 |                                                |    |              |                |       |
| DL=Drum<br>Liquids<br>DS=Drum     | concentratio<br>transportation       | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                                              | 6 Months                         |                           |                                 |                                                |    |              |                |       |
| Solids<br>L=Liquid<br>O=Oil       | DOE Order                            | ilations but are not releasable per<br>458.1. N/A                 | TYPE OF CONTAINER                                                         | Split Spoon<br>Liner             |                           |                                 |                                                |    |              |                |       |
| S=Soll<br>SE=Sediment<br>T=Tissue |                                      |                                                                   | NO. OF CONTAINER(S)                                                       | 1                                |                           |                                 |                                                |    |              |                |       |
| V=Vegetation<br>W=Water           |                                      |                                                                   | VOLUME                                                                    | 1000g                            |                           |                                 |                                                |    |              |                |       |
| WI=Wipe<br>X=Other                | SPECIAL H                            | ANDLING AND/OR STORAGE                                            | SAMPLE ANALYSIS                                                           | Generic<br>Testing {No<br>CAS};  |                           |                                 |                                                |    |              |                |       |
| SAM                               | PLE NO.                              | MATRIX*                                                           | SAMPLE DATE SAMPLE TIME                                                   |                                  |                           |                                 |                                                |    |              |                |       |
| B347R6                            |                                      | SOIL                                                              | 01-11-16 1318                                                             | ~                                |                           |                                 |                                                |    |              |                |       |

| CHAIN OF POSSE                                                                                                                                                                                                                                                                                                       | HAIN OF POSSESSION    |                                                                                                                                     | SIGN/ PRINT NAMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | SPECIAL INSTRUCTIONS                                                                                                                                                         | and the second second                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/REMOVED FROM JAN 1 1 2016 15<br>RELINQUISHED BY/REMOVED FROM JAN 2 6 2016 15<br>RELINQUISHED BY/REMOVED FROM JAN 2 6 2010 11<br>RELINQUISHED BY/REMOVED FROM DATE/TIME<br>RELINQUISHED BY/REMOVED FROM DATE/TIME<br>RELINQUISHED BY/REMOVED FROM DATE/TIME<br>RELINQUISHED BY/REMOVED FROM DATE/TIME |                       | 1 1 2016 J 50S<br>ATE/TIME<br>2 6 2010 J 50S<br>6 2010 J 50S<br>6 2010 J 50S<br>6 2010 J 50S<br>MATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU H /<br>RECEIVED BY/STORED IN<br>RA. Shepard/CHPRG<br>M. S | N 1 1 2016 /Sos<br>2 6 2016 Date/time<br>2 6 2016 Li:30<br>Date/time<br>Date/time<br>Date/time | ** One liter bottle being sent to ESL is a<br>homogenized material from Liner B after<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION C |
| RELINQUISHED BY/                                                                                                                                                                                                                                                                                                     | REMOVED FROM          | DATE/TIME                                                                                                                           | RECEIVED BY/STORED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE/TIME                                                                                      |                                                                                                                                                                              |                                                                                                          |
| LABORATORY<br>SECTION                                                                                                                                                                                                                                                                                                | RECEIVED BY           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                | TITLE                                                                                                                                                                        | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                                                                                                                                                                                          | DISPOSAL METHOD       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                | DISPOSED BY                                                                                                                                                                  | DATE/TIME                                                                                                |
| PRINTED ON                                                                                                                                                                                                                                                                                                           | PRINTED ON 12/29/2015 |                                                                                                                                     | FSR ID = FSR15668 TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | RVL NUM = TRVL-16-056                                                                                                                                                        | A-6003-618 (REV 2                                                                                        |

| CH                             | 2MHill Platea                                    | u Remediation Company                                              |                                                                      | CHAIN C                                                                   | OF CUSTO                       | DDY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-449                              | PAGE 1 OF 1        |  |
|--------------------------------|--------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|----------------------------------|---------------------------------|------------------------------------------|--------------------|--|
| COLLECTOR                      | t<br>J.R. Aguilar/CHI                            | RC                                                                 | COMPANY CON<br>TODAK, D                                              | COMPANY CONTACT         TELEPHONE NO.           TODAK, D         376-6427 |                                | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND |  |
| <b>SAMPLING</b><br>C9582, I-00 | AMPLING LOCATION<br>C9582, I-004                 |                                                                    | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |                                                                           |                                | <b>SAF NO.</b><br>F15-014        | AIR QUALITY                     | 30 Days / 30<br>Days                     |                    |  |
| ICE CHEST                      | ICE CHEST NO.                                    |                                                                    | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH                                |                                                                           |                                | 29,50 - 30,00                    | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINAL           |  |
| SHIPPED TO                     | D PN                                             | NE 331                                                             | OFFSITE PROP                                                         | ERTY NO.                                                                  | 8-0                            |                                  | BILL OF LADING/AIR BILL         | NO.                                      |                    |  |
| MATRIX*<br>A=Air<br>DI=Drum    | POSSIBLE<br>*Contains I                          | SAMPLE HAZARDS/ REMARKS<br>Radioactive Material at                 | PRESER                                                               | VATION                                                                    | -None<br>Cool la               | LU 117/16                        |                                 |                                          |                    |  |
| Liquids<br>DS=Drum             | concentrati<br>transportat                       | ons that are not be regulated for<br>ion per 49 CFR/IATA Dangerous | HOLDIN                                                               | IG TIME                                                                   | 6 Months                       | 5                                |                                 |                                          |                    |  |
| Solids<br>L=Llquid             | Goods Reg<br>DOE Order                           | ulations but are not releasable per<br>458.1. N/A                  | TYPE OF C                                                            | ONTAINER                                                                  | G/P                            |                                  |                                 |                                          |                    |  |
| S=Soil<br>SE=Sediment          |                                                  |                                                                    | NO. OF COM                                                           | NO. OF CONTAINER(S)                                                       |                                |                                  |                                 |                                          |                    |  |
| V=Vegetation<br>W=Water        |                                                  |                                                                    | VOL                                                                  | UME                                                                       | IL.                            | Use                              | d three for                     | Sample                                   |                    |  |
| WI=Wipe<br>X=Other             | I=Wipe<br>=Other SPECIAL HANDLING AND/OR STORAGE |                                                                    | SAMPLE                                                               | ANALYSIS                                                                  | Generic<br>Testing {N<br>CAS}; | ło                               | CA OI-                          | 11-14                                    |                    |  |
| SAM                            | PLE NO.                                          | MATRIX*                                                            | SAMPLE DATE                                                          | SAMPLE TIME                                                               |                                |                                  |                                 |                                          |                    |  |
| B347R7                         | B347R7 SOIL                                      |                                                                    | 01-11-14                                                             | 1318                                                                      | V                              | •                                |                                 |                                          |                    |  |

| CHAIN OF POSSES                                                                                                                                          | SSION                                                                                                                                                                      | SIGN/ PRINT NAMES                                                                                                                                                                      | SPEC                                   | IAL INSTRUCTIONS                                                                                                                                           |                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/I<br>J.R. Aguilar/CHPR<br>RELINQUISHED BY/I<br>SSU-1<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I | REMOVED FROM JAN-1 1 2016 /5 05<br>REMOVED FROM JAN 2 6 2016 /5 05<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME<br>REMOVED FROM DATE/TIME | RECEIVED BY/STORED IN<br>SSUH J JAN<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPR/<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | ************************************** | One liter bottle being sent to ESL is<br>nogenized material from Liner B aft<br>be used for the Leachabilty characte<br>nium bearing mineral phase analysi | s comprised of the residual<br>er Total Uranium subsampling. It is<br>ristic tests and predominate<br>s. PORTION B |
| RELINQUISHED BY/F                                                                                                                                        | REMOVED FROM DATE/TIME                                                                                                                                                     | RECEIVED BY/STORED IN                                                                                                                                                                  | DATE/TIME                              |                                                                                                                                                            |                                                                                                                    |
| LABORATORY<br>SECTION                                                                                                                                    | RECEIVED BY                                                                                                                                                                |                                                                                                                                                                                        | ПТLE                                   |                                                                                                                                                            | DATE/TIME                                                                                                          |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                              | DISPOSAL METHOD                                                                                                                                                            |                                                                                                                                                                                        | DISPO                                  | SED BY                                                                                                                                                     | DATE/TIME                                                                                                          |
| PRINTED ON 1                                                                                                                                             | 2/29/2015 Ris                                                                                                                                                              | FSR ID = FSR15668                                                                                                                                                                      | TRVL                                   | NUM = TRVL-16-056                                                                                                                                          | A-6003-618 (REV 2)                                                                                                 |

| CH2                           | MHill Plateau                    | Remediation Company                                                                                                                                               |                                                                      | CHAIN O             | F CUSTO                       | DDY/SAMPLE ANALYSIS REC          | UEST                            | F15-014-452 |    | PAGE 1 OF 1          |
|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|-------------------------------|----------------------------------|---------------------------------|-------------|----|----------------------|
| COLLECTOR                     | OLLECTOR<br>J.R. Agullar/CHPRC   |                                                                                                                                                                   | COMPANY CONTACT<br>TODAK, D                                          |                     | 1                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE  | 8H | DATA<br>TURNAROUND   |
| C9582, 1-005                  | AMPLING LOCATION<br>C9582, 1-005 |                                                                                                                                                                   | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investigation - Soils |                     |                               |                                  | <b>SAF NO.</b><br>F15-014       | AIR QUALITY |    | 30 Days / 30<br>Days |
| CE CHEST NO.                  |                                  | FIELD LOGBOOK NO. ACTUAL SAMPLE DEPTH<br>HNF-N-SU7-33/ R.26 31.50'-32.00'                                                                                         |                                                                      |                     | COA<br>303492                 | GOVERNMENT VEHICLE               |                                 |             |    |                      |
| SHIPPED TO<br>Environmen      | PNNI<br>ntal Sciences            | - 33  <br>Taboratory                                                                                                                                              | OFFSITE PROPE                                                        | RTY NO. D           |                               |                                  | BILL OF LADING/AIR BILL         | NO.         |    |                      |
| IATRIX*                       | POSSIBLE S                       | POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous |                                                                      | VATION              | None                          |                                  |                                 |             |    |                      |
| DL=Drum<br>Liquids<br>DS=Drum | concentratio                     |                                                                                                                                                                   |                                                                      | IG TIME             | 6 Month                       | s                                |                                 |             |    |                      |
| Solids<br>L=Liquid<br>D=Oil   | Goods Regi<br>DOE Order          | ulations but are not releasable per<br>458.1. N/A                                                                                                                 | TYPE OF C                                                            | ONTAINER            | Split Spoon<br>Liner          |                                  |                                 |             |    |                      |
| S=Soil<br>SE=Sediment         |                                  |                                                                                                                                                                   | NO. OF COM                                                           | NO. OF CONTAINER(S) |                               |                                  |                                 |             |    |                      |
| V=Vegetation<br>W=Water       |                                  |                                                                                                                                                                   | VOL                                                                  | UME                 | 1000g                         |                                  |                                 |             |    |                      |
| WI=Wipe<br>X=Other            | SPECIAL H                        | SPECIAL HANDLING AND/OR STORAGE                                                                                                                                   |                                                                      | ANALYSIS            | Generic<br>Testing {<br>CAS}; | No                               |                                 |             |    |                      |
| SAM                           | PLE NO.                          | MATRIX*                                                                                                                                                           | SAMPLE DATE                                                          | SAMPLE TIME         | -                             |                                  |                                 |             |    |                      |
| B347T0                        |                                  | SOIL                                                                                                                                                              | 01-11-16                                                             | 1340                | -                             |                                  |                                 |             |    |                      |

| CHAIN OF POSSES                                                                                                                                   | SION                                                                                               |                                                                                                       | SIGN/ PRINT NAMES                                                                                                                                           |                                                                                                                                        | SPECIAL INSTRUCTIONS                                                                                                                                                            | and a fill a manifold of                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>J.R. Aguitar/CHPRc<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>R.A. Shepard/CHPRQ<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM<br>JAN 1 1 2<br>REMOVED FROM<br>JAN 2<br>REMOVED FROM<br>REMOVED FROM<br>REMOVED FROM | DATE/TIME<br>DATE/TIME<br>6 2016 CO<br>DATE/TIME<br>2016 II-30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU#1<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | AN 2 6 2016 JATE/TIME<br>JAN 2 6 2016 JATE/TIME<br>JAN 2 6 2016 JATE/TIME<br>JAN 2 6 2016 II 30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is of<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis, | omprised of the residual<br>Total Uranium subsampling. It is<br>tic tests and predominate<br>PORTION D |
| RELINQUISHED BY/                                                                                                                                  | REMOVED FROM                                                                                       | DATE/TIME                                                                                             | RECEIVED BY/STORED IN                                                                                                                                       | DATE/TIME                                                                                                                              |                                                                                                                                                                                 |                                                                                                        |
| LABORATORY<br>SECTION                                                                                                                             | RECEIVED BY                                                                                        |                                                                                                       |                                                                                                                                                             |                                                                                                                                        | TITLE                                                                                                                                                                           | DATE/TIME                                                                                              |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                       | DISPOSAL METHOD                                                                                    |                                                                                                       |                                                                                                                                                             |                                                                                                                                        | DISPOSED BY                                                                                                                                                                     | DATE/TIME                                                                                              |
| PRINTED ON                                                                                                                                        | 12/29/2015                                                                                         |                                                                                                       | PRFSR ID = FSR15669                                                                                                                                         | TF                                                                                                                                     | RVI: NUM = TRVL-16-056                                                                                                                                                          | 192VL A-6003-618 (REV 2)                                                                               |

| CH2                               | 2MHill Plateau                                                                                                                                                                                                                                                                                  | Remediation Company                            |                                                                                                                                                   | CHAIN C             | OF CUSTO                       | DY/SAMPLE ANALYSIS R     | EQUEST                          | F15-014-453  |        | PAGE 1 OF 1          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|--------------------------|---------------------------------|--------------|--------|----------------------|
| COLLECTOR                         | J.R. Aguilar/CHF                                                                                                                                                                                                                                                                                | PRC                                            | COMPANY CONT<br>TODAK, D                                                                                                                          | FACT                | т                              | ELEPHONE NO.<br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE   | 8H     | DATA<br>TURNAROUNE   |
| SAMPLING (<br>C9582, I-00)        | PAR Aguillar/CHPRC<br>NG LOCATION<br>1-005<br>ST NO.<br>D TO PANL- 33  <br>when that Sciences Laboratory<br>AC I - 24 - 140<br>POSSIBLE SAMPLE HAZARDS/ REMARI<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/UATA Danaerous |                                                | 9ROJECT DESIG<br>300-FF-5 Post RC                                                                                                                 | D Field Investigat  | tion - Soils                   |                          | <b>SAF NO.</b><br>F15-014       | AIR QUALITY  |        | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                                                                                                                                                                                                                                                                             |                                                | FIELD LOGBOON                                                                                                                                     | (NO.<br>507-331 (-  | A<br>2 26                      | 31.00'- 31.5 0           | COA<br>303492                   | GOVERNMENT V | EHICLE | ORIGINA              |
| SHIPPED TO<br>Environme           | O PANI                                                                                                                                                                                                                                                                                          | L-331<br>taboratory                            | OFFSITE PROPE                                                                                                                                     | RTY NO.             | 0                              |                          | BILL OF LADING/AIR BILL         | NO.          |        |                      |
| MATRIX*<br>A=Air                  | ACT-20-10<br>POSSIBLE SAMPLE HAZARDS/ REMARKS<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerous                                                                                                                  |                                                | LE HAZARDS/ REMARKS     PRESERVATION     A       Ltive Material at<br>at are not be regulated for<br>49 CFR/IATA Dangerous     HOLDING TIME     6 |                     | None<br>Cool 60                | 5.4 117116               |                                 |              |        |                      |
| Liquids<br>DS=Drum                |                                                                                                                                                                                                                                                                                                 |                                                |                                                                                                                                                   |                     | 6 Months                       |                          |                                 |              |        |                      |
| Solids<br>L=Liquid<br>O=Oil       | Goods Regu<br>DOE Order                                                                                                                                                                                                                                                                         | TYPE OF CONTAINER  NO. OF CONTAINER(S)  VOLUME |                                                                                                                                                   | ONTAINER            | Split Spot                     | xn<br>-                  |                                 |              |        |                      |
| S=Soll<br>SE=Sediment<br>T=Tissue |                                                                                                                                                                                                                                                                                                 |                                                |                                                                                                                                                   | NO. OF CONTAINER(S) |                                |                          |                                 |              |        |                      |
| V=Vegetation<br>W=Water           |                                                                                                                                                                                                                                                                                                 |                                                |                                                                                                                                                   | 1000g               |                                |                          |                                 |              |        |                      |
| X=Other                           | I=other SPECIAL HANDLING AND/OR STORAGE                                                                                                                                                                                                                                                         |                                                | SAMPLE A                                                                                                                                          | ANALYSIS            | Generic<br>Testing {N<br>CAS}; | 0,                       |                                 |              |        |                      |
| SAM                               | IPLE NO.                                                                                                                                                                                                                                                                                        | MATRIX*                                        | SAMPLE DATE                                                                                                                                       | SAMPLE TIME         | -                              |                          |                                 |              |        |                      |
| B347T1                            |                                                                                                                                                                                                                                                                                                 | SOIL                                           | 01-11-16                                                                                                                                          | 1340                | 5                              |                          |                                 |              |        |                      |

| CHAIN OF POSSES                                                                                                                                        | SION                                                                               |                                                                                          | SIGN/ PRINT NAMES                                                                                                                                                                   |                                                                                                                             | SPECIAL INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>SSU4<br>RELINQUISHED BY/R<br>RA. Shepard/CHPR<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R | EMOVED FROM JAN 1 1 2<br>EMOVED FROM JAN 2 6<br>EMOVED FROM JAN 2 6<br>EMOVED FROM | DATE/TIME<br>2016 / SQS<br>DATE/TIME<br>2016 (33)<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSU # 1<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRO<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | 1 1 2016 DATE/TIME<br>PATE/TIME<br>AN 2 6 2016 A 30<br>AN 2 6 2016 A 30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is convolution to the set of the set | omprised of the residual<br>Total Uranium subsampling. It is<br>tic tests and predominate<br>PORTION C |
|                                                                                                                                                        |                                                                                    |                                                                                          |                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |
| RELINQUISHED BY/R                                                                                                                                      | EMOVED FROM                                                                        | DATE/TIME                                                                                | RECEIVED BY/STORED IN                                                                                                                                                               | DATE/TIME                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |
| LABORATORY<br>SECTION                                                                                                                                  | RECEIVED BY                                                                        |                                                                                          |                                                                                                                                                                                     |                                                                                                                             | TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE/TIME                                                                                              |
| FINAL SAMPLE<br>DISPOSITION                                                                                                                            | DISPOSAL METHOD                                                                    |                                                                                          |                                                                                                                                                                                     |                                                                                                                             | DISPOSED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE/TIME                                                                                              |
| PRINTED ON 1                                                                                                                                           | 2/29/2015                                                                          |                                                                                          | FSR ID = FSR15669                                                                                                                                                                   | т                                                                                                                           | RVL NUM = TRVL-16+056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-6003-618 (REV 2)                                                                                     |

| CH2                                | 2MHill Platea                                                                                                                                                                                                                                                                                                                                                                                                             | u Remediation Company |                                         | CHAIN C                         | OF CUS                      | TODY/SAMPLE ANALYSIS RE          | EQUEST                          | F15-014-457   |                | PAGE                | 1 0         | 0F 1           |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|---------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------|----------------|---------------------|-------------|----------------|
| COLLECTOR                          | ullar/CHPRC                                                                                                                                                                                                                                                                                                                                                                                                               |                       | COMPANY CON<br>TODAK, D                 | TACT                            |                             | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8H             |                     | D/<br>TURN/ | ATA            |
| SAMPLING 0<br>C9582, I-000         | MHill Plateau Remediation Company<br>ullar/CHPRC<br>OCATION<br>HO.<br>POND L= 33<br>tal Sciences Laboratory<br>2 1 2 2 4 1 9<br>POSSIBLE SAMPLE HAZARDS/ REMAR<br>*Contains Radioactive Material at<br>concentrations that are not be regulated for<br>transportation per 49 CFR/IATA Dangerou:<br>Goods Regulations but are not releasable p<br>DOE Order 458.1. N/A<br>SPECIAL HANDLING AND/OR STORAG<br>LE NO. MATRIX* |                       | PROJECT DESIG<br>300-FF-5 Post R        | GNATION<br>OD Field Investigati | ion - So                    | ls                               | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |                | 30 Days / 3<br>Days |             | ys / 30<br>ays |
| ICE CHEST                          | NO.                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | FIELD LOGBOO                            | к NO.<br>507-33/ R              | 24                          | ACTUAL SAMPLE DEPTH              | COA<br>303492                   | METHOD OF SHI | PMENT<br>HICLE | 4                   | ORI         | GINA           |
| SHIPPED TO                         | 2, 1-006         HEST NO.         PED TO       DNN L= 33 // Standard Sciences Laboratory         X*       POSSIBLE SAMPLE HAZARDS/ REMARKS         *Contains Radioactive Material at concentrations that are not be regulated for transportation per 49 CFR/IATA Dangerous Goods Regulations but are not releasable per DOE Order 458.1. N/A         Himent vertice       FORSTAL MANDUALS AND LOD STODED                 |                       | OFFSITE PROPE                           | ERTY NO. C                      | BILL O                      |                                  | BILL OF LADING/AIR BILL         | NO.           |                |                     |             |                |
| MATRIX*<br>A=Air<br>DI =Drum       |                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | PRESERVATION None 3.4 117/16<br>Cool 6C |                                 |                             |                                  |                                 |               |                |                     |             |                |
| Liquids<br>DS=Drum                 |                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | HOLDIN                                  |                                 | 6 Mont                      | hs                               |                                 |               |                |                     |             |                |
| L=Liquid<br>O=Oil                  |                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 2 Order 458.1. N/A TYPE OF CONTAIN      |                                 | Split Sp<br>Liner           | 0000                             |                                 |               |                |                     |             |                |
| SE=Sediment<br>T=Tissue            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | NO. OF COM                              | NTAINER(S)                      | 1                           |                                  |                                 |               |                |                     |             |                |
| V=Vegetation<br>W=Water<br>WI=Wine | egetation<br>Water<br>Wipe<br>SPECIAL HANDLING AND/OR STORAGE                                                                                                                                                                                                                                                                                                                                                             |                       | VOLUME                                  |                                 | 1000g                       |                                  |                                 |               |                |                     |             |                |
| X=Other                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | SAMPLE                                  | ANALYSIS                        | Generic<br>Testing<br>CAS}; | (No                              |                                 |               |                |                     |             |                |
| SAM                                | PLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                   | MATRIX*               | SAMPLE DATE                             | SAMPLE TIME                     | 1000                        |                                  |                                 |               |                |                     |             |                |
| B347T5                             | SAMPLE NO. MATRIX*<br>T5 SOIL                                                                                                                                                                                                                                                                                                                                                                                             |                       | 01-11-16                                | 1400                            | ~                           |                                  |                                 |               |                |                     |             |                |

| CHAIN OF POSSES                                                                                                            | SION                                                                                               |                                                                                                                         | SIGN/ PRINT NAMES                                                                                                                                                                                                    |                                                                                                                              | SPECIAL INSTRUCTIONS                                                                                                                                                            |                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RA. Shepard/CHPRC<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F<br>RELINQUISHED BY/F | REMOVED FROM<br>JAN 1<br>JAN 1<br>JAN 2<br>JAN 2<br>JAN 2<br>JAN 2<br>REMOVED FROM<br>REMOVED FROM | DATE/TIME<br>1 2016 JSOS<br>DATE/TIME<br>1 2 6 2016<br>DATE/TIME<br>6 2016 [1:30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>R.A. ShepardiCHPPC<br>RECEIVED BY/STORED IN<br>M. Swdw/ JA. Support<br>A. ShepardiCHPPC<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN<br>RECEIVED BY/STORED IN | 1 1 2016 ISUS<br>DATE/TIME<br>2 6 2016 ISUS<br>DATE/TIME<br>6 2016 IC-30<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME | ** One liter bottle being sent to ESL is of<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis. | comprised of the residual<br>Total Uranium subsampling. It is<br>stic tests and predominate<br>PORTION D |
| RELINQUISHED BY/F                                                                                                          | REMOVED FROM                                                                                       | DATE/TIME                                                                                                               | RECEIVED BY/STORED IN                                                                                                                                                                                                | DATE/TIME                                                                                                                    |                                                                                                                                                                                 |                                                                                                          |
| LABORATORY<br>SECTION                                                                                                      | RECEIVED BY                                                                                        |                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                              | TITLE                                                                                                                                                                           | DATE/TIME                                                                                                |
| FINAL SAMPLE<br>DISPOSITION                                                                                                | DISPOSAL METHOD                                                                                    |                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                              | DISPOSED BY                                                                                                                                                                     | DATE/TIME                                                                                                |
| PRINTED ON 1                                                                                                               | 2/29/2015                                                                                          |                                                                                                                         | FSR ID = FSR15670                                                                                                                                                                                                    | т                                                                                                                            | RVL NUM = TRVL+16-056                                                                                                                                                           | A-6003-618 (REV 2)                                                                                       |

| CH2                               | 2MHill Plateau I                        | Remediation Company                                             |                                   | CHAIN O              | F CUSTOD                           | Y/SAMPLE ANALYSIS REC         | QUEST                           | F15-014-458   |                | PAGE 1 OF 1          |
|-----------------------------------|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------|----------------------|------------------------------------|-------------------------------|---------------------------------|---------------|----------------|----------------------|
| COLLECTOR                         | t<br>J.R. Aguilar/CHPR                  | c                                                               | COMPANY CONT<br>TODAK, D          | ГАСТ                 | TE<br>3                            | <b>LEPHONE NO.</b><br>76-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE    | 8Н             | DATA<br>TURNAROUND   |
| SAMPLING<br>C9582, I-006          | LOCATION<br>6                           |                                                                 | 9ROJECT DESIG<br>300-FF-5 Post RC | DD Field Investigati | on - Solls                         |                               | <b>SAF NO.</b><br>F15-014       | AIR QUALITY   |                | 30 Days / 30<br>Days |
| ICE CHEST                         | NO.                                     |                                                                 | HNF-N-                            | (NO.<br>507-33/1     | AC<br>263                          | TUAL SAMPLE DEPTH             | COA<br>303492                   | GOVERNMENT VE | PMENT<br>HICLE | ORIGINAL             |
| SHIPPED TO                        | PNNL                                    | -33(<br>aboratory-                                              | OFFSITE PROPE                     | RTY NO.              | 0                                  |                               | BILL OF LADING/AIR BILL         | NO.           |                |                      |
| MATRIX*<br>A=Air                  | POSSIBLE SA<br>*Contains Rad            | *Contains Radioactive Material at                               |                                   | VATION               | None J<br>Cool GC                  | E 117/16                      |                                 |               |                |                      |
| Liquids<br>DS=Drum                | concentration<br>transportation         | is that are not be regulated for<br>n per 49 CFR/IATA Dangerous | HOLDIN                            | IG TIME              | 6 Months -<br>Split Spoon<br>Liner |                               |                                 |               |                |                      |
| Salids<br>L=Liquid<br>O=Oil       | DOE Order 45                            | ations but are not releasable per 58.1. N/A                     | TYPE OF CO                        | ONTAINER             |                                    |                               |                                 |               |                |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                         |                                                                 | NO. OF CON                        | ITAINER(S)           | 1                                  |                               |                                 |               |                |                      |
| V=Vegetation<br>W=Water           |                                         |                                                                 | VOLUME                            |                      | 1000g                              |                               |                                 |               |                |                      |
| X=Other                           | Wipe<br>SPECIAL HANDLING AND/OR STORAGE |                                                                 | SAMPLE A                          | NALYSIS              | Generic<br>Testing (No<br>CAS);    |                               |                                 |               |                |                      |
| SAM                               | PLE NO.                                 | MATRIX*                                                         | SAMPLE DATE                       | SAMPLE TIME          | -                                  |                               |                                 |               |                |                      |
| B347T6                            |                                         | SOIL                                                            | 01-11-16                          | 1400                 | ~                                  |                               |                                 |               |                |                      |

SGW-59614, REV. 0

| CHAIN OF POSSES                                                                                                            | SION                                                                                  |                                                                                | SIGN/ PRINT NAMES                                                                                                                                        |                                                                                          | SPECIAL INSTRUCTIONS                                                                                                                                                           | and a second of the                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| RELINQUISHED BY/I<br>J.R. Aguilar/CHPH<br>RELINQUISHED BY/I<br>RELINQUISHED BY/I<br>R.A. Shepard/CHPR<br>RELINQUISHED BY/I | REMOVED FROM JAN 1<br>REMOVED FROM JAN 2<br>REMOVED FROM JAN 2<br>REMOVED FROM AN 2 6 | 1 2016 ISOS<br>DATE/TIME<br>6 2016 SBS<br>DATE/TIME<br>2016 II-30<br>DATE/TIME | RECEIVED BY/STORED IN<br>SSUH  <br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRG<br>RECEIVED BY/STORED IN<br>M. SWAL/M. SWALL JAN<br>RECEIVED BY/STORED IN | AN 1 1 2016 ISO 5<br>AN 2 6 2018 DATE/TIME<br>DATE/TIME<br>1 2 6 2016 IN 30<br>DATE/TIME | ** One liter bottle being sent to ESL is c<br>homogenized material from Liner B after<br>to be used for the Leachabilty characteris<br>Uranium bearing mineral phase analysis. | omprised of the residual<br>Total Uranium subsampling. It is<br>tic tests and predominate<br>PORTION C |
| RELINQUISHED BY/I                                                                                                          | REMOVED FROM                                                                          | DATE/TIME                                                                      | RECEIVED BY/STORED IN                                                                                                                                    | DATE/TIME                                                                                |                                                                                                                                                                                |                                                                                                        |
| RELINQUISHED BY/I                                                                                                          | REMOVED FROM                                                                          | DATE/TIME                                                                      | RECEIVED BY/STORED IN                                                                                                                                    | DATE/TIME                                                                                |                                                                                                                                                                                |                                                                                                        |
| RELINQUISHED BY/I                                                                                                          | REMOVED FROM                                                                          | DATE/TIME                                                                      | RECEIVED BY/STORED IN                                                                                                                                    | DATE/TIME                                                                                |                                                                                                                                                                                |                                                                                                        |
| LABORATORY<br>SECTION                                                                                                      | RECEIVED BY                                                                           |                                                                                |                                                                                                                                                          |                                                                                          | TITLE                                                                                                                                                                          | DATE/TIME                                                                                              |
| FINAL SAMPLE<br>DISPOSITION                                                                                                | DISPOSAL METHOD                                                                       |                                                                                |                                                                                                                                                          |                                                                                          | DISPOSED BY                                                                                                                                                                    | DATE/TIME                                                                                              |
| PRINTED ON                                                                                                                 | 12/29/2015                                                                            |                                                                                | FSR ID = FSR15670                                                                                                                                        | Т                                                                                        | RVL NUM = TRVL-16-056                                                                                                                                                          | A-6003-618 (REV 2)                                                                                     |

| CH2                               | MHill Plateau                 | Remediation Company                                               |                         | CHAIN C                        | OF CUSTODY,                     | SAMPLE ANALYSIS R | EQUEST                          | F15-014-459                             | PAGE 1 OF 1          |
|-----------------------------------|-------------------------------|-------------------------------------------------------------------|-------------------------|--------------------------------|---------------------------------|-------------------|---------------------------------|-----------------------------------------|----------------------|
| COLLECTOR                         | J.R. Aguilar/CH               | PRC                                                               | COMPANY CON<br>TODAK, D | ТАСТ                           | <b>TELE</b><br>376              | PHONE NO.<br>6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                           | DATA<br>TURNAROUN    |
| SAMPLING 1<br>C9582, 1-006        | LOCATION                      |                                                                   | 300-FF-5 Post R         | GNATION<br>OD Field Investigat | tion - Soils                    |                   | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                             | 30 Days / 30<br>Days |
| ICE CHEST I                       | NO.                           |                                                                   | FIELD LOGBOO            | KNO.<br>D-33/PL                | ACTL                            | JAL SAMPLE DEPTH  | COA<br>303492                   | METHOD OF SHIPMEN<br>GOVERNMENT VEHICLE | ORIGIN               |
| SHIPPED TO<br>Environme           | PK<br>ntal Sciences           | NL-33(                                                            | OFFSITE PROPI           | ERTY NO.                       | 0.01                            |                   | BILL OF LADING/AIR BILL         | NO.                                     |                      |
| MATRIX*<br>A=Air                  | POSSIBLE S                    | AMPLE HAZARDS/ REMARKS                                            | PRESER                  | VATION                         | None John Cool 6C               | + 1/7/16          |                                 |                                         |                      |
| DL=Drum<br>Liquids<br>DS=Drum     | concentratio<br>transportatio | ons that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDIN                  | NG TIME                        | 6 Months                        |                   |                                 |                                         |                      |
| Solids<br>L=Liquid<br>O=Oil       | Goods Regu<br>DOE Order       | lations but are not releasable per<br>458.1. N/A                  | TYPE OF C               | ONTAINER                       | G/P                             |                   |                                 |                                         |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                               |                                                                   | NO. OF CO               | NTAINER(S)                     | 1                               |                   |                                 |                                         |                      |
| V=Vegetation<br>W=Water           |                               |                                                                   | VOLUME                  |                                | 1L                              |                   |                                 |                                         |                      |
| X=Other                           | SPECIAL HA                    | ANDLING AND/OR STORAGE                                            | SAMPLE                  | ANALYSIS                       | Generic<br>Testing (No<br>CAS); |                   |                                 |                                         |                      |
|                                   | PLE NO.                       | MATRIX*                                                           | SAMPLE DATE             | SAMPLE TIME                    |                                 | 6                 |                                 |                                         |                      |
| SAM                               |                               |                                                                   |                         |                                |                                 |                   |                                 |                                         |                      |

| CHAIN OF POSSESSION                            | SIGN/ PRINT NAMES                           |                    | SPECIAL INSTRUCTIONS                                                                                                     | and the second second second                                        |
|------------------------------------------------|---------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| RELINQUISHED BY/REMOVED FROM JAN 1 1 2010 1505 | SSUHI / JAN                                 | 1 1 1 2016 1505    | ** One liter bottle being sent to ESL<br>homogenized material from Liner B af<br>to be used for the Leachability charact | s comprised of the residual<br>ter Total Uranium subsampling. It is |
| SSUT JAN 2 PATIEN                              | RECEIVED BY/STORED IN<br>R.A. Shepard/CHPRC | AN 2 6 2010 OT 3   | Uranium bearing mineral phase analys                                                                                     | is. PORTION B                                                       |
| RELINQUISHED BY/REMOVED FROM AND DATE/TIME     | RECEIVED BY/STORED THE                      | 2 6 2016 DATE/TIME |                                                                                                                          |                                                                     |
| RELINQUISHED BY REMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN                       | DATE/TIME          |                                                                                                                          |                                                                     |
| RELINQUISHED BY/REMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN                       | DATE/TIME          |                                                                                                                          |                                                                     |
| RELINQUISHED BY/REMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN                       | DATE/TIME          |                                                                                                                          |                                                                     |
| RELINQUISHED BY/REMOVED FROM DATE/TIME         | RECEIVED BY/STORED IN                       | DATE/TIME          |                                                                                                                          |                                                                     |
| LABORATORY RECEIVED BY<br>SECTION              |                                             |                    | TITLE                                                                                                                    | DATE/TIME                                                           |
| FINAL SAMPLE DISPOSAL METHOD<br>DISPOSITION    |                                             |                    | DISPOSED BY                                                                                                              | DATE/TIME                                                           |

| CH2                               | MHill Plateau                                                                                                                                                                                | Remediation Company                                              | CHAI                                                   | IN OF CUSTO                   | ODY/SAMPLE ANALYSIS RE           | QUEST                           | F15-014-461                              | PAGE 1 OF 1          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------|------------------------------------------|----------------------|
| COLLECTOR                         | J.R. Aguliar/CH                                                                                                                                                                              | PRC                                                              | COMPANY CONTACT<br>TODAK, D                            |                               | <b>TELEPHONE NO.</b><br>376-6427 | PROJECT COORDINATOR<br>TODAK, D | PRICE CODE 8H                            | DATA<br>TURNAROUND   |
| SAMPLING I<br>C9582, I-006        | OCATION                                                                                                                                                                                      |                                                                  | PROJECT DESIGNATION<br>300-FF-5 Post ROD Field Investi | igation - Solls               | 5                                | <b>SAF NO.</b><br>F15-014       | AIR QUALITY                              | 30 Days / 30<br>Days |
| ICE CHEST I                       | NO.                                                                                                                                                                                          |                                                                  | FIELD LOGBOOK NO.<br>HNF-N-SO7-33                      | 18,26                         | 32.50 - 33.00                    | COA<br>303492                   | METHOD OF SHIPMENT<br>GOVERNMENT VEHICLE | ORIGINA              |
| SHIPPED TO<br>Environmen          | PPED TO PNNL-33<br>vironmental Sciences Laboratory<br>QL-2L-1Q<br>POSSIBLE SAMPLE HAZARDS/ REMARKS<br>form *Contains Radioactive Material at<br>concentrations that are not be regulated for |                                                                  | OFFSITE PROPERTY NO.                                   | .0                            |                                  | BILL OF LADING/AIR BILL         | NO.                                      |                      |
| MATRIX*<br>A=Air                  | POSSIBLE S                                                                                                                                                                                   | AMPLE HAZARDS/ REMARKS<br>adioactive Material at                 | PRESERVATION                                           | Coul Le                       | JIH 117/16                       |                                 |                                          |                      |
| Liquids<br>DS=Drum                | concentratio<br>transportatio                                                                                                                                                                | ns that are not be regulated for<br>on per 49 CFR/IATA Dangerous | HOLDING TIME                                           | 6 Month                       | 5                                |                                 |                                          |                      |
| Solids<br>L=Liquid<br>Q=Oil       | Goods Regu<br>DOE Order                                                                                                                                                                      | lations but are not releasable per<br>158.1. N/A                 | TYPE OF CONTAINER                                      | Split Spo<br>Liner            | con                              |                                 |                                          |                      |
| S=Soil<br>SE=Sediment<br>T=Tissue |                                                                                                                                                                                              |                                                                  | NO. OF CONTAINER(S)                                    | 1                             |                                  |                                 |                                          |                      |
| V=Vegetation<br>W=Water           |                                                                                                                                                                                              |                                                                  | VOLUME                                                 | 1000g                         |                                  |                                 |                                          |                      |
| X=Other                           | SPECIAL HA                                                                                                                                                                                   | NDLING AND/OR STORAGE                                            | SAMPLE ANALYSIS                                        | Generic<br>Testing {<br>CAS}; | No                               |                                 |                                          |                      |
| SAM                               | PLE NO.                                                                                                                                                                                      | MATRIX*                                                          | SAMPLE DATE SAMPLE TI                                  | ME                            |                                  |                                 |                                          |                      |
| B347T9                            |                                                                                                                                                                                              | SOIL                                                             | AL-11-110 UUND                                         | V                             |                                  |                                 |                                          |                      |

| CHAIN OF POSSES                                                                                           | SION                                                       |                                                                   | SIGN/ PRINT NAMES                                                                                                                  |                                                                                                      | SPECIAL INSTRUCTIONS                                                                                                                                                     | and the second sec |       |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| RELINQUISHED BY/R<br>J.R. Aguilad/CHPRC/<br>RELINQUISHED BY/R<br>RELINQUISHED BY/R<br>R.A. Shepard/CHPRC/ | EMOVED FROM<br>JAN 1 1<br>EMOVED FROM<br>EMOVED FROM JAN 7 | 2016 1 505<br>DATE/TIME<br>6 2016 99<br>DATE/TIME<br>6 2016 11:30 | RECEIVED BY/STORED IN<br>SSUH I<br>RECEIVED BY/STORED IN<br>R.A. Shepard/CHPPP<br>RECEIVED BY/STORED IN<br>M. SUHM FILL BOUCHS JAN | 1 1 2016 JSUS<br>1 2 6 2016 DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>DATE/TIME<br>1 2 6 2016 DATE/TIME | ** One liter bottle being sent to ESL is<br>homogenized material from Liner B afte<br>to be used for the Leachabilty character<br>Uranium bearing mineral phase analysis | comprised of the residual<br>r Total Uranium subsampling.<br>istic tests and predominate<br>. PORTION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | It is |
| RELINQUISHED BY                                                                                           | EMOVED EROM                                                | DATE/TIME                                                         | RECEIVED BY/STORED IN                                                                                                              | DATE/TIME                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| RELINQUISHED BY/R                                                                                         | EMOVED FROM                                                | DATE/TIME                                                         | RECEIVED BY/STORED IN                                                                                                              | DATE/TIME                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| RELINQUISHED BY/R                                                                                         | EMOVED FROM                                                | DATE/TIME                                                         | RECEIVED BY/STORED IN                                                                                                              | DATE/TIME                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| RELINQUISHED BY/R                                                                                         | EMOVED FROM                                                | DATE/TIME                                                         | RECEIVED BY/STORED IN                                                                                                              | DATE/TIME                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| LABORATORY<br>SECTION                                                                                     | RECEIVED BY                                                |                                                                   |                                                                                                                                    |                                                                                                      | TITLE                                                                                                                                                                    | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| FINAL SAMPLE<br>DISPOSITION                                                                               | DISPOSAL METHOD                                            |                                                                   |                                                                                                                                    |                                                                                                      | DISPOSED BY                                                                                                                                                              | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| PRINTED ON 1                                                                                              | 2/29/2015                                                  |                                                                   | FSR ID = FSR15670                                                                                                                  | Т                                                                                                    | RVL NUM = TRVL-16-056                                                                                                                                                    | A-6003-618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (REV  |

| Pacif<br>Nation | ic Nor<br>al La | thwest<br>boratory | S    |       | PLE     | OLE<br>LOG  | Boring/Well N<br>Location 30  | 0 <u>C 9580</u><br>0 Area                  | Dep                            | hth <u>21.5-30</u> Dat<br>Project     | te 1/28/2016 | Sheet<br>/ of ) |
|-----------------|-----------------|--------------------|------|-------|---------|-------------|-------------------------------|--------------------------------------------|--------------------------------|---------------------------------------|--------------|-----------------|
| Logge           | ed by           | G.V.LA             | ST   |       | Print   |             | h                             | N. fart                                    |                                | Drilling Contractor                   |              |                 |
| Revie           | wed             | by                 | _    |       |         |             | 0,                            | /                                          | Date                           | Driller                               |              |                 |
| Lithol          | logic           | Class. Sch         | eme  | FOR   | Iwen    | twoth       | agn                           | Procedure PALE                             | SL-GEOLOSY Rev 1               | Drill Method So                       | NIC          |                 |
|                 |                 | SAMPLES            |      | GRAF  | HIC LOG |             |                               |                                            | DECEMINION                     | 1                                     | 1            |                 |
| (FT)            | ТҮРЕ            | ID NUMBER          | TURE | C 2   | SG      | (particle s | size distribution, sorting, n | LIHOLOGIC<br>nineralogy, roundness, color, | reaction to HCl, maximum grain | size, consolidation, structure, etc.) | CO           | MMENTS          |
| 21.5            |                 |                    |      |       |         |             |                               |                                            |                                |                                       |              |                 |
| .6              | G               | B34766             | W    | at    | 0.0     | SILTY SAI   | NDY GRAVEL. 5                 | 67. Gravel upto                            | 3 cm, rounded, 3               | 5% Sand, mostly                       | 1 Har Jar;   | -ful).          |
| ,7              |                 |                    |      | 20    | 60      | verycoars   | se to medium                  | 1. 1590 Sitt Ein C                         | lumps). Wet cold               | or is 2,514/1, Clashs                 |              |                 |
| 18              |                 |                    |      | PT    | TA.     | are cove    | red with mud.                 | -havd to see In                            | hobgy. No real                 | 13m to 102, HC1,                      |              |                 |
| 19              |                 |                    |      | Q.    | 0       |             |                               |                                            |                                |                                       |              |                 |
| 22.0            |                 |                    |      | 01    |         | 1           |                               |                                            |                                |                                       |              |                 |
| 26.6            | 6               | B347D8             | W    | 10    | 6. C    | SILTY SAN   | DY GRAVEL . 4                 | 17- Fraval ust                             | 2.5 m round to                 | sub-round mostly                      | 1 LITED TOP  | - Fial I        |
| .7              |                 |                    |      | ia' B | 6.0     | basattic?   | (mud covered.                 | 40% Sand me                                | stly coarse. We                | t coloris 2.54 4/1.                   |              | · VI baller !   |
| .8              |                 |                    |      | :00   | 5 3     | No reacti   | on to 10% HC.                 | in the second and                          |                                |                                       |              |                 |
| .9              |                 |                    |      | D     | 00 \$   |             |                               |                                            |                                |                                       |              |                 |
| 27.0            |                 |                    |      | B. D. |         |             |                               |                                            |                                |                                       |              |                 |
| 29,1            | C               | 8947FI             | W    |       |         | GRAVEL.     | 80% Gravel.                   | 15% Sand, 5%                               | sith. Gravel upty              | Scm, Sand'is                          | Splitspoon   | iner D. 80%     |
| ,2              |                 |                    |      |       |         | mostlyc     | range to veri                 | Acourse. Grave                             | lis round to sub               | round. Wet color                      | Lookes at 1  | Sottom anly.    |
| .3              |                 |                    | L    |       |         | 13 2,54 3   | 5/1 to 4/1. N                 | o reaction to                              | 10% HC1.                       |                                       | Therman :    | aus 84°F        |
| .4              |                 |                    | -    | A     | 10:01   |             |                               |                                            |                                |                                       |              | -               |
| ,5              | -               | 000                | 1    | 190   | Jo D    | Com         | 0.0 0                         | CR 1 . FA                                  |                                |                                       | 1111         | 1/0 0 11        |
| .6              | 6               | 034/F3             | W    | 20    |         | OKAVEL,     | BOTS Gravel,                  | 1225 Sand, 525                             | Sitte Gravel is up             | to 3cm, subround to                   | I Liter Jar  | - 19 twl.       |
| 11              |                 |                    |      | AC    | 000     | supangu     | CIL MOSTLY DES                | att: (mud covered                          | ). Sund is mos                 | EVELIJ, 4/1                           |              |                 |
| 10              |                 |                    | -    | -0,0  | Dinz    | ibarse.     | DIT IS MOS                    | ing in clumps.                             | WEI COIDE IS 2                 | 0/10/1109/11                          |              |                 |
| 30.0            |                 |                    |      | 50    | 29      |             |                               |                                            |                                |                                       |              |                 |
|                 |                 |                    | -    | T     |         |             |                               |                                            |                                |                                       |              |                 |
|                 |                 |                    |      |       |         |             |                               |                                            |                                |                                       |              |                 |
|                 |                 |                    |      |       |         |             |                               |                                            |                                |                                       |              |                 |
|                 |                 |                    |      |       |         |             |                               |                                            |                                |                                       |              |                 |
| Pacific Northwest BOF<br>National Laboratory SAM |       |            |               |          | R  | EH    | OLE<br>LOG    | Boring/Well NoC 9581Depth28 - 29,5DateLocation300APERProject |                                                      |                                            |                                   |             | Sheet        |
|--------------------------------------------------|-------|------------|---------------|----------|----|-------|---------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------|--------------|
| Logg                                             | ed by | George     | e La          | st       |    | rint  |               | d                                                            | eV. Sent                                             |                                            | Drilling Contracto                | r           |              |
| Revie                                            | wed t | oy         |               |          |    | rint  | 1.            | Sign                                                         |                                                      | Date                                       | Driller                           |             |              |
| itho                                             | ogic  | Class. Sch | eme -         | 51       | /n | purch | earth         |                                                              | Procedure HNL-ES-                                    | GEOLOGY Rev 1                              | Drill Method S                    | ONIC        |              |
| EPTH<br>FT)                                      | TYPE  | ID NUMBER  | MOIS-<br>TURE | GR       | 7  | CLOG  | (particle siz | e distribution, sorting, mi                                  | LITHOLOGIC DES(<br>neralogy, roundness, color, reoct | RIPTION<br>ion to HCl, maximum grain size, | , consolidation, structure, etc.) |             | DMMENTS      |
| 28.0                                             |       | 10 Hometa  |               |          | Ī  |       |               |                                                              |                                                      |                                            |                                   |             |              |
| .1                                               | G     | B347L4     | W             | 2        | 5: | 0     | SANDYG        | RAVEL. 609                                                   | Gravel, 35% Sar                                      | A. STOSAH. Graud                           | upto 2cm, mostly                  | I Liter Jax | , Full,      |
| ,2                                               |       |            |               | 6        | 1. | 03    | basalt. :     | Sandis most                                                  | y coarse to very ce                                  | arse, 50% matic                            | 509 felsic, wet                   | E           | 5            |
| ,3                                               |       |            |               | 0        | 2  | 0 2   | color is 2    | 2.544/1. No re                                               | action 102, HCl.                                     |                                            |                                   | DEPTHS 1    | neybeat ]    |
| .4                                               |       |            |               | -A-      |    | 50    |               |                                                              |                                                      |                                            |                                   |             |              |
| 1                                                | C     | 2112       | W             |          | 20 | ALC   | (PAVE)        | Soo Card                                                     | Trans hus Car                                        | hand hand                                  | - the set of a                    | Calib       | 15.000       |
| .0                                               | 5     | 201122     | n             | X        | 2  | 50    | 2000 100      | 2. hugo later                                                | alla clast auro                                      | (MIRT), STOVENS                            | Lach and Soldy                    | 957 E.I.    | Viguin top   |
| .8                                               |       |            |               |          | 1  |       | mostly s      | Maise to YPA                                                 | and course, hid                                      | coloris 25/4                               | 1. No reaction                    | and n.      | moning the   |
| 9                                                |       |            |               |          |    |       | 40 1020 t     | 101.                                                         | 0                                                    |                                            |                                   |             |              |
| 19.0                                             |       |            |               |          |    |       | _             |                                                              |                                                      |                                            |                                   |             |              |
|                                                  | C     | B34712     | W             | 9        | ダ  | 0°C   | GRAVEL.       | 80% Gravel                                                   | , 20% Sand, Some                                     | (trace) SIH. Fro                           | vel is sobround,                  | Splitspean  | , Liner D,   |
| :2                                               |       |            |               | -1       |    | -     | 60% mat       | ic, 402-folse.                                               | Send is mostly a                                     | sause to vory coa                          | rse, 502 marze                    | 70%-fall    | . Viewing by |
| ,3                                               |       |            |               | $\vdash$ | +  | -     | DZ febre      | . Wet color                                                  | 13239411. No                                         | reaction to 102                            | otic,                             | only.       |              |
| .4                                               |       |            |               | $\vdash$ | +  | +     |               |                                                              |                                                      |                                            | <b></b>                           | EDEPITIS I  | MAYBE OFF    |
| 61                                               |       |            | 1             |          | +  | +     |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          | +  |       |               |                                                              |                                                      | a della dina ana cara a anna an an         |                                   |             |              |
|                                                  |       |            |               |          |    |       |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          |    |       |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          |    |       |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            | -             |          | -  | -     |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          | -  | -     |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          | +  | -     |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               | $\vdash$ | -  | -     |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            |               |          | +  |       |               |                                                              |                                                      |                                            |                                   |             |              |
|                                                  |       |            | -             | $\vdash$ | +  | -     |               |                                                              |                                                      |                                            |                                   |             |              |

| Pacif<br>Nation | Pacific Northwest BOREHOLI<br>lational Laboratory SAMPLE LC |            |        |           |      |            | OLE<br>LOG | Boring/Well<br>Location 3  | Boring/Well No C9582 Depth 20.5-22.0 Date   Location 300-Area Project Project Project |                                  |                                 |               |             |  |
|-----------------|-------------------------------------------------------------|------------|--------|-----------|------|------------|------------|----------------------------|---------------------------------------------------------------------------------------|----------------------------------|---------------------------------|---------------|-------------|--|
| ogg             | ed by                                                       | George     | e V. 1 | a         | st   | Print      |            | 6                          | H.V. Last                                                                             |                                  | Drilling Contractor             |               |             |  |
| Revie           | wed b                                                       | oy         | _      | _         |      | Print      |            | Sign                       |                                                                                       | Date                             | Driller                         |               |             |  |
| itho            | ogic                                                        | Class. Sch | eme    | Fol       | k/n  | rest       | worth      |                            | Procedure PNN-ES                                                                      | -GEOLOGY Rev 1                   | Drill Method 50                 | NIC           |             |  |
| EPTH            | SAMPLES                                                     |            | MOIS   | GR        | APHI | C LOG      |            |                            |                                                                                       |                                  |                                 | COMMENTS      |             |  |
| 7)              | TYPE                                                        | ID NUMBER  | TURE   | c z       |      | Z S G (par |            | ize distribution, sorting, | mineralogy, roundness, color, read                                                    | tion to KCl, maximum grain size, | consolidation, structure, etc.) |               |             |  |
| 0.5             | -                                                           | -          | -      |           | _    |            |            |                            |                                                                                       |                                  |                                 |               |             |  |
| 16              | G                                                           | B34 170    | W      |           | 0    | 00         | SILTY GE   | AVELY SIND.                | 25% Gravel, 659                                                                       | - Sank, 10% Sitt (1              | nclumps). Gravel                | 1 Liter Jur,  | Full,       |  |
| .7              |                                                             |            |        | - 1       | .0   |            | 15 7020    | basattic, 30%              | atelsic, sciorand, L                                                                  | pto Icm. Sankis                  | mostly coarse to                | Francis       | whon white  |  |
| 10              |                                                             |            |        |           |      | 0 0        | Very coar  | 50, 50% ma                 | AC, SOZATELSIC. W                                                                     | + cdor 13 2 3 4/1                | but looks more                  | LUZEPAIS M    | HBE OFT     |  |
| 17              |                                                             |            |        |           | 0    | 0          | stown in   | an previous :              | surpres. No resu                                                                      | ion to lotatil.                  |                                 |               |             |  |
| 1               | C                                                           | 3347N9     | Lv'    | 0.1       | 00   | 0.00       | SILTY SE   | NDY GREVAN                 | 40% Ginial 45                                                                         | 7. Sent 159. 54                  | Gravelia unto 05                | Soliternan li | ner C.      |  |
| .2              | -                                                           |            |        | 0,1       | -    |            | cm mas     | the very fine B            | toble to avante, mo                                                                   | stly matic subra                 | undio suboundar,                | Nearly Full.  | Lookedat    |  |
| 13              |                                                             |            |        |           |      |            | Sandis     | mostly coa                 | rse. We color is                                                                      | 2.543/1. Not r                   | Eaction to 10% fich.            | Top only.     |             |  |
| .4              |                                                             |            |        |           |      |            |            | 3                          |                                                                                       |                                  |                                 | 1             |             |  |
| 5               |                                                             |            |        |           |      | -          |            |                            |                                                                                       |                                  |                                 |               |             |  |
| 16              |                                                             | B347N8     | W      | 10-       |      |            | SKILY SAN  | DY GRAVEL                  | 60% Grad, 25                                                                          | 2 Sand, 159, SiH.                | Gravelis round to               | Solitspan     | liner D.    |  |
| .7              |                                                             |            |        | 9         | 4    | 30.        | Subround   | l, noto 3 cm               | n. 60% matric, 45                                                                     | felsic, Sand is                  | finer, mostly                   | Bozoful).     | Look at tap |  |
| 9,              |                                                             |            |        |           | +    | -          | nedium     | to fine, 602               | talsic, 40% matrc. d                                                                  | at coloris 2.5Y                  | 4/2, more brown.                | only.         |             |  |
| 17              | -                                                           |            |        | $\vdash$  | +    | +          | looks cl   | as supporte                | A. No reaction                                                                        | 0 10% HD                         |                                 | EDEPH'S M     | AVBE OFF    |  |
| 6,0             |                                                             |            | -      |           | -    | +          | -          |                            |                                                                                       |                                  |                                 | 13-01-01      |             |  |
| -               |                                                             |            |        |           | -    | +          |            |                            |                                                                                       |                                  |                                 |               |             |  |
| _               |                                                             |            |        | $\square$ | 1    | -          |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            |        |           |      |            |            |                            |                                                                                       |                                  | ·                               |               |             |  |
|                 |                                                             |            |        |           |      |            |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            |        |           |      |            |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            |        |           |      |            |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            |        |           | -    | -          |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 | -                                                           |            |        |           | -    | -          |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            | -      | $\vdash$  | -    |            |            |                            |                                                                                       |                                  |                                 |               |             |  |
|                 |                                                             |            |        |           |      |            |            |                            |                                                                                       |                                  |                                 |               |             |  |

| Pacif<br>Nation | ic Nort                                          | thwest<br>oratory                     | S   | BC  | )R<br>MP  | EH    | OLE            | Boring/Well No <u>C9582</u><br>Location <u>300 App</u>         | Depth Pro          | Dat                         | e 1/29/2016   | Sheet<br>2 of 5 |  |
|-----------------|--------------------------------------------------|---------------------------------------|-----|-----|-----------|-------|----------------|----------------------------------------------------------------|--------------------|-----------------------------|---------------|-----------------|--|
| Logg            | ed by                                            | Georg                                 | eV. | 10  | ist       | Print |                | S.V. Frest                                                     |                    | Drilling Contractor         |               |                 |  |
| Revie<br>Lithol | wed b                                            | Class, Sch                            | eme | EN  | klu       | Uput  | reath          | Procedure PWL-                                                 | Tology Rev )       | Driller<br>Drill Method So: | NIC           |                 |  |
|                 | SAMPLES MOIS- GRAPHIC LOG LITHOLOGIC DESCRIPTION |                                       |     |     |           |       |                |                                                                |                    |                             |               |                 |  |
| FT)             | TYPE                                             | ID NUMBER TURE C Z S G (particle size |     |     |           |       | (particle size | e distribution, sorting, mineralogy, roundness, color, reactio | COMMENTS           |                             |               |                 |  |
| 22.5            | C                                                | B34728                                | W   | -25 | Car I     | 49    | GRAITET        | 80% (move) 15% Sand EP.                                        | Sitt. Gravelie     | item behave                 | SPLITSPASA    | INER A.         |  |
| .7              | -                                                | Conne                                 |     |     |           | EP.   | bacalt         | nogel ust a kast 1.5mm                                         | Sand is most       | uconvisets                  | FULL, Look    | ma al Top       |  |
| ,8              |                                                  |                                       |     |     | $\square$ |       | median         | Wet coloris 2.5Y 3/1. Ver                                      | compaded.          | Not reaction to             | enin.         | 0               |  |
| .9              |                                                  |                                       |     |     |           |       | 10% HCL.       |                                                                |                    |                             | 5             | -               |  |
| 23.0            |                                                  |                                       |     | -   |           |       |                |                                                                |                    |                             | DEPHIS M      | AVBE OFF        |  |
| ,1              | G                                                | B347P5                                | W   | -   | 124       | Ro    | GRAVEL.        | 90% Gravel, 5% Soul, 5% ST                                     | . Gravel'is subr   | cound to subarghr.          | ILITER JAR    | , 1/2 Full.     |  |
| ,2              |                                                  |                                       |     |     | AT.       | 20    | hpto 30        | m, mostly basalt (matic). Sand                                 | is mostly med      | izem, Wet                   | Question if a | 200 m materia   |  |
| .3              |                                                  |                                       |     | 20  |           | 22    | coloris 2.     | 5/4/1.                                                         | -                  |                             | alredy exty   | ided for previ  |  |
| ,4              |                                                  |                                       | -   | 1   | 04        | 10    |                |                                                                |                    |                             | anyses.       |                 |  |
| 1               | -                                                | ROUTON                                | Int | D   | 13h       | 2     | COND 9         | me c in the there of A                                         | and a state of the | di. La M                    | STATE AND     | 1 CENI          |  |
| 7               | 5                                                | 107117                                | 10  | K   | a         | 0     | What calo      | - of Some cand & el His 254                                    | 12 No contrata     | 150 +1cl                    | Full Look     | end at the      |  |
| ß               |                                                  |                                       | -   |     |           |       | POCT COID      |                                                                |                    |                             | STOLUS.       | the as it       |  |
| .9              |                                                  |                                       |     | 1   | T         |       |                |                                                                |                    |                             |               |                 |  |
| 24.0            |                                                  |                                       |     |     |           |       |                |                                                                |                    |                             |               |                 |  |
| 1               | C                                                | B347P3                                | W   | 5   | 24        | Q.M   | SANDYGR        | AVEL. 75% Gravel, no to 6 cm                                   | , 70% basalic,     | 30%, felse, Snod            | SPLITSPOOT    | I LINER D.      |  |
| .2              |                                                  |                                       |     | F.  | ry        | F     | (202) 15       | mostly coarse to very coars                                    | 2, salt & pepper   | 5871 mase, 58%              | Look at t     | ponly.          |  |
| 13              |                                                  |                                       |     | 1   |           | -     | falsic, V      | Vet color of motivis 2.5/4/1-                                  | To 3/1. No read    | from to 1020 #121,          |               |                 |  |
| .4              |                                                  |                                       |     | 1   | $\square$ |       |                |                                                                |                    |                             | Francis       |                 |  |
| 15              |                                                  |                                       | -   | -   |           |       | 1              |                                                                |                    |                             | LUCYIHS N     | HAY BE OFF      |  |
|                 |                                                  |                                       | -   | +   | +         | -     |                |                                                                |                    |                             |               |                 |  |
|                 |                                                  |                                       |     | +   | ++        |       |                |                                                                |                    |                             |               |                 |  |
|                 |                                                  |                                       | -   | +   | +         | -     |                |                                                                |                    |                             |               |                 |  |
|                 |                                                  |                                       |     | t   | +         | -     |                |                                                                |                    |                             | -             |                 |  |
|                 |                                                  |                                       | -   | t   | Ħ         | -     |                |                                                                |                    |                             |               |                 |  |
|                 |                                                  |                                       |     |     |           |       |                |                                                                |                    |                             |               |                 |  |

| Pacif<br>Nation | Pacific Northwest<br>National Laboratory |            |               | BO<br>AM | RE   | EH   | OLE           | Boring/Well No C 9502 Depth 25,0 - 27,0' Date   Location 300 Area Project Date |                     |                    |         |                     | Date 1/29/2016 | Sheet<br>3 of 5  |  |
|-----------------|------------------------------------------|------------|---------------|----------|------|------|---------------|--------------------------------------------------------------------------------|---------------------|--------------------|---------|---------------------|----------------|------------------|--|
| Logg            | ed by                                    | George     | La            | 4        | -    |      |               |                                                                                | Drilling Contractor |                    |         |                     | or             | •                |  |
| Revie           | ewed                                     | by         |               |          | Pri  | nt   |               |                                                                                | Sign                | Date               |         | Driller             |                |                  |  |
| Litho           | logic                                    | Class. Sch | eme           | TH       | Ju   | 1 m  | twenth        | 3                                                                              | Procedure           | TS ATRICEY Rev     | 1       | Drill Method        | ONIC.          |                  |  |
|                 |                                          | SAMPLES    | T             | GRA      | PHIC | 106  |               |                                                                                |                     |                    |         |                     |                |                  |  |
| PFT)            |                                          |            | MOIS-<br>TURE | C        | zs   | G    | (particle siz | e distribution, sortin                                                         |                     | COMMENTS           |         |                     |                |                  |  |
| 5,0             |                                          |            |               |          | I    |      | 0             |                                                                                |                     |                    |         |                     |                |                  |  |
| 1               | C                                        | B34724     | W             |          | T    |      | GRAVEL.       | 80% Brow                                                                       | el, upto 4 cm (     | broken). Subrown   | d to s  | ubangular who       | Ve SPUTSPOO    | OLINER A.        |  |
| .2              |                                          |            |               | 201      |      |      | unbroken      | ,60% ba                                                                        | saltic/matic,4      | plofelse, wet      | color   | 152:543/1.          | 50% FUL        | L. View from Tap |  |
| 13              |                                          |            | ARCANO D      |          |      |      | No read       | Hon 40 102 Cl.                                                                 |                     |                    |         |                     |                |                  |  |
| .4              | _                                        |            | -             |          | -    |      |               |                                                                                |                     |                    |         |                     | DEPHSM         | AY BE OFF        |  |
| .5              | -                                        | 0000       | 1.4           |          | +    |      |               |                                                                                |                     | 1 1                | -       |                     |                | 0.11             |  |
| .b              | 9                                        | BEA MI     | W             | 0 6      |      |      | SANDY         | SRAVEL. 4                                                                      | 0% Gravel, 55%      | wand, 5% sitt      | , Grav  | el upto 3cm         | , ICHer ]3     | r, full.         |  |
| 13              |                                          |            |               | 0        | 0    | 6    | Subrouv       | d where I                                                                      | up broken, 80       | Dasaltic/matic     | C, 202  | telsicleg.          | -)             |                  |  |
| 0.              | -                                        |            | -             | 0        | 4    | 0.1  | argilite)     | Sand TS                                                                        | mostly coars        | e to very coarse   | 0. W    | er color is 2.5Y    | 3/).           |                  |  |
| 17              | -                                        |            |               | P        | 08   | 10   | No read       | 15A 40 HCI                                                                     | 4                   |                    |         |                     |                |                  |  |
| 10.0            | C.                                       | B34780     | M             | DO D     | D.   | 10.0 | SHITY SE      | MTP (RD) F                                                                     | 1 1-69 Graves       | 350 Sand 50        | off (   | ·                   | SPIER AND      | LINER C          |  |
| 2               | 0                                        | DATINO     | VV            | -0-0     | 2-04 |      | Sill Si       | 100 5000                                                                       | 1. 60 10 grade      | 1 Sindia and       | 30. 6   | aravel up to 1. JLY | n. Fruitrook   | LINBEC.          |  |
| 2               |                                          |            |               |          | +    | +    | 50° and       | 5 Da Clas                                                                      | HUND COLOTE         | 25441 No 65        | JACON J | 140 NI              | the state      | ory). Viawing    |  |
| .4              |                                          |            |               |          | +    |      | SU TO TRACK   | ; JETA TELSI                                                                   | C. MET GRIOT 13     | 6, J ( 11, 100 100 | C'M T   |                     | in a any       | ,                |  |
| .5              |                                          |            |               |          | +    |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
| .6              | C.                                       | B347P9     | W             |          | +    |      | SILTY SAI     | DY GROUF                                                                       | 1 752 Gravel        | 20% Sand 5% 5      | Sitt. 6 | avel upto 50        | M SAUSPA       | ON LINPED        |  |
| ,7              |                                          |            | 1             | do       | A C  | TA   | SUDCOUN       | d where u                                                                      | unbroken most       | " besett/motor.    | Sand    | is mostly cool      | 20 85% FUL     | 1. Viesion for   |  |
| .8              |                                          |            |               |          |      |      | 50% mat       | c 50% fel3                                                                     | ic. Wet color       | is 2,544/1. 1      | No rea  | Am to 162+1         | () top         |                  |  |
| .9              |                                          |            |               |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
| 27.0            |                                          |            |               |          |      |      | 1             |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          |            |               |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          |            |               |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          |            |               |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          | -          |               |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          |            | -             |          |      |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
|                 |                                          |            |               |          | -    |      |               |                                                                                |                     |                    |         |                     |                |                  |  |
| 10.00           |                                          |            |               |          |      |      | _             |                                                                                |                     |                    |         |                     |                |                  |  |

| Pacific Northwest BOREHOLE<br>National Laboratory SAMPLE LOC |       |            |               | BC       | R    | EH    | IOLE<br>LOG  | Boring/Well No C 9582 Depth 20,5 - 30 <sup>+</sup> Date   Location 300 AREA Project |                      |                     |                     | e 1/29/2016 | Sheet<br>4 of 5 |  |  |
|--------------------------------------------------------------|-------|------------|---------------|----------|------|-------|--------------|-------------------------------------------------------------------------------------|----------------------|---------------------|---------------------|-------------|-----------------|--|--|
| Logg                                                         | ed by | George     | ٥V.           | La       | 57   | Print |              | -                                                                                   | A.V. Jast            | Drilling Contractor |                     |             |                 |  |  |
| Revie                                                        | wed   | Class Sch  | ama           | 5        | 1.1. | hint  | limith       | Sign                                                                                | Brocedure RW -FS     | Date                | Drill Method        | NIC         |                 |  |  |
| Litho                                                        | logic | CIASS. SCH | ente          | CP       |      | ring  | ricovin      |                                                                                     | Flocedule            | Dealegy nev 1       |                     |             |                 |  |  |
| PEPTH<br>FT)                                                 | T)    |            | MOIS-<br>TURE | C        | Z    | S G   | (particle si | ze distribution, sorting,                                                           | COMMENTS             |                     |                     |             |                 |  |  |
| 8.5                                                          |       |            |               |          |      |       | -            |                                                                                     |                      |                     |                     |             |                 |  |  |
| ,b                                                           | C     | B347R6     | W             | 3        | 19   | P     | GRAVEL,      | 80% Gray                                                                            | el, 20% Sand, som    | e STA. GRAVEL .     | up to at least 6 cm | SPUTSPOOL   | SLINER C.)      |  |  |
| 11                                                           |       | (broken)   |               |          |      | -     | (broken).    | mostly bas                                                                          | attic. Sand is no    | sty coause to M     | ery chause.         | BOTO FULL   | (Sig ROOKS).    |  |  |
| .7                                                           |       |            |               |          | +    | +     | Wer 20101    | 15 2151 -                                                                           | 1. IND TO WEAVE NEAD | Ton to 10 GAC       |                     | TOEPTH      | MAPRO           |  |  |
| 9.0                                                          |       |            |               |          | 1    | 1     |              |                                                                                     |                      |                     |                     | 1           |                 |  |  |
| ,1                                                           | C     | B347R5     | W             | ~        | 10   | 1     | SILTY SA     | NDY GRAVEL                                                                          | , 70% Gravel, 20%    | o Sand 570 Sit      | Gravel areadouthan  | SPUTSPOOR   | LINED)          |  |  |
| .2                                                           |       |            |               |          |      | Y     | 5cm (bro     | ken). 5020                                                                          | basattic? sand       | smostly coors       | e to very cause,    | 90% FULL    | (Big Rooks)     |  |  |
| . 3                                                          | _     |            |               |          | -    | +     | Clasts co    | veral usale                                                                         | mud. Wetcoloris      | 2.584/1704/2        | Noto weak           | Vieweette   | ponly.          |  |  |
| .4                                                           |       |            |               | $\vdash$ | +    | +     | reaction     | to 10% +1c1                                                                         |                      |                     |                     |             |                 |  |  |
| .0                                                           | G     | B24707     | W             | .0       | 6.   | 0     | GHTU SONT    | W KRANE                                                                             | 409 6-1 509.         | A His Car Ling      | End water 200       | LITE JOE    | 245.1.          |  |  |
| 7                                                            | 9     | UMILI      |               | 0        | .0   |       | auton n      | 1 BOTO baca                                                                         | HAC 209, fabre Sa    | nd is mostly a      | pavere. Wot dam     |             | Form            |  |  |
| .8                                                           |       |            |               | 0        | 5    | 2- 0  | 1 = 2.544    | TI. No real                                                                         | Am to 109, HC1.      |                     |                     |             |                 |  |  |
| .9                                                           |       |            |               | 05       | 0    | 0.0   |              | ,                                                                                   |                      |                     |                     |             |                 |  |  |
| 38.0                                                         |       |            | -             | 2.       | 0    | 0_0.  | -            |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               |          | -    | +     |              |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               | $\vdash$ | +    | +     |              |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            | -             | $\vdash$ | +    | +     |              |                                                                                     |                      | -                   |                     |             |                 |  |  |
| -                                                            |       |            |               |          |      | -     | -            |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               |          |      |       |              |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               |          |      |       |              |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               |          |      | -     |              |                                                                                     |                      |                     |                     | -           |                 |  |  |
|                                                              |       |            | -             |          | -    | -     |              |                                                                                     |                      |                     |                     | -           |                 |  |  |
|                                                              |       |            | -             | -        | -    | +     |              |                                                                                     |                      |                     |                     |             |                 |  |  |
|                                                              |       |            |               | -        | -    | -     |              |                                                                                     |                      |                     |                     |             |                 |  |  |

| Pacifi<br>Nation | ic Nori<br>al Lab | thwest<br>oratory | E<br>S |          | DR<br>MP | EH    | IOLE<br>E LOG | Boring/We<br>Location   | Boring/Well No <u>C9582</u> Depth <u>32</u><br>Location <u>300 Area</u> Project |                                              |                   | <u>325-34</u> ,5_Dat<br>ject   | e 1/29/2016 | Sheet<br>5 of 5 |
|------------------|-------------------|-------------------|--------|----------|----------|-------|---------------|-------------------------|---------------------------------------------------------------------------------|----------------------------------------------|-------------------|--------------------------------|-------------|-----------------|
| ogge             | d by              | George            | N.I    | _11.     | 4        |       |               |                         | del dast                                                                        |                                              |                   | Drilling Contractor            |             |                 |
| Revie            | wed t             | by                |        |          |          | Print |               |                         | Sign*                                                                           | Date                                         |                   | Driller                        |             |                 |
| ithol            | ogic              | Class. Sch        | eme    | Fol      | k/i      | Wei   | Atooth        |                         | Procedure RAL                                                                   | -ESL-BEINDER                                 | Rev               | Drill Method Sot               | AIC         |                 |
|                  | -                 | SAMPLES           |        | GF       | RAPHI    | C LOG |               |                         |                                                                                 |                                              |                   |                                |             |                 |
| EPTH<br>T)       | TYPE              | ID NUMBER         | TURE   | c        | 2        | SG    | (particle     | ize distribution, sorti | LITHULU<br>ing, mineralogy, roundness, colo                                     | GIC DESCRIPTION<br>or, reaction to HCl, maxi | mum grain size, ( | onsolidation, structure, etc.) | 0           | MMENTS          |
| 25               |                   |                   |        |          |          |       |               |                         |                                                                                 |                                              |                   |                                | 1           |                 |
| ,6               | C                 | B34779            | W      |          |          | -     | SIDY SA       | SDY GRAVE               | 2. 70% Gravel, 1                                                                | 59, 5 Sand, 10                               | 20 Sitt (my       | d). Gravelupto                 | SPLIT SPOOL | LINERA,         |
| 17               | _                 |                   |        | õ        | SI       | 3     | >5cm (        | proken), Sur            | pround where u                                                                  | NDrokow. So                                  | mhis mo           | sty coave to                   | Bolo full.  | Mewood You      |
| -8               |                   |                   |        |          |          | 7     | Veryce        | arse, Ver               | y muddy, colo                                                                   | ris 2.574                                    | 1704/2.           | No reaction to                 | Sources     | UNTER ATT       |
| 17               | -                 |                   |        | $\vdash$ |          | -     | 107051.       |                         |                                                                                 |                                              |                   |                                | [renai>1    | 1002 BC CAT     |
| 2.0              | 6                 | B247T7            | W      | às       | Rat      | 07    | SITU S        | FASTON COON             | T. 757 Smill                                                                    | 75% Sund 1                                   | D. Stal           | 1 Gravaluate                   | 1 Liter Jar | nearly fill.    |
| .2               | 4                 |                   | 1.4    | 2        | (S       | 6 1   | Brm 5         | and is ma               | ally coarse to                                                                  | Very charse                                  | sitin             | clawos.                        |             |                 |
| .3               |                   |                   |        | 0        | 1        | 10    | Wet 22        | (n/ 35 22               | STALL No 124                                                                    | dian to 10                                   | 2. Ach            |                                |             |                 |
| *4               |                   |                   |        | ě.       | 20       | d     |               |                         |                                                                                 |                                              |                   |                                |             |                 |
| 15               |                   |                   |        | P        | 2        | Vaka  | _             |                         |                                                                                 |                                              |                   |                                | -           |                 |
| 16               | C                 | B34776            | W      | Ś        | 3        | 298   | SILLY SI      | INDY GRAVE              | 1. 70% Gravel,                                                                  | 1390 Sand 1                                  | 520 SH/N          | ud, Gravel upto                | SPLITSPEDI  | J LINE C        |
| 17               | -                 |                   | -      | -        | +        | +     | 7cm, b        | oken. Sar               | nt is mostly coo                                                                | use, Lots a                                  | t sitt/mu         | d. Wet const                   | 90Zatull.   | Viaue tap       |
| 0                | -                 |                   |        | +        | +        | +     | 15 2.54       | 4/1, 100                | reaction to 107                                                                 | o HCI.                                       |                   |                                | som. no     | CISTINA         |
| 4.0              |                   |                   |        | 15       | 0        | 10    | TODE          | CAN DITH                | NSO - SAVAY                                                                     | A RUE                                        |                   |                                |             |                 |
| 1                | C                 | B347T5            | W      | 1        | 11       | 1     | SANDY         | GRAVEL .                | 70% Gravel 3                                                                    | Pro Swed to                                  | ace of si         | H. Gravel noto                 | SPLITSPOOL  | U LINER D       |
| 12               |                   |                   | 1      | D'       | Pal      | 20    | 14 cm         | subround+               | o subangular.                                                                   | 60% besalt                                   | c/matic           | 4020 felsic,                   | 80% full.   | Viewed from     |
| ,3               |                   |                   |        |          |          |       | Sandi         | s modly c               | parse to youry ro                                                               | arse, salt an                                | nd peppe          | v 1500 marc/ 307               | top only.   |                 |
| .4               | -                 | -                 |        |          |          | -     | felsic).      | Wet color               | 15 2,57 3/1. N                                                                  | o readions                                   | 10 1090 HI        | 2.                             | -           |                 |
| ,5               | _                 | -                 | -      | -        | -        | -     | 1             |                         |                                                                                 |                                              |                   |                                |             |                 |
| -                | -                 |                   |        | +        | +        |       |               |                         |                                                                                 |                                              |                   |                                |             |                 |
| -                |                   |                   | -      | +        | +        | +     |               |                         |                                                                                 |                                              |                   |                                | -           |                 |
|                  |                   |                   | -      | 1        | H        | +     |               |                         |                                                                                 |                                              |                   |                                |             |                 |
|                  |                   |                   |        | 1        |          | -     |               |                         |                                                                                 |                                              |                   |                                |             |                 |
|                  |                   |                   |        |          |          |       |               |                         |                                                                                 |                                              |                   |                                |             |                 |
|                  |                   |                   |        |          |          |       |               |                         |                                                                                 |                                              |                   |                                |             |                 |

#### SGW-59614, REV. 0



### Photographs of samples from borehole C9580



































C9582 Borehole ID B347R6 28.5-29.0 Sample Number Depth from Chain-of-Custody















# Appendix C

# Cryogenic U(VI) Laser Fluorescence Spectroscopy

#### SGW-59614, REV. 0



Sample B347C6 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):



Sample B347C6 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):



Sample B347C6 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):



Sample B347D8 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):



Sample B347D8 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.5



Sample B347D8 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):



Sample B347F1 and F3 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):

C.7



Sample B347F1 and F3 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):



Sample B347F1 and F3 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):



Sample B347L4 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):



Sample B347L4 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.11



Sample B347L4 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):



Sample B347P0 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):


Sample B347P0 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.14



Sample B347P0 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):



Sample B347P5 and P8 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):

C.16



Sample B347P5 and P8 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.17



Sample B347P5 and P8 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):

C.18



Sample B347R1 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):

C.19



Sample B347R1 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.20





C.21



Sample B347R7 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):

C.22



Sample B347R7 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.23



Sample B347R7 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):

C.24



Sample B347T7 – Steady-state spectra ( $\lambda_{em}$ = 415 nm):

C.25



Sample B347T7 – Time-resolved spectra ( $\lambda_{em}$ = 415 nm):

C.26



Sample B347T7 – Fluorescence decay curves ( $\lambda_{em}$ = 415 nm):

C.27

| Sample ID |         | Spect      | tral Positic | ons (nm) | Lifetim | Lifetimes (ms) |      |
|-----------|---------|------------|--------------|----------|---------|----------------|------|
|           |         |            |              |          |         |                |      |
| B347C6    | Spot #1 | 512.2      |              |          | 5.57    | ±              | 0.18 |
|           |         |            |              |          | 0.65    | ±              | 0.05 |
|           | Spot #2 | 514.6      |              |          |         |                |      |
|           | Spot #3 | 512.7      |              |          |         |                |      |
| B347D8    | Spot #1 | 536.2      |              |          | 8.04    | ±              | 6.31 |
|           |         |            |              |          | 0.52    | ±              | 0.17 |
|           | Spot #2 | 534.8      |              |          |         |                |      |
|           | Spot #3 | 534.0      |              |          |         |                |      |
| B347F1+F3 | Spot #1 | 515.7(sh)  | 534.8        |          | 6.28    | ±              | 0.42 |
|           |         |            |              |          | 0.25    | ±              | 0.10 |
|           | Spot #2 | 517.1      | 534.8        |          |         |                |      |
|           | Spot #3 | 518.2      | 536.4        |          |         |                |      |
| B347L4    | Spot #1 | 498.2      | 517.4        | 540      | 3.24    | ±              | 0.10 |
|           |         |            |              |          | 0.18    | ±              | 0.07 |
|           | Spot #2 | 497.4      | 519.5        | 538.3    |         |                |      |
|           | Spot #3 | 497.1      | 517.6        | 540      |         |                |      |
| B347P0    | Spot #1 | 502.6      | 519          | 537.2    | 0.98    | ±              | 0.20 |
|           |         |            |              |          | 0.18    | ±              | 0.02 |
|           | Spot #2 | 502.4      | 518.5        | 540.2    |         |                |      |
|           | Spot #3 | 499.0 (sh) | 517.4        | 536.2    |         |                |      |
| B347P5+P8 | Spot #1 | 499.3 (sh) | 517.1        | 536.2    | 1.57    | ±              | 0.26 |
|           |         |            |              |          | 0.27    | ±              | 0.03 |
|           | Spot #2 | 499.3      | 517.1        | 538.1    |         |                |      |
|           | Spot #3 | 500.1 (sh) | 517.1        | 536.2    |         |                |      |
| B347R1    | Spot #1 | 502.6      | 518.7        | 537.8    | 0.62    | ±              | 0.09 |
|           |         |            |              |          | 0.17    | ±              | 0.05 |
|           | Spot #2 | 497.1      | 515.4        | 536.4    |         |                |      |
|           | Spot #3 | 500.4(sh)  | 516.8        | 536.7    |         |                |      |
| B347R7    | Spot #1 | 497.7      | 517.6        | 539.7    | 3.01    | ±              | 0.37 |
|           |         |            |              |          | 0.31    | ±              | 0.01 |
|           | Spot #2 | 496.8      | 517.1        | 539.1    |         | -              |      |
|           | Spot #3 | 496.8      | 516.5        | 538.1    |         |                |      |
| B347T7    | Spot #1 | 498.2      | 517.4        | 538.1    | 6.08    | +              | 0.80 |
|           | oper n± | 150.2      | 52/11        |          | 0.32    | -<br>+         | 0.06 |
|           | Spot #2 | 499.6      | 518.7        | 537.8    | 0.02    | -              |      |
|           | Spot #3 | 497 9      | 517.6        | 538.9    |         |                |      |

Table C.1. Sediment U(VI) fluorescence characteristics.

# Appendix D

## Representative Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy and Electron Microprobe Results for Boreholes C9581 and C9582

#### SGW-59614, REV. 0



Figure D.1. Sample B347L4 (collected from borehole C9581, depth interval I-004, with at total uranium concentration of 4.3 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).



0

2 4

6 8



| Spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EDS Semi-<br>ouantitative | Spectrum<br>1                                                                                                   | Spectrum<br>2 | Spectrum<br>3 | Spectrum<br>4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|
| O<br>Ti<br>Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis                  | a la companya de la c | Aton          | nic %         |               |
| Fe Ca Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ca                        | 2.95                                                                                                            | 0.26          | 0.08          | 2.50          |
| No P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Р                         | 0.84                                                                                                            | b.d.          | b.d.          | b.d.          |
| o Nn Speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trum 2 Fe                 | 3.49                                                                                                            | 11.13         | 5.01          | 6.16          |
| C<br>K<br>Man Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Si                        | 9.92                                                                                                            | 4.15          | 0.83          | 10.25         |
| n<br>ca Si<br>Fe Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Al                        | 0.44                                                                                                            | 1.87          | 0.39          | 1.00          |
| Ma Ca Y Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D D                       | 53.81                                                                                                           | 38.03         | 38.84         | 55.89         |
| o<br>V<br>Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mg                        | 2.24                                                                                                            | 0.75          | 0.34          | 2.34          |
| Ti Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na                        | 0.18                                                                                                            | 0.69          | b.d.          | 0.30          |
| Fe Si<br>A V<br>Mat co Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ti                        | 0.13                                                                                                            | 3.88          | 5.70          | 0.72          |
| O Specific S | *b.d. below de            | tection                                                                                                         |               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |               |               |               |

**Figure D.2**. Sample B347P0 (collected from borehole C9582, depth interval I-001, with at total uranium concentration of 71 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).

16 20 keV

16

10 12 14



| EDS Semi-                | Ca   | Р    | Fe       | Si   | Al   |
|--------------------------|------|------|----------|------|------|
| quantitative<br>Analysis |      |      | Atomic % |      |      |
| (Spectrum 1)             | 0.42 | 0.35 | 31.45    | 3.05 | 1.16 |

**Figure D.3**. Sample B347P5&8 (collected from borehole C9582, depth interval I-002, with at total uranium concentration of 100 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).



**Figure D.4**. Sample B347R1 (collected from borehole C9582, depth interval I-003, with at total uranium concentration of 31 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).



**Figure D.5**. Sample B347R7 (collected from borehole C9582, depth interval I-004, with at total uranium concentration of 31 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).



Figure D.6. Sample B347T7 (collected from borehole C9582, depth interval I-006, with at total uranium concentration of 19 mg/kg [ALS1601118, accessed via the Enterprise Application to IDMS]).

SGW-59614, REV. 0



#### SGW-59614, REV. 0

This page intentionally left blank.

# Appendix B

# Pre-Treatment Well Development Data

#### SGW-59614, REV. 0

This page intentionally left blank.

## Contents

| B1 | Introduction                        | <b>B-1</b> |
|----|-------------------------------------|------------|
| B2 | Pre-Treatment Well Development Data | <b>B-1</b> |
| B3 | References                          | <b>B-1</b> |

## Tables

| Table B-1. | Completion and Development Information for the Stage A Periodically Rewetted<br>Zone/Aquifer Injection Wells                       | B-3 |
|------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table B-2. | Completion and Development Information for the Stage A Periodically Rewetted<br>Zone Monitoring Wells Installed to Support Stage A | B-4 |
| Table B-3. | Completion Information for Existing Periodically Rewetted Zone Monitoring Wells<br>Used in the Stage A Monitoring Network          | B-5 |
| Table B-4. | Completion and Development Information for the Stage A Aquifer Monitoring<br>Wells Installed to Support Stage A                    | B-5 |
| Table B-5. | Completion Information for Existing Aquifer Monitoring Wells Used in the Stage<br>A Monitoring Network                             | B-6 |

This page intentionally left blank.

#### **B1** Introduction

This appendix provides the pre-treatment well development data collected during installation of the injection and monitoring wells for the Stage A uranium sequestration operations.

### B2 Pre-Treatment Well Development Data

Tables B-1 through B-5 summarize well completion and development data for the injection and monitoring wells used during Stage A of the enhanced attenuation remedy. Table B-1 summarizes completion and development information for the periodically rewetted zone/aquifer injection wells. Table B-2 summarizes completion and development information for the periodically rewetted zone monitoring wells installed to support Stage A treatment activities. Table B-3 summarizes completion information for existing wells that were used to monitor the periodically rewetted zone as part of the Stage A treatment activities. Table B-4 summarizes completion and development information for the aquifer monitoring wells installed to support Stage A treatment activities. Table B-5 summarizes completion information for existing wells that were used to monitor the aquifer as part of the Stage A treatment activities. Table B-5 summarizes completion information for existing wells that were used to monitor the aquifer as part of the Stage A treatment activities.

#### **B3** References

NAD83, 1991, *North American Datum of 1983*, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.

SGW-59465, 2016, Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit, Rev. 1, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0074320Hhttp://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078184H</u>.

#### SGW-59614, REV. 0

This page intentionally left blank.

|                         |                      | Horizont:<br>(NA) | al Survey<br>D83) | Total<br>Denth  | PRZ So<br>Inte<br>(m [ft | creened<br>erval<br>t] bgs) | Aquifer<br>Inte<br>(m [ft | Screened<br>erval<br>t] bgs) |                   | Initial<br>Water<br>Level | Duration            | Total Volume                 |                                   |
|-------------------------|----------------------|-------------------|-------------------|-----------------|--------------------------|-----------------------------|---------------------------|------------------------------|-------------------|---------------------------|---------------------|------------------------------|-----------------------------------|
| Well/Borehole<br>Number | Construction<br>Date | Northing<br>(m)   | Easting<br>(m)    | (m [ft]<br>bgs) | Тор                      | Bottom                      | Тор                       | Bottom                       | Date<br>Developed | (m [ft]<br>bgs)           | Pumped<br>(minutes) | Pumped<br>(liters [gallons]) | Pumping Rate<br>(L/min [gal/min]) |
| 399-1-89/C9460          | 07/16/2015           | 116467.59         | 594087.17         | 15.5<br>(50.5)  | 6.3<br>(20.4)            | 9.4<br>(30.4)               | 10.9<br>(35.4)            | 14<br>(45.4)                 | 08/04/2015        | 9.6<br>(31.37)            | 69                  | ~11,648<br>(3,077)           | ~169<br>(45)                      |
| 399-1-90/C9461          | 07/20/2015           | 116478.21         | 594102.77         | 15.5<br>(50.3)  | 6.3<br>(20.4)            | 9.4<br>(30.4)               | 10.9<br>(35.4)            | 14<br>(45.4)                 | 08/04/2015        | 9.6<br>(31.65)            | 32                  | ~7,737<br>(2,044)            | ~242<br>(64)                      |
| 399-1-91/C9462          | 07/21/2015           | 116489.07         | 594118.24         | 15.4<br>(50)    | 6.2<br>(20)              | 9.2<br>(30)                 | 10.8<br>(35)              | 13.8<br>(45)                 | 08/04/2015        | 9.7<br>(32.00)            | 42                  | ~11,148<br>(2,945)           | ~265<br>(70)                      |
| 399-1-92/C9463          | 07/22/2015           | 116466.66         | 594132.82         | 15.4<br>(50)    | 6.2<br>(20.3)            | 9.3<br>(30.3)               | 10.9<br>(35.3)            | 13.9<br>(45.3)               | 08/05/2015        | 9.8<br>(32.20)            | 54                  | ~15,524<br>(4,101)           | ~287<br>(76)                      |
| 399-1-93/C9464          | 07/15/2015           | 116470.77         | 594116.97         | 15.4<br>(50)    | 6.2<br>(20)              | 9.2<br>(30)                 | 10.8<br>(35)              | 13.8<br>(45)                 | 08/05/2015        | 9.8<br>(32.05)            | 20                  | ~4,126<br>(1,090)            | ~206<br>(55)                      |
| 399-1-94/C9465          | 07/22/2015           | 116479.65         | 594130.8          | 15.4<br>(50)    | 6.2<br>(20.2)            | 9.3<br>(30.2)               | 10.8<br>(35.2)            | 13.9<br>(45.2)               | 08/05/2015        | 9.8<br>(32.16)            | 47                  | ~11,364<br>(3,002)           | ~242<br>(64)                      |
| 399-1-95/C9466          | 07/27/2015           | 116488.32         | 594143.85         | 15.4<br>(50)    | 6.4<br>(20.9)            | 9.5<br>(30.9)               | 11<br>(35.9)              | 14.1<br>(45.9)               | 08/06/2015        | 9.5<br>(31.30)            | 30                  | ~1,893<br>(500)              | ~63<br>(17)                       |
| 399-1-96/C9467          | 07/23/2015           | 116473.85         | 594146.2          | 15.4<br>(50)    | 6.1<br>(19.9)            | 9.2<br>(29.9)               | 10.7<br>(34.9)            | 13.8<br>(44.9)               | 08/05/2015        | 9.6<br>(31.35)            | 59                  | ~13,514<br>(3,570)           | ~229<br>(61)                      |
| 399-1-97/C9468          | 07/28/2015           | 116480.09         | 594157.77         | 15.4<br>(50)    | 6.1<br>(19.9)            | 9.2<br>(29.9)               | 10.7<br>(34.9)            | 13.8<br>(44.9)               | 08/06/2015        | 9.5<br>(31.05)            | 35                  | ~1,760<br>(465)              | ~50<br>(13)                       |

Table B-1. Completion and Development Information for the Stage A Periodically Rewetted Zone/Aquifer Injection Wells

References: NAD83, North America Datum of 1983.

SGW-59465, Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit,.

bgs = below ground surface

PRZ = periodically rewetted zone

#### SGW-59614, REV. 0

|                         |                      | Horizont<br>(NA | al Survey<br>D83) | Total<br>Denth  | Screene<br>(m [f | d Interval<br>t] bgs) |                   | Initial<br>Water<br>Level | Duration            | Total Volume                 |
|-------------------------|----------------------|-----------------|-------------------|-----------------|------------------|-----------------------|-------------------|---------------------------|---------------------|------------------------------|
| Well/Borehole<br>Number | Construction<br>Date | Northing<br>(m) | Easting<br>(m)    | (m [ft]<br>bgs) | Тор              | Bottom                | Date<br>Developed | (m [ft]<br>bgs)           | Pumped<br>(minutes) | Pumped<br>(liters [gallons]) |
| 399-1-69/C8930          | 06/17/2015           | 116505.03       | 594169.73         | 12.3<br>(40)    | 9.4<br>(30.7)    | 11<br>(35.7)          | 07/16/2015        | 9.4<br>(30.70)            | 36                  | ~136<br>(36)                 |
| 399-1-71/C8932          | 06/16/2015           | 116508.84       | 594126.33         | 12.5<br>(40.5)  | 9.4<br>(30.4)    | 10.9<br>(35.4)        | 07/09/2015        | 9.5<br>(30.80)            | 37                  | ~140<br>(37)                 |
| 399-1-73/C8935          | 06/15/2015           | 116494.22       | 594081.69         | 12.5<br>(40.5)  | 8.7<br>(28.3)    | 10.2<br>(33.3)        | 07/16/2015        | 9.7<br>(31.74)            | 25                  | ~95<br>(25)                  |
| 399-1-75/C8939          | 06/29/2015           | 116475.62       | 594098.69         | 12.3<br>(40.1)  | 9.4<br>(30.6)    | 11<br>(35.6)          | 07/09/2015        | 9.2<br>(30.20)            | 39                  | ~148<br>(39)                 |
| 399-1-77/C8941          | 06/30/2015           | 116460.56       | 594118.72         | 12.4<br>(40.2)  | 9.4<br>(30.4)    | 10.9<br>(35.4)        | 07/15/2015        | 9.9<br>(32.65)            | 50                  | ~189<br>(50)                 |
| 399-1-79/C9450          | 06/18/2015           | 116463.09       | 594154.88         | 12.4<br>(40.2)  | 9.3<br>(30.3)    | 10.9<br>(35.3)        | 07/13/2015        | 9.8<br>(32.10)            | 31                  | ~117<br>(31)                 |
| 399-1-81/C9452          | 06/30/2015           | 116454.92       | 594090.9          | 12.5<br>(40.7)  | 9.4<br>(30.6)    | 11<br>(35.6)          | 07/09/2015        | 9.6<br>(31.50)            | 10                  | ~38<br>(10)                  |
| 399-1-83/C9454          | 06/24/2015           | 116427.4        | 594152.48         | 12.3<br>(40)    | 9.4<br>(30.4)    | 10.9<br>(35.4)        | 07/13/2015        | 10<br>(32.72)             | 21                  | ~79<br>(21)                  |
| 399-1-85/C9456          | 06/25/2015           | 116451.42       | 594175.5          | 12.3<br>(40)    | 9.4<br>(30.6)    | 11<br>(35.6)          | 07/14/2015        | 9.5<br>(31.80)            | 52                  | ~197<br>(52)                 |
| 399-1-87/C9458          | 06/23/2015           | 116478.8        | 594138.62         | 12.6<br>(41)    | 9.4<br>(30.6)    | 11<br>(35.6)          | 07/20/2015        | 9.6<br>(31.60)            | 39                  | ~148<br>(39)                 |

Table B-2. Completion and Development Information for the Stage A Periodically Rewetted Zone Monitoring Wells Installed to Support Stage A

References: NAD83, North America Datum of 1983.

SGW-59465, Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit,. bgs = below ground surface

|                         |                      | Horizont<br>(NA | tal Survey<br>D83) |                             | Screened<br>(m [ft | l Interval<br>t] bgs) |
|-------------------------|----------------------|-----------------|--------------------|-----------------------------|--------------------|-----------------------|
| Well/Borehole<br>Number | Construction<br>Date | Northing<br>(m) | Easting<br>(m)     | Total Depth<br>(m [ft] bgs) | Тор                | Botto                 |
| 399-1-67/C8936          | 01/26/2015           | 116481.59       | 594162.36          | 12.5<br>(40.7)              | 7.4<br>(24)        | 10.5<br>(34)          |
| 399-1-24/C5351          | 11/16/2006           | 116449.68       | 594116.45          | 12.9<br>(42)                | 9.8<br>(32)        | 11.4<br>(37)          |
| 399-1-37/C5630          | 06/01/2007           | 116438.15       | 594110.22          | 11.7<br>(37.9)              | 9.5<br>(31)        | 11.1<br>(36)          |

Table B-3. Completion Information for Existing Periodically Rewetted Zone Monitoring Wells Used in the Stage A Monitoring Network

Reference: NAD83, North America Datum of 1983.

bgs = below ground surface

|                         |                      | Horizont<br>(NA | al Survey<br>D83) | Total<br>Denth  | Screened<br>(m [ft | l Interval<br>t] bgs) |                   | Initial Water         | Duration            |
|-------------------------|----------------------|-----------------|-------------------|-----------------|--------------------|-----------------------|-------------------|-----------------------|---------------------|
| Well/Borehole<br>Number | Construction<br>Date | Northing<br>(m) | Easting<br>(m)    | (m [ft]<br>bgs) | Тор                | Bottom                | Date<br>Developed | Level<br>(m [ft] bgs) | Pumped<br>(minutes) |
| 399-1-65/C9408          | 07/18/2015           | 116481.19       | 594164.48         | 15.3<br>(49.7)  | 12.6<br>(40.9)     | 14.1<br>(45.9)        | 06/30/2015        | 9.2<br>(30.33)        | 72                  |
| 399-1-66/C9409          | 07/17/2015           | 116504.97       | 594168.41         | 15.4<br>(50.1)  | 12.2<br>(39.5)     | 13.7<br>(44.5)        | 07/13/2015        | 9.5<br>(31.15)        | 70                  |
| 399-1-70/C8931          | 06/16/2015           | 116508.83       | 594125.04         | 15.0<br>(48.9)  | 12.7<br>(41.3)     | 14.2<br>(46.3)        | 06/29/2015        | 9.4<br>(30.85)        | 17                  |
| 399-1-72/C8934          | 06/10/2015           | 116494.16       | 594080.16         | 14.8<br>(48.1)  | 12.2<br>(39.7)     | 13.8<br>(44.7)        | 07/16/2015        | 9.7<br>(31.69)        | 41                  |
| 399-1-74/C8937          | 06/29/2015           | 116475.26       | 594097.65         | 15.4<br>(50.1)  | 12.4<br>(40.2)     | 13.9<br>(45.2)        | 07/09/2015        | 9.2<br>(30.20)        | 44                  |
| 399-1-76/C8940          | 07/13/2015           | 116460.62       | 594117.79         | 15.7<br>(50.9)  | 12.4<br>(40.2)     | 13.9<br>(45.2)        | 07/15/2015        | 10<br>(32.7)          | 30                  |
| 399-1-78/C8942          | 06/22/2015           | 116463.17       | 594153.7          | 15.5<br>(50.3)  | 12.5<br>(40.5)     | 14<br>(45.5)          | 07/11/2015        | 9.5<br>(31.20)        | 36                  |
| 399-1-80/C9451          | 07/14/2015           | 116454.78       | 594089.52         | 15.5<br>(50.5)  | 12.5<br>(40.6)     | 14<br>(45.6)          | 07/15/2015        | 9.7<br>(31.78)        | 103                 |
| 399-1-82/C9453          | 06/24/2015           | 116427.47       | 594151.78         | 15.5<br>(50.5)  | 12.5<br>(40.5)     | 14<br>(45.5)          | 07/14/2015        | 9.9<br>(32.36)        | 29                  |
| 399-1-84/C9455          | 06/25/2015           | 116451.41       | 594174.47         | 18.5<br>(60)    | 14.8<br>(48)       | 16.3<br>(53)          | 07/14/2015        | 9.8<br>(32.00)        | 80                  |
| 399-1-86/C9457          | 06/23/2015           | 116478.66       | 594137.74         | 15.5<br>(50.5)  | 12.5<br>(40.4)     | 14<br>(45.4)          | 07/20/2015        | 8.9<br>(29.14)        | 58                  |

| Table B-4. Completion and Development Information for t | he Stage A Aguifer Monitoring | Wells Installed to Support Stage A |
|---------------------------------------------------------|-------------------------------|------------------------------------|
|                                                         |                               | ,                                  |

References: NAD83, North America Datum of 1983.

SGW-59465, Borehole Summary Report for the Installation of Nine Injection Wells, Twenty-One Monitoring Wells, and Three Boreholes in the 300-FF-5 Operable Unit. bgs = below ground surface

#### SGW-59614, REV. 0



| Total Volume<br>Pumped<br>(liters<br>[gallons]) |
|-------------------------------------------------|
| ~273<br>(72)                                    |
| ~265<br>(70)                                    |
| ~64<br>(17)                                     |
| ~155<br>(41)                                    |
| ~167<br>(44)                                    |
| ~114<br>(30)                                    |
| ~136<br>(36)                                    |
| ~390<br>(103)                                   |
| ~110<br>(29)                                    |
| ~303<br>(80)                                    |
| ~220<br>(58)                                    |

|                         |                   | Horizont<br>(NA | al Survey<br>D83) |                             | Screened<br>(m [ft | Interval<br>  bgs) |
|-------------------------|-------------------|-----------------|-------------------|-----------------------------|--------------------|--------------------|
| Well/Borehole<br>Number | Construction Date | Northing<br>(m) | Easting<br>(m)    | Total Depth<br>(m [ft] bgs) | Тор                | Botto              |
| 399-1-25/C5352          | 11/17/2006        | 116450.35       | 594116.88         | 15.4<br>(50)                | 12.9<br>(42)       | 14.5<br>(47)       |
| 399-1-36/C5629          | 05/10/2007        | 116438.76       | 594108.45         | 15.4<br>(50)                | 12.6<br>(41)       | 14.2<br>(46)       |

#### Table B-5. Completion Information for Existing Aquifer Monitoring Wells Used in the Stage A Monitoring Network

Reference: NAD83, North America Datum of 1983.

bgs = below ground surface

| m |  |
|---|--|
|   |  |
|   |  |
|   |  |

2

# Appendix C

# Groundwater Analytical Data for Enhanced Attenuation Stage A Monitoring Wells
This page intentionally left blank.

# Contents

| C1 | Introduction                                   | .C-1 |
|----|------------------------------------------------|------|
| C2 | Pre-Treatment Groundwater Samples              | .C-1 |
| C3 | Groundwater Samples Collected During Treatment | .C-9 |
| C4 | Post-Treatment Groundwater Samples             | C-24 |
| C5 | Downgradient Groundwater Samples               | C-42 |

# Tables

| Table C-1. | Pre-Treatment Groundwater Characteristics Analytical Results for 300-FF-5<br>Operable Unit Stage A Monitoring Wells                         | 2 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table C-2. | Pre-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5<br>Operable Unit Stage A Monitoring Wells                       | 5 |
| Table C-3. | Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage<br>A Monitoring Wells During Treatment                      | 0 |
| Table C-4. | Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit<br>Stage A Monitoring Wells During Treatment                    | 5 |
| Table C-5. | Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5<br>Operable Unit Stage A Monitoring Wells                        | 5 |
| Table C-6. | Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5<br>Operable Unit Stage A Monitoring Wells                      | 1 |
| Table C-7. | Groundwater Characteristics Analytical Results for Selected Monitoring Wells<br>Downgradient of the 300-FF-5 Operable Unit Stage A AreaC-42 | 3 |
| Table C-8. | Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area                              | 9 |

This page intentionally left blank.

### **C1** Introduction

This appendix provides the analytical results for groundwater samples collected from 26 monitoring wells used to support implementation of the Stage A enhanced attenuation (EA) remedy. The wells were monitored before, during, and following application of polyphosphate solutions in the Stage A EA area; the results are presented in Sections C2, C3, and C4, respectively. The locations of the monitoring wells are shown on Figure 1-5. The data are stored in the Hanford Environmental Information System database, and users also may retrieve the data via the Internet through the U.S. Department of Energy Environmental Dashboard Application available at: <a href="https://ehs.hanford.gov/eda/">https://ehs.hanford.gov/eda/</a>.

This appendix also provides the analytical results for groundwater samples collected and analyzed by Pacific Northwest National Laboratory (PNNL) at groundwater monitoring wells downgradient of the Stage A EA area. The results are presented in Section C5. The locations of the monitoring wells are shown on Figure 3-3.

## C2 Pre-Treatment Groundwater Samples

Pre-treatment (baseline) groundwater samples were collected from 26 monitoring wells located in the Stage A EA area. These baseline samples were collected from each well in August and September 2015, prior to application of polyphosphate solutions to the vadose zone, periodically rewetted zone (PRZ), and top of the aquifer. Table C-1 provides the analytical results for the groundwater characteristics of dissolved oxygen, oxidation-reduction potential, specific conductance, pH, temperature, and water level. Table C-2 provides the analytical results for carbonate and bicarbonate alkalinity, metals (calcium, magnesium, potassium, sodium, and uranium), and anions (chloride, phosphate, and sulfate).

| Sample Date                                                                             | Sample                             | Dissolved<br>Oxygen <sup>a</sup> | Oxidation-<br>Reduction<br>Potential <sup>b</sup><br>(RmV) | Specific<br>Conductance <sup>c</sup><br>(uS/cm) | pH Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup><br>(m NAVD88) |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------|----------------------------------|------------------------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------|-----------------------------------------------------|--|--|--|--|--|
| Sample Date                                                                             | Tumber                             | (( ( ( ) ) )                     | Monitoring W                                               | /ell 399-1-24 (PRZ)                             | (pri čints)                 | ( 0)                     | (1111111000)                                        |  |  |  |  |  |
| 8/28/2015                                                                               | B32K88                             | 9130                             | 195.2                                                      | 462                                             | 7.71                        | 18                       | 105.503                                             |  |  |  |  |  |
|                                                                                         |                                    | L                                | Monitoring We                                              | ll 399-1-25 (Aquifer)                           |                             |                          |                                                     |  |  |  |  |  |
| 8/28/2015         B32K82         9180         244         471         7.76         17.8 |                                    |                                  |                                                            |                                                 |                             |                          |                                                     |  |  |  |  |  |
|                                                                                         | Monitoring Well 399-1-36 (Aquifer) |                                  |                                                            |                                                 |                             |                          |                                                     |  |  |  |  |  |
| 8/28/2015                                                                               | B32K91                             | 8730                             | 281.2                                                      | 480                                             | 7.68                        | 17.9                     | 105.506                                             |  |  |  |  |  |
|                                                                                         | Monitoring Well 399-1-37 (PRZ)     |                                  |                                                            |                                                 |                             |                          |                                                     |  |  |  |  |  |
| 8/28/2015                                                                               | B32K85                             | 9120                             | 291.3                                                      | 474                                             | 7.7                         | 18.1                     | 105.508                                             |  |  |  |  |  |
| Monitoring Well 399-1-65 (Aquifer)                                                      |                                    |                                  |                                                            |                                                 |                             |                          |                                                     |  |  |  |  |  |
| 9/1/2015                                                                                | B32K16                             | 6470                             | 223.4                                                      | 486                                             | 7.54                        | 17.9                     | 105.227                                             |  |  |  |  |  |
|                                                                                         |                                    |                                  | Monitoring We                                              | ll 399-1-66 (Aquifer)                           |                             |                          |                                                     |  |  |  |  |  |
| 8/31/2015                                                                               | B32K22                             | 8910                             | 162.9                                                      | 460                                             | 7.52                        | 18.1                     | 105.296                                             |  |  |  |  |  |
|                                                                                         |                                    |                                  | Monitoring W                                               | vell 399-1-67 (PRZ)                             |                             |                          |                                                     |  |  |  |  |  |
| 9/1/2015                                                                                | B32K19                             | 6220                             | 390.9                                                      | 498                                             | 6.75                        | 18                       | 105.219                                             |  |  |  |  |  |
|                                                                                         |                                    |                                  | Monitoring W                                               | vell 399-1-69 (PRZ)                             |                             |                          |                                                     |  |  |  |  |  |
| 8/31/2015                                                                               | B32K25                             | 7630                             | 176.5                                                      | 526                                             | 7.23                        | 18.3                     | 105.283                                             |  |  |  |  |  |
|                                                                                         |                                    |                                  | Monitoring We                                              | ll 399-1-70 (Aquifer)                           |                             |                          |                                                     |  |  |  |  |  |
| 8/31/2015                                                                               | B32K28                             | 8120                             | 164.2                                                      | 458                                             | 7.7                         | 17.7                     | 105.308                                             |  |  |  |  |  |
|                                                                                         |                                    |                                  | Monitoring W                                               | vell 399-1-71 (PRZ)                             |                             |                          |                                                     |  |  |  |  |  |
| 8/31/2015                                                                               | B32K31                             | 9370                             | 179.8                                                      | 455                                             | 7.49                        | 17.9                     | 105.315                                             |  |  |  |  |  |
|                                                                                         |                                    | 1                                | Monitoring We                                              | ll 399-1-72 (Aquifer)                           |                             |                          |                                                     |  |  |  |  |  |
| 8/31/2015                                                                               | B32K34                             | 9470                             | 220                                                        | 476                                             | 7.55                        | 17.7                     | 105.325                                             |  |  |  |  |  |

Table C-1. Pre-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|                                    | Samula | Dissolved<br>Oxygon <sup>a</sup> | Oxidation-<br>Reduction<br>Potential <sup>b</sup> | Specific<br>Conductories | nH Maagunamantd | Tomporaturat | Water Level |  |  |  |
|------------------------------------|--------|----------------------------------|---------------------------------------------------|--------------------------|-----------------|--------------|-------------|--|--|--|
| Sample Date                        | Number | μ/L)                             | (RmV)                                             | (μS/cm)                  | (pH Units)      | (°C)         | (m NAVD88)  |  |  |  |
|                                    |        |                                  | Monitoring W                                      | vell 399-1-73 (PRZ)      |                 |              |             |  |  |  |
| 8/31/2015                          | B32K37 | 9200                             | 195.2                                             | 480                      | 7.43            | 17.9         | 105.324     |  |  |  |
|                                    |        |                                  | Monitoring We                                     | ll 399-1-74 (Aquifer)    |                 |              |             |  |  |  |
| 9/2/2015                           | B32K40 | 9120                             | 127.1                                             | 479                      | 7.65            | 18           | 105.232     |  |  |  |
| Monitoring Well 399-1-75 (PRZ)     |        |                                  |                                                   |                          |                 |              |             |  |  |  |
| 9/2/2015                           | B32K43 | 8990                             | 125.1                                             | 479                      | 7.53            | 18           | 105.247     |  |  |  |
|                                    |        |                                  | Monitoring We                                     | ll 399-1-76 (Aquifer)    |                 |              |             |  |  |  |
| 9/2/2015                           | B32K46 | 9090                             | 232.7                                             | 480                      | 7.63            | 17.5         | 105.236     |  |  |  |
|                                    |        |                                  | Monitoring W                                      | rell 399-1-77 (PRZ)      |                 |              |             |  |  |  |
| 9/2/2015                           | B32K49 | 8880                             | 181.7                                             | 468                      | 7.52            | 17.6         | 105.236     |  |  |  |
| Monitoring Well 399-1-78 (Aquifer) |        |                                  |                                                   |                          |                 |              |             |  |  |  |
| 9/1/2015                           | B32K52 | 8460                             | 298.2                                             | 482                      | 7.25            | 18.1         | 105.203     |  |  |  |
|                                    |        |                                  | Monitoring W                                      | ell 399-1-79 (PRZ)       |                 |              |             |  |  |  |
| 9/1/2015                           | B32K55 | 8960                             | 306.7                                             | 517                      | 7.3             | 18.1         | 105.207     |  |  |  |
|                                    |        |                                  | Monitoring We                                     | ll 399-1-80 (Aquifer)    |                 |              |             |  |  |  |
| 9/2/2015                           | B32K58 | 6320                             | 66.6                                              | 451                      | 7.78            | 18           | 105.235     |  |  |  |
|                                    |        |                                  | Monitoring W                                      | ell 399-1-81 (PRZ)       |                 |              |             |  |  |  |
| 9/2/2015                           | B32K61 | 8980                             | 118.4                                             | 472                      | 7.56            | 17.9         | 105.238     |  |  |  |
|                                    |        |                                  | Monitoring We                                     | ll 399-1-82 (Aquifer)    |                 |              |             |  |  |  |
| 8/28/2015                          | B32K64 | 8730                             | 319.3                                             | 472                      | 7.7             | 18.2         | 105.49      |  |  |  |
| Monitoring Well 399-1-83 (PRZ)     |        |                                  |                                                   |                          |                 |              |             |  |  |  |
| 8/28/2015                          | B32K67 | 9060                             | 344.8                                             | 471                      | 7.59            | 18.3         | 105.494     |  |  |  |
|                                    |        |                                  | Monitoring We                                     | ll 399-1-84 (Aquifer)    |                 |              |             |  |  |  |
| 8/28/2015                          | B32K70 | 470                              | 63.2                                              | 584                      | 8.21            | 20.5         | 105.501     |  |  |  |

Table C-1. Pre-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

Table C-1. Pre-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

| Sample Date                    | Sample<br>Number | Dissolved<br>Oxygen <sup>a</sup><br>(µ/L) | Oxidation-<br>Reduction<br>Potential <sup>b</sup><br>(RmV) | Specific<br>Conductance <sup>c</sup><br>(µS/cm) | pH Measurement <sup>d</sup><br>(pH Units) | Temperature <sup>e</sup><br>(°C) | Water Level<br>Elevation <sup>f</sup><br>(m NAVD88) |  |  |  |  |  |
|--------------------------------|------------------|-------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Monitoring Well 399-1-85 (PRZ) |                  |                                           |                                                            |                                                 |                                           |                                  |                                                     |  |  |  |  |  |
| 9/1/2015                       | B32K73           | 7460                                      | 396.4                                                      | 499                                             | 6.91                                      | 18.3                             | 105.197                                             |  |  |  |  |  |
|                                |                  |                                           | Monitoring We                                              | ll 399-1-86 (Aquifer)                           |                                           |                                  |                                                     |  |  |  |  |  |
| 9/1/2015                       | B32K76           | 7720                                      | 152.7                                                      | 462                                             | 8.23                                      | 20.1                             | 105.212                                             |  |  |  |  |  |
| Monitoring Well 399-1-87 (PRZ) |                  |                                           |                                                            |                                                 |                                           |                                  |                                                     |  |  |  |  |  |
| 9/1/2015                       | B32K79           | 9310                                      | 283.9                                                      | 455                                             | 7.47                                      | 18                               | 105.205                                             |  |  |  |  |  |

References: SESDPROC-113-R1, 2013, Field Measurement of Oxidation-Reduction Potential (ORP), U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, Georgia.

NAVD88, 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.

a. EPA Method 360.1. Dissolved oxygen using field probe.

b. EPA Method SESDPROC-113-R1, Field Measurement of Oxidation-Reduction Potential (ORP). Oxidation-reduction potential using field probe.

c. EPA Method 120.1. Specific conductivity using field probe.

d. EPA Method 150.1. pH using field probe.

e. EPA Method 170.1. Temperature using field probe.

f. Water level measured using water level measurement tape.

- EPA = U.S. Environmental Protection Agency
- NAVD88 = North American Vertical Datum of 1988
- PRZ = periodically rewetted zone
- RmV = Relative milliVolt

C-4

| Sample                             | Sample                             | Alkalini  | ity <sup>a</sup> (μg/L) |         | N               | /letals <sup>b</sup> (µg/L) |        |         | Anions <sup>c</sup> (µg/L) |           |         |
|------------------------------------|------------------------------------|-----------|-------------------------|---------|-----------------|-----------------------------|--------|---------|----------------------------|-----------|---------|
| Date                               | Number                             | Carbonate | Bicarbonate             | Calcium | Magnesium       | Potassium                   | Sodium | Uranium | Chloride                   | Phosphate | Sulfate |
|                                    |                                    |           |                         | Mo      | nitoring Well 3 | 99-1-24 (PRZ)               | 1      |         |                            |           |         |
| 9/29/2015                          | B32K89                             |           |                         |         |                 |                             |        |         | 19000 D                    | 521 D     | 59000 D |
| 8/28/2013                          | B32K90                             | 540 U     | 124000                  | 51800   | 11300           | 5630                        | 24000  | 41.6    |                            |           |         |
| Monitoring Well 399-1-25 (Aquifer) |                                    |           |                         |         |                 |                             |        |         |                            |           |         |
| 0/20/2015                          | B32K83                             |           |                         |         |                 |                             |        |         | 19000 D                    | 521 D     | 60000 D |
| 0/20/2013                          | B32K84                             | 540 U     | 128000                  | 51400   | 11800           | 6130                        | 23500  | 41.8    |                            |           |         |
|                                    | Monitoring Well 399-1-36 (Aquifer) |           |                         |         |                 |                             |        |         |                            |           |         |
| 0/20/2015                          | B32K92                             |           |                         |         |                 |                             |        |         | 23000 D                    | 828 D     | 60000 D |
| 0/20/2013                          | B32K93                             | 540 U     | 127000                  | 52700   | 11000           | 5680                        | 24800  | 46.8    |                            |           |         |
| Monitoring Well 399-1-37 (PRZ)     |                                    |           |                         |         |                 |                             |        |         |                            |           |         |
| 8/28/2015                          | B32K86                             |           |                         |         |                 |                             |        |         | 20000 D                    | 521 D     | 60000 D |
| 0/20/2013                          | B32K87                             | 540 U     | 128000                  | 55000   | 12000           | 5980                        | 24300  | 39.7    |                            |           |         |
|                                    |                                    |           |                         | Mon     | itoring Well 39 | 9-1-65 (Aquife              | r)     |         |                            |           |         |
|                                    | B32K17                             |           |                         |         |                 |                             |        |         | 19000 D                    | 251 U     | 61000 D |
| 0/1/2015                           | B32K18                             | 540 U     | 143000                  | 48300   | 9580            | 4140 B                      | 45800  | 291     |                            |           |         |
| 9/1/2013                           | B32K96                             |           |                         |         |                 |                             |        |         | 19000 D                    | 251 U     | 62000 D |
|                                    | B32K97                             | 540 U     | 144000                  | 46800   | 9330            | 4230 B                      | 46300  | 291     |                            |           |         |
|                                    |                                    |           |                         | Mon     | itoring Well 39 | 9-1-66 (Aquife              | r)     |         |                            |           |         |
| 9/21/2015                          | B32K23                             |           |                         |         |                 |                             |        |         | 19000 D                    | 337 BD    | 59000 D |
| 8/31/2013                          | B32K24                             | 220 U     | 132000                  | 52200   | 11700           | 5270                        | 23700  | 50.3    |                            |           |         |
|                                    |                                    |           |                         | Mo      | nitoring Well 3 | 99-1-67 (PRZ)               |        |         |                            |           |         |
| 0/1/2015                           | B32K20                             |           |                         |         |                 |                             |        |         | 18000 D                    | 251 U     | 60000 D |
| 9/1/2013                           | B32K21                             | 540 U     | 147000                  | 65600   | 12500           | 3800 B                      | 24300  | 326     |                            |           |         |

С-5

| Sample                             | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |         | Ν               | letals <sup>b</sup> (µg/L) |        |         | Anions <sup>c</sup> (µg/L) |           |         |
|------------------------------------|--------|-----------|-------------------------|---------|-----------------|----------------------------|--------|---------|----------------------------|-----------|---------|
| Date                               | Number | Carbonate | Bicarbonate             | Calcium | Magnesium       | Potassium                  | Sodium | Uranium | Chloride                   | Phosphate | Sulfate |
|                                    |        |           |                         | Mo      | nitoring Well 3 | 99-1-69 (PRZ)              |        |         |                            |           |         |
| 8/21/2015                          | B32K26 |           |                         |         |                 |                            |        |         | 18000 D                    | 251 U     | 59000 D |
| 6/31/2013                          | B32K27 | 220 U     | 172000                  | 73000   | 14600           | 4250 B                     | 24400  | 150     |                            |           |         |
| Monitoring Well 399-1-70 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |         |
| 8/21/2015                          | B32K29 |           |                         |         |                 |                            |        |         | 19000 D                    | 337 BD    | 59000 D |
| 0/51/2015                          | B32K30 | 220 U     | 125000                  | 52100   | 11500           | 5680                       | 24200  | 48.2    |                            |           |         |
| Monitoring Well 399-1-71 (PRZ)     |        |           |                         |         |                 |                            |        |         |                            |           |         |
| 8/21/2015                          | B32K32 |           |                         |         |                 |                            |        |         | 19000 D                    | 399 BD    | 59000 D |
| 6/51/2015                          | B32K33 | 220 U     | 128000                  | 52100   | 11800           | 5350                       | 23600  | 53.8    |                            |           |         |
| Monitoring Well 399-1-72 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |         |
| 8/31/2015                          | B32K35 |           |                         |         |                 |                            |        |         | 26000 D                    | 337 BD    | 59000 D |
| 8/31/2013                          | B32K36 | 220 U     | 124000                  | 53100   | 12500           | 6000                       | 23600  | 30.9    |                            |           |         |
|                                    |        |           |                         | Mo      | nitoring Well 3 | 99-1-73 (PRZ)              |        |         |                            |           |         |
| 8/21/2015                          | B32K38 |           |                         |         |                 |                            |        |         | 27000 D                    | 337 BD    | 59000 D |
| 6/51/2015                          | B32K39 | 220 U     | 126000                  | 54900   | 12100           | 5500                       | 25500  | 91.1    |                            |           |         |
|                                    |        |           |                         | Mon     | itoring Well 39 | 9-1-74 (Aquife             | r)     |         |                            |           |         |
| 0/2/2015                           | B32K41 |           |                         |         |                 |                            |        |         | 25000 D                    | 251 U     | 59000 D |
| 9/2/2013                           | B32K42 | 540 U     | 126000                  | 55800   | 12100           | 5650                       | 24100  | 26.8    |                            |           |         |
|                                    |        |           |                         | Mo      | nitoring Well 3 | 99-1-75 (PRZ)              |        |         |                            |           |         |
| 0/2/2015                           | B32K44 |           |                         |         |                 |                            |        |         | 25000 D                    | 368 BD    | 59000 D |
| 9/2/2013                           | B32K45 | 540 U     | 124000                  | 55600   | 12100           | 5210                       | 25100  | 84.6    |                            |           |         |
| Monitoring Well 399-1-76 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |         |
| 0/2/2015                           | B32K47 |           |                         |         |                 |                            |        |         | 23000 D                    | 251 U     | 59000 D |
| 3/2/2013                           | B32K48 | 540 U     | 126000                  | 56800   | 12400           | 5570                       | 24000  | 32.2    |                            |           |         |

C-6

| Sample                             | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |         | Ν               | Ietals <sup>b</sup> (µg/L) |        |         | Anions <sup>c</sup> (µg/L) |           |          |
|------------------------------------|--------|-----------|-------------------------|---------|-----------------|----------------------------|--------|---------|----------------------------|-----------|----------|
| Date                               | Number | Carbonate | Bicarbonate             | Calcium | Magnesium       | Potassium                  | Sodium | Uranium | Chloride                   | Phosphate | Sulfate  |
|                                    |        |           |                         | detecl  | Monitoring Wel  | ll 399-1-77 (PR            | Z)     |         |                            |           |          |
| 0/2/2015                           | B32K50 |           |                         |         |                 |                            |        |         | 21000 D                    | 399 BD    | 60000 D  |
| 9/2/2013                           | B32K51 | 540 U     | 124000                  | 55300   | 11700           | 4940 B                     | 24300  | 52.3    |                            |           |          |
| Monitoring Well 399-1-78 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |          |
| 0/1/2015                           | B32K53 |           |                         |         |                 |                            |        |         | 18000 D                    | 251 U     | 59000 D  |
| 9/1/2013                           | B32K54 | 540 U     | 144000                  | 60000   | 12000           | 3980 B                     | 24700  | 230     |                            |           |          |
| Monitoring Well 399-1-79 (PRZ)     |        |           |                         |         |                 |                            |        |         |                            |           |          |
| 0/1/2015                           | B32K56 |           |                         |         |                 |                            |        |         | 23000 D                    | 251 U     | 59000 D  |
| 9/1/2013                           | B32K57 | 540 U     | 142000                  | 63000   | 13100           | 4070 B                     | 25900  | 415     |                            |           |          |
| Monitoring Well 399-1-80 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |          |
| 9/2/2015                           | B32K59 |           |                         |         |                 |                            |        |         | 25000 D                    | 251 U     | 56000 D  |
| 9/2/2013                           | B32K60 | 540 U     | 119000                  | 47100   | 9980            | 5550                       | 32300  | 170     |                            |           |          |
|                                    |        |           |                         | Mo      | nitoring Well 3 | 99-1-81 (PRZ)              |        |         |                            |           |          |
| 0/2/2015                           | B32K62 |           |                         |         |                 |                            |        |         | 23000 D                    | 368 BD    | 59000 D  |
| 9/2/2013                           | B32K63 | 540 U     | 128000                  | 57000   | 12200           | 5310                       | 25000  | 61.7    |                            |           |          |
|                                    |        |           |                         | Mon     | itoring Well 39 | 9-1-82 (Aquife             | r)     |         |                            |           |          |
| 8/28/2015                          | B32K65 |           |                         |         |                 |                            |        |         | 19000 D                    | 429 BD    | 59000 D  |
| 0/20/2013                          | B32K66 | 220 U     | 126000                  | 52200   | 11700           | 5440                       | 24500  | 61      |                            |           |          |
|                                    |        |           |                         | Mo      | nitoring Well 3 | 99-1-83 (PRZ)              |        |         |                            |           |          |
| 8/28/2015                          | B32K68 |           |                         |         |                 |                            |        |         | 19000 D                    | 552 D     | 60000 D  |
| 0/20/2013                          | B32K69 | 220 U     | 125000                  | 56400   | 11400           | 5330                       | 24400  | 72      |                            |           |          |
| Monitoring Well 399-1-84 (Aquifer) |        |           |                         |         |                 |                            |        |         |                            |           |          |
| 8/28/2015                          | B32K71 |           |                         |         |                 |                            |        |         | 34000 D                    | 251 U     | 130000 D |
| 0/20/2013                          | B32K72 | 220 U     | 126000                  | 77300   | 18700           | 9290                       | 23300  | 3.5     |                            |           |          |

| Sample   | Sample                         | Alkalini  | ity <sup>a</sup> (μg/L) | Metals <sup>b</sup> (µg/L) |                 |                |        |         | Anions <sup>c</sup> (µg/L) |           |         |
|----------|--------------------------------|-----------|-------------------------|----------------------------|-----------------|----------------|--------|---------|----------------------------|-----------|---------|
| Date     | Number                         | Carbonate | Bicarbonate             | Calcium                    | Magnesium       | Potassium      | Sodium | Uranium | Chloride                   | Phosphate | Sulfate |
|          | Monitoring Well 399-1-85 (PRZ) |           |                         |                            |                 |                |        |         |                            |           |         |
|          | B32K74                         |           |                         |                            |                 |                |        |         | 18000 D                    | 251 U     | 57000 D |
| 9/1/2015 | B32K75                         | 540 U     | 156000                  | 64300                      | 12900           | 3610 B         | 25900  | 728     |                            |           |         |
| 9/1/2015 | B32KB0                         |           |                         |                            |                 |                |        |         | 18000 D                    | 251 U     | 58000 D |
|          | B32KB1                         | 540 U     | 112000                  | 67600                      | 13000           | 3700 B         | 25800  | 719     |                            |           |         |
|          |                                |           |                         | Mon                        | itoring Well 39 | 9-1-86 (Aquife | r)     |         |                            |           |         |
| 0/1/2015 | B32K77                         |           |                         |                            |                 |                |        |         | 20000 D                    | 399 BD    | 56000 D |
| 9/1/2013 | B32K78                         | 540 U     | 130000                  | 30800                      | 6190            | 3670 B         | 63900  | 174     |                            |           |         |
|          | Monitoring Well 399-1-87 (PRZ) |           |                         |                            |                 |                |        |         |                            |           |         |
| 9/1/2015 | B32K80                         |           |                         |                            |                 |                |        |         | 19000 D                    | 368 BDN   | 59000 D |
|          | B32K81                         | 540 U     | 122000                  | 55800                      | 11600           | 4580 B         | 23800  | 57.9    |                            |           |         |

C-8

Reference: DOE/RL-2014-42, 2015, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <a href="http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H">http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H</a>.

a. EPA Method 310.1.

b. EPA Method 6020. Results in this table are for unfiltered samples collected in accordance with Table A-6 in DOE/RL-2014-42.

c. EPA Method 300.

-- = not applicable

EPA = U.S. Environmental Protection Agency

#### PRZ = periodically rewetted zone

Laboratory Qualifiers:

- B = The analyte was detected at a value less than the contract required detection limit, but greater than or equal to the instrument detection limit/maximum detection limit (as appropriate).
- D = Analyte was reported at a secondary dilution factor.
- N = Spike and/or spike duplicate sample recovery is outside control limits.
- U = Undetected.

### C3 Groundwater Samples Collected During Treatment

Groundwater samples were collected from two aquifer monitoring wells (399-1-65 and 399-1-74) and five PRZ monitoring wells (399-1-67, 399-1-75, 399-1-77, 399-1-81, and 399-1-87) in November 2015 during application of polyphosphate solutions to the vadose zone, PRZ, and top of the aquifer. Table C-3 provides the analytical results for the groundwater characteristics of dissolved oxygen, oxidation-reduction potential, specific conductance, pH, temperature, and water level. Table C-4 provides the analytical results for carbonate and bicarbonate alkalinity, metals (calcium, sodium, and uranium), and anions (phosphate).

|             | Sample | Dissolved<br>Oxygen <sup>a</sup> | Oxidatio<br>Pot | n-Reduction<br>tential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|-------------|--------|----------------------------------|-----------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|
| Sample Date | Number | $(\mu g/L)$                      | ( <b>mV</b> )   | (RmV)                               | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |
|             |        |                                  | Mor             | nitoring Well 399                   | -1-65 (Aquifer)                      |                                |                          |                                       |
| 11/6/2015   | B32XM6 | 6910                             |                 | 364.6                               | 481                                  | 7.36                           | 18.4                     | 105.119                               |
| 11/7/2015   | B32XR0 | 6890                             |                 | 188.4                               | 479                                  | 7.33                           | 18.5                     | 105.136                               |
| 11/8/2015   | B32XW5 | 6880                             |                 | 377.7                               | 480                                  | 7.36                           | 18.8                     | 105.11                                |
| 11/9/2015   | B32YH6 | 5970                             | 372.5           |                                     | 481                                  | 7.41                           | 18.1                     | 105.187                               |
| 11/10/2015  | B32YL4 | 6180                             |                 | 329.9                               | 538                                  | 7.61                           | 17.9                     | 105.05                                |
| 11/11/2015  | B32YP2 | 6410                             |                 | 337.1                               | 642                                  | 7.49                           | 18.2                     | 105.139                               |
| 11/12/2015  | B32YV0 | 6390                             | 339.1           |                                     | 772                                  | 7.38                           | 17.5                     | 105.114                               |
| 11/14/2015  | B32YX8 | 6390                             | 379.1           |                                     | 1029                                 | 7.18                           | 18.2                     | 105.131                               |
| 11/15/2015  | B33016 | 6690                             |                 | 375.2                               | 981                                  | 7.2                            | 17.6                     | 105.17                                |
| 11/16/2015  | B33044 | 6400                             |                 | 312.8                               | 705                                  | 7.4                            | 17.8                     | 105.22                                |
| 11/18/2015  | B33L46 | 6970                             |                 | 412.2                               | 2779                                 | 7.15                           | 18.2                     | 105.34                                |
| 11/19/2015  | B33L74 | 6840                             | 253.1           |                                     | 2270                                 | 7.24                           | 18                       | 105.29                                |
|             |        |                                  | M               | onitoring Well 39                   | 9-1-67 (PRZ)                         |                                |                          |                                       |
| 11/6/2015   | B32XM9 | 4850                             |                 | 397.8                               | 558                                  | 6.44                           | 18.6                     | 105.106                               |
| 11/7/2015   | B32XR3 | 4790                             |                 | 196.1                               | 556                                  | 6.43                           | 18.4                     | 105.117                               |
| 11/8/2015   | B32XW9 | 4770                             |                 | 390.3                               | 553                                  | 6.42                           | 18.3                     | 105.095                               |
| 11/9/2015   | B32YJ0 | 4980                             | 404.2           |                                     | 663                                  | 6.41                           | 17.9                     | 105.127                               |
| 11/10/2015  | B32YL8 | 5080                             |                 | 383.9                               | 2264                                 | 6.51                           | 17.8                     | 105.147                               |
| 11/11/2015  | B32YP6 | 5210                             |                 | 379.7                               | 2610                                 | 6.63                           | 17.8                     | 105.144                               |
| 11/12/2015  | B32YV4 | 5380                             | 375.3           |                                     | 2225                                 | 6.81                           | 17.8                     | 105.127                               |
| 11/14/2015  | B32YY2 | 5230                             | 428.1           |                                     | 1918                                 | 6.88                           | 18.8                     | 105.151                               |
| 11/15/2015  | B33020 | 5270                             |                 | 415.5                               | 1749                                 | 6.96                           | 18.1                     | 105.184                               |
| 11/16/2015  | B33048 | 5540                             |                 | 347.1                               | 1746                                 | 7.12                           | 18.9                     | 105.244                               |
| 11/18/2015  | B33L50 | 8570                             |                 | 413.2                               | 7050                                 | 7.19                           | 16.4                     | 105.619                               |

Table C-3. Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

|             | Sample | Dissolved<br>Oxygen <sup>a</sup> | Oxidatio<br>Pot | n-Reduction<br>tential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|-------------|--------|----------------------------------|-----------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|
| Sample Date | Number | $(\mu g/L)$                      | ( <b>mV</b> )   | (RmV)                               | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |
| 11/19/2015  | B33L78 | 7780                             | 287.5           |                                     | 5608                                 | 7.01                           | 16.4                     | 105.285                               |
|             |        |                                  | Mor             | nitoring Well 399                   | -1-74 (Aquifer)                      |                                |                          |                                       |
| 11/6/2015   | B32XN2 | 9280                             |                 | 368.2                               | 1027                                 | 6.99                           | 18.3                     | 105.129                               |
| 11/7/2015   | B32XR6 | 9030                             |                 | 339.3                               | 718                                  | 7.24                           | 17.6                     | 105.129                               |
| 11/8/2015   | B32XX3 | 9170                             |                 | 386.3                               | 793                                  | 6.92                           | 18.3                     | 105.113                               |
| 11/9/2015   | B32YJ4 | 8930                             | 391.5           |                                     | 1234                                 | 6.89                           | 18.1                     | 105.175                               |
| 11/10/2015  | B32YM2 | 8570                             |                 | 300.1                               | 1157                                 | 6.79                           | 17.7                     | 105.186                               |
| 11/11/2015  | B32YR0 | 8870                             |                 | 405.5                               | 901                                  | 7.11                           | 17.6                     | 105.131                               |
| 11/12/2015  | B32YV8 | 8690                             | 192.1           |                                     | 909                                  | 6.88                           | 17.4                     | 105.118                               |
| 11/14/2015  | B32YY6 | 8810                             | 392.3           |                                     | 882                                  | 7.15                           | 18                       | 105.135                               |
| 11/15/2015  | B33024 | 8890                             |                 | 387.7                               | 792                                  | 7.18                           | 17                       | 105.159                               |
| 11/16/2015  | B33052 | 8460                             |                 | 347                                 | 1842                                 | 6.95                           | 17.2                     | 105.156                               |
| 11/18/2015  | B33L54 | 8120                             |                 | 379.1                               | 3250                                 | 6.98                           | 17.7                     | 105.265                               |
| 11/19/2015  | B33L82 | 8100                             | 189.5           |                                     | 2519                                 | 6.88                           | 17.3                     | 105.253                               |
|             |        |                                  | M               | onitoring Well 39                   | 9-1-75 (PRZ)                         |                                |                          |                                       |
| 11/6/2015   | B32XN5 | 9300                             |                 | 308.9                               | 460                                  | 7.62                           | 17.3                     | 105.124                               |
| 11/7/2015   | B32XR9 | 9270                             |                 | 319.7                               | 474                                  | 7.57                           | 17.5                     | 105.14                                |
| 11/8/2015   | B32XX7 | 9300                             |                 | 373.7                               | 456                                  | 7.33                           | 17.6                     | 105.836 <sup>g</sup>                  |
| 11/9/2015   | B32YJ8 | 9360                             | 382.5           |                                     | 520                                  | 7.29                           | 17.9                     | 105.166                               |
| 11/10/2015  | B32YM6 | 8980                             |                 | 349.4                               | 747                                  | 7.05                           | 17.6                     | 105.151                               |
| 11/11/2015  | B32YR4 | 9240                             |                 | 393.5                               | 858                                  | 7.23                           | 17.6                     | 105.138                               |
| 11/12/2015  | B32YW2 | 9150                             | 187.6           |                                     | 942                                  | 6.9                            | 16.5                     | 105.124                               |
| 11/14/2015  | B33000 | 8690                             | 400             |                                     | 1126                                 | 6.69                           | 19.2                     | 105.139                               |
| 11/15/2015  | B33028 | 8630                             |                 | 395.2                               | 1403                                 | 6.64                           | 19                       | 105.165                               |
| 11/16/2015  | B33056 | 9010                             |                 | 345                                 | 1609                                 | 6.55                           | 18.7                     | 105.205                               |

Table C-3. Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

|                                | Sample | Dissolved<br>Oxvgen <sup>a</sup> | Oxidatio<br>Pot | n-Reduction<br>tential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |  |  |
|--------------------------------|--------|----------------------------------|-----------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|--|--|
| Sample Date                    | Number | $(\mu g/L)$                      | ( <b>mV</b> )   | (RmV)                               | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |  |  |
| 11/18/2015                     | B33L58 | 10280                            |                 | 368.6                               | 9790                                 | 7.16                           | 14.2                     | 105.375                               |  |  |
| 11/19/2015                     | B33L86 | 9170                             | 266.9           |                                     | 5794                                 | 6.89                           | 14.3                     | 105.264                               |  |  |
| Monitoring Well 399-1-77 (PRZ) |        |                                  |                 |                                     |                                      |                                |                          |                                       |  |  |
| 11/6/2015                      | B32XN8 | 9070                             |                 | 304.7                               | 462                                  | 7.57                           | 17.1                     | 105.101                               |  |  |
| 11/7/2015                      | B32XT2 | 8890                             |                 | 309.9                               | 466                                  | 7.56                           | 17.2                     | 105.114                               |  |  |
| 11/8/2015                      | B32XY1 | 8970                             |                 | 335.6                               | 471                                  | 7.54                           | 17.5                     | 105.101                               |  |  |
| 11/9/2015                      | B32YK2 | 8950                             | 367.7           |                                     | 478                                  | 7.52                           | 17.3                     | 105.236                               |  |  |
| 11/10/2015                     | B32YN0 | 8700                             |                 | 284                                 | 525                                  | 7.09                           | 17.8                     | 105.15                                |  |  |
| 11/11/2015                     | B32YR8 | 8820                             |                 | 391.7                               | 528                                  | 7.38                           | 17.8                     | 105.131                               |  |  |
| 11/12/2015                     | B32YW6 | 8620                             | 191.4           |                                     | 577                                  | 6.83                           | 17.4                     | 105.116                               |  |  |
| 11/14/2015                     | B33004 | 8190                             | 382             |                                     | 544                                  | 7.21                           | 18.4                     | 105.106                               |  |  |
| 11/15/2015                     | B33032 | 8570                             |                 | 360.3                               | 610                                  | 7.09                           | 17.6                     | 105.142                               |  |  |
| 11/16/2015                     | B33060 | 8690                             |                 | 319                                 | 695                                  | 6.8                            | 17.6                     | 105.166                               |  |  |
| 11/17/2015                     | B33L32 | 9180                             |                 | 359.7                               | 3981                                 | 6.63                           | 17.6                     | 105.306                               |  |  |
| 11/18/2015                     | B33L62 | 8870                             |                 | 424.4                               | 4404                                 | 6.86                           | 17.4                     | 105.253                               |  |  |
| 11/19/2015                     | B33L90 | 8690                             | 33.2            |                                     | 3974                                 | 6.78                           | 16.6                     | 105.249                               |  |  |
|                                |        |                                  | M               | onitoring Well 39                   | 9-1-81 (PRZ)                         |                                |                          |                                       |  |  |
| 11/6/2015                      | B32XP1 | 9290                             |                 | 309.5                               | 461                                  | 7.58                           | 17.3                     | 105.101                               |  |  |
| 11/7/2015                      | B32XT5 | 9150                             |                 | 325.7                               | 470                                  | 7.62                           | 17.4                     | 105.114                               |  |  |
| 11/8/2015                      | B32XY5 | 9150                             |                 | 336.7                               | 474                                  | 7.59                           | 17.4                     | 105.097                               |  |  |
| 11/9/2015                      | B32YK6 | 9190                             | 347.6           |                                     | 688                                  | 7.48                           | 17.2                     | 105.127                               |  |  |
| 11/10/2015                     | B32YN4 | 8930                             |                 | 276.3                               | 821                                  | 7.05                           | 17.5                     | 105.172                               |  |  |
| 11/11/2015                     | B32YT2 | 9100                             |                 | 385.8                               | 776                                  | 7.32                           | 17.6                     | 105.13                                |  |  |
| 11/12/2015                     | B32YX0 | 8940                             | 206.3           |                                     | 777                                  | 6.98                           | 17.3                     | 105.116                               |  |  |
| 11/14/2015                     | B33008 | 8730                             | 379.5           |                                     | 849                                  | 6.84                           | 18.2                     | 105.107                               |  |  |

Table C-3. Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

| Sample O                       |        | Dissolved<br>Oxygen <sup>a</sup> | Oxidation-Reduction<br>Potential <sup>b</sup> |       | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |  |  |  |
|--------------------------------|--------|----------------------------------|-----------------------------------------------|-------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|--|--|--|
| Sample Date                    | Number | (µg/L)                           | (mV)                                          | (RmV) | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |  |  |  |
| 11/15/2015                     | B33036 | 8650                             |                                               | 371.6 | 928                                  | 6.76                           | 17.9                     | 105.141                               |  |  |  |
| 11/16/2015                     | B33064 | 8820                             |                                               | 334   | 1024                                 | 6.53                           | 18                       | 105.15                                |  |  |  |
| 11/18/2015                     | B33L66 | 8530                             |                                               | 395.8 | 1014                                 | 6.65                           | 18.3                     | 105.246                               |  |  |  |
| 11/19/2015                     | B33L94 | 8500                             | 163                                           |       | 1111                                 | 6.52                           | 18.4                     | 105.247                               |  |  |  |
| Monitoring Well 399-1-87 (PRZ) |        |                                  |                                               |       |                                      |                                |                          |                                       |  |  |  |
| 11/6/2015                      | B32XP4 | 9120                             |                                               | 360.3 | 455                                  | 7.25                           | 17.8                     | 105.06                                |  |  |  |
| 11/7/2015                      | B32XT8 | 8830                             |                                               | 168.9 | 563                                  | 7.18                           | 17.8                     | 105.09                                |  |  |  |
| 11/8/2015                      | B32XY9 | 8630                             |                                               | 403.2 | 573                                  | 7.14                           | 17.8                     | 105.077                               |  |  |  |
| 11/9/2015                      | B32YL0 | 8650                             | 389.1                                         |       | 569                                  | 7.11                           | 17.8                     | 105.102                               |  |  |  |
| 11/10/2015                     | B32YN8 | 8110                             |                                               | 333.3 | 1234                                 | 6.95                           | 17.2                     | 105.111                               |  |  |  |
| 11/11/2015                     | B32YT6 | 7970                             |                                               | 376.6 | 1190                                 | 6.93                           | 17.4                     | 105.105                               |  |  |  |
| 11/12/2015                     | B32YX4 | 7870                             | 358.6                                         |       | 1351                                 | 6.91                           | 17.1                     | 105.081                               |  |  |  |
| 11/14/2015                     | B33012 | 7370                             | 391.5                                         |       | 1336                                 | 6.93                           | 17.8                     | 105.1                                 |  |  |  |
| 11/15/2015                     | B33040 | 7380                             |                                               | 374.2 | 1255                                 | 6.99                           | 17.3                     | 105.127                               |  |  |  |
| 11/16/2015                     | B33068 | 7340                             |                                               | 355.6 | 1203                                 | 7.12                           | 17                       | 105.157                               |  |  |  |
| 11/17/2015                     | B33L40 | 9950                             |                                               | 267.9 |                                      | 7.25                           | 14.7                     | 105.695                               |  |  |  |
| 11/18/2015                     | B33L70 | 9470                             |                                               | 416.4 | 7628                                 | 7.15                           | 15.4                     | 105.277                               |  |  |  |
| 11/19/2015                     | B33L98 | 8040                             | 276.9                                         |       | 3384                                 | 6.9                            | 16.4                     | 105.268                               |  |  |  |

Table C-3. Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

References: SESDPROC-113-R1, 2013, Field Measurement of Oxidation-Reduction Potential (ORP), U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, Georgia.

NAVD88, 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.

a. EPA Method 360.1. Dissolved oxygen using field probe.

b. EPA Method SESDPROC-113-R1, Field Measurement of Oxidation-Reduction Potential (ORP). Oxidation-reduction potential using field probe.

c. EPA Method 120.1. Specific conductivity using field probe.

d. EPA Method 150.1. pH using field probe.

C-13

e. EPA Method 170.1. Temperature using field probe.

| Table C-3. Groundwater Characteristics Analytical Results for 300-FF-5 ( | Operable Unit Stage A Monitoring Wells During Treatment |
|--------------------------------------------------------------------------|---------------------------------------------------------|
|--------------------------------------------------------------------------|---------------------------------------------------------|

|             | Sample | Dissolved<br>Oxygen <sup>a</sup> | Oxidatio<br>Po | on-Reduction<br>tential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|-------------|--------|----------------------------------|----------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|
| Sample Date | Number | (µg/L)                           | (mV)           | (RmV)                                | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |

f. Water level measured using water level measurement tape.

g. Request for Data Review (RDR) submitted.

| = | not applicable |
|---|----------------|
|---|----------------|

EPA = U.S. Environmental Protection Agency

NAVD88 = North American Vertical Datum of 1988

PRZ = periodically rewetted zone

RmV = Relative milliVolt

|                                    | Sample | Alkaliı   | Alkalinity <sup>a</sup> (µg/L) |          | Metals <sup>b</sup> (µg/L) |         |           |  |  |  |
|------------------------------------|--------|-----------|--------------------------------|----------|----------------------------|---------|-----------|--|--|--|
| Sample Date                        | Number | Carbonate | Bicarbonate                    | Calcium  | Sodium                     | Uranium | Phosphate |  |  |  |
| Monitoring Well 399-1-65 (Aquifer) |        |           |                                |          |                            |         |           |  |  |  |
| 11/6/2015                          | B32XM7 |           |                                |          |                            |         | 251 U     |  |  |  |
| 11/0/2013                          | B32XM8 | 540 U     | 142000                         | 48500    | 37600 N                    | 194     |           |  |  |  |
| 11/7/2015                          | B32XR1 |           |                                |          |                            |         | 251 UN    |  |  |  |
| 11/7/2013                          | B32XR2 | 540 U     | 146000                         | 54700    | 38100                      | 116     |           |  |  |  |
| 11/8/2015                          | B32XW6 |           |                                |          |                            |         | 1500 D    |  |  |  |
| 11/8/2013                          | B32XW8 | 540 U     | 144000                         | 47600    | 38200 N                    | 190     |           |  |  |  |
| 11/0/2015                          | B32YH7 |           |                                |          |                            |         | 705 DN    |  |  |  |
| 11/9/2013                          | B32YH9 | 540 U     | 144000                         | 47500    | 43400                      | 189     |           |  |  |  |
| 11/10/2015                         | B32YL5 |           |                                |          |                            |         | 3680 DN   |  |  |  |
| 11/10/2013                         | B32YL7 | 540 U     | 148000                         | 44500    | 59400                      | 202     |           |  |  |  |
| 11/11/2015                         | B32YP3 |           |                                |          |                            |         | 1690 DN   |  |  |  |
| 11/11/2013                         | B32YP5 | 540 U     | 156000                         | 55200    | 48400                      | 295     |           |  |  |  |
| 11/12/2015                         | B32YV1 |           |                                |          |                            |         | 736 DN    |  |  |  |
| 11/12/2013                         | B32YV3 | 540 U     | 178000                         | 80300    | 64600                      | 721     |           |  |  |  |
| 11/14/2015                         | B32YX9 |           |                                |          |                            |         | 1290 DN   |  |  |  |
| 11/14/2015                         | B32YY1 | 540 U     | 222000                         | 104000 D | 64500 D                    | 863     |           |  |  |  |
| 11/15/2015                         | B33017 |           |                                |          |                            |         | 1470 ND   |  |  |  |
| 11/15/2015                         | B33019 | 540 U     | 226000                         | 95800    | 63700                      | 1150    |           |  |  |  |
| 11/16/2015                         | B33045 |           |                                |          |                            |         | 2700 DN   |  |  |  |
| 11/10/2015                         | B33047 | 540 U     | 200000                         | 71900    | 61900                      | 831     |           |  |  |  |
| 11/19/2015                         | B33L47 |           |                                |          |                            |         | 1810000 D |  |  |  |
| 11/18/2015                         | B33L49 | 2700 U    | 735000                         | 39800 DN | 599000 D                   | 19.3 D  |           |  |  |  |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

| Sample      |        | Alkalinity <sup>a</sup> (µg/L) |                   | Metals <sup>b</sup> (µg/L) |          |         | Anions <sup>c</sup><br>(µg/L) |
|-------------|--------|--------------------------------|-------------------|----------------------------|----------|---------|-------------------------------|
| Sample Date | Number | Carbonate                      | Bicarbonate       | Calcium                    | Sodium   | Uranium | Phosphate                     |
| 11/10/2015  | B33L75 |                                |                   |                            |          |         | 1070000 D                     |
| 11/19/2015  | B33L77 | 2700 U                         | 560000            | 15300                      | 444000 D | 8.9 BD  |                               |
|             |        | I                              | Monitoring Well 3 | 99-1-67 (PRZ)              |          |         |                               |
| 11/6/2015   | B32XN0 |                                |                   |                            |          |         | 251 U                         |
| 11/0/2013   | B32XN1 | 540 U                          | 192000            | 66600                      | 33300 N  | 462     |                               |
| 11/7/2015   | B32XR4 |                                |                   |                            |          |         | 251 UN                        |
| 11/7/2013   | B32XR5 | 540 U                          | 186000            | 76100                      | 26500    | 269     |                               |
| 11/9/2015   | B32XX0 |                                |                   |                            |          |         | 251 U                         |
| 11/8/2015   | B32XX2 | 540 U                          | 184000            | 69100                      | 26400 N  | 419     |                               |
| 11/0/2015   | B32YJ1 |                                |                   |                            |          |         | 3680 DN                       |
| 11/9/2015   | B32YJ3 | 540 U                          | 192000            | 83600                      | 33900    | 575     |                               |
| 11/10/2015  | B32YL9 |                                |                   |                            |          |         | 251 UN                        |
| 11/10/2015  | B32YM1 | 540 U                          | 227000            | 272000 D                   | 87800    | 1540    |                               |
| 11/11/2015  | B32YP7 |                                |                   |                            |          |         | 251 UN                        |
| 11/11/2015  | B32YP9 | 540 U                          | 370000            | 348000 D                   | 181000 D | 3620    |                               |
| 11/12/2015  | B32YV5 |                                |                   |                            |          |         | 2210 D                        |
| 11/12/2015  | B32YV7 | 540 U                          | 538000            | 250000 D                   | 240000 D | 5400 D  |                               |
| 11/14/2015  | B32YY3 |                                |                   |                            |          |         | 42900 DN                      |
| 11/14/2015  | B32YY5 | 540 U                          | 624000            | 163000 D                   | 267000 D | 5580 D  |                               |
| 11/15/2015  | B33021 |                                |                   |                            |          |         | 156000 D                      |
| 11/15/2015  | B33023 | 540 U                          | 644000            | 127000 D                   | 301000 D | 5310 D  | -                             |
| 11/16/2015  | B33049 |                                |                   |                            |          |         | 368000 D                      |
| 11/16/2015  | B33051 | 540 U                          | 654000            | 86400 D                    | 382000 D | 3270    |                               |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

|                                    | Sample | Alkalinity <sup>a</sup> (µg/L) Metals <sup>b</sup> (µg/L) |             |          | Anions <sup>c</sup><br>(µg/L) |         |           |  |  |
|------------------------------------|--------|-----------------------------------------------------------|-------------|----------|-------------------------------|---------|-----------|--|--|
| Sample Date                        | Number | Carbonate                                                 | Bicarbonate | Calcium  | Sodium                        | Uranium | Phosphate |  |  |
| 11/19/2015                         | B33L51 |                                                           |             |          |                               |         | 5830000 D |  |  |
| 11/18/2015                         | B33L53 | 2700 U                                                    | 2000000     | 31400 DN | 1640000 D                     | 500 D   |           |  |  |
| 11/10/2015                         | B33L79 |                                                           |             |          |                               |         | 4290000 D |  |  |
| 11/19/2015                         | B33L81 | 5400 U                                                    | 1440000     | 24800    | 1240000 D                     | 208 D   |           |  |  |
| Monitoring Well 399-1-74 (Aquifer) |        |                                                           |             |          |                               |         |           |  |  |
| 11/6/2015                          | B32XN3 |                                                           |             |          |                               |         | 491000 D  |  |  |
| 11/0/2013                          | B32XN4 | 540 U                                                     | 262000      | 59100    | 155000 D                      | 10.2    |           |  |  |
| 11/7/2015                          | B32XR7 |                                                           |             |          |                               |         | 187000 D  |  |  |
| 11/7/2015                          | B32XR8 | 540 U                                                     | 179000      | 52100    | 94100                         | 14.6    |           |  |  |
| 11/9/2015                          | B32XX4 |                                                           |             |          |                               |         | 294000 D  |  |  |
| 11/8/2015                          | B32XX6 | 540 U                                                     | 196000      | 40300    | 134000 DN                     | 16.4    |           |  |  |
| 11/0/2015                          | B32YJ5 |                                                           |             |          |                               |         | 705000 D  |  |  |
| 11/9/2013                          | B32YJ7 | 540 U                                                     | 307000      | 59000    | 231000 D                      | 7.8     |           |  |  |
| 11/10/2015                         | B32YM3 |                                                           |             |          |                               |         | 552000 D  |  |  |
| 11/10/2015                         | B32YM5 | 540 U                                                     | 276000      | 48900 D  | 230000 D                      | 7.2     |           |  |  |
| 11/11/2015                         | B32YR1 |                                                           |             |          |                               |         | 368000 D  |  |  |
| 11/11/2015                         | B32YR3 | 540 U                                                     | 217000      | 52100 D  | 163000 D                      | 7.7     |           |  |  |
| 11/12/2015                         | B32YV9 |                                                           |             |          |                               |         | 368000 D  |  |  |
| 11/12/2015                         | B32YW1 | 540 U                                                     | 213000      | 50100 D  | 158000 D                      | 9.8     |           |  |  |
| 11/14/2015                         | B32YY7 |                                                           |             |          |                               |         | 224000 D  |  |  |
| 11/14/2015                         | B32YY9 | 540 U                                                     | 197000      | 49100 D  | 116000 D                      | 11.6    |           |  |  |
| 11/15/2015                         | B33025 |                                                           |             |          |                               |         | 212000 D  |  |  |
| 11/15/2015                         | B33027 | 540 U                                                     | 192000      | 48300 D  | 105000 D                      | 11.9    |           |  |  |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

|             | Sample                         | Alkaliı   | Alkalinity <sup>a</sup> (µg/L) |          | Metals <sup>b</sup> (µg/L) |         | Anions <sup>c</sup><br>(µg/L) |  |  |  |
|-------------|--------------------------------|-----------|--------------------------------|----------|----------------------------|---------|-------------------------------|--|--|--|
| Sample Date | Number                         | Carbonate | Bicarbonate                    | Calcium  | Sodium                     | Uranium | Phosphate                     |  |  |  |
| 11/16/2015  | B33053                         |           |                                |          |                            |         | 1200000 D                     |  |  |  |
| 11/10/2013  | B33055                         | 540 U     | 425000                         | 53000    | 301000 D                   | 7.7     |                               |  |  |  |
| 11/19/2015  | B33L55                         |           |                                |          |                            |         | 2540000 D                     |  |  |  |
| 11/18/2013  | B33L57                         | 2700 U    | 705000                         | 45200 DN | 671000 D                   | 2.3 U   |                               |  |  |  |
| 11/19/2015  | B33L83                         |           |                                |          |                            |         | 1590000 D                     |  |  |  |
|             | B33L85                         | 2700 U    | 535000                         | 32900    | 483000 D                   | 2.3 U   |                               |  |  |  |
|             | Monitoring Well 399-1-75 (PRZ) |           |                                |          |                            |         |                               |  |  |  |
| 11/6/2015   | B32XN6                         |           |                                |          |                            |         | 399 BD                        |  |  |  |
| 11/0/2013   | B32XN7                         | 540 U     | 124000                         | 56400    | 24800                      | 60.4    |                               |  |  |  |
| 11/7/2015   | B32XT0                         |           |                                |          |                            |         | 4600 DN                       |  |  |  |
| 11/7/2015   | B32XT1                         | 540 U     | 116000                         | 57800    | 28300                      | 34.3    |                               |  |  |  |
| 11/9/2015   | B32XX8                         |           |                                |          |                            |         | 2480 D                        |  |  |  |
| 11/8/2013   | B32XY0                         | 540 U     | 126000                         | 49700    | 25400 N                    | 64.5    |                               |  |  |  |
| 11/0/2015   | B32YJ9                         |           |                                |          |                            |         | 4290 DN                       |  |  |  |
| 11/9/2013   | B32YK1                         | 540 U     | 126000                         | 60400    | 33400                      | 46.7    |                               |  |  |  |
| 11/10/2015  | B32YM7                         |           |                                |          |                            |         | 2540 DN                       |  |  |  |
| 11/10/2013  | B32YM9                         | 540 U     | 123000                         | 71800    | 42400                      | 99      |                               |  |  |  |
| 11/11/2015  | B32YR5                         |           |                                |          |                            |         | 2760 DN                       |  |  |  |
| 11/11/2013  | B32YR7                         | 540 U     | 124000                         | 103000   | 53900                      | 192     |                               |  |  |  |
| 11/12/2015  | B32YW3                         |           |                                |          |                            |         | 8890 DN                       |  |  |  |
| 11/12/2015  | B32YW5                         | 540 U     | 126000                         | 99100    | 61800                      | 182     |                               |  |  |  |
| 11/14/2015  | B33001                         |           |                                |          |                            |         | 736000 D                      |  |  |  |
| 11/14/2015  | B33003                         | 540 U     | 226000                         | 92400 D  | 172000 D                   | 53.2    |                               |  |  |  |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

|                                | Sample | Alkalinity <sup>a</sup> (µg/L) Metals <sup>b</sup> (µg/L) |             |          | Anions <sup>c</sup><br>(µg/L) |         |           |  |  |
|--------------------------------|--------|-----------------------------------------------------------|-------------|----------|-------------------------------|---------|-----------|--|--|
| Sample Date                    | Number | Carbonate                                                 | Bicarbonate | Calcium  | Sodium                        | Uranium | Phosphate |  |  |
| 11/15/2015                     | B33029 |                                                           |             |          |                               |         | 1170000 D |  |  |
| 11/13/2013                     | B33031 | 540 U                                                     | 280000      | 86900 D  | 276000 D                      | 20.1    |           |  |  |
| 11/16/2015                     | B33057 |                                                           |             |          |                               |         | 1440000 D |  |  |
| 11/10/2013                     | B33059 | 540 U                                                     | 322000      | 61800    | 348000 D                      | 8.1     |           |  |  |
| 11/19/2015                     | B33L59 |                                                           |             |          |                               |         | 7970000 D |  |  |
| 11/18/2013                     | B33L61 | 5400 U                                                    | 2640000     | 29700 DN | 1920000 D                     | 19.5 D  |           |  |  |
| 11/10/2015                     | B33L87 |                                                           |             |          |                               |         | 4910000 D |  |  |
| 11/19/2015                     | B33L89 | 5400 U                                                    | 1320000     | 32000    | 1190000 D                     | 32.5 D  |           |  |  |
| Monitoring Well 399-1-77 (PRZ) |        |                                                           |             |          |                               |         |           |  |  |
| 11/6/2015                      | B32XN9 |                                                           |             |          |                               |         | 368 BD    |  |  |
| 11/0/2013                      | B32XP0 | 540 U                                                     | 126000      | 55600    | 25300                         | 52.8    |           |  |  |
| 11/7/2015                      | B32XT3 |                                                           |             |          |                               |         | 1590 DN   |  |  |
| 11/7/2013                      | B32XT4 | 540 U                                                     | 128000      | 55000    | 25400                         | 47.2    |           |  |  |
| 11/9/2015                      | B32XY2 |                                                           |             |          |                               |         | 3680 DN   |  |  |
| 11/8/2013                      | B32XY4 | 540 U                                                     | 132000      | 51000    | 26800 N                       | 51.6    |           |  |  |
| 11/0/2015                      | B32YK3 |                                                           |             |          |                               |         | 3990 DN   |  |  |
| 11/9/2013                      | B32YK5 | 540 U                                                     | 132000      | 55600    | 26600                         | 43      |           |  |  |
| 11/10/2015                     | B32YN1 |                                                           |             |          |                               |         | 4910 DN   |  |  |
| 11/10/2013                     | B32YN3 | 540 U                                                     | 142000      | 52500    | 30900                         | 47.1    |           |  |  |
| 11/11/2015                     | B32YR9 |                                                           |             |          |                               |         | 5830 DN   |  |  |
| 11/11/2015                     | B32YT1 | 540 U                                                     | 147000      | 63400    | 33700                         | 43.2    |           |  |  |
| 11/12/2015                     | B32YW7 |                                                           |             |          |                               |         | 33700 D   |  |  |
| 11/12/2015                     | B32YW9 | 540 U                                                     | 164000      | 69200    | 46200                         | 30.8    |           |  |  |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

|             | Sample | Alkalir   | Alkalinity <sup>a</sup> (µg/L) |               | Metals <sup>b</sup> (µg/L) |         | Anions <sup>c</sup><br>(µg/L) |
|-------------|--------|-----------|--------------------------------|---------------|----------------------------|---------|-------------------------------|
| Sample Date | Number | Carbonate | Bicarbonate                    | Calcium       | Sodium                     | Uranium | Phosphate                     |
| 11/14/2015  | B33005 |           |                                |               |                            |         | 30700 DN                      |
| 11/14/2013  | B33007 | 540 U     | 162000                         | 65100         | 38500                      | 28.9    |                               |
| 11/15/2015  | B33033 |           |                                |               |                            |         | 76700 DN                      |
| 11/13/2013  | B33035 | 540 U     | 170000                         | 67700         | 53500                      | 21.9    |                               |
| 11/16/2015  | B33061 |           |                                |               |                            |         | 282000 DN                     |
| 11/10/2013  | B33063 | 540 U     | 198000                         | 68700 D       | 99800 D                    | 18.4    |                               |
| 11/17/2015  | B33L33 |           |                                |               |                            |         | 3990000 D                     |
| 11/1//2015  | B33L35 | 2700 U    | 890000                         | 99300 DN      | 1040000 D                  | 11 D    |                               |
| 11/19/2015  | B33L63 |           |                                |               |                            |         | 4290000 D                     |
| 11/18/2013  | B33L65 | 2700 U    | 1010000                        | 43600 DN      | 1220000 D                  | 9.2 BD  |                               |
| 11/10/2015  | B33L91 |           |                                |               |                            |         | 3370000 D                     |
| 11/19/2015  | B33L93 | 2700 U    | 820000                         | 37500         | 880000 D                   | 6.8 BD  |                               |
|             |        | I         | Monitoring Well 3              | 99-1-81 (PRZ) |                            |         |                               |
| 11/6/2015   | B32XP2 |           |                                |               |                            |         | 368 BD                        |
| 11/6/2015   | B32XP3 | 540 U     | 125000                         | 56300         | 24700                      | 56.4    |                               |
| 11/7/2015   | B32XT6 |           |                                |               |                            |         | 4600 DN                       |
| 11/7/2015   | B32XT7 | 540 U     | 128000                         | 53700         | 25800                      | 38.9    |                               |
| 11/0/2015   | B32XY6 |           |                                |               |                            |         | 3990 DN                       |
| 11/8/2015   | B32XY8 | 540 U     | 132000                         | 50100         | 28200 N                    | 41.2    |                               |
| 11/0/2015   | B32YK7 |           |                                |               |                            |         | 2610 DN                       |
| 11/9/2015   | B32YK9 | 540 U     | 125000                         | 75100         | 32600                      | 66.4    |                               |
| 11/10/2015  | B32YN5 |           |                                |               |                            |         | 3370 DN                       |
| 11/10/2015  | B32YN7 | 540 U     | 124000                         | 79200         | 40700                      | 112     |                               |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

C-20

|             | Sample | Alkalinity <sup>a</sup> (µg/L) Metals <sup>b</sup> (µg/L) |                   | Anions <sup>c</sup><br>(µg/L) |          |         |           |
|-------------|--------|-----------------------------------------------------------|-------------------|-------------------------------|----------|---------|-----------|
| Sample Date | Number | Carbonate                                                 | Bicarbonate       | Calcium                       | Sodium   | Uranium | Phosphate |
| 11/11/2015  | B32YT3 |                                                           |                   |                               |          |         | 2700 DN   |
| 11/11/2013  | B32YT5 | 540 U                                                     | 133000            | 92200                         | 45800    | 120     |           |
| 11/12/2015  | B32YX1 |                                                           |                   |                               |          |         | 9510 D    |
| 11/12/2013  | B32YX3 | 540 U                                                     | 158000            | 89700                         | 47500    | 97.1    |           |
| 11/14/2015  | B33009 |                                                           |                   |                               |          |         | 248000 D  |
| 11/14/2013  | B33011 | 540 U                                                     | 196000            | 90400 D                       | 93500 D  | 15.2    |           |
| 11/15/2015  | B33037 |                                                           |                   |                               |          |         | 521000 D  |
| 11/15/2015  | B33039 | 540 U                                                     | 212000            | 95200 D                       | 123000 D | 8.6     |           |
| 11/16/2015  | B33065 |                                                           |                   |                               |          |         | 767000 DN |
| 11/16/2015  | B33067 | 540 U                                                     | 226000            | 84000 D                       | 190000 D | 6       |           |
|             | B33L67 |                                                           |                   |                               |          |         | 613000 D  |
| 11/18/2015  | B33L69 | 540 U                                                     | 202000            | 73600 DN                      | 183000 D | 2.3 U   |           |
| 11/10/2015  | B33L95 |                                                           |                   |                               |          |         | 736000 D  |
| 11/19/2015  | B33L97 | 540 U                                                     | 194000            | 70700                         | 177000 D | 2.3 U   |           |
|             |        | N                                                         | Monitoring Well 3 | 99-1-87 (PRZ)                 |          |         |           |
| 11/6/0015   | B32XP5 |                                                           |                   |                               |          |         | 399 BD    |
| 11/6/2015   | B32XP6 | 540 U                                                     | 128000            | 49700                         | 33900 N  | 59.8    |           |
| 11/7/0015   | B32XT9 |                                                           |                   |                               |          |         | 36800 DN  |
| 11/7/2015   | B32XV0 | 540 U                                                     | 163000            | 60000                         | 55100    | 12.1    |           |
| 11/0/2015   | B32Y00 |                                                           |                   |                               |          |         | 46000 D   |
| 11/8/2015   | B32Y02 | 540 U                                                     | 168000            | 53300                         | 58800 N  | 13.1    |           |
| 11/0/2015   | B32YL1 |                                                           |                   |                               |          |         | 49100 DN  |
| 11/9/2015   | B32YL3 | 540 U                                                     | 162000            | 56800                         | 59100    | 13.2    |           |

 Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit

 Stage A Monitoring Wells During Treatment

|             | Sample | Alkalir   | Alkalinity <sup>a</sup> (µg/L) |          | Metals <sup>b</sup> (µg/L) |         |           |
|-------------|--------|-----------|--------------------------------|----------|----------------------------|---------|-----------|
| Sample Date | Number | Carbonate | Bicarbonate                    | Calcium  | Sodium                     | Uranium | Phosphate |
| 11/10/2015  | B32YN9 |           |                                |          |                            |         | 797000 D  |
| 11/10/2015  | B32YP1 | 540 U     | 298000                         | 306000 D | 257000 D                   | 171     |           |
| 11/11/2015  | B32YT7 |           |                                |          |                            |         | 675000 D  |
| 11/11/2013  | B32YT9 | 540 U     | 276000                         | 75300 D  | 278000 D                   | 274     |           |
| 11/12/2015  | B32YX5 |           |                                |          |                            |         | 644000 D  |
| 11/12/2013  | B32YX7 | 540 U     | 292000                         | 90100 D  | 298000 D                   | 364     |           |
| 11/14/2015  | B33013 |           |                                |          |                            |         | 460000 D  |
| 11/14/2015  | B33015 | 540 U     | 333000                         | 87800 D  | 215000 D                   | 599     |           |
| 11/15/2015  | B33041 |           |                                |          |                            |         | 368000 D  |
| 11/13/2013  | B33043 | 540 U     | 327000                         | 77100 D  | 193000 D                   | 519     |           |
| 11/16/2015  | B33069 |           |                                |          |                            |         | 307000 DN |
| 11/16/2015  | B33071 | 540 U     | 310000                         | 68900 D  | 205000 D                   | 522     |           |
| 11/17/2015  | B33L41 |           |                                |          |                            |         | 7670000 D |
| 11/1//2013  | B33L43 | 2700 U    | 2760000                        | 26300 DN | 2210000 D                  | 137 D   |           |
| 11/19/2015  | B33L71 |           |                                |          |                            |         | 6130000 D |
| 11/16/2013  | B33L73 | 5400 U    | 2050000                        | 31800 DN | 1780000 D                  | 564 D   |           |
| 11/10/2015  | B33L99 |           |                                |          |                            |         | 2640000 D |
| 11/19/2015  | B33LB1 | 2700 U    | 760000                         | 34000    | 741000 D                   | 29.2 D  |           |

Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

Reference: DOE/RL-2014-42, 2015, *300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H.

a. EPA Method 310.1.

C-22

b. EPA Method 6020. Results in this table are for unfiltered samples collected in accordance with Table A-6 in DOE/RL-2014-42.

c. EPA Method 300.

# Table C-4. Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells During Treatment

|             |        |               | Sample                                               | Alkaliı                             | nity <sup>a</sup> (µg/L)                     |                                  | Metals <sup>b</sup> (µg/L) |                 |           |  |  |  |  |
|-------------|--------|---------------|------------------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------|----------------------------|-----------------|-----------|--|--|--|--|
| Sample Date |        | Date          | Number                                               | Carbonate                           | Bicarbonate                                  | Calcium                          | Sodium                     | Uranium         | Phosphate |  |  |  |  |
| Labor       | ratory | Qualifie      | ers:                                                 |                                     |                                              |                                  |                            |                 |           |  |  |  |  |
| В           | =      | The ar instru | halyte was deter<br>ment detection                   | cted at a value le<br>limit/maximum | ess than the contract detection limit (as ap | required detectio<br>propriate). | n limit, but greate        | r than or equal | to the    |  |  |  |  |
| D           | =      | Analy         | Analyte was reported at a secondary dilution factor. |                                     |                                              |                                  |                            |                 |           |  |  |  |  |
| Ν           | =      | Spike         | and/or spike du                                      | plicate sample i                    | ecovery is outside co                        | ontrol limits.                   |                            |                 |           |  |  |  |  |

U = Undetected.

#### C4 Post-Treatment Groundwater Samples

Groundwater samples were collected from 26 monitoring wells located in the Stage A EA area during November and December 2015 following application of polyphosphate solutions to the vadose zone, periodically rewetted zone, and top of the aquifer. Post-treatment samples were collected from each well at least four times within 1 month after completion of the polyphosphate infiltration and injection. Table C-5 provides the analytical results for the groundwater characteristics of dissolved oxygen, oxidation-reduction potential, specific conductance, pH, temperature, and water level. Table C-6 provides the analytical results for carbonate and bicarbonate alkalinity, metals (calcium, magnesium, potassium, sodium, and uranium), and anions (chloride, phosphate, and sulfate).

|                                    | Sample | Dissolved<br>Oxvgen <sup>a</sup> | Oxidation<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | <b>Temperature</b> <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|------------------------------------|--------|----------------------------------|------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------|---------------------------------------|
| Sample Date                        | Number | (µg/L)                           | ( <b>mV</b> )    | (RmV)                              | (µS/cm)                              | (pH Units)                     | (°C)                            | (m NAVD88)                            |
|                                    |        |                                  | Mo               | onitoring Well 39                  | 9-1-24 (PRZ)                         |                                |                                 |                                       |
| 11/20/2015                         | B331Y4 | 8230                             | 334              |                                    | 1235                                 | 6.65                           | 16.6                            | 105.264                               |
| 12/3/2015                          | B33923 | 8260                             |                  | 303.4                              | 911                                  | 7.01                           | 16.4                            | 105.209                               |
| 12/11/2015                         | B339F3 | 8640                             | 361.1            |                                    | 808                                  | 7.05                           | 17.3                            | 105.183                               |
| 12/15/2015                         | B339W9 | 8830                             | 327.7            |                                    | 775                                  | 7.21                           | 16.7                            | 105.076                               |
| Monitoring Well 399-1-25 (Aquifer) |        |                                  |                  |                                    |                                      |                                |                                 |                                       |
| 11/20/2015                         | B331X6 | 9330                             | 339              |                                    | 398                                  | 7.19                           | 15.7                            | 105.273                               |
| 12/3/2015                          | B33915 | 8120                             |                  | 321.9                              | 1183                                 | 7.09                           | 16.3                            | 105.209                               |
| 12/11/2015                         | B339D5 | 8290                             | 368.9            |                                    | 1031                                 | 7.09                           | 16.9                            | 105.186                               |
| 12/15/2015                         | B339W1 | 8670                             | 331.7            |                                    | 882                                  | 7.27                           | 16.9                            | 105.079                               |
| Monitoring Well 399-1-36 (Aquifer) |        |                                  |                  |                                    |                                      |                                |                                 |                                       |
| 11/20/2015                         | B331Y8 | 6150                             | 330              |                                    | 465                                  | 7.43                           | 17.2                            | 105.263                               |
| 12/3/2015                          | B33927 | 7350                             |                  | 324.2                              | 809                                  | 6.94                           | 16.5                            | 105.2                                 |
| 12/11/2015                         | B339F7 | 7310                             | 356.3            |                                    | 766                                  | 6.99                           | 17                              | 105.177                               |
| 12/15/2015                         | B339X3 | 8570                             | 324.6            |                                    | 736                                  | 7.18                           | 16.9                            | 105.062                               |
|                                    |        |                                  | Mo               | onitoring Well 39                  | 9-1-37 (PRZ)                         |                                |                                 |                                       |
| 11/20/2015                         | B331Y0 | 8790                             | 341              |                                    | 849                                  | 6.88                           | 17.7                            | 105.267                               |
| 12/3/2015                          | B33919 | 8560                             |                  | 319.4                              | 667                                  | 7.08                           | 17                              | 105.204                               |
| 12/11/2015                         | B339D9 | 8500                             | 359.6            |                                    | 657                                  | 7.01                           | 17.5                            | 105.18                                |
| 12/15/2015                         | B339W5 | 9040                             | 326.2            |                                    | 605                                  | 7.26                           | 16.9                            | 105.065                               |
|                                    |        |                                  | Mon              | itoring Well 399-                  | 1-65 (Aquifer)                       |                                |                                 |                                       |
| 11/30/2015                         | B331K8 | 8200                             | 339.8            |                                    | 520                                  | 7.63                           | 10.8                            | 105.35                                |
| 12/3/2015                          | B338N7 | 6680                             |                  | 224                                | 813                                  | 7.58                           | 15.5                            | 105.147                               |
| 12/11/2015                         | B33937 | 6410                             | 282.5            |                                    | 692                                  | 7.66                           | 17.6                            | 105.184                               |
| 12/15/2015                         | B339J3 | 6770                             | -181.4           |                                    | 679                                  | 7.74                           | 17.3                            | 105.086                               |

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|                                | Sample | Dissolved<br>Oxygen <sup>a</sup> | Oxidation<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | <b>Temperature</b> <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|--------------------------------|--------|----------------------------------|------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------|---------------------------------------|
| Sample Date                    | Number | (µg/L)                           | ( <b>mV</b> )    | (RmV)                              | (µS/cm)                              | (pH Units)                     | (°C)                            | (m NAVD88)                            |
|                                |        |                                  | Mon              | itoring Well 399-                  | 1-66 (Aquifer)                       |                                |                                 |                                       |
| 11/20/2015                     | B331L6 | 8010                             | 264              |                                    | 453                                  | 7.51                           | 16.4                            | 105.241                               |
| 12/3/2015                      | B338P5 | 8240                             |                  | 210                                | 469                                  | 7.59                           | 17.1                            | Not recorded                          |
| 12/11/2015                     | B33945 | 8890                             | 316.9            |                                    | 464                                  | 7.61                           | 17.7                            | 105.23                                |
| 12/15/2015                     | B339K1 | 8290                             | -37.7            |                                    | 495                                  | 7.53                           | 17.3                            | 105.105                               |
| Monitoring Well 399-1-67 (PRZ) |        |                                  |                  |                                    |                                      |                                |                                 |                                       |
| 11/30/2015                     | B331L2 | 8090                             | 321.9            |                                    | 1445                                 | 7.15                           | 8.8                             | 105.361                               |
| 12/3/2015                      | B338P1 | 5210                             |                  | 230                                | 1214                                 | 7.07                           | 14.8                            | 105.208                               |
| 12/11/2015                     | B33941 | 4400                             | 330.3            |                                    | 1137                                 | 7.06                           | 17.9                            | 105.191                               |
| 12/15/2015                     | B339J7 | 4180                             | 45.7             |                                    | 1171                                 | 7.11                           | 17.9                            | 105.08                                |
|                                |        |                                  | Mo               | onitoring Well 39                  | 9-1-69 (PRZ)                         |                                |                                 |                                       |
| 11/20/2015                     | B331M0 | 6190                             | 273              |                                    | 577                                  | 6.94                           | 17.2                            | 105.241                               |
| 12/3/2015                      | B338P9 | 6760                             |                  | 224                                | 582                                  | 7.7                            | 16.4                            | 109.154                               |
| 12/11/2015                     | B33949 | 7070                             | 326.8            |                                    | 567                                  | 7.1                            | 18.2                            | 105.233                               |
| 12/15/2015                     | B339K5 | 6590                             | 180.6            |                                    | 6.13                                 | 7.14                           | 17.6                            | 105.094                               |
|                                |        |                                  | Mon              | itoring Well 399-                  | 1-70 (Aquifer)                       |                                |                                 |                                       |
| 11/23/2015                     | B331M4 | 5210                             | 216              |                                    | 481                                  | 7.55                           | 16.3                            | 105.298                               |
| 12/2/2015                      | B338R3 | 6910                             | 345              |                                    | 460                                  | 7.52                           | 16.9                            | 105.189                               |
| 12/10/2015                     | B33953 | 6800                             | 320.3            |                                    | 468                                  | 7.55                           | 17.2                            | 105.108                               |
| 12/16/2015                     | B339K9 | 7110                             | 55.3             |                                    | 506                                  | 7.52                           | 17.3                            | 105.065                               |
|                                |        |                                  | Mo               | onitoring Well 39                  | 9-1-71 (PRZ)                         |                                |                                 |                                       |
| 11/23/2015                     | B331M8 | 8370                             | 202.1            |                                    | 492                                  | 7.47                           | 17.1                            | 105.295                               |
| 12/2/2015                      | B338R7 | 8860                             | 361              |                                    | 474                                  | 7.44                           | 17                              | 105.206                               |
| 12/10/2015                     | B33957 | 8970                             | 329.2            |                                    | 462                                  | 7.51                           | 17.3                            | 105.11                                |
| 12/16/2015                     | B339L3 | 8590                             | 80.7             |                                    | 486                                  | 7.53                           | 17.2                            | 105.066                               |

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|                                    | Sample                         | Dissolved<br>Oxygen <sup>a</sup> | Oxidation<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | <b>Temperature</b> <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|------------------------------------|--------------------------------|----------------------------------|------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------|---------------------------------------|
| Sample Date                        | Number                         | (µg/L)                           | ( <b>mV</b> )    | (RmV)                              | (µS/cm)                              | (pH Units)                     | (°C)                            | (m NAVD88)                            |
|                                    |                                |                                  | Mon              | itoring Well 399-                  | 1-72 (Aquifer)                       |                                |                                 |                                       |
| 11/20/2015                         | B331N2                         | 8290                             | 298              |                                    | 533                                  | 7.14                           | 16.8                            | 105.191                               |
| 12/3/2015                          | B338T1                         | 8940                             |                  | 323.3                              | 473                                  | 7.5                            | 16.7                            | 105.221                               |
| 12/11/2015                         | B33961                         | 8970                             | 389.4            |                                    | 502                                  | 7.43                           | 17.4                            | 105.194                               |
| 12/15/2015                         | B339L7                         | 9350                             | 385.9            |                                    | 473                                  | 7.6                            | 16.9                            | 105.095                               |
|                                    | Monitoring Well 399-1-73 (PRZ) |                                  |                  |                                    |                                      |                                |                                 |                                       |
| 11/20/2015                         | B331N6                         | 8970                             | 274              |                                    | 463                                  | 7.32                           | 16.4                            | 105.221                               |
| 12/3/2015                          | B338T5                         | 8770                             |                  | 319.6                              | 470                                  | 7.48                           | 16.6                            | 105.232                               |
| 12/11/2015                         | B33965                         | 8810                             | 366.4            |                                    | 494                                  | 7.4                            | 17.8                            | 105.188                               |
| 12/15/2015                         | B339M1                         | 9220                             | 354.6            |                                    | 474                                  | 7.55                           | 17.1                            | 105.096                               |
| Monitoring Well 399-1-74 (Aquifer) |                                |                                  |                  |                                    |                                      |                                |                                 |                                       |
| 11/20/2015                         | B331P0                         | 8450                             | 307              |                                    | 1785                                 | 6.87                           | 17                              | 105.196                               |
| 12/3/2015                          | B338T9                         | 8790                             |                  | 332.6                              | 654                                  | 7.22                           | 16.5                            | 105.224                               |
| 12/11/2015                         | B33969                         | 8830                             | 430.4            |                                    | 597                                  | 7.21                           | 17.2                            | 105.181                               |
| 12/15/2015                         | B339M5                         | 9250                             | 345.1            |                                    | 599                                  | 7.33                           | 16.6                            | 105.092                               |
|                                    |                                |                                  | Mo               | onitoring Well 39                  | 9-1-75 (PRZ)                         |                                |                                 |                                       |
| 11/20/2015                         | B331P4                         | 9460                             | 312              |                                    | 4534                                 | 6.78                           | 15.3                            | 105.199                               |
| 12/3/2015                          | B338V3                         | 8650                             |                  | 334.4                              | 1552                                 | 7.17                           | 16                              | 105.225                               |
| 12/11/2015                         | B33973                         | 8600                             | 392.5            |                                    | 1297                                 | 7.16                           | 17.2                            | 105.195                               |
| 12/15/2015                         | B339M9                         | 8880                             | 336.6            |                                    | 1260                                 | 7.31                           | 17                              | 105.099                               |
|                                    |                                |                                  | Mon              | itoring Well 399-                  | 1-76 (Aquifer)                       |                                |                                 |                                       |
| 11/23/2015                         | B331P8                         | 8350                             | 307              |                                    | 1301                                 | 7.16                           | 16.4                            | 105.227                               |
| 12/2/2015                          | B338V7                         | 8760                             | 391.2            |                                    | 906                                  | 7.14                           | 16.1                            | 105.255                               |
| 12/10/2015                         | B33977                         | 8650                             | 242              |                                    | 702                                  | 7.24                           | 17                              | 105.108                               |
| 12/16/2015                         | B339N3                         | 8880                             | 138              |                                    | 651                                  | 7.34                           | 16.9                            | 105.027                               |

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Dissolved<br>Oxvgen <sup>a</sup> | Oxidation<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|-------------|--------|----------------------------------|------------------|------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|
| Sample Date | Number | $(\mu g/L)$                      | (mV)             | (RmV)                              | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |
|             |        |                                  | Mo               | onitoring Well 39                  | 9-1-77 (PRZ)                         |                                |                          |                                       |
| 11/23/2015  | B331R2 | 8680                             | 327              |                                    | 2734                                 | 6.97                           | 15.8                     | 105.238                               |
| 12/2/2015   | B338W1 | 9320                             | 858.4            |                                    | 2286                                 | 7                              | 18.2                     | 105.247                               |
| 12/10/2015  | B33981 | 8150                             | 247.1            |                                    | 2003                                 | 7.07                           | 16.5                     | 105.096                               |
| 12/16/2015  | B339N7 | 7870                             | 208              |                                    | 1986                                 | 7.15                           | 16.4                     | 105.04                                |
|             |        |                                  | Mon              | itoring Well 399-                  | 1-78 (Aquifer)                       |                                |                          |                                       |
| 11/30/2015  | B331R6 | 7170                             | 293.1            |                                    | 3358                                 | 7.46                           | 15.9                     | 105.325                               |
| 12/3/2015   | B338W5 | 7380                             |                  | 205                                | 3086                                 | 7.45                           | 17.6                     | 105.118                               |
| 12/11/2015  | B33985 | 6880                             | 314.2            |                                    | 2734                                 | 7.57                           | 16.8                     | 105.162                               |
| 12/15/2015  | B339P1 | 6210                             | 149.4            |                                    | 2709                                 | 7.62                           | 16.3                     | 105.062                               |
|             |        |                                  | Mo               | onitoring Well 39                  | 9-1-79 (PRZ)                         |                                |                          |                                       |
| 11/30/2015  | B331T0 | 6720                             | 300.2            |                                    | 816                                  | 7.17                           | 17                       | 105.321                               |
| 12/3/2015   | B338W9 | 6630                             |                  | 204                                | 935                                  | 7.27                           | 16.7                     | 105.141                               |
| 12/11/2015  | B33989 | 6830                             | 320.1            |                                    | 740                                  | 7.25                           | 18                       | 105.169                               |
| 12/15/2015  | B339P5 | 6490                             | 175.6            |                                    | 814                                  | 7.34                           | 17.1                     | 105.066                               |
|             |        |                                  | Mon              | itoring Well 399-                  | 1-80 (Aquifer)                       |                                |                          |                                       |
| 11/23/2015  | B331T4 | 6290                             | 198              |                                    | 1013                                 | 6.8                            | 15.6                     | 105.213                               |
| 12/2/2015   | B338X3 | 7820                             | 329.4            |                                    | 807                                  | 7.03                           | 16.4                     | 105.25                                |
| 12/10/2015  | B33993 | 6180                             | 146.7            |                                    | 748                                  | 7.18                           | 16.9                     | 105.106                               |
| 12/16/2015  | B339P9 | 6200                             | 33.1             |                                    | 781                                  | 7.27                           | 16.9                     | 105.054                               |
|             |        |                                  | Mo               | onitoring Well 39                  | 9-1-81 (PRZ)                         |                                |                          |                                       |
| 11/23/2015  | B331T8 | 8780                             | 418              |                                    | 759                                  | 7.06                           | 16.4                     | 105.192                               |
| 12/2/2015   | B338X7 | 9060                             | 331              |                                    | 635                                  | 7.23                           | 15.6                     | 105.197                               |
| 12/10/2015  | B33997 | 8770                             | 246.2            |                                    | 615                                  | 7.28                           | 17.1                     | 105.097                               |
| 12/16/2015  | B339R3 | 8480                             | 83.5             |                                    | 617                                  | 7.29                           | 17.1                     | 105.045                               |

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|                                    | Sample | Dissolved<br>Oxvgen <sup>a</sup> | Oxidation<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |
|------------------------------------|--------|----------------------------------|------------------|------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|
| Sample Date                        | Number | (µg/L)                           | (mV)             | (RmV)                              | (µS/cm)                              | (pH Units)                     | (°C)                     | (m NAVD88)                            |
|                                    |        |                                  | Mon              | itoring Well 399-                  | 1-82 (Aquifer)                       |                                |                          |                                       |
| 11/23/2015                         | B331V2 | 6940                             | 99.6             |                                    | 1203                                 | 6.83                           | 17                       | 105.252                               |
| 12/2/2015                          | B338Y1 | 7580                             | 465              |                                    | 1173                                 | 6.99                           | 17.7                     | 105.173                               |
| 12/10/2015                         | B339B1 | 7760                             | 342.1            |                                    | 1219                                 | 7.19                           | 16.7                     | 105.062                               |
| 12/16/2015                         | B339R7 | 7570                             | 201              |                                    | 1217                                 | 7.33                           | 16.9                     | 104.363                               |
| Monitoring Well 399-1-83 (PRZ)     |        |                                  |                  |                                    |                                      |                                |                          |                                       |
| 11/23/2015                         | B331V6 | 7920                             | 60               |                                    | 705                                  | 7.12                           | 17                       | 105.261                               |
| 12/2/2015                          | B338Y5 | 8300                             | 422              |                                    | 692                                  | 7.02                           | 17.6                     | 105.167                               |
| 12/10/2015                         | B339B5 | 8510                             | 345.3            |                                    | 706                                  | 7.15                           | 16.9                     | 105.073                               |
| 12/16/2015                         | B339T1 | 8380                             | 224              |                                    | 683                                  | 7.25                           | 16.9                     | 105.013                               |
| Monitoring Well 399-1-84 (Aquifer) |        |                                  |                  |                                    |                                      |                                |                          |                                       |
| 11/23/2015                         | B331W0 | 80                               | -79.5            |                                    | 611                                  | 8.04                           | 17                       | 105.278                               |
| 12/2/2015                          | B338Y9 | 2290                             | 106              |                                    | 584                                  | 7.99                           | 18.2                     | 105.159                               |
| 12/10/2015                         | B339B9 | 100                              | 97.7             |                                    | 587                                  | 8.11                           | 17                       | 105.071                               |
| 12/16/2015                         | B339T5 | 240                              | 46.7             |                                    | 579                                  | 8.16                           | 16.8                     | 105.001                               |
|                                    |        |                                  | Mo               | onitoring Well 39                  | 9-1-85 (PRZ)                         |                                |                          |                                       |
| 11/23/2015                         | B331W4 | 5460                             | 327.1            |                                    | 796                                  | 6.72                           | 17.2                     | 105.261                               |
| 12/2/2015                          | B33903 | 6120                             | 392              |                                    | 792                                  | 6.71                           | 17.9                     | 105.177                               |
| 12/10/2015                         | B339C3 | 6080                             | 359.9            |                                    | 745                                  | 6.88                           | 17.1                     | 105.059                               |
| 12/16/2015                         | B339T9 | 5640                             | 371              |                                    | 712                                  | 6.83                           | 16.9                     | 105.013                               |
|                                    |        |                                  | Mon              | itoring Well 399-                  | 1-86 (Aquifer)                       |                                |                          |                                       |
| 11/23/2015                         | B331W8 | 7410                             | 167              |                                    | 3707                                 | 7.12                           | 17.1                     | 105.268                               |
| 12/2/2015                          | B33907 | 7300                             | 320.6            |                                    | 2660                                 | 7.22                           | 10.3                     | 105.212                               |
| 12/10/2015                         | B339C7 | 6730                             | 158.8            |                                    | 2035                                 | 7.33                           | 17.2                     | 104.987                               |
| 12/16/2015                         | B339V3 | 7440                             | 17               |                                    | 1527                                 | 7.57                           | 16.5                     | 105.023                               |

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

Table C-5. Post-Treatment Groundwater Characteristics Analytical Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Dissolved<br>Oxygen <sup>a</sup> | Oxidatio<br>Pot | n-Reduction<br>ential <sup>b</sup> | Specific<br>Conductance <sup>c</sup> | pH<br>Measurement <sup>d</sup> | Temperature <sup>e</sup> | Water Level<br>Elevation <sup>f</sup> |  |
|-------------|--------|----------------------------------|-----------------|------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------------|--|
| Sample Date | Number | (µg/L)                           | (mV)            | (mV) (RmV)                         |                                      | (pH Units)                     | (°C)                     | (m NAVD88)                            |  |
|             |        |                                  | Mo              | onitoring Well 39                  | 9-1-87 (PRZ)                         |                                |                          |                                       |  |
| 11/23/2015  | B331X2 | 7590                             | 233.9           |                                    | 2532                                 | 7.02                           | 16.4                     | 105.264                               |  |
| 12/3/2015   | B33911 | 7710                             |                 | 190                                | 1829                                 | 7.3                            | 16.2                     | 105.031                               |  |
| 12/10/2015  | B339D1 | 7800                             | 237.2           |                                    | 1498                                 | 7.41                           | 17.1                     | 105.066                               |  |
| 12/16/2015  | B339V7 | 7590                             | 45              |                                    | 1332                                 | 7.49                           | 17                       | 105.018                               |  |

References: SESDPROC-113-R1, 2013, Field Measurement of Oxidation-Reduction Potential (ORP), U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, Georgia.

NAVD88, 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: http://www.ngs.noaa.gov/.

a. EPA Method 360.1. Dissolved oxygen using field probe.

b. EPA Method SESDPROC-113-R1, Field Measurement of Oxidation-Reduction Potential (ORP). Oxidation-reduction potential using field probe.

c. EPA Method 120.1. Specific conductivity using field probe.

d. EPA Method 150.1. pH using field probe.

e. EPA Method 170.1. Temperature using field probe.

f. Water level measured by water level measurement tape.

-- = not applicable

NAVD88 = North American Vertical Datum of 1988

- PRZ = periodically rewetted zone
- RmV = Relative milliVolt.

|                                    | Sample | Alkalini  | ty <sup>a</sup> (µg/L) |         | Μ               | etals <sup>b</sup> (µg/L) | Anions <sup>c</sup> (µg/L) |         |          |           |         |
|------------------------------------|--------|-----------|------------------------|---------|-----------------|---------------------------|----------------------------|---------|----------|-----------|---------|
| Sample Date                        | Number | Carbonate | Bicarbonate            | Calcium | Magnesium       | Potassium                 | Sodium                     | Uranium | Chloride | Phosphate | Sulfate |
|                                    |        |           |                        | Mon     | itoring Well 39 | 9-1-24 (PRZ)              |                            |         |          |           |         |
| 11/20/2015                         | B331Y5 |           |                        |         |                 |                           |                            |         | 14000 D  | 889000 D  | 40000 D |
| 11/20/2013                         | B331Y7 | 540 U     | 272000                 | 32900   | 13200           | 7330                      | 271000 D                   | 7.4 D   |          |           |         |
| 12/2/2015                          | B33924 |           |                        |         |                 |                           |                            |         | 18000 D  | 429000 D  | 50000 D |
| 12/3/2013                          | B33926 | 540 U     | 222000                 | 38400 D | 15800 D         | 17600 D                   | 249000 D                   | 1.2     |          |           |         |
| 12/11/2015                         | B339F4 |           |                        |         |                 |                           |                            |         | 20000 D  | 264000 D  | 56000 D |
| 12/11/2013                         | B339F6 | 540 U     | 197000                 | 28000 D | 10100 D         | 14200 D                   | 144000 D                   | 2.7 BD  |          |           |         |
| 12/15/2015                         | B339X0 |           |                        |         |                 |                           |                            |         | 20000 D  | 270000 D  | 57000 D |
| 12/13/2013                         | B339X2 | 540 U     | 198000                 | 30100 D | 11100 D         | 16400 D                   | 150000 D                   | 1.9 BD  |          |           |         |
| Monitoring Well 399-1-25 (Aquifer) |        |           |                        |         |                 |                           |                            |         |          |           |         |
| 11/20/2015                         | B331X7 |           |                        |         |                 |                           |                            |         | 12000 D  | 21800 D   | 38000 D |
|                                    | B331X9 | 540 U     | 114000                 | 40200   | 8770            | 4300 B                    | 28300                      | 46.4    |          |           |         |
| 12/3/2015                          | B33916 |           |                        |         |                 |                           |                            |         | 17000 D  | 613000 D  | 47000 D |
| 12/3/2013                          | B33918 | 540 U     | 290000                 | 37900 D | 16300 D         | 78000 D                   | 340000 D                   | 2.8     |          |           |         |
| 12/11/2015                         | B339D6 |           |                        |         |                 |                           |                            |         | 17000 D  | 429000 D  | 50000 D |
| 12/11/2013                         | B339D8 | 540 U     | 248000                 | 25300 D | 9720 D          | 52800 D                   | 185000 D                   | 3.2 BD  |          |           |         |
| 12/15/2015                         | B339W2 |           |                        |         |                 |                           |                            |         | 19000 D  | 337000 D  | 55000 D |
| 12/13/2013                         | B339W4 | 540 U     | 220000                 | 23400 D | 8750 D          | 38700 D                   | 130000 D                   | 2.6 BD  |          |           |         |
|                                    |        |           |                        | Monit   | oring Well 399- | 1-36 (Aquifer)            | )                          |         |          |           |         |
| 11/20/2015                         | B331Y9 |           |                        |         |                 |                           |                            |         | 26000 D  | 3990 D    | 62000 D |
| 11/20/2013                         | B33201 | 540 U     | 124000                 | 56600   | 11600           | 4930 B                    | 31000                      | 148     |          |           |         |
| 12/3/2015                          | B33928 |           |                        |         |                 |                           |                            |         | 20000 D  | 337000 D  | 47000 D |
| 12/3/2013                          | B33930 | 540 U     | 195000                 | 52700 D | 15700 D         | 10300 D                   | 219000 D                   | 17.8    |          |           |         |
| 12/11/2015                         | B339F8 |           |                        |         |                 |                           |                            |         | 22000 D  | 264000 D  | 55000 D |
| 12/11/2013                         | B339H0 | 540 U     | 183000                 | 42400 D | 12200 D         | 8580 D                    | 161000 D                   | 25.3 D  |          |           |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

| Sample Date         Sample Number           12/15/2015         B339X4           12/15/2015         B339X4           12/15/2015         B339X6           11/20/2015         B331Y3           12/3/2015         B33920           12/3/2015         B33920           12/11/2015         B339F0           12/15/2015         B339W6           12/15/2015         B339W8           11/30/2015         B331K9           11/30/2015         B338N8           12/3/2015         B338N8           12/3/2015         B338N8           12/3/2015         B338N8           12/3/2015         B33938 | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |         | Μ                | letals <sup>b</sup> (µg/L) | Anions <sup>c</sup> (µg/L) |         |          |           |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------------------|---------|------------------|----------------------------|----------------------------|---------|----------|-----------|---------|
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number | Carbonate | Bicarbonate             | Calcium | Magnesium        | Potassium                  | Sodium                     | Uranium | Chloride | Phosphate | Sulfate |
| 12/15/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339X4 |           |                         |         |                  |                            |                            |         | 22000 D  | 254000 D  | 55000 D |
| Sample Date         12/15/2015         11/20/2015         11/20/2015         12/3/2015         12/15/2015         11/30/2015         12/3/2015         12/11/2015         12/3/2015         12/3/2015         12/11/2015         12/11/2015         12/11/2015         12/11/2015                                                                                                                                                                                                                                                                                                       | B339X6 | 540 U     | 185000                  | 45700 D | 13700 D          | 10400 D                    | 178000 D                   | 14.6 D  |          |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |           |                         | Mon     | nitoring Well 39 | 9-1-37 (PRZ)               |                            |         |          |           |         |
| 11/20/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B331Y1 |           |                         |         |                  |                            |                            |         | 17000 D  | 491000 D  | 35000 D |
| 11/20/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B331Y3 | 540 U     | 220000                  | 83300   | 21200            | 8690                       | 112000 D                   | 7       |          |           |         |
| 12/2/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B33920 |           |                         |         |                  |                            |                            |         | 19000 D  | 193000 D  | 56000 D |
| 12/3/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B33922 | 540 U     | 170000                  | 48900 D | 15100 D          | 12600 D                    | 133000 D                   | 7.1     |          |           |         |
| 12/11/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339F0 |           |                         |         |                  |                            |                            |         | 21000 D  | 85900 D   | 58000 D |
| 12/11/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339F2 | 540 U     | 164000                  | 49600   | 14800            | 13700                      | 101000                     | 8.9     |          |           |         |
| 12/15/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339W6 |           |                         |         |                  |                            |                            |         | 21000 D  | 70500 D   | 58000 D |
| 12/13/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339W8 | 540 U     | 159000                  | 37100   | 11500            | 10600                      | 69000                      | 6.5     |          |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |           |                         | Monit   | toring Well 399  | -1-65 (Aquifer             | )                          |         |          |           |         |
| 11/20/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B331K9 |           |                         |         |                  |                            |                            |         | 19000 D  | 163000 D  | 52000 D |
| 11/50/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B331L1 | 540 U     | 237000                  | 21100 D | 7590 D           | 27700 ND                   | 54100 D                    | 7.6     |          |           |         |
| 12/2/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B338N8 |           |                         |         |                  |                            |                            |         | 21000 D  | 172000 D  | 53000 D |
| 12/5/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B338P0 | 540 U     | 245000                  | 33500   | 11100            | 19300                      | 184000 D                   | 20.8    |          |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B33938 |           |                         |         |                  |                            |                            |         | 21000 D  | 79700 DN  | 60000 D |
| 12/11/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B33940 | 540 U     | 206000                  | 50400 D | 13500 D          | 18000 D                    | 144000 DN                  | 47.4 D  |          |           |         |
| 12/11/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339H1 |           |                         |         |                  |                            |                            |         | 21000 D  | 82800 DN  | 60000 D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B339H3 | 540 U     | 210000                  | 52600 D | 14800 D          | 19300 D                    | 158000 D                   | 47.6 D  |          |           |         |
| 12/15/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339J4 |           |                         |         |                  |                            |                            |         | 21000 D  | 58300 D   | 59000 D |
| 12/15/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B339J6 | 540 U     | 190000                  | 32700   | 9480             | 9050                       | 94800                      | 52.4    |          |           |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

| Sample Date                    | Sample | Alkalini  | ty <sup>a</sup> (µg/L) |         | Μ               | Anions <sup>c</sup> (µg/L) |          |         |          |           |         |
|--------------------------------|--------|-----------|------------------------|---------|-----------------|----------------------------|----------|---------|----------|-----------|---------|
| Sample Date                    | Number | Carbonate | Bicarbonate            | Calcium | Magnesium       | Potassium                  | Sodium   | Uranium | Chloride | Phosphate | Sulfate |
|                                |        |           |                        | Monit   | oring Well 399- | 1-66 (Aquifer)             | )        |         |          |           |         |
| 11/20/2015                     | B331L7 |           |                        |         |                 |                            |          |         | 20000 D  | 951 D     | 61000 D |
| 11/20/2013                     | B331L9 | 540 U     | 129000                 | 55600   | 12100           | 4970 B                     | 25300    | 56.1    |          |           |         |
| 12/2/2015                      | B338P6 |           |                        |         |                 |                            |          |         | 19000 D  | 368 BD    | 59000 D |
| 12/3/2013                      | B338P8 | 540 U     | 134000                 | 55600   | 13500           | 5030                       | 28800    | 49.7    |          |           |         |
| 12/11/2015                     | B33946 |           |                        |         |                 |                            |          |         | 19000 D  | 368 BD    | 59000 D |
| 12/11/2013                     | B33948 | 540 U     | 128000                 | 66700   | 16900           | 6650                       | 33700    | 56.3    |          |           |         |
| 12/15/2015                     | B339K2 |           |                        |         |                 |                            |          |         | 20000 D  | 251 U     | 60000 D |
| 12/13/2013                     | B339K4 | 540 U     | 132000                 | 44000   | 11800           | 4200                       | 22400    | 43.2    |          |           |         |
| Monitoring Well 399-1-67 (PRZ) |        |           |                        |         |                 |                            |          |         |          |           |         |
| 11/30/2015                     | B331L3 |           |                        |         |                 |                            |          |         | 34000 D  | 368000 D  | 66000 D |
|                                | B331L5 | 540 U     | 442000                 | 18500 D | 7320 BD         | 59800 ND                   | 233000 D | 145     |          |           |         |
| 12/3/2015                      | B338P2 |           |                        |         |                 |                            |          |         | 29000 D  | 282000 ND | 62000 D |
| 12/3/2013                      | B338P4 | 540 U     | 396000                 | 20600   | 8150            | 63400                      | 333000 D | 73.1    |          |           |         |
| 12/11/2015                     | B33942 |           |                        |         |                 |                            |          |         | 27000 D  | 267000 DN | 64000 D |
| 12/11/2013                     | B33944 | 540 U     | 370000                 | 35700 D | 12800 D         | 81900 D                    | 335000 D | 59.2 D  |          |           |         |
| 12/15/2015                     | B339J8 |           |                        |         |                 |                            |          |         | 25000 D  | 368000 D  | 63000 D |
| 12/13/2013                     | B339K0 | 540 U     | 358000                 | 21800 D | 8050 D          | 45000 D                    | 196000 D | 37.7 D  |          |           |         |
|                                |        |           |                        | Mon     | itoring Well 39 | 9-1-69 (PRZ)               |          |         |          |           |         |
| 11/20/2015                     | B331M1 |           |                        |         |                 |                            |          |         | 19000 D  | 251 U     | 60000 D |
| 11/20/2013                     | B331M3 | 540 U     | 204000                 | 81000   | 16800           | 4780 B                     | 26500    | 174     |          |           |         |
| 12/3/2015                      | B338R0 |           |                        |         |                 |                            |          |         | 19000 D  | 251 U     | 59000 D |
| 12/3/2013                      | B338R2 | 540 U     | 198000                 | 87200   | 20100           | 5750                       | 30900    | 187     |          |           |         |
| 12/11/2015                     | B33950 |           |                        |         |                 |                            |          |         | 19000 D  | 251 U     | 59000 D |
| 12/11/2013                     | B33952 | 540 U     | 192000                 | 70800   | 15400           | 4450                       | 24700 N  | 134     |          |           |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells
|             | Sample | Alkalini  | ty <sup>a</sup> (μg/L) |         | Μ               | letals <sup>b</sup> (µg/L) |        |         |          | Anions <sup>c</sup> (µg/L) |         |
|-------------|--------|-----------|------------------------|---------|-----------------|----------------------------|--------|---------|----------|----------------------------|---------|
| Sample Date | Number | Carbonate | Bicarbonate            | Calcium | Magnesium       | Potassium                  | Sodium | Uranium | Chloride | Phosphate                  | Sulfate |
| 12/15/2015  | B339K6 |           |                        |         |                 |                            |        |         | 19000 D  | 251 U                      | 61000 D |
| 12/15/2015  | B339K8 | 540 U     | 200000                 | 85200   | 19100           | 5050                       | 28300  | 183     |          |                            |         |
|             |        |           |                        | Monit   | oring Well 399  | -1-70 (Aquifer)            | )      |         |          |                            |         |
| 11/22/2015  | B331M5 |           |                        |         |                 |                            |        |         | 16000 D  | 10100 D                    | 48000 D |
| 11/25/2015  | B331M7 | 540 U     | 144000                 | 54000   | 13300           | 5370                       | 26900  | 20.6    |          |                            |         |
| 12/2/2015   | B338R4 |           |                        |         |                 |                            |        |         | 16000 D  | 7970 D                     | 49000 D |
| 12/2/2013   | B338R6 | 540 U     | 140000                 | 57100   | 15000           | 6240                       | 30900  | 25.9    |          |                            |         |
| 12/10/2015  | B33954 |           |                        |         |                 |                            |        |         | 15000 D  | 12600 DN                   | 47000 D |
| 12/10/2013  | B33956 | 540 U     | 146000                 | 57400   | 18900           | 6730                       | 40500  | 16.3    |          |                            |         |
| 12/16/2015  | B339L0 |           |                        |         |                 |                            |        |         | 16000 D  | 14700 DN                   | 50000 D |
| 12/10/2013  | B339L2 | 540 U     | 146000                 | 65200   | 17200           | 6830                       | 38200  | 16.1    |          |                            |         |
|             |        |           |                        | Mon     | itoring Well 39 | 9-1-71 (PRZ)               |        |         |          |                            |         |
| 11/22/2015  | B331M9 |           |                        |         |                 |                            |        |         | 19000 D  | 429 BD                     | 59000 D |
| 11/25/2015  | B331N1 | 540 U     | 132000                 | 57900   | 12900           | 4960 B                     | 25000  | 41.3    |          |                            |         |
| 12/2/2015   | B338R8 |           |                        |         |                 |                            |        |         | 19000 D  | 429 BD                     | 59000 D |
| 12/2/2013   | B338T0 | 540 U     | 128000                 | 58000   | 14700           | 5870                       | 28200  | 56.9    |          |                            |         |
| 12/10/2015  | B33958 |           |                        |         |                 |                            |        |         | 19000 D  | 429 BD                     | 59000 D |
| 12/10/2013  | B33960 | 540 U     | 128000                 | 63100   | 16200           | 6120                       | 30900  | 48.5    |          |                            |         |
| 12/16/2015  | B339L4 |           |                        |         |                 |                            |        |         | 20000 D  | 644 D                      | 59000 D |
| 12/10/2013  | B339L6 | 540 U     | 125000                 | 49400   | 12100           | 4870                       | 23800  | 41.8    |          |                            |         |
|             |        |           |                        | Monit   | oring Well 399  | -1-72 (Aquifer)            | )      |         |          |                            |         |
| 11/20/2015  | B331N3 |           |                        |         |                 |                            |        |         | 20000 D  | 39900 D                    | 57000 D |
| 11/20/2013  | B331N5 | 540 U     | 148000                 | 64800   | 15500           | 6080                       | 46600  | 12.9    |          |                            |         |
| 12/2/2015   | B338T2 |           |                        |         |                 |                            |        |         | 21000 D  | 4600 ND                    | 59000 D |
| 12/3/2013   | B338T4 | 540 U     | 129000                 | 55800   | 14500           | 6740                       | 31900  | 26.4    |          |                            |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |         | Μ               | letals <sup>b</sup> (µg/L) |          |         |          | Anions <sup>c</sup> (µg/L) |         |
|-------------|--------|-----------|-------------------------|---------|-----------------|----------------------------|----------|---------|----------|----------------------------|---------|
| Sample Date | Number | Carbonate | Bicarbonate             | Calcium | Magnesium       | Potassium                  | Sodium   | Uranium | Chloride | Phosphate                  | Sulfate |
| 12/11/2015  | B33962 |           |                         |         |                 |                            |          |         | 23000 D  | 4290 DN                    | 59000 D |
| 12/11/2015  | B33964 | 540 U     | 127000                  | 65900   | 16600           | 7510                       | 36800    | 28.2    |          |                            |         |
| 12/15/2015  | B339L8 |           |                         |         |                 |                            |          |         | 23000 D  | 1930 D                     | 59000 D |
| 12/15/2015  | B339M0 | 540 U     | 126000                  | 44000   | 12100           | 4910                       | 24000    | 21.5    |          |                            |         |
|             |        |           |                         | Mon     | itoring Well 39 | 9-1-73 (PRZ)               |          |         |          |                            |         |
| 11/20/2015  | B331N7 |           |                         |         |                 |                            |          |         | 23000 D  | 251 U                      | 61000 D |
| 11/20/2013  | B331N9 | 540 U     | 126000                  | 57500   | 12600           | 4950 B                     | 25300    | 99.6    |          |                            |         |
| 12/2/2015   | B338T6 |           |                         |         |                 |                            |          |         | 23000 D  | 429 BD                     | 59000 D |
| 12/3/2013   | B338T8 | 540 U     | 130000                  | 54900   | 13200           | 5010                       | 29000    | 72      |          |                            |         |
| 12/11/2015  | B33966 |           |                         |         |                 |                            |          |         | 22000 D  | 399 BD                     | 59000 D |
| 12/11/2013  | B33968 | 540 U     | 126000                  | 66800   | 16600           | 6560                       | 33200 N  | 74.4    |          |                            |         |
| 12/15/2015  | B339M2 |           |                         |         |                 |                            |          |         | 24000 D  | 399 BD                     | 60000 D |
| 12/15/2015  | B339M4 | 540 U     | 127000                  | 46700   | 12400           | 4560                       | 24000    | 51.3    |          |                            |         |
|             |        |           |                         | Monit   | oring Well 399  | -1-74 (Aquifer)            | )        |         |          |                            |         |
|             | B331P1 |           |                         |         |                 |                            |          |         | 19000 BD | 1290000 D                  | 46000 D |
| 11/20/2015  | B331P3 | 540 U     | 416000                  | 29500   | 15700           | 110000 D                   | 344000 D | 1.6     |          |                            |         |
| 11/20/2013  | B33202 |           |                         |         |                 |                            |          |         | 20000 D  | 1290000 D                  | 46000 D |
|             | B33204 | 540 U     | 418000                  | 29700   | 15900           | 107000 D                   | 333000 D | 1.5     |          |                            |         |
| 12/2/2015   | B338V0 |           |                         |         |                 |                            |          |         | 19000 D  | 141000 ND                  | 57000 D |
| 12/3/2015   | B338V2 | 540 U     | 172000                  | 48200 D | 15700 D         | 31900 D                    | 112000 D | 6.1     |          |                            |         |
| 12/11/2015  | B33970 |           |                         |         |                 |                            |          |         | 21000 D  | 61300 DN                   | 58000 D |
| 12/11/2015  | B33972 | 540 U     | 154000                  | 56600 D | 15000 D         | 25000 D                    | 87800 DN | 9.4 D   |          |                            |         |
| 12/15/2015  | B339M6 |           |                         |         |                 |                            |          |         | 22000 D  | 58300 D                    | 59000 D |
| 12/15/2015  | B339M8 | 540 U     | 156000                  | 37500   | 11300           | 16500                      | 61200    | 7.6     |          |                            |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ty <sup>a</sup> (µg/L) |         | Μ               | etals <sup>b</sup> (µg/L) |          |         |          | Anions <sup>c</sup> (µg/L) |          |
|-------------|--------|-----------|------------------------|---------|-----------------|---------------------------|----------|---------|----------|----------------------------|----------|
| Sample Date | Number | Carbonate | Bicarbonate            | Calcium | Magnesium       | Potassium                 | Sodium   | Uranium | Chloride | Phosphate                  | Sulfate  |
|             |        |           |                        | Mon     | itoring Well 39 | 9-1-75 (PRZ)              |          |         |          |                            |          |
| 11/20/2015  | B331P5 |           |                        |         |                 |                           |          |         | 22000 BD | 3990000 D                  | 35000 BD |
| 11/20/2013  | B331P7 | 540 U     | 1030000                | 30400   | 26300           | 295000 D                  | 931000 D | 24      |          |                            |          |
| 12/2/2015   | B338V4 |           |                        |         |                 |                           |          |         | 24000 D  | 797000 ND                  | 49000 D  |
| 12/3/2013   | B338V6 | 540 U     | 371000                 | 24100 D | 11500 D         | 137000 D                  | 449000 D | 10.6    |          |                            |          |
| 12/11/2015  | B33974 |           |                        |         |                 |                           |          |         | 20000 D  | 583000 DN                  | 50000 D  |
| 12/11/2013  | B33976 | 540 U     | 312000                 | 31100 D | 11500 D         | 107000 D                  | 333000 D | 11 D    |          |                            |          |
| 12/15/2015  | B339N0 |           |                        |         |                 |                           |          |         | 22000 D  | 583000 D                   | 53000 D  |
| 12/13/2013  | B339N2 | 540 U     | 309000                 | 18200 D | 7140 D          | 62900 D                   | 219000 D | 5.8 D   |          |                            |          |
|             |        |           |                        | Monit   | oring Well 399- | 1-76 (Aquifer)            | )        |         |          |                            |          |
| 11/23/2015  | B331P9 |           |                        |         |                 |                           |          |         | 16000 D  | 705000 DN                  | 45000 D  |
| 11/23/2013  | B331R1 | 540 U     | 302000                 | 33100   | 13600           | 71300 D                   | 240000 D | 2.8 BD  |          |                            |          |
| 12/2/2015   | B338V8 |           |                        |         |                 |                           |          |         | 17000 D  | 368000 D                   | 49000 D  |
| 12/2/2013   | B338W0 | 540 U     | 224000                 | 45000 D | 16400 D         | 56200 D                   | 203000 D | 7.6     |          |                            |          |
| 12/10/2015  | B33978 |           |                        |         |                 |                           |          |         | 20000 D  | 199000 D                   | 56000 D  |
| 12/10/2013  | B33980 | 540 U     | 180000                 | 48400   | 14900           | 34200                     | 119000   | 14.1    |          |                            |          |
| 12/16/2015  | B339N4 |           |                        |         |                 |                           |          |         | 21000 D  | 98100 D                    | 58000 D  |
| 12/10/2013  | B339N6 | 540 U     | 165000                 | 52300 D | 14800 D         | 35100 D                   | 106000 D | 18.1 D  |          |                            |          |
|             |        |           |                        | Mon     | itoring Well 39 | 9-1-77 (PRZ)              |          |         |          |                            |          |
| 11/23/2015  | B331R3 |           |                        |         |                 |                           |          |         | 15000 BD | 2270000 DN                 | 31000 D  |
| 11/23/2013  | B331R5 | 540 U     | 622000                 | 30600   | 21600           | 102000 D                  | 680000 D | 5.7 BD  |          |                            |          |
| 12/2/2015   | B338W2 |           |                        |         |                 |                           |          |         | 22000 D  | 1470000 D                  | 46000 D  |
| 12/2/2013   | B338W4 | 540 U     | 528000                 | 28100 D | 19100 D         | 94600 D                   | 724000 D | 2.5     |          |                            |          |
| 12/10/2015  | B33982 |           |                        |         |                 |                           |          |         | 20000 D  | 1350000 D                  | 44000 D  |
| 12/10/2013  | B33984 | 540 U     | 490000                 | 19800 D | 17800 D         | 82700 D                   | 672000 D | 2.1     |          |                            |          |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |          | Μ               | letals <sup>b</sup> (µg/L) |           |         |          | Anions <sup>c</sup> (µg/L) |         |
|-------------|--------|-----------|-------------------------|----------|-----------------|----------------------------|-----------|---------|----------|----------------------------|---------|
| Sample Date | Number | Carbonate | Bicarbonate             | Calcium  | Magnesium       | Potassium                  | Sodium    | Uranium | Chloride | Phosphate                  | Sulfate |
| 12/16/2015  | B339N8 |           |                         |          |                 |                            |           |         | 20000 D  | 1350000 D                  | 49000 D |
| 12/10/2015  | B339P0 | 540 U     | 486000                  | 30000 D  | 18200 D         | 94000 D                    | 675000 D  | 2.3 U   |          |                            |         |
|             |        |           |                         | Monit    | oring Well 399  | -1-78 (Aquifer             | )         |         |          |                            |         |
| 11/20/2015  | B331R7 |           |                         |          |                 |                            |           |         | 24000 D  | 2090000 D                  | 31000 D |
| 11/30/2013  | B331R9 | 540 U     | 958000                  | 11000 BD | 17900 BD        | 44500 BND                  | 973000 D  | 1.2     |          |                            |         |
| 12/2/2015   | B338W6 |           |                         |          |                 |                            |           |         | 22000 D  | 1960000 D                  | 32000 D |
| 12/3/2013   | B338W8 | 540 U     | 892000                  | 10700    | 16100           | 45000                      | 1030000 D | 0.85 B  |          |                            |         |
| 12/2/2015   | B33931 |           |                         |          |                 |                            |           |         | 22000 D  | 1960000 D                  | 32000 D |
| 12/3/2013   | B33933 | 540 U     | 888000                  | 10900    | 16300           | 44900                      | 1130000 D | 0.86 B  |          |                            |         |
| 12/11/2015  | B33986 |           |                         |          |                 |                            |           |         | 19000 BD | 1720000 D                  | 37000 D |
| 12/11/2015  | B33988 | 540 U     | 802000                  | 126000 D | 165000 D        | 600000 D                   | 1110000 D | 7.2 BD  |          |                            |         |
| 12/15/2015  | B339P2 |           |                         |          |                 |                            |           |         | 20000 D  | 1530000 D                  | 41000 D |
| 12/15/2015  | B339P4 | 540 U     | 745000                  | 12400 D  | 16400 D         | 63600 D                    | 936000 D  | 2.3 U   |          |                            |         |
|             |        |           |                         | Mon      | itoring Well 39 | 9-1-79 (PRZ)               |           |         |          |                            |         |
| 11/30/2015  | B331T1 |           |                         |          |                 |                            |           |         | 35000 D  | 15900 D                    | 58000 D |
| 11/30/2013  | B331T3 | 540 U     | 289000                  | 69200 D  | 17600 D         | 7640 BND                   | 97500 D   | 1340    |          |                            |         |
| 12/2/2015   | B338X0 |           |                         |          |                 |                            |           |         | 26000 D  | 107000 D                   | 47000 D |
| 12/3/2013   | B338X2 | 540 U     | 334000                  | 50500    | 14800           | 6710                       | 192000 D  | 418     |          |                            |         |
| 12/11/2015  | B33990 |           |                         |          |                 |                            |           |         | 27000 D  | 15300 D                    | 58000 D |
| 12/11/2015  | B33992 | 540 U     | 263000                  | 88400 D  | 22700 D         | 9220 D                     | 120000 D  | 1050 D  |          |                            |         |
| 12/15/2015  | B339P6 |           |                         |          |                 |                            |           |         | 25000 D  | 33700 D                    | 55000 D |
| 12/15/2015  | B339P8 | 540 U     | 274000                  | 71900 D  | 19700 D         | 8220 D                     | 158000 D  | 527 D   |          |                            |         |
|             |        |           |                         | Monit    | oring Well 399  | -1-80 (Aquifer             | )         |         |          |                            |         |
| 11/23/2015  | B331T5 |           |                         |          |                 |                            |           |         | 19000 D  | 644000 DN                  | 36000 D |
| 11/25/2015  | B331T7 | 540 U     | 200000                  | 43900    | 13000           | 6900 BD                    | 194000 D  | 103 D   |          |                            |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ty <sup>a</sup> (μg/L) |                      | Μ                    | letals <sup>b</sup> (µg/L) |                       |                   |          | Anions <sup>c</sup> (µg/L) |         |
|-------------|--------|-----------|------------------------|----------------------|----------------------|----------------------------|-----------------------|-------------------|----------|----------------------------|---------|
| Sample Date | Number | Carbonate | Bicarbonate            | Calcium              | Magnesium            | Potassium                  | Sodium                | Uranium           | Chloride | Phosphate                  | Sulfate |
| 12/2/2015   | B338X4 |           |                        |                      |                      |                            |                       |                   | 21000 D  | 337000 D                   | 44000 D |
| 12/2/2015   | B338X6 | 540 U     | 190000                 | 40100 D              | 12700 D              | 8530 D                     | 196000 D              | 126               |          |                            |         |
| 12/10/2015  | B33994 |           |                        |                      |                      |                            |                       |                   | 22000 D  | 294000 D                   | 46000 D |
| 12/10/2013  | B33996 | 540 U     | 188000                 | 39700 D <sup>d</sup> | 11900 D <sup>d</sup> | 8800 D <sup>d</sup>        | 198000 D <sup>d</sup> | 85.1 <sup>d</sup> |          |                            |         |
| 12/16/2015  | B339R0 |           |                        |                      |                      |                            |                       |                   | 23000 D  | 254000 D                   | 49000 D |
| 12/16/2015  | B339R2 | 540 U     | 185000                 | 27400 D              | 7820 D               | 6950 D                     | 140000 D              | 76.8 D            |          |                            |         |
|             |        |           |                        | Mon                  | itoring Well 39      | 9-1-81 (PRZ)               |                       |                   |          |                            |         |
| 11/02/2015  | B331T9 |           |                        |                      |                      |                            |                       |                   | 27000 D  | 254000 DN                  | 46000 D |
| 11/23/2015  | B331V1 | 540 U     | 174000                 | 35500                | 9500                 | 6070 BD                    | 142000 D              | 1 BD              |          |                            |         |
| 10/0/0015   | B338X8 |           |                        |                      |                      |                            |                       |                   | 23000 D  | 92000 D                    | 57000 D |
| 12/2/2015   | B338Y0 | 540 U     | 162000                 | 46400 D              | 14600 D              | 8140 D                     | 113000 D              | 5.7               |          |                            |         |
| 10/10/2015  | B33998 |           |                        |                      |                      |                            |                       |                   | 22000 D  | 79700 DN                   | 57000 D |
| 12/10/2015  | B339B0 | 540 U     | 163000                 | 61800 D              | 17100 D              | 10100 D                    | 119000 D              | 6.4 D             |          |                            |         |
| 10/16/2015  | B339R4 |           |                        |                      |                      |                            |                       |                   | 23000 D  | 58300 D                    | 57000 D |
| 12/16/2015  | B339R6 | 540 U     | 153000                 | 50600                | 14400                | 8580                       | 85900                 | 5.8               |          |                            |         |
|             |        |           |                        | Monit                | oring Well 399       | -1-82 (Aquifer             | )                     |                   |          |                            |         |
| 11/02/2015  | B331V3 |           |                        |                      |                      |                            |                       |                   | 26000 D  | 583000 DN                  | 36000 D |
| 11/23/2015  | B331V5 | 540 U     | 294000                 | 63100 D              | 17500 D              | 7960 BD                    | 216000 D              | 3.1               |          |                            |         |
| 10/0/0015   | B338Y2 |           |                        |                      |                      |                            |                       |                   | 13000 D  | 675000 D                   | 36000 D |
| 12/2/2015   | B338Y4 | 540 U     | 310000                 | 44800 D              | 15800 D              | 7580 D                     | 366000 D              | 0.9 B             |          |                            |         |
| 10/10/2015  | B339B2 |           |                        |                      |                      |                            |                       |                   | 16000 D  | 644000 D                   | 45000 D |
| 12/10/2015  | B339B4 | 540 U     | 309000                 | 34900 D              | 13800 D              | 6340 D                     | 369000 D              | 1                 |          |                            |         |
| 12/16/2015  | B339R8 |           |                        |                      |                      |                            |                       |                   | 16000 D  | 613000 DN                  | 48000 D |
| 12/16/2015  | B339T0 | 540 U     | 320000                 | 23400 D              | 8800 D               | 4890 D                     | 273000 D              | 1.2 U             |          |                            |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ty <sup>a</sup> (µg/L) |          | Μ               | etals <sup>b</sup> (µg/L) |          |         |          | Anions <sup>c</sup> (µg/L) |          |
|-------------|--------|-----------|------------------------|----------|-----------------|---------------------------|----------|---------|----------|----------------------------|----------|
| Sample Date | Number | Carbonate | Bicarbonate            | Calcium  | Magnesium       | Potassium                 | Sodium   | Uranium | Chloride | Phosphate                  | Sulfate  |
|             |        |           |                        | Mon      | itoring Well 39 | 9-1-83 (PRZ)              |          |         |          |                            |          |
| 11/22/2015  | B331V7 |           |                        |          |                 |                           |          |         | 25000 D  | 42900 DN                   | 50000 D  |
| 11/25/2015  | B331V9 | 540 U     | 207000                 | 76900    | 18500           | 6160                      | 60300    | 61.5    |          |                            |          |
| 12/2/2015   | B338Y6 |           |                        |          |                 |                           |          |         | 18000 D  | 150000 D                   | 53000 D  |
| 12/2/2013   | B338Y8 | 540 U     | 198000                 | 77000 D  | 22300 D         | 8130 D                    | 114000 D | 7.4     |          |                            |          |
| 12/10/2015  | B339B6 |           |                        |          |                 |                           |          |         | 19000 D  | 218000 D                   | 55000 D  |
| 12/10/2013  | B339B8 | 540 U     | 184000                 | 57500 D  | 16100 D         | 6630 D                    | 138000 D | 2       |          |                            |          |
| 12/16/2015  | B339T2 |           |                        |          |                 |                           |          |         | 20000 D  | 193000 D                   | 56000 D  |
| 12/10/2013  | B339T4 | 540 U     | 177000                 | 38900 D  | 10100 D         | 5140 D                    | 104000 D | 1.2 U   |          |                            |          |
|             |        |           |                        | Monit    | oring Well 399- | 1-84 (Aquifer)            | )        |         |          |                            |          |
| 11/23/2015  | B331W1 |           |                        |          |                 |                           |          |         | 34000 D  | 251 UN                     | 130000 D |
| 11/23/2013  | B331W3 | 540 U     | 118000                 | 73300    | 17600           | 6790                      | 21300    | 0.23 U  |          |                            |          |
| 12/2/2015   | B33900 |           |                        |          |                 |                           |          |         | 34000 D  | 251 UN                     | 130000 D |
| 12/2/2013   | B33902 | 540 U     | 120000                 | 77300    | 19600           | 7970                      | 23100    | 0.23 U  |          |                            |          |
| 12/10/2015  | B339C0 |           |                        |          |                 |                           |          |         | 32000 D  | 251 UN                     | 120000 D |
| 12/10/2013  | B339C2 | 540 U     | 118000                 | 78300    | 21200           | 7760                      | 25000    | 0.23 B  |          |                            |          |
| 12/16/2015  | B339T6 |           |                        |          |                 |                           |          |         | 34000 D  | 251 U                      | 130000 D |
| 12/10/2013  | B339T8 | 540 U     | 117000                 | 84000    | 21400           | 8410                      | 25600    | 0.4 B   |          |                            |          |
|             |        |           |                        | Mon      | itoring Well 39 | 9-1-85 (PRZ)              |          |         |          |                            |          |
| 11/23/2015  | B331W5 |           |                        |          |                 |                           |          |         | 49000 D  | 6440 UN                    | 53000 D  |
| 11/23/2013  | B331W7 | 540 U     | 220000                 | 108000 D | 23300           | 4290 BD                   | 31400 D  | 1270    |          |                            |          |
| 12/2/2015   | B33904 |           |                        |          |                 |                           |          |         | 51000 D  | 6440 U                     | 54000 D  |
| 12/2/2013   | B33906 | 540 U     | 246000                 | 97700    | 21500           | 4620                      | 37600    | 1270    |          |                            |          |
| 12/10/2015  | B339C4 |           |                        |          |                 |                           |          |         | 48000 D  | 2540 DN                    | 58000 D  |
| 12/10/2013  | B339C6 | 540 U     | 233000                 | 109000   | 26100           | 5870                      | 57800    | 777     |          |                            |          |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | Alkalini  | ity <sup>a</sup> (μg/L) |         | Μ               | letals <sup>b</sup> (µg/L) |           |         |          | Anions <sup>c</sup> (µg/L) |         |
|-------------|--------|-----------|-------------------------|---------|-----------------|----------------------------|-----------|---------|----------|----------------------------|---------|
| Sample Date | Number | Carbonate | Bicarbonate             | Calcium | Magnesium       | Potassium                  | Sodium    | Uranium | Chloride | Phosphate                  | Sulfate |
| 12/16/2015  | B339V0 |           |                         |         |                 |                            |           |         | 37000 D  | 3370 D                     | 58000 D |
| 12/10/2015  | B339V2 | 540 U     | 222000                  | 80300 D | 18600 D         | 4340 D                     | 41100 D   | 1070 D  |          |                            |         |
|             |        |           |                         | Monit   | toring Well 399 | -1-86 (Aquifer             | )         |         |          |                            |         |
| 11/02/2015  | B331W9 |           |                         |         |                 |                            |           |         | 9500 BD  | 1010000 D                  | 22000 D |
| 11/25/2015  | B331X1 | 540 U     | 794000                  | 21300   | 29900           | 233000 D                   | 1600000 D | 14.8    |          |                            |         |
| 12/2/2015   | B33908 |           |                         |         |                 |                            |           |         | 15000 BD | 1870000 D                  | 36000 D |
| 12/2/2013   | B33910 | 540 U     | 694000                  | 18600 D | 19900 D         | 164000 D                   | 885000 D  | 8.5     |          |                            |         |
| 12/10/2015  | B339C8 |           |                         |         |                 |                            |           |         | 16000 D  | 1230000 D                  | 44000 D |
| 12/10/2015  | B339D0 | 540 U     | 530000                  | 14800 D | 12900 D         | 125000 D                   | 679000 D  | 33.9 D  |          |                            |         |
| 12/16/2015  | B339V4 |           |                         |         |                 |                            |           |         | 17000 D  | 1040000 D                  | 49000 D |
| 12/10/2013  | B339V6 | 540 U     | 488000                  | 13000 D | 11600 D         | 109000 D                   | 587000 D  | 8.5 BD  |          |                            |         |
| 12/16/2015  | B339X7 |           |                         |         |                 |                            |           |         | 17000 D  | 1040000 D                  | 49000 D |
| 12/10/2013  | B339X9 | 540 U     | 492000                  | 12500 D | 11000 D         | 105000 D                   | 562000 D  | 15.4 D  |          |                            |         |
|             |        |           |                         | Mor     | itoring Well 39 | 9-1-87 (PRZ)               |           |         |          |                            |         |
| 11/22/2015  | B331X3 |           |                         |         |                 |                            |           |         | 19000 BD | 1630000 D                  | 44000 D |
| 11/25/2015  | B331X5 | 540 U     | 606000                  | 27500   | 18600           | 103000 D                   | 589000 D  | 12.6    |          |                            |         |
| 12/2/2015   | B33912 |           |                         |         |                 |                            |           |         | 20000 D  | 951000 ND                  | 52000 D |
| 12/3/2015   | B33914 | 540 U     | 466000                  | 18100   | 11300           | 70900                      | 566000 D  | 8.8     |          |                            |         |
| 12/10/2015  | B339D2 |           |                         |         |                 |                            |           |         | 18000 D  | 736000 D                   | 51000 D |
| 12/10/2015  | B339D4 | 540 U     | 390000                  | 20100 D | 12300 D         | 80400 D                    | 443000 D  | 6.6     |          |                            |         |
| 12/16/2015  | B339V8 |           |                         |         |                 |                            |           |         | 19000 D  | 583000 D                   | 60000 D |
| 12/10/2015  | B339W0 | 540 U     | 344000                  | 20700 D | 11100 D         | 78600 D                    | 363000 D  | 8.2 D   |          |                            |         |

Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

Reference: DOE/RL-2014-42, 2015, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H</u>.

#### Table C-6. Post-Treatment Groundwater Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Monitoring Wells

|             | Sample | mple Alkalinity <sup>a</sup> (µg/L) |             | Μ       | letals <sup>b</sup> (µg/L) |           |        |         | Anions <sup>c</sup> (µg/L) |           |         |
|-------------|--------|-------------------------------------|-------------|---------|----------------------------|-----------|--------|---------|----------------------------|-----------|---------|
| Sample Date | Number | Carbonate                           | Bicarbonate | Calcium | Magnesium                  | Potassium | Sodium | Uranium | Chloride                   | Phosphate | Sulfate |

a. EPA Method 310.1.

b. EPA Method 6020. Results in this table are for unfiltered samples collected in accordance with Table A-6 in DOE/RL-2014-42.

c. EPA Method 300.

d. Sample was filtered because of high turbidity measured during sampling.

Laboratory Qualifiers:

- B = The analyte was detected at a value less than the contract required detection limit, but greater than or equal to the instrument detection limit/maximum detection limit (as appropriate).
- D = Analyte was reported at a secondary dilution factor.
- N = Spike and/or spike duplicate sample recovery is outside control limits.
- U = Undetected.

<sup>-- =</sup> not applicable

PRZ = periodically rewetted zone

### C5 Downgradient Groundwater Samples

Groundwater samples were collected from selected monitoring wells downgradient of the Stage A EA area (wells 399-1-7, 399-1-16A, 399-1-17A, 399-1-23, 399-2-1, 399-2-2, and 399-2-3) from September 2015 through June 2016. The samples were collected and analyzed by PNNL. Table C-7 provides the analytical results for the groundwater characteristics of dissolved oxygen, inorganic carbon, alkalinity, nonpurgable organic carbon, specific conductance, pH, temperature, and water level. Table C-8 provides the analytical results for metals (calcium, iron, magnesium, manganese, potassium, sodium, and uranium) and anions (chloride, fluoride, nitrite, nitrate, phosphate, and sulfate).

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
|                |                                            |                               |                             |                             | Well 399-1-23                                   |                                           |                                  |                               |                                                 |
| 11/16/2015     | 8.66                                       | 44.7                          | 223                         | 1.20                        | 574                                             | 7.20                                      | 16.3                             | 11.11<br>(36.45)              | 105.20                                          |
| 11/19/2015     | 8.75                                       | 37.9                          | 189                         | 2.09                        | 951                                             | 6.60                                      | 16.6                             | 11.05<br>(36.25)              | 105.26                                          |
| 12/1/2015      | 9.43                                       | 35.5                          | 178                         | 1.16                        | 741                                             | 6.98                                      | 16.4                             | 11.02<br>(36.15)              | 105.29                                          |
| 12/9/2015      | 9.25                                       | 30.9                          | 154                         | 0.37                        | 611                                             | 7.15                                      | 16.6                             | 11.23<br>(36.84)              | 105.08                                          |
| 12/16/2015     | 9.57                                       | 29.7                          | 148                         | 0.33                        | 578                                             | 7.20                                      | 15.9                             | 11.26<br>(36.93)              | 105.05                                          |
| 12/22/2015     | 8.03                                       | 35.3                          | 177                         | 0.69                        | 684                                             | 7.25                                      | 16.7                             | 11.05<br>(36.25)              | 105.26                                          |
| 12/29/2015     | 8.26                                       | 31.6                          | 158                         | 0.29                        | 572                                             | 7.38                                      | 15.9                             | 11.21<br>(36.79)              | 105.09                                          |
| 1/6/2016       | 8.39                                       | 33.9                          | 170                         | 0.65                        | 646                                             | 7.24                                      | 16.2                             | 11.07<br>(36.31)              | 105.24                                          |
| 1/13/2016      | 8.22                                       | 33.6                          | 168                         | 0.42                        | 634                                             | 7.23                                      | 16.6                             | 11.09<br>(36.37)              | 105.22                                          |
| 2/10/2016      | 8.61                                       | 33.6                          | 168                         | 0.70                        | 647                                             | 7.29                                      | 16.5                             | 11.13<br>(36.51)              | 105.18                                          |
| 3/10/2016      | 8.63                                       | 35.2                          | 176                         | 0.48                        | 603                                             | 7.30                                      | 17.1                             | 10.73<br>(35.21)              | 105.58                                          |
| 4/7/2016       | 8.74                                       | 31.7                          | 159                         | 0.31                        | 590                                             | 7.25                                      | 17.4                             | 10.83<br>(35.52)              | 105.48                                          |
| 5/9/2016       | 9.18                                       | 32.6                          | 163                         | 0.52                        | 556                                             | 7.33                                      | 16.9                             | 10.25<br>(33.62)              | 106.06                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 6/14/2016      | 8.75                                       | 31.1                          | 155                         | 0.33                        | 504                                             | 7.38                                      | 17.3                             | 10.57<br>(34.69)              | 105.74                                          |
|                |                                            |                               |                             | Well 399                    | -1-16A (0.25 m Inte                             | erval <sup>h</sup> )                      |                                  |                               |                                                 |
| 9/23/2015      |                                            | 29.6                          | 148                         | 0.41                        | 370                                             | 7.48                                      |                                  | 12.29<br>(40.31)              | 105.01                                          |
| 9/30/2015      | 9.06                                       | 32.8                          | 164                         | 0.23                        | 389                                             | 7.33                                      | 16.4                             | 12.26<br>(40.22)              | 105.04                                          |
| 10/8/2015      | 9.40                                       | 32.4                          | 162                         | 0.36                        | 449                                             | 7.38                                      | 16.6                             | 12.36<br>(40.54)              | 104.94                                          |
| 10/14/2015     | 9.27                                       | 31.8                          | 159                         | 0.51                        | 443                                             | 7.47                                      | 16.6                             | 12.46<br>(40.87)              | 104.84                                          |
| 11/6/2015      | 9.04                                       | 30.9                          | 154                         | 0.45                        | 443                                             | 7.53                                      | 16.2                             | 12.22<br>(40.09)              | 105.08                                          |
| 11/16/2015     | 8.98                                       | 30.3                          | 151                         | 0.51                        | 452                                             | 7.49                                      | 16.2                             | 12.10<br>(39.70)              | 105.20                                          |
| 11/19/2015     | 9.26                                       | 30.9                          | 154                         | 0.27                        | 460                                             | 7.47                                      | 15.8                             | 12.01<br>(39.40)              | 105.29                                          |
| 12/1/2015      | 9.17                                       | 30.3                          | 152                         | 0.33                        | 447                                             | 7.29                                      | 15.8                             | 12.08<br>(39.62)              | 105.22                                          |
| 12/9/2015      | 8.90                                       | 31.9                          | 159                         | 0.31                        | 444                                             | 7.54                                      | 16.5                             | 12.28<br>(40.29)              | 105.02                                          |
| 12/22/2015     | 8.26                                       | 32.5                          | 162                         | 0.45                        | 454                                             | 7.63                                      | 15.8                             | 12.09<br>(39.65)              | 105.21                                          |
| 12/29/2015     | 8.09                                       | 33.0                          | 165                         | 0.31                        | 456                                             | 7.54                                      | 16.0                             | 12.23<br>(40.14)              | 105.07                                          |
| 1/6/2016       | 9.05                                       | 32.2                          | 161                         | 0.32                        | 459                                             | 7.51                                      | 15.8                             | 12.13<br>(39.79)              | 105.17                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 1/13/2016      | 8.27                                       | 33.1                          | 166                         | 0.32                        | 460                                             | 7.58                                      | 15.7                             | 12.12<br>(39.78)              | 105.18                                          |
| 2/10/2016      | 8.38                                       | 34.0                          | 170                         | 0.33                        | 458                                             | 7.48                                      | 16.5                             | 12.15<br>(39.85)              | 105.15                                          |
| 3/10/2016      | 8.35                                       | 32.6                          | 163                         | 0.60                        | 449                                             | 7.53                                      | 16.4                             | 11.74<br>(38.51)              | 105.56                                          |
| 4/7/2016       | 8.60                                       | 29.9                          | 149                         | 0.64                        | 447                                             | 7.40                                      | 17.6                             | 11.82<br>(38.78)              | 105.48                                          |
| 5/9/2016       | 7.98                                       | 22.5                          | 112                         | 0.57                        | 296                                             | 7.52                                      | 15.1                             | 11.30<br>(37.07)              | 106.00                                          |
| 6/14/2016      | 8.22                                       | 25.2                          | 126                         | 0.39                        | 322                                             | 7.52                                      | 16.6                             | 11.63<br>(38.14)              | 105.67                                          |
|                |                                            |                               |                             | Well 399                    | 0-1-17A (0.25 m Int                             | erval <sup>h</sup> )                      |                                  |                               |                                                 |
| 9/23/2015      |                                            | 29.7                          | 148                         | 0.39                        | 408                                             | 7.50                                      |                                  | 11.05<br>(36.24)              | 105.02                                          |
| 9/30/2015      | 9.33                                       | 32.7                          | 163                         | 0.30                        | 415                                             | 7.38                                      | 17.1                             | 11.00<br>(36.10)              | 105.07                                          |
| 10/8/2015      | 9.43                                       | 33.2                          | 166                         | 0.28                        | 458                                             | 7.39                                      | 17.1                             | 11.07<br>(36.31)              | 105.01                                          |
| 10/14/2015     | 9.48                                       | 32.5                          | 163                         | 0.30                        | 452                                             | 7.51                                      | 16.9                             | 11.21<br>(36.79)              | 104.86                                          |
| 11/6/2015      | 9.25                                       | 30.8                          | 154                         | 0.32                        | 448                                             | 7.51                                      | 16.5                             | 10.99<br>(36.05)              | 105.08                                          |
| 11/16/2015     | 8.90                                       | 39.0                          | 195                         | 1.93                        | 606                                             | 7.19                                      | 16.7                             | 10.90<br>(35.75)              | 105.18                                          |
| 11/19/2015     | 8.94                                       | 31.7                          | 158                         | 1.80                        | 711                                             | 7.02                                      | 16.5                             | 10.83<br>(35.53)              | 105.24                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 12/1/2015      | 8.97                                       | 28.0                          | 140                         | 0.88                        | 693                                             | 6.81                                      | 17.0                             | 10.79<br>(35.41)              | 105.28                                          |
| 12/9/2015      | 8.89                                       | 29.9                          | 149                         | 0.58                        | 605                                             | 7.01                                      | 17.1                             | 11.00<br>(36.09)              | 105.07                                          |
| 12/16/2015     | 9.08                                       | 30.4                          | 152                         | 0.47                        | 600                                             | 7.15                                      | 16.8                             | 11.04<br>(36.21)              | 105.04                                          |
| 12/22/2015     | 8.15                                       | 30.2                          | 151                         | 0.41                        | 607                                             | 7.22                                      | 16.6                             | 10.82<br>(35.51)              | 105.25                                          |
| 12/29/2015     | 8.19                                       | 31.4                          | 157                         | 0.44                        | 598                                             | 7.18                                      | 16.7                             | 10.99<br>(36.05)              | 105.08                                          |
| 1/6/2016       | 8.39                                       | 30.7                          | 153                         | 0.39                        | 570                                             | 7.18                                      | 16.6                             | 10.84<br>(35.57)              | 105.23                                          |
| 1/13/2016      | 8.40                                       | 31.3                          | 156                         | 0.45                        | 585                                             | 7.19                                      | 16.5                             | 10.86<br>(35.63)              | 105.21                                          |
| 2/10/2016      | 8.53                                       | 30.8                          | 154                         | 0.40                        | 562                                             | 7.24                                      | 16.3                             | 10.90<br>(35.76)              | 105.17                                          |
| 3/10/2016      | 8.68                                       | 32.3                          | 162                         | 0.37                        | 535                                             | 7.29                                      | 16.8                             | 10.50<br>(34.46)              | 105.57                                          |
| 4/7/2016       | 8.68                                       | 31.0                          | 155                         | 0.31                        | 533                                             | 7.26                                      | 17.9                             | 10.60<br>(34.79)              | 105.47                                          |
| 5/9/2016       | 9.27                                       | 31.9                          | 159                         | 0.33                        | 518                                             | 7.31                                      | 17.0                             | 10.02<br>(32.88)              | 106.05                                          |
| 6/14/2016      | 8.90                                       | 29.9                          | 150                         | 1.60                        | 480                                             | 7.38                                      | 17.1                             | 10.35<br>(33.96)              | 105.72                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
|                |                                            |                               |                             | Well 39                     | 99-2-1 (0.25 m Inter                            | rval <sup>h</sup> )                       |                                  |                               |                                                 |
| 9/15/2015      | 6.60                                       | 28.7                          | 143                         | 0.43                        | 413                                             | 7.11                                      | 16.6                             | 10.42<br>(34.18)              | 104.98                                          |
| 9/23/2015      | 7.10                                       | 33.9                          | 169                         | 0.25                        | 394                                             | 6.99                                      | 16.6                             | 10.38<br>(34.06)              | 105.02                                          |
| 9/30/2015      | 8.92                                       | 32.5                          | 163                         | 0.45                        | 406                                             | 7.41                                      | 16.5                             | 10.34<br>(33.92)              | 105.06                                          |
| 10/8/2015      | 7.47                                       | 30.9                          | 154                         | 0.28                        | 446                                             | 7.27                                      | 16.3                             | 10.47<br>(34.36)              | 104.93                                          |
| 10/14/2015     | 8.70                                       | 30.6                          | 153                         | 0.28                        | 449                                             | 7.48                                      | 16.3                             | 10.56<br>(34.66)              | 104.83                                          |
| 11/6/2015      | 8.58                                       | 30.4                          | 152                         | 0.32                        | 452                                             | 7.46                                      | 15.3                             | 10.33<br>(33.90)              | 105.07                                          |
| 11/19/2015     | 8.65                                       | 30.1                          | 151                         | 0.31                        | 424                                             | 7.50                                      | 15.8                             | 10.10<br>(33.15)              | 105.29                                          |
| 12/1/2015      | 8.93                                       | 29.7                          | 149                         | 0.28                        | 423                                             | 7.43                                      | 15.5                             | 10.20<br>(33.45)              | 105.20                                          |
| 12/9/2015      | 8.26                                       | 31.4                          | 157                         | 0.37                        | 455                                             | 7.49                                      | 16.5                             | 10.41<br>(34.14)              | 104.99                                          |
| 12/22/2015     | 7.75                                       | 28.7                          | 143                         | 0.35                        | 396                                             | 7.29                                      | 16.3                             | 10.20<br>(33.45)              | 105.20                                          |
| 12/29/2015     | 7.72                                       | 31.6                          | 158                         | 0.29                        | 448                                             | 7.40                                      | 16.3                             | 10.34<br>(33.91)              | 105.06                                          |
| 1/7/2016       | 7.92                                       | 30.9                          | 155                         | 0.66                        | 448                                             | 7.45                                      | 16.2                             | 10.28<br>(33.72)              | 105.12                                          |
| 1/13/2016      | 7.82                                       | 32.3                          | 161                         | 0.35                        | 460                                             | 7.34                                      | 16.3                             | 10.24<br>(33.58)              | 105.16                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 2/10/2016      | 7.88                                       | 32.3                          | 161                         | 0.37                        | 446                                             | 7.36                                      | 16.7                             | 10.26<br>(33.65)              | 105.14                                          |
| 3/10/2016      | 8.12                                       | 26.1                          | 131                         | 0.48                        | 346                                             | 7.35                                      | 16.7                             | 9.84<br>(32.29)               | 105.56                                          |
| 4/7/2016       | 7.88                                       | 28.8                          | 144                         | 0.46                        | 415                                             | 7.33                                      | 16.7                             | 9.94<br>(32.60)               | 105.46                                          |
| 5/9/2016       | 7.70                                       | 19.6                          | 98.0                        | 0.76                        | 217                                             | 7.39                                      | 14.0                             | 9.43<br>(30.95)               | 105.97                                          |
| 6/14/2016      | 7.41                                       | 26.3                          | 131                         | 1.99                        | 321                                             | 7.35                                      | 15.9                             | 9.73<br>(31.92)               | 105.67                                          |
|                |                                            |                               |                             | Well 39                     | 9-2-1 (Bottom Inte                              | rval <sup>i</sup> )                       |                                  |                               |                                                 |
| 9/23/2015      | 7.06                                       | 30.7                          | 154                         | 0.26                        | 401                                             | 7.19                                      | 15.8                             | 10.38<br>(34.06)              | 105.02                                          |
| 9/30/2015      | 7.48                                       | 32.6                          | 163                         | 0.30                        | 406                                             | 7.47                                      | 16.5                             | 10.34<br>(33.92)              | 105.06                                          |
| 10/8/2015      | 8.67                                       | 30.4                          | 152                         | 0.23                        | 448                                             | 7.37                                      | 16.3                             | 10.47<br>(34.36)              | 104.93                                          |
| 10/14/2015     | 5.91                                       | 30.2                          | 151                         | 0.29                        | 450                                             | 7.49                                      | 16.0                             | 10.56<br>(34.66)              | 104.83                                          |
| 11/6/2015      | 7.13                                       | 29.9                          | 150                         | 0.27                        | 454                                             | 7.51                                      | 15.4                             | 10.33<br>(33.90)              | 105.07                                          |
| 11/19/2015     | 6.63                                       | 29.8                          | 149                         | 0.44                        | 434                                             | 7.51                                      | 15.7                             | 10.10<br>(33.15)              | 105.29                                          |
| 12/1/2015      | 6.74                                       | 29.8                          | 149                         | 0.28                        | 424                                             | 7.31                                      | 15.8                             | 10.20<br>(33.45)              | 105.20                                          |
| 12/9/2015      | 7.49                                       | 31.2                          | 156                         | 0.25                        | 441                                             | 7.56                                      | 15.8                             | 10.41<br>(34.14)              | 104.99                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 12/22/2015     | 6.18                                       | 29.6                          | 148                         | 0.53                        | 421                                             | 7.38                                      | 16.0                             | 10.20<br>(33.45)              | 105.20                                          |
| 12/29/2015     | 6.24                                       | 31.5                          | 158                         | 0.27                        | 444                                             | 7.45                                      | 16.0                             | 10.34<br>(33.91)              | 105.06                                          |
| 1/7/2016       | 7.12                                       | 31.4                          | 157                         | 0.36                        | 451                                             | 7.50                                      | 15.9                             | 10.28<br>(33.72)              | 105.12                                          |
| 1/13/2016      | 6.34                                       | 33.7                          | 169                         | 0.31                        | 457                                             | 7.42                                      | 16.0                             | 10.24<br>(33.58)              | 105.16                                          |
| 2/10/2016      | 6.22                                       | 32.5                          | 162                         | 0.34                        | 453                                             | 7.35                                      | 16.6                             | 10.26<br>(33.65)              | 105.14                                          |
| 3/10/2016      | 6.90                                       | 29.9                          | 149                         | 0.56                        | 413                                             | 7.32                                      | 16.4                             | 9.84<br>(32.29)               | 105.56                                          |
| 4/7/2016       | 6.65                                       | 30.4                          | 152                         | 0.28                        | 423                                             | 7.37                                      | 16.5                             | 9.94<br>(32.60)               | 105.46                                          |
| 5/9/2016       | 7.61                                       | 20.1                          | 100                         | 0.64                        | 220                                             | 7.33                                      | 13.3                             | 9.43<br>(30.95)               | 105.97                                          |
| 6/14/2016      | 7.31                                       | 25.3                          | 127                         | 0.86                        | 318                                             | 7.41                                      | 15.2                             | 9.73<br>(31.92)               | 105.67                                          |
|                |                                            |                               |                             | Well 39                     | 99-2-2 (0.25 m Inter                            | val <sup>h</sup> )                        |                                  |                               |                                                 |
| 9/15/2015      | 8.10                                       | 29.9                          | 149                         | 0.22                        | 415                                             | 7.29                                      | 18.1                             | 11.09<br>(36.39)              | 105.00                                          |
| 9/23/2015      | 7.61                                       | 29.1                          | 145                         | 0.29                        | 345                                             | 7.26                                      | 18.9                             | 11.08<br>(36.34)              | 105.02                                          |
| 9/30/2015      | 2.88                                       | 26.8                          | 134                         | 0.51                        | 347                                             | 7.51                                      | 17.1                             | 11.06<br>(36.27)              | 105.04                                          |
| 10/8/2015      | 3.37                                       | 27.1                          | 135                         | 0.52                        | 385                                             | 7.42                                      | 17.4                             | 11.16<br>(36.61)              | 104.94                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 10/14/2015     | 3.93                                       | 27.3                          | 137                         | 0.33                        | 406                                             | 7.45                                      | 17.1                             | 11.25<br>(36.92)              | 104.84                                          |
| 11/6/2015      | 5.01                                       | 25.3                          | 126                         | 0.81                        | 393                                             | 7.43                                      | 15.8                             | 11.02<br>(36.15)              | 105.08                                          |
| 11/19/2015     | 3.62                                       | 27.1                          | 135                         | 0.35                        | 405                                             | 7.64                                      | 16.1                             | 10.79<br>(35.40)              | 105.31                                          |
| 12/1/2015      | 0.57                                       | 29.0                          | 145                         | 0.34                        | 420                                             | 7.59                                      | 16.8                             | 10.87<br>(35.67)              | 105.22                                          |
| 12/9/2015      | 3.06                                       | 29.1                          | 146                         | 0.32                        | 417                                             | 7.66                                      | 16.9                             | 11.08<br>(36.36)              | 105.01                                          |
| 12/18/2015     | 1.60                                       | 28.8                          | 144                         | 0.51                        | 402                                             | 7.38                                      | 17.0                             | 11.03<br>(36.18)              | 105.07                                          |
| 12/22/2015     | 3.91                                       | 30.6                          | 153                         | 0.37                        | 456                                             | 7.47                                      | 16.8                             | 10.88<br>(35.71)              | 105.21                                          |
| 12/29/2015     | 2.79                                       | 31.4                          | 157                         | 0.32                        | 389                                             | 7.23                                      | 16.3                             | 11.03<br>(36.19)              | 105.06                                          |
| 1/6/2016       | 2.87                                       | 30.5                          | 153                         | 0.41                        | 395                                             | 7.77                                      | 16.4                             | 10.30<br>(33.78)              | 105.80                                          |
| 1/13/2016      | 0.96                                       | 30.5                          | 153                         | 0.56                        | 412                                             | 7.23                                      | 16.4                             | 10.92<br>(35.82)              | 105.18                                          |
| 2/10/2016      | 2.03                                       | 32.5                          | 163                         | 0.47                        | 443                                             | 7.19                                      | 16.3                             | 10.95<br>(35.91)              | 105.15                                          |
| 3/10/2016      | 2.86                                       | 29.0                          | 145                         | 0.34                        | 402                                             | 7.29                                      | 16.6                             | 10.53<br>(34.56)              | 105.57                                          |
| 4/7/2016       | 5.46                                       | 28.4                          | 142                         | 0.44                        | 438                                             | 7.10                                      | 17.2                             | 10.62<br>(34.83)              | 105.48                                          |
| 5/9/2016       | 1.30                                       | 20.7                          | 104                         | 0.61                        | 204                                             | 7.54                                      | 15.9                             | 10.10<br>(33.15)              | 106.00                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 6/14/2016      | 1.68                                       | 22.9                          | 114                         | 0.47                        | 265                                             | 7.33                                      | 17.3                             | 10.42<br>(34.19)              | 105.68                                          |
|                |                                            |                               |                             | Well                        | 399-2-2 (2 m Interv                             | al <sup>j</sup> )                         |                                  |                               |                                                 |
| 9/23/2015      | 7.21                                       | 31.5                          | 157                         | 0.33                        | 389                                             | 7.30                                      | 17.7                             | 11.08<br>(36.34)              | 105.02                                          |
| 9/30/2015      | 8.67                                       | 33.4                          | 167                         | 0.28                        | 408                                             | 7.44                                      | 16.6                             | 11.06<br>(36.27)              | 105.04                                          |
| 10/8/2015      | 8.89                                       | 32.1                          | 160                         | 0.39                        | 446                                             | 7.39                                      | 16.1                             | 11.16<br>(36.61)              | 104.94                                          |
| 10/14/2015     | 9.13                                       | 31.9                          | 160                         | 0.25                        | 448                                             | 7.42                                      | 16.4                             | 11.25<br>(36.92)              | 104.84                                          |
| 11/6/2015      | 8.77                                       | 30.9                          | 155                         | 0.46                        | 450                                             | 7.41                                      | 16.2                             | 11.02<br>(36.15)              | 105.08                                          |
| 11/19/2015     | 8.78                                       | 30.7                          | 153                         | 0.29                        | 448                                             | 7.42                                      | 16.2                             | 10.79<br>(35.40)              | 105.31                                          |
| 12/1/2015      | 8.47                                       | 30.4                          | 152                         | 0.27                        | 433                                             | 7.49                                      | 16.6                             | 10.87<br>(35.67)              | 105.22                                          |
| 12/9/2015      | 8.78                                       | 31.1                          | 155                         | 0.34                        | 449                                             | 7.64                                      | 16.0                             | 11.08<br>(36.36)              | 105.01                                          |
| 12/18/2015     | 8.53                                       | 34.8                          | 174                         | 0.38                        | 473                                             | 7.29                                      | 16.3                             | 11.03<br>(36.18)              | 105.07                                          |
| 12/22/2015     | 7.79                                       | 34.8                          | 174                         | 0.30                        | 485                                             | 7.51                                      | 16.2                             | 10.88<br>(35.71)              | 105.21                                          |
| 12/29/2015     | 7.53                                       | 37.4                          | 187                         | 0.39                        | 510                                             | 7.47                                      | 16.1                             | 11.03<br>(36.19)              | 105.06                                          |
| 1/6/2016       | 7.96                                       | 36.4                          | 182                         | 0.34                        | 492                                             | 7.35                                      | 16.4                             | 10.30<br>(33.78)              | 105.80                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 1/13/2016      | 7.81                                       | 36.5                          | 183                         | 0.41                        | 496                                             | 7.37                                      | 16.0                             | 10.92<br>(35.82)              | 105.18                                          |
| 2/10/2016      | 8.02                                       | 35.3                          | 176                         | 0.37                        | 488                                             | 7.44                                      | 16.3                             | 10.95<br>(35.91)              | 105.15                                          |
| 3/10/2016      | 8.08                                       | 29.4                          | 147                         | 0.34                        | 411                                             | 7.46                                      | 15.9                             | 10.53<br>(34.56)              | 105.57                                          |
| 4/7/2016       | 8.29                                       | 33.0                          | 165                         | 0.47                        | 475                                             | 7.38                                      | 16.4                             | 10.62<br>(34.83)              | 105.48                                          |
| 5/9/2016       | 7.39                                       | 21.5                          | 108                         | 0.52                        | 224                                             | 7.44                                      | 12.4                             | 10.10<br>(33.15)              | 106.00                                          |
| 6/14/2016      | 7.20                                       | 26.6                          | 133                         | 2.08                        | 328                                             | 7.42                                      | 14.7                             | 10.42<br>(34.19)              | 105.68                                          |
|                |                                            |                               |                             | Well 39                     | 99-2-3 (0.25 m Inter                            | rval <sup>h</sup> )                       |                                  |                               |                                                 |
| 9/15/2015      | 2.43                                       | 28.2                          | 141                         | 0.56                        | 321                                             | 7.31                                      | 16.8                             | 10.47<br>(34.34)              | 104.99                                          |
| 9/23/2015      | 3.61                                       | 32.1                          | 161                         | 0.65                        | 352                                             | 7.39                                      | 18.5                             | 10.44<br>(34.24)              | 105.02                                          |
| 9/30/2015      | 3.44                                       | 31.0                          | 155                         | 0.56                        | 359                                             | 7.63                                      | 17.1                             | 10.42<br>(34.18)              | 105.04                                          |
| 10/8/2015      | 9.03                                       | 27.2                          | 136                         | 0.74                        | 368                                             | 7.58                                      | 17.3                             | 10.52<br>(34.52)              | 104.93                                          |
| 10/14/2015     | 3.97                                       | 26.6                          | 133                         | 0.45                        | 364                                             | 7.81                                      | 16.7                             | 10.62<br>(34.84)              | 104.84                                          |
| 11/6/2015      | 2.90                                       | 25.0                          | 125                         | 0.58                        | 370                                             | 7.66                                      | 16.3                             | 10.38<br>(34.04)              | 105.08                                          |
| 11/19/2015     | 6.50                                       | 25.5                          | 127                         | 0.36                        | 378                                             | 7.91                                      | 15.9                             | 10.17<br>(33.35)              | 105.29                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 12/1/2015      | 2.29                                       | 23.4                          | 117                         | 0.33                        | 348                                             | 7.60                                      | 16.2                             | 10.24<br>(33.60)              | 105.21                                          |
| 12/9/2015      | 0.75                                       | 23.3                          | 116                         | 0.54                        | 342                                             | 7.87                                      | 17.1                             | 10.45<br>(34.28)              | 105.01                                          |
| 12/22/2015     | 2.72                                       | 25.2                          | 126                         | 0.32                        | 390                                             | 7.98                                      | 16.3                             | 10.25<br>(33.62)              | 105.21                                          |
| 12/29/2015     | 2.74                                       | 25.5                          | 127                         | 0.37                        | 372                                             | 8.22                                      | 16.1                             | 10.39<br>(34.10)              | 105.06                                          |
| 1/6/2016       | 1.95                                       | 25.6                          | 128                         | 0.42                        | 404                                             | 7.52                                      | 16.4                             | 10.93<br>(35.86)              | 104.53                                          |
| 1/13/2016      | 2.51                                       | 26.3                          | 131                         | 0.38                        | 398                                             | 8.10                                      | 16.1                             | 10.28<br>(33.74)              | 105.17                                          |
| 2/10/2016      | 5.14                                       | 26.7                          | 133                         | 0.36                        | 435                                             | 7.65                                      | 16.5                             | 10.31<br>(33.83)              | 105.15                                          |
| 3/10/2016      | 4.82                                       | 28.1                          | 140                         | 0.40                        | 427                                             | 7.83                                      | 16.7                             | 9.90<br>(32.47)               | 105.56                                          |
| 4/7/2016       | 5.48                                       | 27.1                          | 136                         | 0.41                        | 452                                             | 7.55                                      | 17.3                             | 9.98<br>(32.75)               | 105.48                                          |
| 5/9/2016       | 1.30                                       | 19.4                          | 97.1                        | 0.75                        | 215                                             | 8.77                                      | 15.7                             | 9.47<br>(31.08)               | 105.99                                          |
| 6/14/2016      | 2.55                                       | 23.2                          | 116                         | 2.46                        | 317                                             | 8.41                                      | 16.9                             | 9.78<br>(32.10)               | 105.68                                          |
|                |                                            |                               |                             | Well                        | 399-2-3 (2 m Interv                             | al <sup>j</sup> )                         |                                  |                               |                                                 |
| 9/23/2015      | 3.60                                       | 32.7                          | 163                         | 0.33                        | 371                                             | 7.31                                      | 19.2                             | 10.44<br>(34.24)              | 105.02                                          |
| 9/30/2015      | 8.68                                       | 34.2                          | 171                         | 0.40                        | 415                                             | 7.58                                      | 17.0                             | 10.42<br>(34.18)              | 105.04                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 10/8/2015      | 4.77                                       | 32.5                          | 162                         | 0.28                        | 430                                             | 7.51                                      | 16.7                             | 10.52<br>(34.52)              | 104.93                                          |
| 10/14/2015     | 8.20                                       | 30.7                          | 154                         | 0.41                        | 447                                             | 7.58                                      | 16.6                             | 10.62<br>(34.84)              | 104.84                                          |
| 11/6/2015      | 3.85                                       | 30.5                          | 153                         | 0.28                        | 442                                             | 7.53                                      | 16.5                             | 10.38<br>(34.04)              | 105.08                                          |
| 11/19/2015     | 8.88                                       | 30.2                          | 151                         | 0.28                        | 450                                             | 7.61                                      | 16.3                             | 10.17<br>(33.35)              | 105.29                                          |
| 12/1/2015      | 8.55                                       | 30.6                          | 153                         | 0.25                        | 441                                             | 7.56                                      | 16.2                             | 10.24<br>(33.60)              | 105.21                                          |
| 12/9/2015      | 8.72                                       | 31.4                          | 157                         | 0.49                        | 447                                             | 7.66                                      | 16.6                             | 10.45<br>(34.28)              | 105.01                                          |
| 12/22/2015     | 7.54                                       | 32.6                          | 163                         | 0.26                        | 473                                             | 7.48                                      | 16.4                             | 10.25<br>(33.62)              | 105.21                                          |
| 12/29/2015     | 8.00                                       | 33.1                          | 165                         | 0.29                        | 469                                             | 7.52                                      | 16.5                             | 10.39<br>(34.10)              | 105.06                                          |
| 1/6/2016       | 7.61                                       | 35.3                          | 176                         | 0.34                        | 493                                             | 7.40                                      | 15.9                             | 10.93<br>(35.86)              | 104.53                                          |
| 1/13/2016      | 7.94                                       | 33.8                          | 169                         | 0.55                        | 490                                             | 7.45                                      | 16.3                             | 10.28<br>(33.74)              | 105.17                                          |
| 2/10/2016      | 8.03                                       | 32.6                          | 163                         | 0.33                        | 481                                             | 7.46                                      | 16.5                             | 10.31<br>(33.83)              | 105.15                                          |
| 3/10/2016      | 8.02                                       | 31.9                          | 160                         | 0.32                        | 465                                             | 7.52                                      | 16.6                             | 9.90<br>(32.47)               | 105.56                                          |
| 4/7/2016       | 8.21                                       | 32.2                          | 161                         | 0.29                        | 490                                             | 7.44                                      | 16.9                             | 9.98<br>(32.75)               | 105.48                                          |
| 5/9/2016       | 7.58                                       | 23.9                          | 119                         | 0.49                        | 291                                             | 7.74                                      | 14.4                             | 9.47<br>(31.08)               | 105.99                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 6/14/2016      | 7.46                                       | 28.6                          | 143                         | 0.83                        | 370                                             | 7.51                                      | 16.0                             | 9.78<br>(32.10)               | 105.68                                          |
|                |                                            |                               |                             | Well 39                     | 99-1-7 (0.25 m Inter                            | val <sup>h</sup> )                        |                                  |                               |                                                 |
| 9/15/2015      | 6.40                                       | 28.9                          | 144                         | 1.02                        | 403                                             | 7.33                                      | 17.2                             | 13.55<br>(44.46)              | 105.01                                          |
| 9/23/2015      |                                            | 32.0                          | 160                         | 0.26                        | 429                                             | 7.28                                      |                                  | 13.55<br>(44.44)              | 105.01                                          |
| 9/30/2015      | 9.26                                       | 32.6                          | 163                         | 0.33                        | 411                                             | 7.59                                      | 17.8                             | 13.52<br>(44.35)              | 105.04                                          |
| 10/8/2015      | 9.57                                       | 32.1                          | 161                         | 0.31                        | 461                                             | 7.52                                      | 17.0                             | 13.60<br>(44.62)              | 104.96                                          |
| 10/14/2015     | 9.50                                       | 30.5                          | 152                         | 0.30                        | 457                                             | 7.59                                      | 17.2                             | 13.71<br>(44.99)              | 104.85                                          |
| 11/6/2015      | 9.40                                       | 30.5                          | 153                         | 0.28                        | 446                                             | 7.54                                      | 16.4                             | 13.49<br>(44.25)              | 105.07                                          |
| 11/16/2015     | 9.29                                       | 29.6                          | 148                         | 0.25                        | 455                                             | 7.55                                      | 16.5                             | 13.37<br>(43.85)              | 105.19                                          |
| 11/19/2015     | 9.43                                       | 30.2                          | 151                         | 0.30                        | 455                                             | 7.60                                      | 16.2                             | 13.29<br>(43.60)              | 105.27                                          |
| 12/1/2015      | 9.34                                       | 30.3                          | 151                         | 0.27                        | 456                                             | 7.42                                      | 16.6                             | 13.32<br>(43.70)              | 105.24                                          |
| 12/9/2015      | 9.20                                       | 33.5                          | 168                         | 0.34                        | 468                                             | 7.73                                      | 16.8                             | 13.53<br>(44.39)              | 105.03                                          |
| 12/16/2015     | 9.34                                       | 33.5                          | 167                         | 0.41                        | 481                                             | 7.66                                      | 16.6                             | 13.56<br>(44.50)              | 104.99                                          |
| 12/22/2015     | 8.09                                       | 34.5                          | 173                         | 0.40                        | 494                                             | 7.60                                      | 16.3                             | 13.34<br>(43.76)              | 105.22                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 12/29/2015     | 8.25                                       | 33.7                          | 169                         | 0.42                        | 489                                             | 7.58                                      | 16.4                             | 13.49<br>(44.25)              | 105.07                                          |
| 1/6/2016       | 8.35                                       | 33.6                          | 168                         | 0.38                        | 496                                             | 7.56                                      | 16.3                             | 13.37<br>(43.88)              | 105.18                                          |
| 1/13/2016      | 8.14                                       | 33.3                          | 166                         | 0.42                        | 497                                             | 7.52                                      | 16.3                             | 13.37<br>(43.88)              | 105.18                                          |
| 2/10/2016      | 8.40                                       | 32.4                          | 162                         | 0.37                        | 523                                             | 7.52                                      | 16.5                             | 13.41<br>(43.98)              | 105.15                                          |
| 3/10/2016      | 8.57                                       | 32.4                          | 162                         | 0.35                        | 512                                             | 7.50                                      | 16.6                             | 13.00<br>(42.65)              | 105.56                                          |
| 4/7/2016       | 8.70                                       | 31.5                          | 158                         | 0.30                        | 512                                             | 7.44                                      | 17.5                             | 13.09<br>(42.94)              | 105.47                                          |
| 5/9/2016       | 8.76                                       | 34.3                          | 172                         | 0.35                        | 531                                             | 7.40                                      | 17.0                             | 12.55<br>(41.17)              | 106.01                                          |
| 6/14/2016      | 8.85                                       | 30.7                          | 154                         | 2.00                        | 496                                             | 7.43                                      | 17.1                             | 12.88<br>(42.26)              | 105.68                                          |
|                |                                            |                               |                             | Well                        | 399-1-7 (2 m Interv                             | al <sup>j</sup> )                         |                                  |                               |                                                 |
| 9/23/2015      |                                            | 32.2                          | 161                         | 0.28                        | 433                                             | 7.21                                      |                                  | 13.55<br>(44.44)              | 105.01                                          |
| 9/30/2015      | 9.13                                       | 33.4                          | 167                         | 0.25                        | 418                                             | 7.58                                      | 17.6                             | 13.52<br>(44.35)              | 105.04                                          |
| 10/8/2015      | 9.48                                       | 32.1                          | 161                         | 0.24                        | 460                                             | 7.53                                      | 16.8                             | 13.60<br>(44.62)              | 104.96                                          |
| 10/14/2015     | 9.64                                       | 30.8                          | 154                         | 0.23                        | 456                                             | 7.60                                      | 17.1                             | 13.71<br>(44.99)              | 104.85                                          |
| 11/6/2015      | 9.31                                       | 30.8                          | 154                         | 0.26                        | 447                                             | 7.58                                      | 16.6                             | 13.49<br>(44.25)              | 105.07                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

| Sample<br>Date | Dissolved<br>Oxygen <sup>a</sup><br>(mg/L) | Inorganic<br>Carbon<br>(mg/L) | HCO3 <sup>b</sup><br>(mg/L) | NPOC <sup>c</sup><br>(mg/L) | Specific<br>Conductance <sup>d</sup><br>(µS/cm) | pH Measurement <sup>e</sup><br>(pH Units) | Temperature <sup>f</sup><br>(°C) | Depth to<br>Water<br>(m [ft]) | Water<br>Level<br>Elevation <sup>g</sup><br>(m) |
|----------------|--------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|
| 11/16/2015     | 9.21                                       | 30.2                          | 151                         | 0.25                        | 449                                             | 7.54                                      | 16.7                             | 13.37<br>(43.85)              | 105.19                                          |
| 11/19/2015     | 9.31                                       | 30.8                          | 154                         | 0.23                        | 454                                             | 7.67                                      | 16.7                             | 13.29<br>(43.60)              | 105.27                                          |
| 12/1/2015      | 9.28                                       | 31.6                          | 158                         | 0.25                        | 460                                             | 7.44                                      | 16.7                             | 13.32<br>(43.70)              | 105.24                                          |
| 12/9/2015      | 9.20                                       | 33.0                          | 165                         | 0.38                        | 467                                             | 7.82                                      | 16.8                             | 13.53<br>(44.39)              | 105.03                                          |
| 12/16/2015     | 9.17                                       | 34.0                          | 170                         | 0.37                        | 474                                             | 7.67                                      | 16.8                             | 13.56<br>(44.50)              | 104.99                                          |
| 12/22/2015     | 8.07                                       | 34.4                          | 172                         | 0.37                        | 486                                             | 7.59                                      | 16.7                             | 13.34<br>(43.76)              | 105.22                                          |
| 12/29/2015     | 8.28                                       | 33.2                          | 166                         | 0.39                        | 490                                             | 7.59                                      | 16.8                             | 13.49<br>(44.25)              | 105.07                                          |
| 1/6/2016       | 8.43                                       | 33.1                          | 166                         | 0.37                        | 497                                             | 7.53                                      | 16.7                             | 13.37<br>(43.88)              | 105.18                                          |
| 1/13/2016      | 8.33                                       | 32.5                          | 162                         | 0.40                        | 499                                             | 7.49                                      | 16.7                             | 13.37<br>(43.88)              | 105.18                                          |
| 2/10/2016      | 8.46                                       | 32.7                          | 163                         | 0.51                        | 517                                             | 7.50                                      | 16.7                             | 13.41<br>(43.98)              | 105.15                                          |
| 3/10/2016      | 8.57                                       | 33.2                          | 166                         | 0.33                        | 517                                             | 7.49                                      | 16.9                             | 13.00<br>(42.65)              | 105.56                                          |
| 4/7/2016       | 8.70                                       | 32.4                          | 162                         | 0.26                        | 516                                             | 7.44                                      | 17.1                             | 13.09<br>(42.94)              | 105.47                                          |
| 5/9/2016       | 8.76                                       | 35.2                          | 176                         | 0.31                        | 527                                             | 7.40                                      | 17.1                             | 12.55<br>(41.17)              | 106.01                                          |
| 6/14/2016      | 8.80                                       | 30.4                          | 152                         | 0.49                        | 493                                             | 7.44                                      | 17.2                             | 12.88<br>(42.26)              | 105.68                                          |

 Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

# Table C-7. Groundwater Characteristics Analytical Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|        |                     |           |                   |                   |                                 |                             |                          |                  | Water                  |
|--------|---------------------|-----------|-------------------|-------------------|---------------------------------|-----------------------------|--------------------------|------------------|------------------------|
|        | Dissolved           | Inorganic |                   |                   | Specific                        |                             |                          | Depth to         | Level                  |
| Sample | Oxygen <sup>a</sup> | Carbon    | HCO3 <sup>b</sup> | NPOC <sup>c</sup> | <b>Conductance</b> <sup>d</sup> | pH Measurement <sup>e</sup> | Temperature <sup>f</sup> | Water            | Elevation <sup>g</sup> |
| Date   | (mg/L)              | (mg/L)    | (mg/L)            | (mg/L)            | (µS/cm)                         | (pH Units)                  | (°C)                     | ( <b>m</b> [ft]) | (m)                    |

Data provided by Pacific Northwest National Laboratory. These data are preliminary, pending completion of the quality control process.

a. EPA Method 360.1. Dissolved oxygen using field probe.

b. Alkalinity calculated from inorganic carbon.

- c. Nonpurgable organic carbon as carbon.
- d. EPA Method 120.1. Specific conductivity using field probe.
- e. EPA Method 150.1. pH using field probe.
- f. EPA Method 170.1. Temperature using field probe.
- g. Calculated by subtracting the depth to water from the elevation of the top of the well casing.
- h. The 0.25 m interval is a sample collected 0.25 m below the top of the well screen.
- i. The bottom interval is a sample collected at the bottom of the well screen.
- j. The 2 m interval is a sample collected 2 m below the top of the well screen.
  - = not applicable
- EPA = U.S. Environmental Protection Agency
- $HCO_3 = bicarbonate$

--

C-58

NPOC = nonpurgable organic carbon

|                |              | Metals <sup>a</sup><br>Ca Fe Mg Mn K Na |              |              |             |              |             |                   | Anions <sup>b</sup> |                           |               |                            |                           |  |  |
|----------------|--------------|-----------------------------------------|--------------|--------------|-------------|--------------|-------------|-------------------|---------------------|---------------------------|---------------|----------------------------|---------------------------|--|--|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L)                            | Mg<br>(mg/L) | Mn<br>(mg/L) | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L       | F<br>(mg/L)         | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |  |  |
|                |              |                                         |              |              | ,           | Well 399-1   | -23         |                   |                     |                           |               |                            |                           |  |  |
| 11/16/2015     | 71.8         | < 0.04                                  | 16.6         | < 0.01       | 9.83        | 29.7         | 122         | 16.7              | 0.30                | < 0.05                    | 31.4          | 11.2                       | 74.4                      |  |  |
| 11/19/2015     | 70.2         | < 0.02                                  | 19.9         | < 0.01       | 8.73        | 162          | 94.0        | 11.8              | 0.12                | < 0.05                    | 32.4          | 473                        | 71.4                      |  |  |
| 12/1/2015      | 51.5         | < 0.02                                  | 14.4         | < 0.01       | 9.07        | 109          | 2.19        | 18.5              | 0.23                | < 0.05                    | 26.6          | 248                        | 53.6                      |  |  |
| 12/9/2015      | 42.3         | < 0.04                                  | 12.6         | < 0.02       | 12.5        | 71.2         | 2.19        | 19.4              | 0.25                | < 0.05                    | 23.4          | 126                        | 55.6                      |  |  |
| 12/16/2015     | 42.4         | < 0.04                                  | 12.7         | < 0.01       | 12.7        | 63.7         | 3.54        | 20.1              | 0.25                | < 0.05                    | 23.7          | 106                        | 57.0                      |  |  |
| 12/22/2015     | 37.6         | < 0.04                                  | 11.0         | < 0.01       | 11.1        | 99.8         | 13.0        | 19.3              | 0.27                | < 0.1                     | 25.6          | 169                        | 56.6                      |  |  |
| 12/29/2015     | 45.9         | < 0.04                                  | 11.9         | < 0.01       | 12.3        | 49.5         | 8.65        | 21.3              | 0.29                | < 0.1                     | 24.1          | 83.9                       | 58.7                      |  |  |
| 1/6/2016       | 39.0         | < 0.04                                  | 12.1         | < 0.01       | 11.0        | 87.4         | 8.67        | 20.6              | 0.25                | < 0.1                     | 26.0          | 140                        | 58.0                      |  |  |
| 1/13/2016      | 38.2         | < 0.04                                  | 11.5         | < 0.01       | 14.8        | 83.6         | 6.31        | 20.3              | 0.15                | < 0.1                     | 25.3          | 130                        | 53.9                      |  |  |
| 2/10/2016      | 38.3         | < 0.02                                  | 10.6         | < 0.02       | 13.8        | 79.5         | 11.2        | 20.9              | 0.22                | < 0.05                    | 28.6          | 117                        | 59.5                      |  |  |
| 3/10/2016      | 45.2         | < 0.02                                  | 11.0         | < 0.01       | 8.10        | 68.2         | 26.4        | 20.3              | 0.22                | < 0.05                    | 26.3          | 82.8                       | 58.1                      |  |  |
| 4/7/2016       | 42.2         | < 0.02                                  | 11.0         | < 0.01       | 15.8        | 55.8         | 16.5        | 20.4              | 0.14                | < 0.025                   | 26.6          | 73.6                       | 57.3                      |  |  |
| 5/9/2016       | 42.9         | 0.016                                   | 11.5         | < 0.01       | 14.5        | 58.2         | 22.5        | 18.7              | 0.16                | < 0.025                   | 25.8          | 73.5                       | 54.5                      |  |  |
| 6/14/2016      | 44.2         | < 0.04                                  | 11.5         | < 0.01       | 17.3        | 43.3         | 18.0        | 17.9              | 0.29                | < 0.05                    | 26.0          | 56.3                       | 55.3                      |  |  |
|                |              |                                         |              |              | Well 399-1  | I-16A (0.25  | 5 m Interv  | al <sup>d</sup> ) |                     |                           |               |                            |                           |  |  |
| 9/23/2015      | 51.9         | < 0.01                                  | 11.9         | < 0.01       | 4.62        | 21.1         | 58.1        | 18.3              | 0.47                | < 0.04                    | 26.5          | 0.92                       | 61.3                      |  |  |
| 9/30/2015      | 51.3         | < 0.01                                  | 12.2         | < 0.01       | 4.70        | 21.2         | 53.7        | 18.2              | 0.40                | < 0.04                    | 26.1          | 1.04                       | 61.1                      |  |  |
| 10/8/2015      | 51.4         | < 0.01                                  | 11.8         | < 0.01       | 4.63        | 21.1         | 56.9        | 19.5              | 0.37                | < 0.04                    | 26.4          | 0.76                       | 61.6                      |  |  |
| 10/14/2015     | 51.8         | < 0.01                                  | 11.7         | < 0.01       | 4.52        | 20.4         | 58.7        | 17.9              | 0.33                | < 0.04                    | 25.7          | 0.64                       | 60.0                      |  |  |
| 11/6/2015      | 52.3         | < 0.03                                  | 12.2         | < 0.008      | 5.04        | 22.0         | 55.7        | 18.2              | 0.28                | < 0.05                    | 25.1          | 0.52                       | 62.3                      |  |  |
| 11/16/2015     | 50.4         | < 0.04                                  | 11.8         | < 0.01       | 8.86        | 22.4         | 51.4        | 18.3              | 0.31                | < 0.05                    | 24.4          | < 0.20                     | 60.7                      |  |  |
| 11/19/2015     | 50.9         | < 0.02                                  | 12.0         | < 0.01       | 4.73        | 21.8         | 54.5        | 18.3              | 0.48                | < 0.05                    | 24.9          | 0.90                       | 61.9                      |  |  |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              | I            | Metals <sup>a</sup> |             |              |             | Anions <sup>b</sup> |             |                           |               |                            |                           |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|---------------------|-------------|---------------------------|---------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L         | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 12/1/2015      | 52.2         | < 0.02       | 12.0         | < 0.01              | 4.85        | 23.8         | 51.8        | 18.2                | 0.51        | < 0.05                    | 25.0          | 0.60                       | 62.4                      |
| 12/9/2015      | 52.8         | 0.33         | 12.3         | < 0.01              | 5.00        | 22.0         | 55.4        | 18.3                | 0.52        | < 0.05                    | 25.0          | < 0.61                     | 62.5                      |
| 12/22/2015     | 53.2         | < 0.04       | 12.1         | < 0.01              | 4.87        | 21.4         | 58.4        | 18.5                | 0.69        | < 0.1                     | 25.2          | < 0.61                     | 65.4                      |
| 12/29/2015     | 51.9         | < 0.04       | 11.6         | < 0.01              | 4.58        | 20.5         | 51.6        | 19.0                | 1.72        | < 0.1                     | 26.2          | < 0.61                     | 64.9                      |
| 1/6/2016       | 50.9         | < 0.04       | 12.2         | < 0.01              | 5.09        | 23.6         | 48.9        | 18.8                | 0.59        | < 0.1                     | 24.0          | < 0.61                     | 66.2                      |
| 1/13/2016      | 49.9         | < 0.04       | 12.0         | < 0.01              | 4.82        | 23.2         | 48.1        | 18.5                | 0.30        | < 0.1                     | 23.7          | < 0.61                     | 58.9                      |
| 2/10/2016      | 51.7         | < 0.02       | 11.8         | < 0.02              | 4.85        | 22.2         | 50.0        | 18.7                | 0.42        | < 0.05                    | 23.9          | < 0.61                     | 61.1                      |
| 3/10/2016      | 50.9         | < 0.02       | 11.5         | < 0.01              | 4.71        | 21.1         | 43.3        | 17.45               | 0.51        | < 0.05                    | 23.6          | < 0.61                     | 60.7                      |
| 4/7/2016       | 48.7         | < 0.02       | 11.7         | < 0.01              | 4.89        | 21.4         | 43.8        | 15.7                | 0.47        | < 0.025                   | 21.9          | < 1.23                     | 54.1                      |
| 5/9/2016       | 28.8         | 0.005        | 6.95         | < 0.006             | 3.53        | 15.0         | 25.9        | 6.40                | 0.36        | < 0.025                   | 7.88          | < 0.74                     | 25.2                      |
| 6/14/2016      | 36.5         | < 0.024      | 8.31         | < 0.006             | 3.94        | 16.8         | 32.4        | 9.99                | 0.38        | < 0.05                    | 14.1          | < 0.70                     | 34.8                      |
|                |              |              |              |                     | Well 399-1  | -17A (0.25   | 5 m Interv  | al <sup>d</sup> )   |             |                           |               |                            |                           |
| 9/23/2015      | 51.6         | 0.02         | 12.1         | < 0.01              | 5.35        | 22.4         | 46.8        | 22.0                | 0.42        | < 0.04                    | 24.8          | 0.879                      | 61.9                      |
| 9/30/2015      | 50.9         | < 0.01       | 12.0         | < 0.01              | 5.28        | 22.4         | 40.9        | 20.6                | 0.40        | 0.05                      | 25.0          | 1.21                       | 60.9                      |
| 10/8/2015      | 50.6         | < 0.01       | 12.1         | < 0.01              | 5.19        | 22.2         | 42.2        | 22.1                | 0.38        | < 0.04                    | 24.3          | 0.76                       | 61.6                      |
| 10/14/2015     | 50.7         | < 0.01       | 11.8         | < 0.01              | 5.11        | 22.2         | 43.5        | 20.6                | 0.36        | < 0.04                    | 24.3          | 0.94                       | 60.7                      |
| 11/6/2015      | 51.9         | < 0.03       | 12.3         | < 0.008             | 5.61        | 23.3         | 37.5        | 21.0                | 0.32        | < 0.05                    | 23.2          | 0.50                       | 62.0                      |
| 11/16/2015     | 69.9         | < 0.04       | 16.9         | < 0.01              | 10.2        | 35.4         | 20.9        | 31.9                | 0.23        | < 0.05                    | 47.6          | 49.4                       | 40.6                      |
| 11/19/2015     | 78.2         | < 0.02       | 20.0         | < 0.01              | 7.11        | 59.9         | 5.04        | 19.4                | 0.18        | < 0.05                    | 29.3          | 238                        | 38.6                      |
| 12/1/2015      | 54.2         | < 0.02       | 14.3         | < 0.01              | 7.47        | 93.2         | 1.87        | 22.7                | 0.13        | < 0.05                    | 24.6          | 258                        | 47.5                      |
| 12/9/2015      | 46.0         | < 0.04       | 12.6         | < 0.01              | 6.62        | 77.9         | 1.68        | 22.5                | 0.26        | < 0.05                    | 24.6          | 161                        | 52.2                      |
| 12/16/2015     | 43.6         | 0.05         | 11.1         | < 0.01              | 6.18        | 75.5         | 1.19        | 22.1                | 0.16        | < 0.05                    | 26.6          | 131                        | 52.7                      |
| 12/22/2015     | 40.3         | < 0.04       | 10.3         | < 0.01              | 6.11        | 77.8         | 4.17        | 21.2                | 0.18        | < 0.1                     | 23.4          | 129                        | 55.1                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              | I            | Metals <sup>a</sup> |             |              |             |                  |             | Ar                        | nions <sup>b</sup> |                            |                           |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|------------------|-------------|---------------------------|--------------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L      | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L)      | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 12/29/2015     | 41.7         | < 0.04       | 10.5         | < 0.01              | 6.16        | 71.9         | 0.42        | 23.4             | 0.27        | < 0.1                     | 25.0               | 113                        | 57.4                      |
| 1/6/2016       | 39.6         | < 0.04       | 10.5         | < 0.01              | 6.36        | 67.5         | 1.50        | 21.7             | 0.18        | < 0.1                     | 23.2               | 95.2                       | 56.6                      |
| 1/13/2016      | 42.1         | < 0.04       | 11.1         | < 0.01              | 6.27        | 65.6         | 1.63        | 22.1             | 0.12        | < 0.1                     | 26.9               | 97.3                       | 53.0                      |
| 2/10/2016      | 46.6         | < 0.02       | 11.8         | < 0.02              | 6.73        | 50.2         | 2.71        | 23.4             | 0.22        | < 0.05                    | 27.2               | 69.0                       | 56.3                      |
| 3/10/2016      | 51.3         | < 0.02       | 12.6         | < 0.01              | 8.00        | 41.3         | 6.77        | 21.4             | 0.18        | < 0.05                    | 27.5               | 48.6                       | 59.8                      |
| 4/7/2016       | 49.6         | < 0.02       | 12.7         | < 0.01              | 8.62        | 37.4         | 9.73        | 22.8             | 0.15        | < 0.025                   | 26.2               | 39.3                       | 58.3                      |
| 5/9/2016       | 47.9         | 0.205        | 13.0         | < 0.01              | 9.48        | 37.2         | 24.0        | 22.7             | 0.17        | < 0.025                   | 26.9               | 37.3                       | 56.4                      |
| 6/14/2016      | 49.9         | < 0.04       | 12.0         | < 0.01              | 9.42        | 31.2         | 17.2        | 21.0             | 0.27        | < 0.05                    | 27.1               | 26.4                       | 57.4                      |
|                |              |              |              |                     | Well 399    | -2-1 (0.25   | m Interva   | l <sup>d</sup> ) |             |                           |                    |                            |                           |
| 9/15/2015      | 51.5         | 0.03         | 11.2         | < 0.01              | 3.85        | 20.5         | 119         | 19.6             | 0.34        | < 0.04                    | 24.0               | 1.02                       | 57.5                      |
| 9/23/2015      | 50.3         | < 0.01       | 11.2         | < 0.01              | 3.72        | 20.1         | 125         | 20.1             | 0.32        | < 0.04                    | 24.4               | 0.67                       | 58.1                      |
| 9/30/2015      | 51.8         | 0.01         | 11.3         | < 0.01              | 3.83        | 20.5         | 113         | 19.3             | 0.33        | < 0.04                    | 23.5               | 1.02                       | 56.7                      |
| 10/8/2015      | 51.7         | 0.01         | 11.3         | < 0.01              | 3.83        | 20.7         | 118         | 21.2             | 0.32        | < 0.04                    | 24.2               | 0.83                       | 58.7                      |
| 10/14/2015     | 53.8         | 0.02         | 11.4         | < 0.01              | 8.02        | 20.6         | 127         | 20.8             | 0.26        | < 0.04                    | 24.2               | 0.75                       | 58.5                      |
| 11/6/2015      | 53.3         | 0.07         | 11.6         | 0.01                | 4.15        | 21.5         | 126         | 20.0             | 0.29        | < 0.05                    | 23.6               | 0.67                       | 60.3                      |
| 11/19/2015     | 50.2         | 0.03         | 10.8         | < 0.01              | 3.88        | 20.0         | 109         | 18.5             | 0.42        | < 0.05                    | 22.3               | 0.97                       | 57.1                      |
| 12/1/2015      | 50.0         | < 0.02       | 10.8         | < 0.01              | 3.99        | 22.5         | 104         | 17.8             | 0.47        | < 0.05                    | 22.2               | 0.76                       | 56.9                      |
| 12/9/2015      | 52.3         | < 0.04       | 11.5         | < 0.01              | 4.16        | 21.9         | 104         | 18.7             | 0.44        | < 0.05                    | 23.9               | 0.71                       | 60.1                      |
| 12/22/2015     | 45.5         | < 0.04       | 9.65         | < 0.01              | 3.74        | 19.2         | 102         | 15.5             | 0.52        | < 0.1                     | 20.0               | 0.79                       | 53.9                      |
| 12/29/2015     | 49.9         | < 0.04       | 10.5         | < 0.01              | 3.75        | 19.4         | 106         | 19.7             | 0.53        | < 0.1                     | 24.8               | 0.67                       | 63.3                      |
| 1/7/2016       | 50.6         | < 0.04       | 11.4         | < 0.01              | 4.22        | 23.3         | 111         | 19.9             | 0.83        | < 0.1                     | 27.7               | 0.73                       | 56.7                      |
| 1/13/2016      | 52.4         | < 0.04       | 11.6         | < 0.01              | 4.16        | 22.7         | 110         | 20.4             | 0.39        | < 0.1                     | 24.8               | < 0.61                     | 56.7                      |
| 2/10/2016      | 52.3         | < 0.02       | 11.2         | < 0.02              | 3.96        | 22.6         | 125         | 20.1             | 0.49        | < 0.05                    | 23.4               | 0.70                       | 56.3                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                | Metals <sup>a</sup><br>Ca Fe Mg Mn K Na |              |              |              |             |              |             | Anions <sup>b</sup> |             |                           |               |                            |                           |
|----------------|-----------------------------------------|--------------|--------------|--------------|-------------|--------------|-------------|---------------------|-------------|---------------------------|---------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L)                            | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L) | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L         | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 3/10/2016      | 39.0                                    | < 0.02       | 8.23         | < 0.01       | 3.43        | 17.8         | 72.4        | 12.2                | 0.48        | < 0.05                    | 14.4          | 0.70                       | 39.7                      |
| 4/7/2016       | 47.5                                    | < 0.02       | 9.96         | < 0.01       | 3.87        | 20.2         | 108         | 14.7                | 0.46        | < 0.025                   | 17.6          | < 1.23                     | 47.0                      |
| 5/9/2016       | 24.5                                    | 0.008        | 5.66         | < 0.004      | 2.59        | 11.0         | 41.9        | 4.67                | 0.88        | < 0.025                   | 4.46          | 0.61                       | 20.5                      |
| 6/14/2016      | 40.0                                    | < 0.016      | 8.20         | < 0.004      | 3.17        | 17.0         | 83.3        | 10.1                | 0.36        | < 0.05                    | 13.2          | 0.51                       | 33.1                      |
|                |                                         |              |              |              | Well 399    | -2-1 (Botto  | m Interva   | al°)                |             |                           |               |                            |                           |
| 9/23/2015      | 49.0                                    | 0.03         | 11.0         | 0.01         | 3.68        | 19.9         | 125         | 19.6                | 0.31        | < 0.04                    | 22.2          | 0.42                       | 55.8                      |
| 9/30/2015      | 52.3                                    | 0.09         | 11.0         | 0.02         | 3.76        | 19.8         | 108         | 19.7                | 0.31        | < 0.04                    | 22.6          | 1.20                       | 56.6                      |
| 10/8/2015      | 50.4                                    | 0.03         | 11.1         | 0.02         | 17.62       | 20.6         | 122         | 20.0                | 0.29        | < 0.04                    | 23.9          | 0.72                       | 58.9                      |
| 10/14/2015     | 52.9                                    | 0.03         | 11.1         | 0.03         | 3.73        | 19.8         | 120         | 20.2                | 0.31        | < 0.04                    | 23.4          | 0.89                       | 58.7                      |
| 11/6/2015      | 52.0                                    | 0.05         | 11.3         | 0.02         | 4.06        | 20.4         | 125         | 20.0                | 0.28        | < 0.05                    | 23.1          | < 0.49                     | 59.3                      |
| 11/19/2015     | 50.4                                    | 0.03         | 11.0         | 0.02         | 3.85        | 19.9         | 109         | 19.3                | 0.35        | < 0.05                    | 27.0          | 0.48                       | 54.7                      |
| 12/1/2015      | 50.8                                    | < 0.02       | 10.9         | 0.00         | 3.89        | 21.8         | 104         | 18.4                | 0.37        | < 0.05                    | 25.8          | 0.44                       | 53.3                      |
| 12/9/2015      | 52.2                                    | < 0.04       | 11.6         | 0.03         | 4.09        | 21.4         | 103         | 18.8                | 0.35        | < 0.05                    | 26.3          | < 0.61                     | 55.9                      |
| 12/22/2015     | 50.6                                    | < 0.04       | 10.6         | 0.03         | 3.85        | 19.8         | 112         | 17.3                | 0.30        | < 0.1                     | 21.5          | < 0.61                     | 54.1                      |
| 12/29/2015     | 49.4                                    | < 0.04       | 10.4         | 0.02         | 3.70        | 19.0         | 106         | 19.3                | 0.33        | < 0.1                     | 23.3          | < 0.61                     | 60.3                      |
| 1/7/2016       | 50.9                                    | < 0.04       | 11.4         | 0.02         | 4.06        | 22.3         | 115         | 20.1                | 0.33        | < 0.1                     | 23.3          | < 0.61                     | 57.8                      |
| 1/13/2016      | 50.2                                    | < 0.04       | 11.4         | 0.02         | 4.07        | 22.3         | 110         | 20.4                | 0.44        | < 0.1                     | 24.1          | < 0.61                     | 57.9                      |
| 2/10/2016      | 53.6                                    | < 0.02       | 11.4         | 0.044        | 3.96        | 22.3         | 121         | 20.7                | 0.48        | < 0.05                    | 22.9          | < 0.61                     | 57.4                      |
| 3/10/2016      | 47.5                                    | < 0.02       | 10.1         | 0.01         | 3.69        | 19.4         | 94.3        | 16.2                | 0.44        | < 0.05                    | 18.9          | < 0.61                     | 49.4                      |
| 4/7/2016       | 48.8                                    | < 0.02       | 10.4         | 0.011        | 3.94        | 20.4         | 105         | 15.5                | 0.45        | < 0.025                   | 18.4          | < 1.23                     | 47.8                      |
| 5/9/2016       | 25.2                                    | 0.005        | 5.62         | < 0.004      | 2.81        | 11.3         | 43.2        | 4.94                | 0.63        | < 0.025                   | 4.82          | < 0.49                     | 21.5                      |
| 6/14/2016      | 40.6                                    | < 0.016      | 8.06         | 0.011        | 3.06        | 15.7         | 73.2        | 10.8                | 0.35        | < 0.05                    | 13.6          | < 0.50                     | 34.1                      |

Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                | Metals <sup>a</sup> |              |              |              |             |              |                       |                  |             | Aı                        | nions <sup>b</sup>        |                            |                           |
|----------------|---------------------|--------------|--------------|--------------|-------------|--------------|-----------------------|------------------|-------------|---------------------------|---------------------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L)        | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L) | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L)           | Cl<br>(mg/L      | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO <sub>3</sub><br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
|                | · · · · · ·         |              | •            |              | Well 399    | -2-2 (0.25   | m Interva             | l <sup>d</sup> ) | •           |                           | L                         | •                          |                           |
| 9/15/2015      | 52.4                | < 0.01       | 11.7         | < 0.01       | 4.34        | 22.8         | 91.7                  | 20.4             | 0.40        | < 0.04                    | 25.1                      | 1.36                       | 60.8                      |
| 9/23/2015      | 47.4                | 0.14         | 10.3         | 0.09         | 3.88        | 20.7         | 65.7                  | 21.1             | 0.36        | < 0.04                    | 15.6                      | 0.50                       | 56.8                      |
| 9/30/2015      | 39.6                | 0.27         | 9.73         | 0.13         | 3.63        | 20.6         | 37.5                  | 21.7             | 0.34        | 0.05                      | 6.32                      | 0.59                       | 55.8                      |
| 10/8/2015      | 41.9                | 0.23         | 9.86         | 0.13         | 3.60        | 20.1         | 36.6                  | 24.0             | 0.34        | < 0.04                    | 5.78                      | 0.39                       | 57.8                      |
| 10/14/2015     | 46.3                | 0.10         | 9.97         | 0.09         | 3.37        | 19.3         | 44.9                  | 22.9             | 0.34        | < 0.04                    | 10.6                      | 0.51                       | 58.5                      |
| 11/6/2015      | 42.9                | < 0.03       | 10.6         | 0.12         | 4.04        | 21.2         | 42.5                  | 22.7             | 0.34        | < 0.05                    | 8.77                      | < 0.49                     | 60.6                      |
| 11/19/2015     | 44.9                | < 0.02       | 11.0         | 0.11         | 3.96        | 20.6         | 41.7                  | 23.0             | 0.47        | < 0.05                    | 8.68                      | 0.16                       | 59.3                      |
| 12/1/2015      | 47.3                | < 0.02       | 11.1         | 0.00         | 3.88        | 22.1         | 60.0                  | 20.6             | 0.37        | < 0.05                    | 12.7                      | 0.40                       | 57.5                      |
| 12/9/2015      | 47.8                | < 0.04       | 11.4         | 0.04         | 4.29        | 21.5         | 58.8                  | 20.7             | 0.40        | < 0.05                    | 13.0                      | < 0.61                     | 56.8                      |
| 12/18/2015     | 43.9                | 0.24         | 11.1         | 0.09         | 4.20        | 21.2         | 56.1                  | 21.8             | 0.44        | 0.28                      | 7.40                      | < 0.61                     | 60.3                      |
| 12/22/2015     | 48.0                | < 0.04       | 12.2         | 0.05         | 4.46        | 22.3         | 74.3                  | 22.9             | 0.31        | 0.11                      | 14.0                      | < 0.61                     | 57.7                      |
| 12/29/2015     | 46.1                | < 0.04       | 11.1         | 0.11         | 3.99        | 20.4         | 58.0                  | 24.3             | 0.31        | 0.13                      | 10.3                      | < 0.61                     | 60.2                      |
| 1/6/2016       | 42.3                | < 0.04       | 12.1         | 0.08         | 4.37        | 24.0         | 50.9                  | 23.2             | 0.35        | 0.63                      | 5.34                      | < 0.61                     | 56.5                      |
| 1/13/2016      | 41.7                | < 0.04       | 12.3         | 0.12         | 4.42        | 24.3         | 54.4                  | 24.8             | 0.46        | 0.18                      | 5.91                      | < 0.61                     | 53.9                      |
| 2/10/2016      | 47.9                | < 0.02       | 11.4         | 0.063        | 4.19        | 26.0         | 50.0                  | 22.7             | 0.47        | < 0.05                    | 14.0                      | 3.29                       | 60.7                      |
| 3/10/2016      | 44.2                | < 0.02       | 10.4         | 0.03         | 3.98        | 22.6         | 44.1                  | 18.6             | 0.49        | < 0.05                    | 8.79                      | 1.09                       | 53.6                      |
| 4/7/2016       | 41.5                | < 0.02       | 10.1         | 0.37         | 3.93        | 22.7         | 35.9                  | 18.9             | 0.44        | < 0.025                   | 6.91                      | < 1.23                     | 50.0                      |
| 5/9/2016       | 24.4                | 0.005        | 5.41         | 0.030        | 2.86        | 12.2         | 16.5                  | 5.59             | 0.55        | < 0.025                   | 2.58                      | 0.78                       | 21.1                      |
| 6/14/2016      | 30.6                | < 0.016      | 6.14         | 0.007        | 3.17        | 19.6         | 20.7                  | 9.73             | 0.36        | < 0.05                    | 5.65                      | 4.30                       | 28.1                      |
|                |                     |              |              |              | Well 39     | 99-2-2 (2 m  | Interval <sup>f</sup> | )                |             |                           |                           |                            |                           |
| 9/23/2015      | 52.2                | 0.02         | 11.6         | < 0.01       | 4.14        | 21.9         | 98.5                  | 20.3             | 0.37        | < 0.04                    | 25.0                      | 0.80                       | 59.7                      |
| 9/30/2015      | 52.0                | 0.02         | 11.7         | < 0.01       | 4.12        | 21.1         | 92.3                  | 19.1             | 0.36        | < 0.04                    | 24.7                      | 1.17                       | 59.1                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              | 1            | Metals <sup>a</sup> |             |              |             |                  |             | Ar                        | nions <sup>b</sup> |                            |                           |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|------------------|-------------|---------------------------|--------------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L      | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L)      | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 10/8/2015      | 51.8         | < 0.01       | 11.2         | < 0.01              | 3.86        | 19.8         | 94.4        | 19.9             | 0.33        | < 0.04                    | 25.0               | 0.77                       | 59.4                      |
| 10/14/2015     | 51.1         | < 0.01       | 11.3         | < 0.01              | 3.96        | 21.3         | 84.0        | 20.1             | 0.37        | 0.06                      | 24.9               | 0.88                       | 59.9                      |
| 11/6/2015      | 53.2         | < 0.03       | 12.1         | < 0.008             | 4.48        | 23.0         | 93.2        | 19.7             | 0.35        | < 0.05                    | 24.4               | 0.64                       | 61.8                      |
| 11/19/2015     | 52.1         | < 0.02       | 11.4         | < 0.01              | 4.11        | 20.9         | 89.8        | 18.6             | 0.33        | < 0.05                    | 24.1               | 0.72                       | 58.6                      |
| 12/1/2015      | 50.8         | < 0.02       | 11.2         | < 0.01              | 3.92        | 21.7         | 90.5        | 17.5             | 0.49        | < 0.05                    | 24.6               | 0.32                       | 56.2                      |
| 12/9/2015      | 32.8         | < 0.04       | 9.9          | 0.07                | 4.41        | 21.2         | 33.9        | 22.4             | 0.32        | < 0.05                    | 5.20               | < 0.61                     | 40.6                      |
| 12/18/2015     | 59.3         | < 0.04       | 12.7         | < 0.01              | 4.50        | 22.3         | 123         | 22.1             | 0.47        | < 0.1                     | 27.9               | < 0.61                     | 61.9                      |
| 12/22/2015     | 57.0         | < 0.04       | 12.7         | < 0.01              | 4.54        | 22.0         | 125         | 21.7             | 0.58        | < 0.1                     | 27.6               | 0.64                       | 58.0                      |
| 12/29/2015     | 57.1         | < 0.04       | 12.3         | < 0.01              | 4.21        | 21.9         | 116         | 23.7             | 0.43        | < 0.1                     | 28.1               | < 0.61                     | 59.0                      |
| 1/6/2016       | 56.1         | < 0.04       | 13.1         | < 0.01              | 4.49        | 24.2         | 115         | 22.2             | 0.38        | < 0.1                     | 25.5               | 0.67                       | 59.3                      |
| 1/13/2016      | 52.2         | < 0.04       | 12.4         | < 0.01              | 4.24        | 23.6         | 111         | 21.9             | 0.38        | < 0.1                     | 24.9               | < 0.61                     | 57.2                      |
| 2/10/2016      | 53.6         | < 0.02       | 12.1         | < 0.02              | 4.49        | 26.6         | 79.6        | 20.6             | 0.37        | < 0.05                    | 24.4               | 4.68                       | 59.6                      |
| 3/10/2016      | 47.5         | < 0.02       | 10.5         | < 0.01              | 4.00        | 21.1         | 58.8        | 15.7             | 0.46        | < 0.05                    | 19.1               | 2.87                       | 52.5                      |
| 4/7/2016       | 53.1         | < 0.02       | 11.7         | 0.022               | 4.52        | 27.0         | 61.6        | 18.9             | 0.30        | < 0.025                   | 23.6               | 7.65                       | 58.1                      |
| 5/9/2016       | 29.8         | 0.006        | 6.88         | 0.005               | 3.00        | 13.0         | 30.9        | 6.68             | 0.48        | < 0.025                   | 7.73               | 2.54                       | 28.1                      |
| 6/14/2016      | 39.5         | < 0.016      | 8.27         | < 0.004             | 3.55        | 23.3         | 34.8        | 11.7             | 0.33        | < 0.05                    | 15.5               | 9.90                       | 37.8                      |
|                |              |              |              |                     | Well 399    | -2-3 (0.25   | m Interva   | l <sup>d</sup> ) |             |                           |                    |                            |                           |
| 9/15/2015      | 41.3         | 0.58         | 9.11         | 0.36                | 3.47        | 16.8         | 36.8        | 28.3             | 0.29        | < 0.04                    | 2.89               | 0.78                       | 25.8                      |
| 9/23/2015      | 46.5         | < 0.008      | 10.0         | 0.18                | 3.73        | 18.6         | 52.4        | 25.7             | 0.27        | < 0.04                    | 9.40               | 0.52                       | 38.0                      |
| 9/30/2015      | 42.0         | 0.007        | 9.70         | 0.10                | 4.02        | 19.8         | 47.8        | 24.3             | 0.29        | 0.04                      | 6.88               | 0.64                       | 40.4                      |
| 10/8/2015      | 39.2         | < 0.008      | 9.68         | 0.04                | 4.03        | 20.1         | 48.0        | 24.5             | 0.28        | 0.04                      | 6.63               | 0.63                       | 42.6                      |
| 10/14/2015     | 39.8         | < 0.01       | 9.82         | < 0.01              | 3.93        | 20.4         | 50.0        | 21.3             | 0.25        | < 0.04                    | 9.46               | 0.43                       | 43.9                      |
| 11/6/2015      | 37.0         | < 0.03       | 9.85         | 0.02                | 4.31        | 21.2         | 47.7        | 20.8             | 0.22        | < 0.05                    | 10.5               | < 0.49                     | 45.2                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              | 1            | Metals <sup>a</sup> |             |              |             | Anions <sup>b</sup> |             |                           |               |                            |                           |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|---------------------|-------------|---------------------------|---------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L         | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 11/19/2015     | 38.2         | < 0.02       | 10.2         | 0.06                | 4.26        | 21.5         | 49.5        | 20.7                | 0.28        | < 0.05                    | 12.0          | 0.40                       | 46.8                      |
| 12/1/2015      | 32.7         | < 0.02       | 9.24         | 0.004               | 3.89        | 21.6         | 39.8        | 21.4                | 0.29        | < 0.05                    | 7.03          | 0.24                       | 42.8                      |
| 12/9/2015      | 31.4         | < 0.04       | 9.86         | 0.07                | 4.32        | 21.4         | 33.9        | 22.4                | 0.26        | < 0.05                    | 4.83          | < 0.61                     | 38.9                      |
| 12/22/2015     | 38.7         | < 0.04       | 10.1         | 0.05                | 4.38        | 21.0         | 45.6        | 22.9                | 0.33        | < 0.1                     | 10.1          | < 0.61                     | 46.2                      |
| 12/29/2015     | 36.6         | < 0.04       | 9.73         | 0.02                | 4.06        | 20.0         | 48.8        | 23.1                | 0.35        | < 0.1                     | 11.0          | < 0.61                     | 48.5                      |
| 1/6/2016       | 35.6         | < 0.04       | 10.36        | 0.08                | 4.52        | 23.2         | 42.1        | 23.7                | 0.34        | < 0.1                     | 9.86          | < 0.61                     | 48.8                      |
| 1/13/2016      | 36.2         | < 0.04       | 10.65        | 0.06                | 4.34        | 23.4         | 46.7        | 23.6                | 0.30        | < 0.1                     | 9.97          | < 0.61                     | 45.7                      |
| 2/10/2016      | 38.9         | < 0.02       | 10.5         | 0.030               | 4.41        | 23.5         | 51.5        | 22.8                | 0.42        | < 0.05                    | 12.4          | < 0.61                     | 48.3                      |
| 3/10/2016      | 43.9         | < 0.02       | 10.7         | 0.15                | 4.16        | 22.5         | 46.2        | 22.4                | 0.42        | < 0.05                    | 13.7          | 1.02                       | 47.8                      |
| 4/7/2016       | 39.8         | < 0.02       | 10.4         | 0.13                | 4.11        | 22.9         | 37.4        | 23.7                | 0.49        | < 0.025                   | 8.65          | < 1.23                     | 40.5                      |
| 5/9/2016       | 22.4         | 2.583        | 5.35         | 0.030               | 3.03        | 14.8         | 17.7        | 4.90                | 0.57        | 0.090                     | 2.70          | 1.26                       | 19.3                      |
| 6/14/2016      | 31.4         | < 0.016      | 6.49         | < 0.004             | 3.45        | 18.7         | 22.2        | 9.68                | 0.33        | < 0.05                    | 6.91          | 3.00                       | 25.5                      |
|                |              |              |              |                     | Well 39     | 9-2-3 (2 m   | Interval    | )                   |             |                           |               |                            |                           |
| 9/23/2015      | 52.2         | < 0.01       | 11.5         | < 0.01              | 4.42        | 22.3         | 77.9        | 21.3                | 0.36        | < 0.04                    | 23.1          | 0.84                       | 58.8                      |
| 9/30/2015      | 51.0         | 0.01         | 11.5         | < 0.01              | 4.44        | 22.5         | 72.5        | 21.2                | 0.34        | < 0.04                    | 23.2          | 1.43                       | 59.1                      |
| 10/8/2015      | 50.8         | < 0.01       | 11.4         | < 0.01              | 4.31        | 21.9         | 76.3        | 22.4                | 0.34        | < 0.04                    | 23.5          | 0.99                       | 59.5                      |
| 10/14/2015     | 50.8         | 0.02         | 11.2         | < 0.01              | 4.22        | 21.5         | 64.0        | 21.7                | 0.36        | < 0.04                    | 23.0          | 0.93                       | 59.8                      |
| 11/6/2015      | 52.2         | < 0.03       | 11.9         | < 0.008             | 4.75        | 22.9         | 78.2        | 21.2                | 0.29        | < 0.05                    | 22.6          | 0.78                       | 60.5                      |
| 11/19/2015     | 52.9         | < 0.02       | 11.3         | < 0.01              | 4.33        | 21.9         | 77.9        | 19.5                | 0.32        | < 0.05                    | 22.9          | 0.82                       | 57.9                      |
| 12/1/2015      | 51.3         | < 0.02       | 11.4         | < 0.01              | 4.20        | 22.7         | 81.1        | 19.2                | 0.39        | < 0.05                    | 22.8          | 0.84                       | 57.7                      |
| 12/9/2015      | 51.5         | < 0.04       | 11.7         | < 0.01              | 4.64        | 22.3         | 71.8        | 21.5                | 0.45        | < 0.05                    | 22.7          | 0.88                       | 58.0                      |
| 12/22/2015     | 55.9         | < 0.04       | 12.1         | < 0.01              | 4.67        | 22.7         | 81.6        | 21.1                | 0.36        | < 0.1                     | 24.9          | 0.82                       | 59.2                      |
| 12/29/2015     | 50.4         | < 0.04       | 11.2         | < 0.01              | 4.38        | 21.4         | 72.2        | 22.4                | 0.42        | < 0.1                     | 24.3          | 0.85                       | 62.4                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              | ]            | Metals <sup>a</sup> |             |              |             | Anions <sup>b</sup> |             |                           |               |                            |                           |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|---------------------|-------------|---------------------------|---------------|----------------------------|---------------------------|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L         | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |
| 1/6/2016       | 53.6         | < 0.04       | 12.5         | < 0.01              | 4.79        | 25.0         | 95.5        | 23.3                | 0.41        | < 0.1                     | 25.4          | 0.85                       | 58.7                      |
| 1/13/2016      | 55.2         | < 0.04       | 12.3         | < 0.01              | 4.54        | 24.5         | 90.9        | 22.7                | 0.36        | < 0.1                     | 24.4          | 0.71                       | 57.1                      |
| 2/10/2016      | 52.6         | < 0.02       | 11.8         | < 0.02              | 4.56        | 24.7         | 79.3        | 22.7                | 0.51        | < 0.05                    | 23.2          | 1.11                       | 59.2                      |
| 3/10/2016      | 50.1         | < 0.02       | 11.3         | 0.04                | 4.35        | 24.5         | 59.5        | 19.9                | 0.54        | < 0.05                    | 21.0          | 2.42                       | 55.9                      |
| 4/7/2016       | 51.8         | < 0.02       | 11.6         | 0.015               | 4.71        | 27.6         | 52.7        | 21.6                | 0.31        | < 0.025                   | 22.2          | 5.84                       | 57.6                      |
| 5/9/2016       | 32.9         | 0.003        | 7.65         | < 0.006             | 3.70        | 18.1         | 30.9        | 9.19                | 0.42        | < 0.025                   | 11.1          | 4.57                       | 33.6                      |
| 6/14/2016      | 43.2         | < 0.024      | 9.03         | < 0.006             | 3.76        | 26.4         | 35.9        | 15.7                | 0.36        | < 0.05                    | 18.9          | 9.62                       | 44.2                      |
|                |              |              |              |                     | Well 399    | -1-7 (0.25)  | n Interva   | l <sup>d</sup> )    |             |                           |               |                            |                           |
| 9/15/2015      | 51.8         | < 0.01       | 11.8         | < 0.01              | 4.83        | 22.8         | 49.2        | 21.7                | 0.38        | < 0.04                    | 24.6          | 1.23                       | 61.1                      |
| 9/23/2015      | 50.5         | < 0.01       | 11.7         | < 0.01              | 4.77        | 22.5         | 56.6        | 21.7                | 0.36        | < 0.04                    | 24.4          | 1.06                       | 60.3                      |
| 9/30/2015      | 52.1         | 0.02         | 11.9         | < 0.01              | 4.86        | 22.9         | 49.2        | 21.8                | 0.36        | < 0.04                    | 24.2          | 1.45                       | 59.6                      |
| 10/8/2015      | 51.8         | < 0.01       | 11.8         | < 0.01              | 4.90        | 22.1         | 50.4        | 23.3                | 0.36        | < 0.04                    | 24.5          | 0.82                       | 60.7                      |
| 10/14/2015     | 51.1         | < 0.01       | 11.7         | < 0.01              | 4.53        | 22.1         | 53.5        | 22.1                | 0.38        | < 0.04                    | 24.8          | 1.16                       | 61.0                      |
| 11/6/2015      | 51.2         | < 0.03       | 11.9         | < 0.008             | 5.07        | 23.0         | 52.4        | 21.2                | 0.31        | < 0.05                    | 23.9          | 0.84                       | 62.9                      |
| 11/16/2015     | 50.7         | < 0.04       | 11.6         | < 0.01              | 8.76        | 23.0         | 49.7        | 21.5                | 0.55        | < 0.05                    | 23.5          | 0.93                       | 61.8                      |
| 11/19/2015     | 51.4         | < 0.02       | 11.6         | < 0.01              | 4.84        | 22.2         | 50.5        | 20.5                | 0.35        | < 0.05                    | 23.6          | 0.82                       | 60.2                      |
| 12/1/2015      | 52.3         | 0.03         | 11.9         | < 0.01              | 4.81        | 24.0         | 54.3        | 20.5                | 0.42        | < 0.05                    | 24.1          | 0.92                       | 59.4                      |
| 12/9/2015      | 55.2         | < 0.04       | 12.7         | < 0.01              | 5.18        | 23.7         | 50.3        | 23.4                | 0.44        | < 0.05                    | 25.5          | 1.07                       | 56.7                      |
| 12/16/2015     | 53.5         | < 0.04       | 12.5         | < 0.01              | 5.24        | 23.4         | 51.0        | 23.2                | 0.38        | < 0.05                    | 26.1          | 2.03                       | 56.1                      |
| 12/22/2015     | 56.9         | < 0.04       | 12.7         | < 0.01              | 5.12        | 24.4         | 45.2        | 22.8                | 0.40        | < 0.1                     | 26.6          | 4.92                       | 58.0                      |
| 12/29/2015     | 50.1         | < 0.04       | 11.6         | < 0.01              | 4.66        | 23.4         | 39.3        | 22.5                | 0.45        | < 0.1                     | 25.4          | 9.14                       | 60.5                      |
| 1/6/2016       | 54.8         | < 0.04       | 12.9         | < 0.01              | 5.28        | 28.8         | 30.1        | 22.6                | 0.42        | < 0.1                     | 24.2          | 12.6                       | 60.5                      |
| 1/13/2016      | 54.4         | < 0.04       | 12.6         | < 0.01              | 5.14        | 28.5         | 28.6        | 22.4                | 0.41        | < 0.1                     | 24.0          | 16.3                       | 57.8                      |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              | Metals <sup>a</sup> |              |              |             |              |                       |             | Anions <sup>b</sup> |                           |               |                            |                           |  |
|----------------|--------------|---------------------|--------------|--------------|-------------|--------------|-----------------------|-------------|---------------------|---------------------------|---------------|----------------------------|---------------------------|--|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L)        | Mg<br>(mg/L) | Mn<br>(mg/L) | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L)           | Cl<br>(mg/L | F<br>(mg/L)         | NO <sub>2</sub><br>(mg/L) | NO3<br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |  |
| 2/10/2016      | 53.6         | < 0.02              | 12.3         | < 0.02       | 5.30        | 35.6         | 20.1                  | 22.2        | 0.29                | < 0.05                    | 23.3          | 31.2                       | 58.4                      |  |
| 3/10/2016      | 54.1         | < 0.02              | 12.4         | < 0.01       | 5.17        | 33.2         | 28.8                  | 21.8        | 0.38                | < 0.05                    | 23.8          | 20.8                       | 60.7                      |  |
| 4/7/2016       | 52.4         | < 0.02              | 11.9         | < 0.01       | 5.24        | 35.0         | 21.5                  | 22.1        | 0.23                | < 0.025                   | 24.2          | 25.0                       | 57.5                      |  |
| 5/9/2016       | 47.9         | 0.003               | 12.3         | < 0.01       | 5.60        | 46.2         | 20.5                  | 19.7        | 0.23                | < 0.025                   | 26.1          | 35.8                       | 57.8                      |  |
| 6/14/2016      | 48.4         | < 0.04              | 10.4         | < 0.01       | 4.87        | 43.0         | 15.1                  | 23.0        | 0.34                | < 0.05                    | 26.8          | 28.4                       | 57.1                      |  |
|                |              |                     |              |              | Well 39     | 9-1-7 (2 m   | Interval <sup>f</sup> | )           |                     |                           |               |                            |                           |  |
| 9/23/2015      | 53.2         | < 0.01              | 11.9         | < 0.01       | 4.84        | 22.7         | 56.2                  | 21.8        | 0.39                | < 0.04                    | 24.5          | 1.10                       | 60.5                      |  |
| 9/30/2015      | 50.6         | < 0.01              | 11.7         | < 0.01       | 4.81        | 22.6         | 51.6                  | 21.9        | 0.38                | < 0.04                    | 24.3          | 1.35                       | 60.3                      |  |
| 10/8/2015      | 51.1         | < 0.01              | 12.0         | < 0.01       | 4.68        | 22.5         | 49.4                  | 23.3        | 0.37                | < 0.04                    | 24.6          | 1.05                       | 60.3                      |  |
| 10/14/2015     | 50.8         | < 0.01              | 11.6         | < 0.01       | 4.48        | 21.7         | 50.1                  | 21.9        | 0.36                | < 0.04                    | 24.6          | 0.98                       | 61.1                      |  |
| 11/6/2015      | 52.1         | < 0.03              | 12.1         | < 0.008      | 5.12        | 23.2         | 51.3                  | 21.1        | 0.33                | < 0.05                    | 23.5          | 0.82                       | 62.3                      |  |
| 11/16/2015     | 51.9         | < 0.04              | 11.7         | < 0.01       | 8.75        | 23.4         | 50.5                  | 20.8        | 0.35                | < 0.05                    | 23.1          | 1.03                       | 60.2                      |  |
| 11/19/2015     | 53.3         | < 0.02              | 11.7         | < 0.01       | 4.77        | 22.4         | 50.5                  | 20.7        | 0.34                | < 0.05                    | 23.8          | 0.94                       | 60.1                      |  |
| 12/1/2015      | 50.9         | 0.02                | 11.8         | < 0.01       | 4.63        | 23.3         | 54.5                  | 20.7        | 0.37                | < 0.05                    | 25.1          | 0.84                       | 58.8                      |  |
| 12/9/2015      | 55.6         | < 0.04              | 12.7         | < 0.01       | 5.20        | 23.8         | 49.5                  | 23.4        | 0.48                | < 0.05                    | 25.9          | 1.08                       | 57.3                      |  |
| 12/16/2015     | 55.1         | < 0.04              | 12.5         | < 0.01       | 5.22        | 23.6         | 52.1                  | 23.3        | 0.43                | < 0.05                    | 24.8          | 1.99                       | 56.4                      |  |
| 12/22/2015     | 56.3         | < 0.04              | 12.6         | < 0.01       | 5.09        | 24.4         | 45.6                  | 22.9        | 0.41                | < 0.1                     | 26.6          | 4.78                       | 57.6                      |  |
| 12/29/2015     | 54.0         | < 0.04              | 11.9         | < 0.01       | 4.88        | 24.4         | 38.5                  | 22.8        | 0.74                | < 0.1                     | 25.4          | 9.49                       | 59.6                      |  |
| 1/6/2016       | 54.9         | < 0.04              | 12.6         | < 0.01       | 5.14        | 28.2         | 30.1                  | 22.1        | 0.41                | < 0.1                     | 23.5          | 12.4                       | 54.6                      |  |
| 1/13/2016      | 54.5         | < 0.04              | 12.5         | < 0.01       | 5.20        | 28.6         | 28.9                  | 22.4        | 0.25                | < 0.1                     | 23.9          | 15.7                       | 56.8                      |  |
| 2/10/2016      | 53.9         | < 0.02              | 12.4         | < 0.02       | 5.29        | 36.4         | 19.5                  | 22.2        | 0.28                | < 0.05                    | 26.2          | 32.3                       | 57.8                      |  |
| 3/10/2016      | 54.8         | < 0.02              | 12.4         | < 0.01       | 5.13        | 32.9         | 26.9                  | 21.8        | 0.25                | < 0.05                    | 24.7          | 21.0                       | 59.5                      |  |
| 4/7/2016       | 52.7         | 0.17                | 12.0         | < 0.01       | 5.26        | 35.6         | 22.1                  | 21.9        | 0.26                | < 0.025                   | 25.1          | 25.1                       | 59.5                      |  |

 Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

Table C-8. Metals and Anion Results for Selected Monitoring Wells Downgradient of the 300-FF-5 Operable Unit Stage A Area

|                |              |              |              | Metals <sup>a</sup> |             |              |             | Anions <sup>b</sup> |             |                           |                           |                            |                           |  |  |
|----------------|--------------|--------------|--------------|---------------------|-------------|--------------|-------------|---------------------|-------------|---------------------------|---------------------------|----------------------------|---------------------------|--|--|
| Sample<br>Date | Ca<br>(mg/L) | Fe<br>(mg/L) | Mg<br>(mg/L) | Mn<br>(mg/L)        | K<br>(mg/L) | Na<br>(mg/L) | U<br>(µg/L) | Cl<br>(mg/L         | F<br>(mg/L) | NO <sub>2</sub><br>(mg/L) | NO <sub>3</sub><br>(mg/L) | PO4 <sup>c</sup><br>(mg/L) | SO <sub>4</sub><br>(mg/L) |  |  |
| 5/9/2016       | 48.9         | 0.014        | 12.3         | < 0.01              | 5.48        | 46.6         | 19.4        | 19.7                | 0.23        | < 0.025                   | 26.1                      | 37.7                       | 58.6                      |  |  |
| 6/14/2016      | 48.3         | < 0.04       | 10.7         | < 0.01              | 5.01        | 42.5         | 15.9        | 23.1                | 0.32        | < 0.05                    | 27.4                      | 28.7                       | 57.5                      |  |  |

Data provided by Pacific Northwest National Laboratory. These data are preliminary, pending completion of the quality control process.

a. EPA Method 6020.

b. EPA Method 300.

c. Measured as total phosphorus using inductively coupled plasma optical emission spectrometry.

d. The 0.25 m interval is a sample collected 0.25 m below the top of the well screen.

e. The bottom interval is a sample collected at the bottom of the well screen.

f. The 2 m interval is a sample collected 2 m below the top of the well screen.

Ca = calcium

C-68

- Cl = chloride
- EPA = U.S. Environmental Protection Agency
- F = fluoride
- Fe = iron
- K = potassium
- Mg = magnesium
- Mn = manganese
- Na = sodium
- $NO_2 = nitrite$
- $NO_3 = nitrate$
- $PO_4 = phosphate$
- SO<sub>4</sub> = sulfate
- U = uranium

## Appendix D

## Field Measurements for Enhanced Attenuation Stage A Monitoring Wells
## Contents

| D1 | Data from Data LoggersD-1                       |
|----|-------------------------------------------------|
| D2 | Data from the Automated Water Level NetworkD-16 |

## Figures

| Figure D-1.  | Water Level Measurements for Well 399-1-70                   | D-1  |
|--------------|--------------------------------------------------------------|------|
| Figure D-2.  | Water Level Measurements for Well 399-1-76                   | D-2  |
| Figure D-3.  | Water Level Measurements for Well 399-1-80                   | D-2  |
| Figure D-4.  | Water Level Measurements for Well 399-1-82                   | D-3  |
| Figure D-5.  | Water Level Measurements for Well 399-1-84                   | D-3  |
| Figure D-6.  | Water Level Measurements for Well 399-1-86                   | D-4  |
| Figure D-7.  | Specific Conductivity Measurements for Well 399-1-70         | D-4  |
| Figure D-8.  | Specific Conductivity Measurements for Well 399-1-76         | D-5  |
| Figure D-9.  | Specific Conductivity Measurements for Well 399-1-80         | D-5  |
| Figure D-10. | Specific Conductivity Measurements for Well 399-1-82         | D-6  |
| Figure D-11. | Specific Conductivity Measurements for Well 399-1-84         | D-6  |
| Figure D-12. | Specific Conductivity Measurements for Well 399-1-86         | D-7  |
| Figure D-13. | Temperature Measurements for Well 399-1-70                   | D-7  |
| Figure D-14. | Temperature Measurements for Well 399-1-76                   | D-8  |
| Figure D-15. | Temperature Measurements for Well 399-1-80                   | D-8  |
| Figure D-16. | Temperature Measurements for Well 399-1-82                   | D-9  |
| Figure D-17. | Temperature Measurements for Well 399-1-84                   | D-9  |
| Figure D-18. | Temperature Measurements for Well 399-1-86                   | D-10 |
| Figure D-19. | pH Measurements for Well 399-1-70                            | D-10 |
| Figure D-20. | pH Measurements for Well 399-1-76                            | D-11 |
| Figure D-21. | pH Measurements for Well 399-1-80                            | D-11 |
| Figure D-22. | pH Measurements for Well 399-1-82                            | D-12 |
| Figure D-23. | pH Measurements for Well 399-1-84                            | D-12 |
| Figure D-24. | pH Measurements for Well 399-1-86                            | D-13 |
| Figure D-25. | Oxidation/Reduction Potential Measurements for Well 399-1-70 | D-13 |
| Figure D-26. | Oxidation/Reduction Potential Measurements for Well 399-1-76 | D-14 |
| Figure D-27. | Oxidation/Reduction Potential Measurements for Well 399-1-80 | D-14 |
| Figure D-28. | Oxidation/Reduction Potential Measurements for Well 399-1-82 | D-15 |
| Figure D-29. | Oxidation/Reduction Potential Measurements for Well 399-1-84 | D-15 |
| Figure D-30. | Oxidation/Reduction Potential Measurements for Well 399-1-86 | D-16 |

## D1 Data from Data Loggers

Automated groundwater measurements were collected using data loggers installed in six aquifer monitoring wells (399-1-70, 399-1-76, 399-1-80, 399-1-82, 399-1-84, and 399-1-86) at the Stage A enhanced attenuation area. The data loggers monitored water level and field parameters (specific conductivity, temperature, pH, and oxidation-reduction potential) every 30 minutes from September 11 to December 16, 2015 (Figures D-1 through D-30). The locations of the wells are shown on Figure 3-4. The data logger data presented in this appendix are provided on the accompanying CD as Supporting Information D-1.



Figure D-1. Water Level Measurements for Well 399-1-70



Figure D-2. Water Level Measurements for Well 399-1-76



Figure D-3. Water Level Measurements for Well 399-1-80



Figure D-4. Water Level Measurements for Well 399-1-82



Figure D-5. Water Level Measurements for Well 399-1-84



Figure D-6. Water Level Measurements for Well 399-1-86



Figure D-7. Specific Conductivity Measurements for Well 399-1-70







Figure D-9. Specific Conductivity Measurements for Well 399-1-80



Figure D-10. Specific Conductivity Measurements for Well 399-1-82



Figure D-11. Specific Conductivity Measurements for Well 399-1-84



Figure D-12. Specific Conductivity Measurements for Well 399-1-86



Figure D-13. Temperature Measurements for Well 399-1-70



Figure D-14. Temperature Measurements for Well 399-1-76



Figure D-15. Temperature Measurements for Well 399-1-80







Figure D-17. Temperature Measurements for Well 399-1-84



Figure D-18. Temperature Measurements for Well 399-1-86



Figure D-19. pH Measurements for Well 399-1-70



Figure D-20. pH Measurements for Well 399-1-76



Figure D-21. pH Measurements for Well 399-1-80



Figure D-22. pH Measurements for Well 399-1-82



Figure D-23. pH Measurements for Well 399-1-84







Figure D-25. Oxidation/Reduction Potential Measurements for Well 399-1-70



Figure D-26. Oxidation/Reduction Potential Measurements for Well 399-1-76



Figure D-27. Oxidation/Reduction Potential Measurements for Well 399-1-80



Figure D-28. Oxidation/Reduction Potential Measurements for Well 399-1-82



Figure D-29. Oxidation/Reduction Potential Measurements for Well 399-1-84



Figure D-30. Oxidation/Reduction Potential Measurements for Well 399-1-86

## D2 Data from the Automated Water Level Network

Automated water level measurements were collected from six groundwater wells (399-1-7, 399-1-12, 399-1-16A, 399-1-23, 399-2-2, and 399-8-1) around the Stage A enhanced attenuation area that are part of the automated water level network (AWLN) in the 300 Area. The AWLN logs water levels every 15 minutes. During the Stage A enhanced attenuation operations, specific conductivity and temperature also were logged in these wells. The locations of the AWLN wells are shown on Figure 3-5. The AWLN data are provided on the accompanying CD as Supporting Information D-2.

## Appendix E

# Mixing Skid Analytical Data

## Contents

| E1 | Infiltration Skid Analytical Data E- | 1 |
|----|--------------------------------------|---|
| E2 | Injection Skid Analytical Data E     | 4 |
|    | Tables                               |   |

| Table E-1. | Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A<br>Infiltration Skid Samples | E-2 |
|------------|------------------------------------------------------------------------------------------------------|-----|
| Table E-2. | Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Injection Skid Samples       | E-5 |

## E1 Infiltration Skid Analytical Data

Table E-1 contains the analytical results for a Columbia River sample collected prior to mixing with polyphosphate chemicals and for infiltration solution samples collected at the start of infiltration and once daily thereafter for each day of treatment. The samples were analyzed at an offsite laboratory for carbonate and bicarbonate alkalinity, calcium, magnesium, potassium, sodium, chloride, phosphate, and sulfate.

| Sample                 | Sample | Alk<br>(EPA Metho | calinity<br>d 310.1) in μg/L | N              | letals (EPA Me  | thod 6020) in μ | g/L         | Anions (E | PA Method 300) | in μg/L  |
|------------------------|--------|-------------------|------------------------------|----------------|-----------------|-----------------|-------------|-----------|----------------|----------|
| Date                   | Number | Carbonate         | Bicarbonate                  | Calcium        | Magnesium       | Potassium       | Sodium      | Chloride  | Phosphate      | Sulfate  |
|                        |        |                   | ]                            | Filtered Colun | nbia River Wat  | er (Mixing Wat  | er)         |           |                |          |
| 11/7/2015              | B32JN0 | 540 U             | 55,000                       | 19,300         | 4,280           | 795 B           | 1700        |           |                |          |
| 11/7/2015              | B32JN1 |                   |                              |                |                 |                 |             | 870 D     | 251 UN         | 10,000 D |
|                        |        |                   |                              | Infiltrati     | on Solution (Da | ily Samples)    |             |           |                |          |
| 11/7/2015              | B32L04 | 5,400 U           | 3,780,000 D                  | 15,300         | 3,950           | 2,380,000 D     | 2,780,000 D |           |                |          |
| 11/7/2015<br>11/8/2015 | B32L05 |                   |                              |                |                 |                 |             | 50,000 U  | 12,300,000 D   | 63,000 U |
|                        | B32L07 | 5,400 U           | 1,780,000 D                  | 15,900         | 3,990           | 1,110,000 D     | 1,440,000 D |           |                |          |
| 11/8/2015              | B32L08 |                   |                              |                |                 |                 |             | 50,000 U  | 4,910,000 D    | 63,000 U |
| 11/0/2015              | B32L54 | 5,400 U           | 1,800,000 D                  | 15,200         | 3,970           | 981,000 D       | 1,270,000 D |           |                |          |
|                        | B32L55 |                   |                              |                |                 |                 |             | 50,000 U  | 4,910,000 D    | 63,000 U |
| 11/0/2015              | B32L10 | 5,400 U           | 1,640,000 D                  | 16,500         | 4,070           | 879,000 D       | 1,170,000 D |           |                |          |
| 11/9/2015              | B32L11 |                   |                              |                |                 |                 |             | 50,000 U  | 4,600,000 D    | 63,000 U |
| 11/10/2015             | B32L13 | 5,400 U           | 1,760,000 D                  | 15,200 BD      | 3,420 BD        | 1,020,000 D     | 1,380,000 D |           |                |          |
| 11/10/2013             | B32L14 |                   |                              |                |                 |                 |             | 50,000 U  | 4,910,000 D    | 63,000 U |
| 11/11/2015             | B32L16 | 5,400 U           | 1,690,000 D                  | 17,800 BD      | 3,850 BD        | 1,150,000 D     | 1,420,000 D |           |                |          |
| 11/11/2013             | B32L17 |                   |                              |                |                 |                 |             | 50,000 U  | 4,910,000 D    | 63,000 U |
| 11/12/2015             | B33KX6 | 5,400 U           | 1,770,000 D                  | 15,900 BD      | 3,480 BD        | 1,010,000 D     | 1,270,000 D |           |                |          |
| 11/12/2013             | B33KX7 |                   |                              |                |                 |                 |             | 50,000 U  | 4,910,000 D    | 63,000 U |
| 11/14/2015             | B33KX8 | 5,400 U           | 1,900,000                    | 20,100 D       | 4,590 BD        | 1,350,000 D     | 1,620,000 D |           |                |          |
| 11/14/2015             | B33KX9 |                   |                              |                |                 |                 |             | 50,000 U  | 5,520,000 D    | 63,000 U |

 Table E-1. Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Infiltration Skid Samples

Table E-1. Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Infiltration Skid Samples

| Sample     | Sample | All<br>(EPA Metho | xalinity<br>od 310.1) in μg/L | N        | Ietals (EPA Me | thod 6020) in µ | g/L         | Anions (E | PA Method 300) | in μg/L  |
|------------|--------|-------------------|-------------------------------|----------|----------------|-----------------|-------------|-----------|----------------|----------|
| Date       | Number | Carbonate         | Bicarbonate                   | Calcium  | Magnesium      | Potassium       | Sodium      | Chloride  | Phosphate      | Sulfate  |
| 11/15/2015 | B33KY0 | 5,400 U           | 1,770,000                     | 29,400 D | 4,550 BD       | 1,170,000 D     | 1,420,000 D |           |                |          |
| 11/15/2015 | B33KY1 |                   |                               |          |                |                 |             | 50,000 U  | 5,210,000 D    | 63,000 U |

-- = not applicable

EPA = U.S. Environmental Protection Agency

Laboratory Qualifiers:

B = The analyte was detected at a value less than the contract required detection limit, but greater than or equal to the instrument detection limit/maximum detection limit (as appropriate).

D = Analyte was reported at a secondary dilution factor.

N = Spike and/or spike duplicate sample recovery is outside control limits.

U = Undetected.

## E2 Injection Skid Analytical Data

Table E-2 contains the analytical results for a Columbia River sample collected prior to mixing with polyphosphate chemicals and for injection solution samples collected at the start of injection and once daily thereafter for each day of treatment. The samples were analyzed at an offsite laboratory for carbonate and bicarbonate alkalinity, calcium, magnesium, potassium, sodium, chloride, phosphate, and sulfate.

| Sample                                       | Sample | Alka<br>(EPA Met<br>in J | llinity<br>thod 310.1)<br>µg/L | М               | etals (EPA Met   | hod 6020) in µg   | ;/L         | Anions (I | EPA Method 300 | ) in µg/L |
|----------------------------------------------|--------|--------------------------|--------------------------------|-----------------|------------------|-------------------|-------------|-----------|----------------|-----------|
| Date                                         | Number | Carbonate                | Bicarbonate                    | Calcium         | Magnesium        | Potassium         | Sodium      | Chloride  | Phosphate      | Sulfate   |
| Filtered Columbia River Water (Mixing Water) |        |                          |                                |                 |                  |                   |             |           |                |           |
| 11/6/2015                                    | B32JM7 | 540 U                    | 58,000                         | 22,100          | 4,730            | 2,530 B           | 3,160       |           |                |           |
| 11/0/2013                                    | B32JM8 |                          |                                |                 |                  |                   |             | 850 D     | 251 U          | 11,000 D  |
|                                              |        |                          |                                | Aquifer Injec   | tion Solution (E | Daily Samples)    |             |           |                |           |
| 11/6/2015                                    | B32KX6 | 5,400 U                  | 2,960,000 D                    | 18,300          | 4,090            | 1,560,000 D       | 1,810,000 D |           |                |           |
| 11/0/2013                                    | B32KX7 |                          |                                |                 |                  |                   |             | 50,000 U  | 8,590,000 D    | 63,000 U  |
| 11/0/2015                                    | B32KX9 | 5,400 U                  | 2,830,000 D                    | 17,200          | 3,890            | 1,480,000 D       | 1,830,000 D |           |                |           |
| 11/9/2013                                    | B32KY0 |                          |                                |                 |                  |                   |             | 50,000 U  | 8,280,000 D    | 63,000 U  |
| 11/16/2015*                                  | B32L01 | 5,400 U                  | 2,930,000                      | 18,200 BD       | 4,070 BD         | 1,970,000 D       | 2,260,000 D |           |                |           |
| 11/10/2013*                                  | B32L02 |                          |                                |                 |                  |                   |             | 50,000 U  | 8,890,000 DN   | 63,000 U  |
|                                              |        |                          | Periodic                       | ally Rewetted Z | Zone Injection S | Solution (Daily S | Samples)    |           | •              |           |
| 11/17/2015                                   | B33KY4 | 5,400 U                  | 2,830,000                      | 17,900 BD       | 4,060 BD         | 2,060,000 D       | 2,370,000 D |           |                |           |
| 11/1//2015                                   | B33KY5 |                          |                                |                 |                  |                   |             | 50,000 U  | 8,280,000 DN   | 63,000 U  |
| 11/19/2015                                   | B32L56 | 5,400 U                  | 2,950,000                      | 18,500 BD       | 4,010 BD         | 1,920,000 D       | 2,200,000 D |           |                |           |
| 11/18/2015                                   | B32L57 |                          |                                |                 |                  |                   |             | 50,000 U  | 8,590,000 D    | 63,000 U  |

Table E-2. Alkalinity, Metal, and Anion Results for 300-FF-5 Operable Unit Stage A Injection Skid Samples

\* The sample collected on November 16, 2015 represents both the aquifer injection and the periodically rewetted zone injection solution on that day of operation.

-- = not applicable

EPA = U.S. Environmental Protection Agency

Laboratory Qualifiers:

- B = The analyte was detected at a value less than the contract required detection limit, but greater than or equal to the instrument detection limit/maximum detection limit (as appropriate).
- D = Analyte was reported at a secondary dilution factor.
- N = Spike and/or spike duplicate sample recovery is outside control limits.
- U = Undetected.

# Appendix F

Electrical Resistivity Tomography Report

## F Electrical Resistivity Tomography Report

Electrical resistivity tomography (ERT) was used to evaluate the performance of polyphosphate solution infiltration during implementation of the Stage A enhanced attenuation (EA) remedy. The solution changes the electrical conductivity of the vadose zone as it migrates laterally and vertically. ERT was used to image the spatial and temporal distribution of the change in vadose zone electrical conductivity caused by solution migration. ERT monitoring was conducted by Pacific Northwest National Laboratory (PNNL) along two transects extending east-west and north-south across the Stage A EA area (Figure 2-5).

This appendix provides the report prepared by PNNL to document the ERT imaging operation and the interpretation of the imaging results: PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography.* 

PNNL-SA-25232



Proudly Operated by Battelle Since 1965

# Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography

February 2016

TC Johnson JN Thomle



Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: <u>orders@ntis.gov</u> <http://www.ntis.gov/about/form.aspx> Online ordering: http://www.ntis.gov



# Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography

TC Johnson JM Thomle

February 2016

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352
### Summary

The Hanford Site 300 Area lies adjacent to the Columbia River, approximately 5 km north of Richland, WA. Past waste disposal practices in the 300 Area resulted in vadose zone uranium contamination beneath former infiltration ponds and trenches. Stage-driven water table fluctuations and river water intrusion facilitate mobilization of uranium from contaminated sediments in the periodically rewetted zone (PRZ), thereby raising groundwater uranium concentrations above the maximum allowable contaminant level for uranium. On November 6 through December 18, 2015, CH2M Hill Plateau Remediation Company conducted an in situ uranium sequestration test by applying a phosphate amendment to a select region of the 300 Area vadose zone and PRZ. In addition to direct injections into the PRZ, amendment was infiltrated into the vadose zone using a near-surface infiltration system. Amendment application through the infiltration system occurred continuously over a 10-day period from November 6 through November 15, 2015. Real-time electrical resistivity tomography (ERT) was used to evaluate amendment delivery performance by imaging the spatial and temporal distribution of the change in vadose zone electrical conductivity caused by amendment migration. ERT imaging surveys were conducted at 12-minute intervals and reported via website in near real time. Monitoring was conducted along two transects extending 89.9 m (295 ft) and 70.1 m (230 ft) respectively within the treatment zone. This report documents the ERT imaging operations and interpretation of imaging results in terms of delivery system performance, amendment migration velocity, and overall amendment distribution within the treatment area. Based on the interpretation, vertical migration rates appear to have ranged from 0.75 to 3.00 m/d. Assuming conservative amendment transport, the image analysis shows amendment to have reached the water table throughout, and therefore infiltrated the vadose zone, in no more than 7 days after the start of infiltration, 3 days prior to the end of infiltration injections (Figure S.1). Although application rates through the infiltration system appear to have been variable, image results suggest complete amendment coverage throughout the vadose beneath each ERT transect, with the caveat that resolution limitations may have disabled the capability to detect small (less than  $\sim 1 \text{ m}^3$ ) regions that may not have been treated.



Figure S.1. ERT-based amendment arrival times beneath each of the two ERT imaging transects. The red dots indicate locations where amendment infiltration lines crossed the corresponding ERT

transect. Infiltration operations commenced on Nov.  $6^{th}$  and ceased on Nov.  $15^{th}$ , 2015. The latest arrival times occur at the water table (i.e. ~10 m depth) in approximately 7 days.

iv

# Acknowledgments

This work was funded by the CH2M Hill Plateau Remediation Company under the 300-FF-5 Operable Unit Stage A Uranium Sequestration test.

v

# Acronyms and Abbreviations

| CHPRC | CH2M Hill Plateau Remediation Company |
|-------|---------------------------------------|
| ERT   | electrical resistivity tomography     |
| MPT   | Multiphase Technlogies, LLC           |
| NQA   | Nuclear Quality Assurance             |
| PNNL  | Pacific Northwest National Laboratory |
| PRZ   | periodically rewetted zone            |
| PVC   | polyvinyl chloride                    |
|       |                                       |

vii

# Nomenclature

| $\sigma_{b,t}$ | bulk electrical conductivity at time $t$                             |
|----------------|----------------------------------------------------------------------|
| θ              | porosity                                                             |
| m              | Archie's cementation exponent                                        |
| n              | Archie's saturation exponent                                         |
| $\sigma_{f,t}$ | pore water fluid electrical conductivity at time $t$                 |
| S <sub>t</sub> | saturation at time t                                                 |
| $\sigma_{s,t}$ | pore/grain interface electrical conductivity at time $t$             |
| $S_{pw,t}$     | fraction of saturation attributed to pore water at time $t$          |
| $S_{p,t}$      | fraction of saturation attributed to phosphate amendment at time $t$ |
| $\sigma_{pw}$  | pore water conductivity                                              |
| $\sigma_p$     | phosphate amendment conductivity                                     |
| $\sigma_p$     | phosphate amendment conductivity                                     |

ix

# Contents

| Sum  | mary                                                                      | •••••    |                                                                                        | iii                   |
|------|---------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------|-----------------------|
| Ack  | nowle                                                                     | edgmer   | nts                                                                                    | V                     |
| Acro | onym                                                                      | s and A  | Abbreviations                                                                          | vii                   |
| Non  | nencla                                                                    | ature    |                                                                                        | ix                    |
| 1.0  | Intro                                                                     | oductio  | n                                                                                      | 1                     |
|      | 1.1                                                                       | Site O   | Overview and Background                                                                | 1                     |
|      | 1.2                                                                       | ERT I    | Imaging, Petrophysics, and Image Interpretation                                        | 4                     |
|      |                                                                           | 1.2.1    | Overview                                                                               | 4                     |
|      |                                                                           | 1.2.2    | Relationships between Amendment Concentration, Soil Propert<br>Electrical Conductivity | ies, and Bulk<br>4    |
|      |                                                                           | 1.2.3    | Image Interpretation in the Context of Limited Resolution                              | 5                     |
| 2.0  | Site                                                                      | Layout   | t                                                                                      | 6                     |
|      | 2.1                                                                       | Infiltra | ation Gallery and Wellfield Layout                                                     | 6                     |
|      | 2.2                                                                       | 2D El    | ectrical Resistivity Tomography (ERT) Lines                                            | 7                     |
| 3.0  | ) ERT Operations                                                          |          |                                                                                        |                       |
|      | 3.1                                                                       | Phosp    | hate Treatment Schedule                                                                | 8                     |
|      | 3.2                                                                       | ERT I    | Data Collection Schedule                                                               | 9                     |
|      | 3.3 ERT Data Processing                                                   |          |                                                                                        |                       |
|      | 3.4 Website                                                               |          |                                                                                        |                       |
| 4.0  | ERT                                                                       | T Imagi  | ing Results                                                                            |                       |
|      | 4.1 Baseline ERT Image                                                    |          |                                                                                        |                       |
|      | 4.2 Time Lapse ERT Images                                                 |          |                                                                                        |                       |
| 5.0  | Ima                                                                       | ge Ana   | lysis and Interpretation                                                               |                       |
|      | 5.1 Infiltration Line Performance                                         |          |                                                                                        |                       |
|      | 5.2 Amendment Breakthrough                                                |          |                                                                                        |                       |
| 6.0  | 0 Lessons Learned and Future Recommendations Error! Bookmark not defined. |          |                                                                                        |                       |
|      | 6.1                                                                       | Electr   | ical Safety Error!                                                                     | Bookmark not defined. |
|      | 6.2                                                                       | Boreh    | ole Electrodes                                                                         |                       |
| 7.0  | Refe                                                                      | erences  |                                                                                        |                       |
| App  | endix                                                                     | A Sur    | face Voltages Generated During ERT Operations                                          | A.1                   |
| App  | endix                                                                     | B Bul    | k Conductivity Time-Series Data Format                                                 | B.1                   |
| App  | endix                                                                     | C Rav    | w Data and E4D-Formatted Files                                                         | C.1                   |

# Figures

| Figure 1.1. Hanford Site Location (Peterson et al. 2008). The 300 Area is located in the southeast corner of the Hanford Site, north of Richland, WA                                                                                                                                                                               | 2  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.2. 300 Area Uranium plume at low (December) and high (July) river stages [from (http://higrv.hanford.gov/)].                                                                                                                                                                                                              | 3  |
| Figure 1.3. Conceptual diagram illustrating the effects of limited resolution. Each pixel in the ERT image is the weighted average of the true bulk conductivity over some sampling volume. The size of the sampling volume increases with distance from the electrodes, resulting in a loss of resolution with depth.             | 5  |
| Figure 2.1. The 300 Area Stage-A treatment area layout                                                                                                                                                                                                                                                                             | 6  |
| Figure 2.2. Diagram of buried electrode installation.                                                                                                                                                                                                                                                                              | 7  |
| Figure 2.3. Photograph of ERT line 1 and associated exclusion boundary. The view is standing at the western end (A) and facing the eastern end (A') of line 1 (Figure 2.1).                                                                                                                                                        | 8  |
| Figure 3.1. DAS-1 electrical impedence tomography system on top and Mux-1 on the bottom                                                                                                                                                                                                                                            | 10 |
| Figure 3.2. Autonomous ERT data control and processing flow diagram.                                                                                                                                                                                                                                                               | 11 |
| Figure 3.3. Example of the website used to monitor phosphate infiltration.                                                                                                                                                                                                                                                         | 12 |
| Figure 4.1. Baseline ERT image collected at 6:00 a.m., November 6, 2015: (top) oblique view of bulk conductivity beneath the ERT lines, (middle) cross-section of bulk conductivity beneath line 1 from A-A', (bottom) cross section of bulk conductivity beneath line 2 from B-B'                                                 | 13 |
| Figure 4.2. Observed vs. simulated data misfit histogram.                                                                                                                                                                                                                                                                          | 14 |
| Figure 4.3. Change in bulk conductivity from baseline conditions on operational days 2 through 5. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively.                                                                                                       | 15 |
| Figure 4.4. Change in bulk conductivity from baseline conditions on operational days 6 through 10. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively. Day 10 was the last day of phosphate application through the infiltration system.                    | 16 |
| Figure 4.5. Change in bulk conductivity from baseline conditions on operational days 11 through 15, which are the first 5 days after terminating phosphate application through the infiltration system. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively. | 17 |
| Figure 4.6. Change in bulk conductivity from baseline conditions on operational days 20, 25, 30, and 34. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively.                                                                                                | 18 |
| Figure 5.1. ERT images beneath line 1 at baseline and at operational day 1.5. Infiltration lines circled in white display smaller increases in conductivity, suggesting lower application rates                                                                                                                                    | 19 |
| Figure 5.2. ERT images beneath line 1 at baseline and at operational day 1.5. Infiltration lines circled in white display smaller increases in conductivity, suggesting lower application rates                                                                                                                                    | 20 |
| Figure 5.3. Phosphate saturation as a function of the change in bulk conductivity, at four pore water saturations, and given the values specified in Table 5.1                                                                                                                                                                     | 22 |
| Figure 5.4. Example bulk conductivity breakthrough curves at 20 m (top) and 50 m (bottom) along line 1 (Figures 7-10).                                                                                                                                                                                                             | 23 |

| Figure 5.5. Estimated phosphate amendment arrival time beneath each ERT imaging line, based<br>on a breakthrough magnitude of 0.002 S/m (see white contour line on Figure 4.3 and Figure<br>4.4).                                                                                                                                                                                 | 24 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 5.6. Depth-averaged migration rate estimation, based on the arrival times shown in Figure 5.5.                                                                                                                                                                                                                                                                             | 25 |
| Figure 6.1. (left) Close-up view of stainless steel borehole electrode attached to the outside of 4 in. PVC casing. The red conductors connect to the electrode and extend to the top of the casing. The other conductors attach to electrodes above and below the electrode shown here. (right) Bottom-up view of PVC casing with ERT electrodes being lowered into the borehole | 27 |

## Tables

| Table 3.1. | Uranium sequestration stage a operational summary (SGW-59455 <sup>1</sup> ). | 8  |
|------------|------------------------------------------------------------------------------|----|
| Table 5.1. | Assumed parameters for Eq. (1.2)                                             | 21 |

<sup>&</sup>lt;sup>1</sup> SGW-59455. 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0. CH2M Hill Plateau Remedation Company, Richland, WA (draft report).

## 1.0 Introduction

### 1.1 Site Overview and Background

The Hanford Site is located in Washington State north of the city of Richland. From 1942 to 1988, the primary mission of the Hanford Site was weapons grade plutonium production. During production operations, waste disposal practices left many areas with vadose zone and groundwater contamination (Figure 1.1 and Figure 1.2). The 300 Area was the primary research center and housed fabrication facilities for the uranium fuel rods used in the plutonium production process. Between 1943 and 1975, liquid waste from research and fabrication operations in the 300 Area was disposed in process ponds (north and south). Additional waste from the 300 Area operations was discharged to the subsurface between 1975 and 1985. Much of the sediment contained in the 300 Area process ponds was excavated in the mid-90s and replaced with clean fill in 2004 (DOE-RL-2005-41 2005; Williams et al. 2007). However, uranium contamination persisted deeper in the vadose zone, and is now the primary contamination of concern. Leaching of uranium from contaminated sediments to the water table is largely driven by Columbia River stage levels. As river water enters the periodically rewetted zone (PRZ), uranium leaching from contaminated sediment within the PRZ elevates the aqueous uranium concentrations above the drinking water standard of 30  $\mu$ g/L (Figure 1.2).



Figure 1.1. Hanford Site location (Peterson et al. 2008). The 300 Area is located in the southeast corner of the Hanford Site, north of Richland, WA.



Figure 1.2. 300 Area uranium plume at low (December) and high (July) river stages DOE-RL 2015-07 2015.

In an effort to immobilize uranium contamination in the vadose zone and PRZ, a treatment method was developed using phosphate, which has been shown reduce uranium mobility by forming uranium phosphate precipitates and coating surface phases of uranium with stable mineral phases (Szecsody et al. 2012). On November 6 through November 18, 2015, CH2M Hill Plateau Remediation Company (CHPRC) treated a 0.3 ha (0.75 acre) area, within the 300 Area, which was thought to contain the highest mobile uranium concentrations. The phosphate amendment included a solution of monosodium phosphate and pyrophosphate that was injected directly into the PRZ and upper aquifer through wells, and infiltrated through the vadose zone using buried infiltration lines (see Section 2.1 for the well field and infiltration gallery layout).

Electrical resistivity tomography (ERT), a geophysical imaging method, was selected as one of the methods for monitoring phosphate amendment migration and assessing performance of the infiltration delivery system. ERT was selected because of its ability to remotely image changes in the bulk electrical conductivity caused by the presence of phosphate amendment. ERT uses an array of electrodes to induce electrical current flow within the subsurface, and to measure the resulting electrical potential. These measurements are then processed using a tomographic algorithm to recover, or image, the subsurface electrical conductivity distribution that gave rise to the measurements. Changes in electrical conductivity induced by phosphate amendment were monitored for the duration of treatment operations to help assess amendment delivery, migration, and overall coverage within the vadose zone. Two ERT electrode lines were installed to monitor two cross sections within infiltration gallery. This report describes the

petrophysical underpinnings that connect changes in bulk electrical conductivity to amendment-induced changes in pore fluid conductivity and saturation, the layout of the ERT system within the treatment area, ERT operations, ERT imaging results during monitoring, and the interpretation of the resulting data.

### 1.2 ERT Imaging, Petrophysics, and Image Interpretation

#### 1.2.1 Overview

The objective of ERT is to estimate the bulk electrical conductivity distribution of the subsurface through tomographic imaging. A single ERT measurement is collected by injecting current between a pair of electrodes, and measuring the resulting voltage across several other electrode pairs. Using an array of electrodes, many such measurements are strategically collected to optimize imaging resolution. This set of measurements, termed herein an "ERT survey," is processed using a computationally intensive tomographic inversion algorithm that approximates the subsurface conductivity distribution that gave rise to the measurements. When time-lapse imaging is conducted, surveys are continuously collected and processed to provide a chronological sequence of image frames that illustrate the change in bulk conductivity with time. Subtracting the baseline image (i.e., the pretreatment image in this case) from the time-lapse images reveals the change in bulk conductivity caused by the phosphate amendment, thereby revealing the distribution of amendment in space and time. The time-lapse images may then be analyzed to investigate amendment delivery performance and timing, subject to the resolution limitations of ERT imaging as described below.

#### 1.2.2 Relationships between Amendment Concentration, Soil Properties, and Bulk Electrical Conductivity

In unsaturated sediments, bulk electrical conductivity is governed by porosity, saturation, pore fluid specific conductance, mineral surface conductivity, and pore-space tortuosity as described by Slater and Lesmes 2002:

$$\sigma_{b,t} = \theta^m \sigma_{f,t} S_t^n + \sigma_{s,t}, \tag{1.1}$$

where  $\sigma_{b,t}$  is the bulk electrical conductivity at time t,  $\theta$  is porosity,  $\sigma_{f,t}$  is the pore fluid conductivity at time t,  $S_t^n$  is the saturation at time t, and  $\sigma_{s,t}$  is the surface conductivity at time t, which accounts for conduction along the pore grain interface. For unconsolidated sediments, the cementation factor m is typically near 1.3 and the saturation exponent n is typically near 2.0 for 300 Area vadose zone sediments (Johnson et al. 2010). Introduction of phosphate amendment into the subsurface increases both saturation and pore fluid conductivity (due to the high ionic strength of the amendment), thereby increasing bulk conductivity and providing a target for time-lapse ERT imaging. In this report, it is assumed that the amendment electrical conductivity does not change with time, meaning the amendment transport is conservative over the time scale of the ERT imaging. Assuming that the change in  $\sigma_{s,t}$  with time is insignificant, the change in bulk conductivity caused by the phosphate amendment from some baseline condition at time 0 to time t can be expressed as

$$\Delta \sigma_{b,t} = \theta^m (\sigma_{f,t} S_t^n - \sigma_{f,0} S_0^n). \tag{1.2}$$

Note here that the bulk conductivity distribution at time t,  $\Delta \sigma_{b,t}$ , is estimated through time-lapse ERT imaging. Equation (1.2) demonstrates that although the increase in pore fluid conductivity and saturation caused by the introduction of amendment causes a corresponding increase in bulk conductivity, the change in bulk conductivity alone cannot be used to uniquely determine pore fluid conductivity (and thus amendment concentration) or saturation at a given time without supporting information. However, time-lapse changes in bulk conductivity can be used to estimate the distribution of amendment, and the location and velocity of the amendment wetting front, thereby providing important information concerning the overall performance and timing of amendment delivery.

#### **1.2.3** Image Interpretation in the Context of Limited Resolution

Valid assessment of time-lapse ERT images requires adequate accounting for the effects of limited imaging resolution. ERT data do not provide enough information to uniquely estimate the distribution of subsurface bulk conductivity. This problem is addressed by constraining the ERT imaging algorithm to provide only the spatial heterogeneity that is required to fit the survey data. Consequently, ERT images are a smoothed, or blurry, representation of the true subsurface bulk conductivity. Image smoothing increases, or resolution decreases, with distance from ERT electrodes.

The effects of limited resolution could be equivalently described in terms of the ERT sampling volume. That is, the bulk conductivity of a given point in the ERT image is a weighted average of the true bulk conductivity over some volume surrounding that point. The size of that volume increases with distance from the electrodes. This concept is shown schematically in Figure 1.3.



**Figure 1.3**. Conceptual diagram illustrating the effects of limited resolution. Each pixel in the ERT image is the weighted average of the true bulk conductivity over some sampling volume. The size of the sampling volume increases with distance from the electrodes, resulting in a loss of resolution with depth.

The spatial averaging caused by limited resolution generally causes high values to be under-predicted and low values to be over-predicted in the ERT image, thereby making quantitative analysis based on ERT images dubious. Because of this, all observations, calculations, interpretations, and general conclusions derived from the ERT images must be understood in the context of limited image resolution. In this report, the general uncertainties arising from limited imaging resolution are discussed with each result.

## 2.0 Site Layout

### 2.1 Infiltration Gallery and Wellfield Layout

Figure 2.1 shows a plan view of the phosphate treatment area. The site consisted of 9 injection wells, 13 pairs of monitoring wells, and 44 infiltration lines buried at a depth of 1.8 m (6 ft) to treat a 0.3 ha (0.75 acre) area (Figure 2.1). Injection wells were installed to approximately 50 feet below the ground surface and screened from 20 to 30 ft, and 35 to 45 ft deep. Each pair of monitoring wells consisted of one well for monitoring the PRZ and one for monitoring the aquifer. The wells for monitoring the PRZ were installed to approximately 40 ft below the ground surface and were screened between 30 and 35 ft. The wells for monitoring the aquifer were installed to approximately 50 ft and were screened between 40 and 45 ft.



Figure 2.1. The 300 Area Stage-A treatment area layout.

Injection wells were cased with 6-inch schedule 80 polyvinyl chloride (PVC) pipe. Monitoring wells were cased with 2-inch schedule 40 PVC pipe except for wells 399-1-24, 399-1-25, 399-1-36, and 399-1-37, which were cased with stainless steel. The southern end of each of the 44 drip lines were attached to a

F-24

feeder hose that supplied phosphate amendment to each line. Details concerning the infiltration system design and operation may be found in CHPRC report SGW-59455<sup>a</sup>.

### 2.2 2D Electrical Resistivity Tomography (ERT) Lines

As shown in Figure 2.2, two ERT electrode lines were installed over the treatment area. Line 1, extending from A to A', consisted of 60 electrodes spaced at 1.5 m (5 ft), for a total line length of 89.9 m (295 ft). Line 2, extending from B to B', consisted of 47 electrodes spaced at 1.5, for a total line length of 70.1 m (230 ft). Each electrode consisted of a 1.88 cm (0.75 inch) diameter carbon steel rod, approximately 40.6 cm (16 inches) long.

Each ERT measurement required applying a voltage across a pair of electrodes to induce current flow within the subsurface. This in turn produced a potential distribution on the ground surface (Appendix A) that may have posed a shock hazard under certain circumstances. Two measures were taken to reduce the risk of electric shock to site operators. First, the electrode rods were buried so that the upper end of each electrode was 20 to 30 cm (8 to 12 in.) below ground surface (Figure 2.2). Burying the electrodes reduced the risk of electrical shock by direct contact. Second, a signed exclusion boundary was established around each electrode line, with a minimum distance of 1.8 m (6 ft) to any electrode. The exclusion boundary was administratively secured through Hanford Site lockout-tagout control, which was enforced during ERT operations. Figure 2.3 shows a photograph of line 1 and the exclusion boundary from A to A'.



Figure 2.2. Diagram of buried electrode installation.

<sup>&</sup>lt;sup>a</sup> SGW-59455. 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0. CH2M Hill Plateau Remedation Company, Richland, WA (draft report).



**Figure 2.3**. Photograph of ERT line 1 and associated exclusion boundary. The view is standing at the western end (A) and facing the eastern end (A') of line 1 (Figure 2.1).

## 3.0 ERT Operations

### 3.1 Phosphate Treatment Schedule

Three methods were used to deliver phosphate amendment to the subsurface: 1) direct injection into aquifer wells, 2) direct injection into PRZ wells, and 3) vadose zone infiltration through the infiltration network. Amendment application commenced on the morning of November 6, 2015, using the aquifer injection wells. Infiltration began the next day, November 7, and continued until November 15. The final application included PRZ well injections from November 16 to 18, 2015. Details concerning amendment injections, flow rates, and volumes are provided in Table 3.1.

|             |               |                         |                        | Infiltration Rate | Injection Rate |
|-------------|---------------|-------------------------|------------------------|-------------------|----------------|
| Operational |               | Aquifer Injection       | PRZ Injection          | Achieved          | Achieved       |
| Day         | Date          | (wells) <sup>(a)</sup>  | (wells) <sup>(a)</sup> | (gpm)             | (gpm)          |
| 1           | Nov. 6, 2015  | 1-89, 1-90, 1-91, 1-92, |                        |                   | 300            |
|             |               | 1-93, 1-94              |                        |                   |                |
| 2           | Nov. 7, 2015  |                         |                        | 56                |                |
| 3           | Nov. 8, 2015  |                         |                        | 56                |                |
| 4           | Nov. 9, 2015  | 1-92, 1-93, 1-94, 1-95, |                        | 56                | 300            |
|             |               | 1-96, 1-97              |                        |                   |                |
| 5           | Nov. 10, 2015 |                         |                        | 56                |                |
| 6           | Nov. 11, 2015 |                         |                        | 83                |                |

Table 3.1. Uranium sequestration Stage A operational summary (SGW-59455<sup>a</sup>).

<sup>a</sup> SGW-59455. 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0. CH2M Hill Plateau Remedation Company, Richland, WA (draft report).

|            |                    |                         |                         | Infiltration Rate | Injection Rate |
|------------|--------------------|-------------------------|-------------------------|-------------------|----------------|
| Operationa | ıl                 | Aquifer Injection       | PRZ Injection           | Achieved          | Achieved       |
| Day        | Date               | (wells) <sup>(a)</sup>  | (wells) <sup>(a)</sup>  | (gpm)             | (gpm)          |
| 7          | Nov. 12, 2015      |                         |                         | 80                |                |
| 8          | Nov. 13, 2015      |                         |                         | 80                |                |
| 9          | Nov. 14, 2015      |                         |                         | 80                |                |
| 10         | Nov. 15, 2015      |                         |                         | 80                |                |
| 11         | Nov. 16, 2015      | 1-95, 1-96, 1-97, 1-89, | 1-89, 1-90, 1-91, 1-92, |                   | 300            |
|            |                    | 1-90, 1-91              | 1-93, 1-94              |                   |                |
| 12         | Nov. 17, 2015      |                         | 1-92, 1-93, 1-94, 1-95, |                   | 300            |
|            |                    |                         | 1-96, 1-97              |                   |                |
| 13         | Nov. 18, 2015      |                         | 1-95, 1-96, 1-97, 1-89, |                   | 300            |
|            |                    |                         | 1-90, 1-91              |                   |                |
| (a) All w  | vells begin with " | 399"                    |                         |                   |                |

### 3.2 ERT Data Collection Schedule

The ERT data collection schedule was chosen to balance the tradeoff between adequate spatial and temporal imaging resolution. Using a four-electrode measurement (two current electrodes and two potential electrodes) there are N(N - 1)(N - 2)(N - 3)/8 unique measurements that may be collected during a given survey, where N is the number of electrodes. Collecting all unique measurements is impractical because doing so would require an excessive amount of time between time-lapse images. A subset of measurements was chosen that provided adequate imaging resolution and could be collected fast enough to capture phosphate migration during treatment. Each survey was composed of a set of Wenner and dipole-dipole measurements collected along each line, for a total of 1939 measurements per survey using each of the 108 electrodes comprising lines 1 and 2. An eight-channel Multiphase Technologies (MPT) DAS-1 (http://www.mpt3d.com/das1.html) electrical impedance tomography system was used to collect the data (see Figure 3.1). The measurement sequence was optimized to use each of the eight channels to the extent possible, resulting in a survey time of approximately 11 minutes per time-lapse survey. The data collection system was set to collect a new ERT survey every 12 minutes. Continuous surveying began on November 2, 2015, and continued until December 16, 2015, with the exception of three short periods caused by site power supply interruptions.



Figure 3.1. DAS-1 electrical impedance tomography system on top and Mux-1 on the bottom.

### 3.3 ERT Data Processing

ERT data processing was automated from data collection through database archiving and presentation on a secure website, with the exception of one remote data transfer step. A flow diagram of the processing sequence is shown in Figure 3.2. In the first step, time-lapse surveys were continuously collected on the field data collection system, as described in the previous section. As each survey was completed, that survey was filtered for quality, reformatted, and submitted to a parallel computing system for processing via secured wireless internet connection. This step was completed by the field laptop computer connected to the data collection system. After processing, each time-lapse survey was archived in a database, and each image was submitted to a webserver for visualization on a password protected website. This enabled site operators to visualize amendment distribution in near real time during the treatment operation. The processing time required from the completion of a survey to presentation on the website was a minimum of 3 minutes. The maximum time required for presentation was governed by the data transfer step, which was not automated due to communication issues between the field computer and the parallel computing system housed at Pacific Northwest National Laboratory (PNNL). This issue was not resolved during the monitoring period, and necessitated remote user intervention to complete a manual "drag and drop" data copy.

Rapid turnaround times were facilitated by using dedicated resources on the PNNL parallel computing system for the duration of the experiment. Although 2D measurements were collected (i.e., no cross-line measurements were acquired), the data were inverted in 3D to preserve consistency at the line 1/line 2 intersection. This also facilitated incorporating a metal cased well (399-1-55) into the imaging algorithm that may have influenced field measurements. That well was modeled using the approach described by Johnson and Wellman (2015). All processing was executed using E4D, a high performance ERT imaging code developed at the PNNL (https://e4d.pnnl.gov). E4D has been classified as safety software by PNNL, and is NQA-1 level B qualified for software safety.



Figure 3.2. Autonomous ERT data control and processing flow diagram.

### 3.4 Website

To facilitate near real-time delivery of the ERT images, results were delivered to a password protected website. The website enabled users to animate the time-lapse images from the start of monitoring to the current time to view the estimated distribution of phosphate and the migration of phosphate with time. A screenshot of the website showing lines 1 and 2 at 4:04 p.m. on November 9, 2015, is shown in Figure 3.3. Users could view line 1 or line 2 individually, or view both lines together as shown in Figure 3.3. Users could also download the image frame for a given time step.



Figure 3.3. Example of the website used to monitor phosphate infiltration.

## 4.0 ERT Imaging Results

### 4.1 Baseline ERT Image

The baseline ERT image refers to the image that represents the bulk conductivity distribution prior to phosphate amendment injections. The baseline image is critical because it is subtracted from every timelapse image to reveal only the change in bulk conductivity with time. In this case, that change in bulk conductivity is caused by the increase in saturation and pore fluid conductivity during phosphate application (see Eq. (1.2). The baseline image can also be used to infer geologic structure or other properties related to spatial variations in porosity, saturation, pore fluid conductivity, texture, and mineralogy (see Eq. (1.1).

The baseline image for the time-lapse imaging was collected at 6:00 a.m., November 6, 2015, just prior to the onset of phosphate injection into the saturated zone (Table 3.1). That image is shown in Figure 4.1. Note that prior to the acquisition of the baseline image, the phosphate infiltration system was performance tested by injecting river water into the infiltration lines. Due to the increase in saturation and the likely change in pore water specific conductance, the baseline image shown in Figure 4.1 does not represent native conditions, but does represent conditions well within the range caused by natural precipitation events for the period of September through November (SGW-59455<sup>a</sup>). Areas of elevated bulk conductivity likely result from the infiltration performance test. In Section 5.1, the baseline image is

<sup>&</sup>lt;sup>a</sup> SGW-59455. 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0. CH2M Hill Plateau Remedation Company, Richland, WA (draft report).



compared with a time-lapse image collected approximately 0.5 days after the onset of phosphate application through the infiltration system to provide insight into infiltration system performance.

**Figure 4.1**. Baseline ERT image collected at 6:00 a.m., November 6, 2015: (top) oblique view of bulk conductivity beneath the ERT lines, (middle) cross-section of bulk conductivity beneath line 1 from A-A', (bottom) cross section of bulk conductivity beneath line 2 from B-B'.

Figure 4.2 shows the data misfit histogram for the baseline inversion, which represents the difference between the field ERT measurements and those simulated by the ERT imaging algorithm given the conductivity distribution shown in Figure 4.1. The data misfit is indicative of both field data quality and the ability of the imaging algorithm to match those data and recover the subsurface conductivity distribution. The error distribution for the baseline inversion has a mean of -1.1% and a standard deviation of 2.5%. These values are indicative of high quality, relatively noise-free field data and accurate field data modeling and imaging. Similar results were obtained for each time-lapse inversion.



Figure 4.2. Observed vs. simulated data misfit histogram.

### 4.2 Time Lapse ERT Images

Figure 4.3 through Figure 4.6 show a daily subset of the time-lapse ERT images that were collected from November 6 through December 16, 2015. Figure 4.3 shows the first 5 days of treatment. On day 1, phosphate was injected into the aquifer wells (Table 3.1). Increases in conductivity are evident below the water table beneath both ERT lines. There also appears to be a slight increase in vadose zone conductivity during day 1, which may be an artifact of limited imaging resolution (i.e., image smoothing from the saturated zone).

Phosphate infiltration began on day 2 (November 7, 2015) at a rate of 56 gallons per minute. Figure 4.3 and Figure 4.4 show marked increases in bulk conductivity as the phosphate wetting front moves toward the water table from day 2 to day 10 (November 7 through 15). On day 10, the ERT images display increases in bulk conductivity throughout the unsaturated zone beneath each line, suggesting the presence of phosphate throughout, with the caveat that resolution limitations disable the capability to resolve small regions that may have been left untreated. With the exception of one region on the western end of line 1 and one on the southern end of line 2, the phosphate wetting front appears to have advanced relatively uniformly beneath both lines. There is no evidence of untreated regions beneath either line.

Figure 4.5 and Figure 4.6 show ERT images collected after completion of phosphate application through the infiltration system. These images show bulk conductivity decreasing with time as phosphate drains from the unsaturated zone, starting at the water table and progressing upward. By day 25, the unsaturated zone appears to have reached a relatively steady-state condition of elevated conductivity, suggesting the presence of phosphate in the residual pore water. Increases in conductivity after day 25, particularly near the surface, are likely associated with significant precipitation events that occurred during that period.

The western end line of 1, from approximately 15 to 22 m, displays characteristics diagnostic of coarser grained materials and elevated migration velocities. It is evident from Figure 4.3 that phosphate reached the water table relatively quickly within this region. The relatively low increase in conductivity suggests depressed saturation compared to the upper mid and eastern sections of line 1 from days 2 through 5. Conductivity in the same zone steadily increases from days 6 through 10. All of these observations are consistent with relatively coarse grained, higher porosity materials [Eq. (1.2)].

The southern end of line 2 from approximately 48 to 50 m exhibits relatively depressed increases in conductivity during infiltration, and relatively rapid decreases in conductivity after infiltration injections. The infiltration line performance analysis presented in Section 5.1 suggests phosphate application rates in this region may have been relatively low, resulting in the observed conductivity behavior. Furthermore, inspection of the time-lapse images suggests significant lateral flow in this region above approximately 5 m. These observations support the hypothesis that vertical flow may have been relatively depressed in this zone due to a reduced application rate, as opposed to being caused by geologic heterogeneity. Each of the images in Figure 4.3 through Figure 4.6 display white, gray, and black contour lines at conductivity increases of 0.002, 0.003, and 0.004 S/m, respectively. These are included to aid interpretation of the images in terms of phosphate migration velocity and phosphate arrival time presented in Section 5.



**Figure 4.3**. Change in bulk conductivity from baseline conditions on operational days 2 through 5. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively.



**Figure 4.4**. Change in bulk conductivity from baseline conditions on operational days 6 through 10. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively. Day 10 was the last day of phosphate application through the infiltration system.



**Figure 4.5**. Change in bulk conductivity from baseline conditions on operational days 11 through 15, which are the first 5 days after terminating phosphate application through the infiltration system. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively.



**Figure 4.6**. Change in bulk conductivity from baseline conditions on operational days 20, 25, 30, and 34. The white, gray, and black contour lines represent increases in conductivity of 0.002, 0.003, and 0.004 S/m, respectively.

### 5.0 Image Analysis and Interpretation

### 5.1 Infiltration Line Performance

Changes in conductivity near the infiltration lines, shortly after beginning phosphate application through the infiltration system, can be used to qualitatively investigate the relative application rates of infiltration lines passing beneath the ERT lines. Assuming relatively constant porosity, regions with larger phosphate release rates exhibit larger increases in bulk conductivity [Eq. (1.2)], thereby indicating where more phosphate is being released. Figure 5.1 shows the bulk conductivity beneath line 1 at baseline and at operational day 1.5, approximately 0.5 days after the onset of phosphate application through the infiltration system (Table 3.1). Locations of infiltration lines are shown as red dots on each panel. The baseline survey was collected after the infiltration system performance test. Regions of elevated conductivity in the baseline image suggest elevated saturation resulting from the test, and therefore indicate higher application rates. Those regions are consistent with the conductivity distribution after 0.5 days of infiltration shown in the lower panel of Figure 5.1. Infiltration lines circled in white exhibit lower bulk conductivities at baseline and after 0.5 days of application, and are therefore suspect of depressed flow rates in comparison to the other lines. However, from Figure 4.3 and Figure 4.4, it is apparent that flow rates in these zones were sufficient for adequate treatment, or that low flows in these zones were compensated by lateral flow from adjacent infiltration lines with higher flow rates.

F-36

Figure 5.2 shows bulk conductivity beneath line 2 at baseline and at day 1.5. In this case, there appears to be one infiltration line with low to zero application rate (circled in white). The conductivity beneath the suspect line does not increase after the performance test, or after 0.5 days of application, suggesting a reduced application rate beneath that line, at least where it passes beneath ERT line 2. Time-lapse imaging results collected during infiltration support that conclusion (Figure 4.3 and Figure 4.4). At approximately 48 to 50 m along ERT line 2, the increase in conductivity over time is notably less than the rest of line 2, suggesting lower phosphate saturation. Regardless, the same region does exhibit a significant increase in conductivity down to the water table on day 10. Careful investigation of the progression in conductivity over time shows that full treatment beneath this infiltration line was achieved by lateral flow from adjacent infiltration lines.



Figure 5.1. ERT images beneath line 1 at baseline and at operational day 1.5. Infiltration lines circled in white display smaller increases in conductivity, suggesting lower application rates.



Figure 5.2. ERT images beneath line 1 at baseline and at operational day 1.5. Infiltration lines circled in white display smaller increases in conductivity, suggesting lower application rates.

### 5.2 Amendment Breakthrough

Time-lapse ERT imaging enables phosphate amendment breakthrough curves to be constructed at any point in the image in terms of the change in bulk conductivity. The change in bulk conductivity is related to the change in saturation and pore fluid conductivity induced by introducing phosphate as described by Eq. (1.1). Given the multivariate nature of the change in bulk conductivity, phosphate saturation and/or concentration cannot be uniquely determined from bulk conductivity without additional information. However, bulk conductivity breakthrough curves extracted from the time-lapse ERT images can be used to estimate the phosphate arrival time and migration velocity at a given point in the image. Furthermore, because the ERT images underestimate the true change in conductivity (see Section 1.2.3), they can be used with Eq. (1.2) and a few assumptions to estimate the minimum phosphate saturation at a given point in time.

For example, let total saturation at time *t* be defined by

$$S_t = S_{pw,t} + S_{p,t} \tag{5.1}$$

where  $S_{pw,t}$  is the fraction of the pore space occupied by pore water and  $S_{p,t}$  is the fraction of the pore space occupied by phosphate amendment. Assuming a linear mixing model between pore water and phosphate amendment in terms of fluid conductivity, the pore fluid conductivity at time t is defined by

F-38

$$\sigma_{f,t} = \sigma_{pw} \frac{s_{pw,t}}{s_{pw,t} + s_{p,t}} + \sigma_p \frac{s_{p,t}}{s_{pw,t} + s_{p,t}}$$
(5.2)

where  $\sigma_{pw}$  is the pore water conductivity and  $\sigma_p$  is the conductivity of the phosphate amendment. Substituting Eqs. (5.1) and (5.2) into Eq. (1.2) provides the change in bulk conductivity as a function of phosphate saturation ( $S_{p,t}$ ), assuming all other parameters are known. Table 5.1 contains a list of assumed parameters, and the basis for those assumptions, used in the forthcoming discussion.

| Parameter                            | Value     | Basis                                                                                 |
|--------------------------------------|-----------|---------------------------------------------------------------------------------------|
| Phosphate conductivity $\sigma_{pw}$ | 0.7 S/m   | Approximate average observed from field measurements (CHPRC, personal comm.)          |
| Pore water conductivity $\sigma_p$   | 0.045 S/m | Approximate groundwater conductivity (Wallin et al. 2013)                             |
| Pore water saturation $S_{pw,t}$     | 0.2 – 0.5 | Typical range for coarse-grained Hanford Formation sediments (INTERA, personal comm.) |
| Porosity $\theta$                    | 0.18      | Average value from FS (DOE-RL-2005-41 2005)                                           |
| Cementation exponent m               | 1.3       | (Johnson et al. 2010)                                                                 |
| Saturation exponent n                | 2.0       | (Johnson et al. 2010)                                                                 |

**Table 5.1**. Assumed parameters for Eq. (1.2).

Using the values specified in Table 5.1 with Eq. (1.2), augmented by Eqs. (5.1) and (5.2), phosphate saturation as a function of the change in bulk conductivity is shown in Table 5.1, for four different pore water fractions (0.2, 0.3, 0.4, and 0.5). Figure 4.3 through Figure 4.6 show the change in bulk conductivity beneath each ERT line on 19 different days. Each plot includes contour lines at conductivity increases of 0.002, 0.003, and 0.004 S/m. According to Figure 5.3, the phosphate saturation corresponding to an increase in conductivity of 0.002 S/m is between approximately 4% and 8%, depending on the pore water saturation. Similarly, for an increase of 0.003 S/m, the phosphate saturation is between approximately 6% and 12%. For an increase of 0.004 S/m, the phosphate saturation is between approximately 8% and 15%. However, due to resolution limitations in the ERT images, the change in bulk conductivity shown in each image underestimates the true change in bulk conductivity. Therefore, the phosphate saturations. In other words, phosphate saturations are greater than what is suggested by applying Eq. (1.2) to the ERT images, *assuming the values specified in Table 5.1 are representative*.



Figure 5.3. Phosphate saturation as a function of the change in bulk conductivity, at four pore water saturations, and given the values specified in Table 5.1.

The following analysis assumes that phosphate amendment has reached a point in space when the change in bulk conductivity at that point, as estimated from the ERT images, reaches 0.002 S/m. As discussed above, this corresponds to a minimum phosphate saturation of approximately 4%, contingent on the validity of the parameters specified in Table 5.1. The 0.002 S/m contour line is shown in white on Figure 4.3 through Figure 4.6.

Figure 5.4 shows two examples of bulk conductivity breakthrough curves extracted from the ERT image time series. The upper panel shows breakthrough curves at 10 depths, at 20 m along line 1 (Figure 4.3 through Figure 4.6), which is located within the anomalous fast-flow region at western end of line 1. The lower panel shows breakthrough curves at the same depths, but at 50 m along line 1, which is near the center of the line. Events E1-E3 in each panel denote the beginning of phosphate application through the infiltration system, the increase in phosphate application rate on day 6, November 11, 2015 (Table 3.1), and the conclusion of phosphate infiltration respectively (Table 3.1). The rapid breakthrough and depressed amplitude at 20 m in comparison to 50 m are diagnostic of relatively rapid transport to the water table, and lower saturation of phosphate. The decrease in breakthrough amplitude with depth is partially an artifact of limited imaging resolution. Peak amplitudes appear to decrease with depth, or with distance from the electrodes, because imaging resolution decreases with distance from the electrodes. It is also likely that amplitudes are decreasing with depth due in part to phosphate dilution with native pore water.

F-40

The horizontal line at 0.002 S/m in Figure 5.4 illustrates the position of the bulk conductivity threshold used to estimate phosphate arrival time. The arrival time at each depth is determined by identifying the time at which the corresponding curve intersects the 0.002 S/m threshold. As discussed previously, this determination is conservative, meaning that phosphate arrival time is likely sooner than estimated from the 0.002 S/m threshold. Investigation of Figure 5.4 shows the estimated breakthrough time at 20 m along line 1 is sooner than at 50 m for all depths except 9 and 10 m (i.e., near the water table).

Bulk conductivity time-series, such as those shown in Figure 5.4, were provided with this report in digital format for each ERT imaging mesh element, or "pixel," as described in Appendix B.



Figure 5.4. Example bulk conductivity breakthrough curves at 20 m (top) and 50 m (bottom) along line 1 (Figures 4.3-4.6).
## 5.3 Estimated Amendment Breakthrough Time

By conducting the breakthrough analysis described in the previous sections for each "pixel" in the ERT image sequence, a color-scale map of estimated phosphate arrival time was constructed for each line. The resulting phosphate arrival times are shown in Figure 5.5. This analysis suggests that arrival times at the water table occurred as soon as operational day 3 in the anomalous fast-flow region from 13 to 23 m along line 1. The latest arrival time at the water table is estimated to have occurred on operational day 7 at approximately 33 m along line 1, 3 days prior to the end of phosphate application through the infiltration lines. Along line 2, the breakthrough analysis suggests amendment reached the water table between days 6 and 7. The latest arrival time along line 2 occurs at approximately 48 m, beneath the infiltration identified as experiencing low flow in Section Figure 5.1. Overall, the breakthrough analysis suggests that, within the context of limited imaging resolution, phosphate appears to have reached the water table everywhere within the ERT imaging zone several days before the termination of phosphate application.



**Figure 5.5**. Estimated phosphate amendment arrival time beneath each ERT imaging line, based on a breakthrough magnitude of 0.002 S/m (see white contour line on Figure 4.3 and Figure 4.4).

## 5.4 Estimated Vertical Migration Rate

An estimate of the depth-averaged vertical migration rate at each "pixel" in the ERT images is obtained by dividing the vertical distance from each pixel to the infiltration line depth by the arrival times shown in Figure 5.5. The resulting migration rates are shown in Figure 5.6. With the exception of the western end of line 1, the migration rates infer a horizontally stratified structure. These include a lower migration velocity zone of approximately 0.75 to 1.0 m/d bounded above and below by higher velocity zones of approximately 1.5 to 1.75 m/d. Figure 5.6 should be interpreted with the understanding that the infiltration rate was increased on operational day 6, which according to Figure 5.5 is when amendment

was near the water table in most areas. If the increased infiltration rate on day 6 caused the wetting front to advance more rapidly, then the higher velocity regions near the water table may be an artifact of the increased flow rate. Since the application rate was constant up to operational day 6, the relative migration velocities of all regions that experienced breakthrough before day 6 are governed primarily by variations in unsaturated hydraulic conductivity. With this in mind, Figure 5.5 suggests a decrease in hydraulic conductivity at approximately 5 m depth, which is consistent with patterns observed in the full ERT time series. For example, Figure 4.3 and Figure 4.4 show the highest increase in bulk conductivity above approximately 5 m, which may have been caused by elevated phosphate saturation above 5 m due to reduced downward flow rate at and below 5 m depth. Furthermore, close inspection of the ERT time series (not shown) displays significant lateral flow above 5 m depth, which could have been caused by the presumed low hydraulic conductivity zone at and below approximately 5 m depth. It appears that ultimately this low hydraulic conductivity zone may have aided the overall performance of the infiltration system by promoting lateral flow above 5 m, thereby creating an even horizontal distribution of amendment, and compensating for variable application rates that appear to have occurred within the infiltration system (Section 5.1).

Finally, as noted previously, the western end of line 1, from 13 to 23 m, exhibited elevated migration velocity, reaching 3 m/day. All aspects of the ERT monitoring show that this region of the treatment footprint exhibits significantly different flow properties than the rest of line 1 or line 2.



Figure 5.6. Depth-averaged migration rate estimation, based on the arrival times shown in Figure 5.5.

## 6.0 Recommendations for future ERT deployments

## 6.1 Electrical safety assessment procedures

The ERT survey system used for this project can apply up to 400 V across current electrodes to generate adequate current within the subsurface. The system self-regulates voltages, depending on the distance between electrodes, the bulk conductivity of the subsurface, and the contact resistance between the electrodes and the soil. Previous ERT surveys conducted in the 300 Area using similar electrode spacing exhibited 100 to 200 V applied across current electrodes. Based on this observation, electrical safety measures were taken to protect site personnel assuming voltages within the subsurface next to the current electrodes would achieve 200 V. The safety measures implemented based on this assumption, including ERT array exclusion boundaries and lockout-tagout procedures, placed a significant time and cost burden on the project.

Recent advancements in ERT modeling (Johnson and Wellman 2012) enable current electrodes to be modeled in true dimension, rather than as point sources of current used in commercially available codes. This enables the actual voltage within the soil next to the current electrodes to be accurately determined. Leveraging this capability, an assessment of actual soil surface voltages generated during monitoring was conducted at the termination of the project (Appendix A). The assessment revealed that although voltages applied to the current electrodes commonly approached 200 V, the maximum voltage experienced in the soil during monitoring was approximately 25 V, rather than the conservative 200 V assumed for safety evaluations. The discrepancy between the voltage across the current electrodes and the voltage within the soil next the current electrodes was caused by contact resistance. Imperfect contact between the soil and the electrode effectively acted as a resistor that decreased the soil voltage with respect to the electrode voltage.

It may have been possible to relax the safety measures applied to protect site personnel if the actual surface voltages generated during monitoring were known prior to the electrical safety evaluation. This information could have been determined by collecting a single ERT survey and conducting an analysis equivalent to that shown in Appendix A. Had such a survey and analysis been conducted prior to operations, the safety analysis may have determined that the ERT exclusion boundary was unnecessary, thereby increasing flexibility in electrode locations and reducing costs associate with establishing the ERT exclusion boundary and lockout-tagout procedures. However, measures taken to reduce the risk of direct contact with electrodes (i.e., burial) or the risk of electrical shock during hookup operations would have still been required.

To install the phosphate infiltration lines, approximately 6 ft of surface material was removed from the application area. The infiltration lines were then installed, and backfill was placed over the lines to the original grade. ERT electrodes could have been installed with the phosphate infiltration lines, which would have reduced the labor required for electrode installation, and would have addressed safety issues associated with surface voltages generated by the ERT system. Given the range of subsurface conductivity distributions during operations, the analysis in Appendix A shows a maximum surface voltage of 9 V if the electrodes are buried to a depth of 1 m, and a maximum surface voltage of 4 V if the electrodes are buried to a depth of 2 m. Furthermore, moving them deeper into the subsurface would have improved imaging resolution within the vadose zone.

## 6.2 Borehole electrodes for improved depth resolution

PVC phosphate injection and monitoring wells were installed within the application area. It is possible to install ERT electrodes on the outside of PVC casing, thereby providing the opportunity to improve ERT imaging depth resolution near the borehole. If two boreholes are close enough together, electrodes installed on the casings can be used for crosshole ERT imaging, which will significantly improve imaging resolution between boreholes compared to surface electrode deployments. Figure 6.1 shows an example of electrodes installed on 4 in. PVC casing being lowered into a borehole. The electrode is attached to a single insulated conductor that extends to the surface through the annulus. If improved depth resolution is required or desired for future application, borehole electrodes such as those shown in Figure 6.1 should be considered for implementation.



**Figure 6.1**. (left) Close-up view of stainless steel borehole electrode attached to the outside of 4 in. PVC casing. The red conductors connect to the electrode and extend to the top of the casing. The other conductors attach to electrodes above and below the electrode shown here. (right) Bottom-up view of PVC casing with ERT electrodes being lowered into the borehole.

# 7.0 References

DOE-RL-2005-41. 2005. *Work Plan for Phase III Feasibility Study 300-FF-5 Operable Unit*. U.S. Department of Energy, Richland Operations Office, Richland, WA.

DOE-RL-2015-07 (2015). Hanford Site Groundwater Monitoring Report for 2014. Richland, WA, U.S. Department of Energy, Richland Operations Office.

Johnson TC and D Wellman. 2015. "Accurate modelling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension." *Geophysical Journal International* 202(2):1096-1108.

Johnson TC et al. 2010. "Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data." *Geophysics* 75(4): Wa27-Wa41.

Peterson RE et al. 2008. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington. PNNL-17034 Pacific Northest National Laboratory, Richland, WA.

Slater LD and D Lesmes. 2002. "IP interpretation in environmental investigations." *Geophysics* 67(1):77-88.

Szecsody JE et al. 2012. Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment. PNNL-21733, Pacific Northwest National Laboratory, Richland, WA.

Wallin EL et al. 2013. "Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical resistivity tomography." *Water Resources Research* 49(3):1693-1708.

Williams BA et al. 2007. *Limited Field Investigation Report for Uranium Contamination in the 300 Area, 300-FF-5 Operable Unit, Hanford Site, Washington*. PNNL-16435, Pacific Northwest National Laboratory, Richland, WA.

# Surface Voltages Generated During ERT Operations

## Appendix A

## Surface Voltages Generated During ERT Operations

Electrical resistivity tomography (ERT) data collection operations involve applying voltages across electrodes to induce current flow within the subsurface. The resulting potential distribution generated on the ground surface may pose a safety risk to operators working near the ERT. Accurate surface potential measurements are necessary to prudently assess and manage this risk. However, it is generally not possible to determine induced surface potentials without first taking an ERT survey to estimate subsurface conductivity and determine the effects of electrode contact resistance. Contact resistance is the resistance to current flow caused by imperfect electrical couple at the soil-electrode interface. The ERT survey instrumentation must apply enough voltage across the current electrodes to overcome the combined effects of soil resistivity between the electrodes and contact resistance. If both the current injected between electrodes and the subsurface conductivity distribution are known, then the subsurface voltage distribution (including the surface boundary) may be accurately determined using the ERT forward modeling algorithm. The injected current is reported by the ERT measurement system, and the subsurface conductivity distribution is estimated during the ERT imaging process.

Most ERT imaging codes model electrodes using a point source (i.e., electrodes are modeled as infinitesimal points). Although this approximation is accurate at some distance from the electrode points, the simulated potential magnitudes near the current electrode are largely overestimated. This overestimation disables the capability to accurately estimate maximum soil potentials, which occur at the electrode/soil interface. E4D provides the capability to model electrodes in true dimension, thereby enabling potentials near the electrodes to be accurately approximated. This capability was used to simulate maximum surface potentials experienced during treatment operations, based on actual measurements and imaging results generated during ERT monitoring. Surface voltages were investigated at two times representing end member conditions: at baseline on November 6, 2015, when subsurface conditions were least conductive, and on November 20, 2015, just prior to cessation of infiltration, when subsurface conditions were most conductive. That analysis revealed a single measurement configuration that always induced the maximum surface potential during a given ERT survey. The same measurement configuration the always induced the minimum separation between any two current electrodes, thereby providing the largest potential gradient, and the largest risk in terms of electrical safety.

Based on the ERT-estimated subsurface conductivity distribution and the injected currents reported by the ERT measurement system, the maximum surface voltages on November 6 and 20, 2015, are shown in Figure A.1. On November 6, the system applied 145 V across the current electrodes as indicated in Figure A.1, resulting in a current injection of 240 mA, a maximum surface potential magnitude of 23.4 V, and a maximum surface potential difference of 46.8 V. On November 15, the system applied 136 V across the current electrodes, resulting in a current injection of 970 mA, a maximum surface potential magnitude of 22.3 V, and a maximum surface potential difference of 44.6 V. Note that the potential across the soil adjacent to the current electrodes is less than the potential applied across the current electrodes due to contact resistance.

Figure A.2 shows the simulation maximum surface potential distribution at baseline conductivity conditions using electrodes buried at depths of 1 m and 2 m below ground surface. The simulation is

included here to demonstrate the effects of burying the electrodes at depth in terms of reducing surface potentials and corresponding electrical hazards to site operators. The simulation shows maximum surface potential magnitudes to be 9.5 V (17 V differential) and 4.0 V (8.0 V differential) for electrodes buried at 1 m and 2 m depth, respectively.







Figure A.1. (top) Maximum surface potential distribution observed prior to infiltration operations on Nov. 6, 2015. (bottom) Maximum surface potential distribution observed just prior to cessation of infiltration operations on November 20, 2015.



Projected Surface Potential Using Electrodes Buried 1m B.G.S





Figure A.2. Maximum surface potentials generated for electrodes deployed at (top) 1 m below ground surface and (bottom) 2 m below ground surface.

# Bulk Conductivity Time-Series Data Format

ļ

# Appendix B

# **Bulk Conductivity Time-Series Data Format**

Bulk conductivity time series were extracted from the electrical resistivity tomography images at hourly intervals and provided digitally with the format and file names described in Table B.1.

| File Name                       | Content                                                                                         | Format                                                                                                                                                                                                                                       |
|---------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| time_series_times.txt           | Contains the time stamp for each date in the time series, one per row                           | Each row specifies the year, month, day,<br>hour, and minute of each point in the time<br>series                                                                                                                                             |
| line_1_timeseries_positions.txt | Contains the location of the point<br>in space along line 1 associated<br>with each time series | Each row specifies a point in Washington<br>State Plane coordinates                                                                                                                                                                          |
| line_1_timeseries.txt           | Contains the time-series of bulk<br>conductivity values for every<br>point beneath line 1       | Each row provides the bulk conductivity<br>time-series at the point given in the<br>corresponding row of<br>line_1_timeseries_positions.txt. Each<br>column provides the bulk conductivity at<br>the time specified in time_series_times.txt |
| line_2_timeseries_positions.txt | Contains the location of the point<br>in space along line 2 associated<br>with each time series | Each row specifies a point in Washington<br>State Plane coordinates                                                                                                                                                                          |
| line_2_timeseries.txt           | Contains the time-series of bulk<br>conductivity values for every<br>point beneath line 2       | Each row provides the bulk conductivity<br>time-series at the point given in the<br>corresponding row of<br>line_2_timeseries_positions.txt. Each<br>column provides the bulk conductivity at<br>the time specified in time series times.txt |

Table B.1. Bulk conductivity time-series data file formats.

# Raw Data and E4D-Formatted Files

# Appendix C

# **Raw Data and E4D-Formatted Files**

All of the raw electrical resistivity tomography (ERT) data files are provided in digital format with this report. In addition, all of the E4D input files are provided to enable reproducibility of the imaging results. Users should refer to Multiphase Technologies, LLC., documentation for the MPT-DAS 1 electrical impedance tomography system for details concerning the format of the raw ERT data files (although they are somewhat self-explanatory). E4D file formats are described in detail in the E4D User Guide, which is downloadable at https://e4d.pnnl.gov. The files provided are described in Table C.1.

| File                    | Content                                                                                                                                                                                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POLY_A*.Data            | Raw ERT data file in MPT format. The '*' indicates a time-stamp accurate to the second the ERT survey was initiated. These files are in the directory "Processed_Data" provided with this report. |
| POLY_A*.srv             | E4D survey files. These contain the ERT data for each survey, and are located in the directory "Processed Surveys" provided with this report.                                                     |
| POLY_A*.sig             | E4D sigma files. These contain the ERT inversion solutions on the E4D computational mesh, and are located in the "Solutions" directory provided with this report.                                 |
| electrode_map.txt       | Metadata file that maps electrode cable and pin numbers specified in the raw ert data files to the corresponding electrode position in Washington State Plane coordinates.                        |
| pp_2lines.1.node        | E4D finite element mesh node file                                                                                                                                                                 |
| pp_2lines.1.ele         | E4D finite element mesh connections file                                                                                                                                                          |
| pp_2lines.1.neigh       | E4D finite element mesh neighbor file                                                                                                                                                             |
| pp_2lines.1.face        | E4D finite element mesh face file                                                                                                                                                                 |
| pp_2lines.1.edge        | E4D finite element mesh edge file                                                                                                                                                                 |
| pp_2lines.trn           | E4D finite element mesh translation file                                                                                                                                                          |
| pp_2lines_basline.inv   | E4D inversion options file for baseline inversion                                                                                                                                                 |
| pp_2lines_timelapse.inv | E4D inversion options file for time-lapse inversions                                                                                                                                              |
| baseline_field.sig      | E4D sigma file containing baseline inversion solution                                                                                                                                             |
| pp_2lines.out           | E4D output options file                                                                                                                                                                           |

Table C.1. Bulk conductivity time-series data file formats.



# Appendix G

# Environmental Calculation Files Documenting Numerical Model Development and Results

This page intentionally left blank.

## **G1** Introduction

A numerical model was developed to evaluate the fate and transport of uranium in the vadose zone and unconfined aquifer following the injection and infiltration of polyphosphate solutions within the Stage A Enhanced Attenuation area in the 300-FF-5 Operable Unit. Two environmental calculation files were prepared to document development of the model, as described below.

- ECF-300FF5-16-0087, Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford Washington, documents the development of the three-dimensional geologic framework model and the distribution of uranium contamination in the vadose zone.
- ECF-300FF5-16-0091, *Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit*, summarizes the information gathered prior to, during, and after the polyphosphate treatment and synthesizes all of the relevant information for conducting fate and transport calculations. Results of the modeling are provided for the hypothetical No Action case (i.e., no remedy implemented) and for the Stage A remedy implemented in November 2015.

These environmental calculation files are provided in this appendix.

This page intentionally left blank.

|                                                                                                                                                                                                                                                                                                                                                                             | ENVIRONMENTAL CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATION COVE                                                                                                                                                        | R PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 1: Completed by the Responsible Manager                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Project: 300-                                                                                                                                                                                                                                                                                                                                                               | -FF-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   | RELEASE / ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Deter OF (17)                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date: 05/17/2016                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Concentration<br>Dimensional<br>Hanford Wash                                                                                                                                                                                                                                                                                                                                | e & Description: Determination of Vadose Zon<br>n Distribution Extents and Development o<br>Geologic Framework Model for the 300-FF-<br>ington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Uranium<br>f a Three-<br>5 Operable Uni                                                                                                                         | Nov 01, 2016 RELEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Section 2: Con                                                                                                                                                                                                                                                                                                                                                              | apleted by Preparer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calculation No.                                                                                                                                                                                                                                                                                                                                                             | : ECF-300FF5-16-0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Revisio                                                                                                                                                           | <b>on No.:</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                             | Revision His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tory                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Revision No.                                                                                                                                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date                                                                                                                                                              | Affected Pages ADD ROW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                                                                                                                                                                                                                                                                                                                                                                           | Initial issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Does documen                                                                                                                                                                                                                                                                                                                                                                | contain scientific and technical information inten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lanagement Con                                                                                                                                                    | trol System (DMCS)? ⊠ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Does documen                                                                                                                                                                                                                                                                                                                                                                | t contain scientific and technical information inten<br>t contain controlled-use information?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lanagement Con<br>ded for public us                                                                                                                               | ttrol System (DMCS)? ⊠ Yes ☐ No<br>e? ⊠ Yes ☐ No<br>☐ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc                                                                                                                                                                                                                                                                                                                      | t contain scientific and technical information inten<br>t contain controlled-use information?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anagement Conded for public us                                                                                                                                    | ttrol System (DMCS)? ⊠ Yes ☐ No<br>e?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br><u>TB Hammond/</u><br>Preparer:                                                                                                                                                                                                                                                                                   | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aanagement Con<br>ded for public us<br><u>M. A.</u><br>Signa                                                                                                      | ttrol System (DMCS)? ⊠ Yes ☐ No<br>e? ⊠ Yes ☐ No<br>☐ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/?<br>Checker:                                                                                                                                                                                                                                                              | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Hydrogeologist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ianagement Con<br>ded for public us<br><u><u><u>Signa</u></u><br/><u>Ubu</u><u>U</u></u>                                                                          | trol System (DMCS)?  Yes No e? Yes No Yes No Yes No ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K                                                                                                                                                                                                                                                | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anagement Con<br>ded for public us<br><u>Signa</u><br>Upu Ul<br>Signa                                                                                             | trol System (DMCS)? $\square$ Yes $\square$ No         e? $\square$ Yes $\square$ No $\square$ Her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review                                                                                                                                                                                                                               | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anagement Con<br>ded for public us<br><u>Signa</u><br><u>Upu U</u><br><u>Signa</u><br><u>Signa</u>                                                                | trol System (DMCS)? Yes No<br>e? Yes No<br>Yes No<br>ture Date<br>ture Date<br>ture Date<br>ture Date<br>Date<br>Date<br>Date<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bayn<br>Responsible M                                                                                                                                                                                              | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>er: Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>has Manager<br>lanager: Name /Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anagement Con<br>ded for public us<br><u>Signa</u><br><u>Ubu U</u><br><u>Signa</u><br><u>Rhall</u><br>Signa<br>Signa<br>Signa                                     | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$                                                                    |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli                                                                                                                                                                           | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>hes Manager<br>Ianager: Name /Position<br>cable if calculation is a risk assessment or uses ar                                                                                                                                                                                                                                                                                                                                                                                                                                | Anagement Con<br>ded for public us<br><u>Signa</u><br><u>Signa</u><br><u>Signa</u><br><u>Signa</u><br>atruch A for<br>Signa                                       | trol System (DMCS)? Yes No<br>e? Yes No<br>Yes No<br>Yes No<br>Yes No<br>Unre<br>ACA<br>ACA<br>ACA<br>ACA<br>ACA<br>ACA<br>ACA<br>ACA<br>ACA<br>AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli<br>PRIOR TO INITI<br>Paguired train                                                                                                                                       | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>hes Manager<br>lanager: Name /Position<br>cable if calculation is a risk assessment or uses ar<br>ATING MODELING:                                                                                                                                                                                                                                                                                                                                                                                           | Anagement Con<br>ded for public us<br>Signa<br>WW W<br>Signa<br>RAA<br>Signa<br>Signa<br>atruch A for<br>Signa                                                    | trol System (DMCS)? $\square$ Yes $\square$ No         e? $\square$ Yes $\square$ No $\square$ Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br><u>TB Hammond/</u><br><u>Preparer:</u><br><u>Mary Weber/</u><br><u>Checker:</u><br><u>Raziuddin K</u><br><u>Senior Review</u><br><u>Patrick Bay</u><br><u>Responsible M</u><br><u>Section 5: Appli</u><br><u>PRIOR TO INITI</u><br><u>Required train</u><br>WE Nichols/I                                          | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>has Manager<br>lanager: Name /Position<br>cable if calculation is a risk assessment or uses ar<br>ATING MODELING:<br>ing for modelers completed:<br>Modeling Team Leader                                                                                                                                                                                                                                                                                                                                    | Anagement Con<br>ded for public us<br>Signa<br>Way Way<br>Richalle<br>Signa<br>Signa<br>Signa<br>a environmental n                                                | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ No<br>$\square$ Yes $\square$ No<br>$\square$ Yes $\square$ No<br>$\square$ Yes $\square$                                                                        |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli<br>PRIOR TO INITI<br>Required train<br>WE Nichols/I<br>Integration Le<br>Safety Softwa                                                                                    | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>has Manager<br>Ianager: Name /Position<br>cable if calculation is a risk assessment or uses ar<br>ATING MODELING:<br>ing for modelers completed:<br>Modeling Team Leader<br>ad Name /Position                                                                                                                                                                                                                                                                                                                     | Aanagement Con<br>ded for public us<br><u>Signa</u><br><u>Uhuu Uh</u><br><u>Signa</u><br><u>Chuuh A Joa</u><br><u>Signa</u><br>atuuh A Joa<br><u>Signa</u>        | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$                                                                      |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli<br>PRIOR TO INITI<br>Required train<br>WE Nichols/I<br>Integration Le<br>Safety Softwa<br>WE Nichols/I                                                                    | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Review & Approval<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>cable if calculation is a risk assessment or uses ar<br>ATING MODELING:<br>ing for modelers completed:<br>Modeling Team Leader<br>ad Name /Position<br>re Approved:<br>Modeling Team Leader                                                                                                                                                                                                                       | Aanagement Con<br>ded for public us<br><u>Signa</u><br><u>Uhuu Ulu</u><br>Signa<br><u>Anul A for</u><br>Signa<br><b>atuu A for</b><br>Signa                       | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Ye                               |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber//<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli<br>PRIOR TO INITI<br>Required train<br>WE Nichols/I<br>Integration Les<br>Safety Softwa<br>WE Nichols/I<br>Integration Les                                               | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>hes Manager<br>lanager: Name /Position<br>cable if calculation is a risk assessment or uses ar<br>ATING MODELING:<br>ling for modelers completed:<br>Modeling Team Leader<br>ad Name /Position<br>Cable if calculation is a risk assessment or uses ar<br>ATING MODELING:<br>ling for modelers completed:<br>Modeling Team Leader<br>ad Name /Position                                                                                                                                                      | Anagement Con<br>ded for public us<br>Signa<br>Wey Wey<br>Signa<br>RAALE<br>Signa<br>a environmental m<br>Signa<br>Signa                                          | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Ye |
| Does documen<br>Does documen<br><u>Section 4</u> : Doc<br>TB Hammond/<br>Preparer:<br>Mary Weber/<br>Checker:<br>Raziuddin K<br>Senior Review<br>Patrick Bay<br>Responsible M<br>Section 5: Appli<br>PRIOR TO INITI<br>Required train<br>WE Nichols/I<br>Integration Les<br>Safety Softwa<br>WE Nichols/I<br>Integration Les<br>CALCULATION<br>AH Aly/Risk<br>Risk/Modeling | t contain scientific and technical information inten<br>t contain controlled-use information?<br>ument Review & Approval<br>Hydrogeologist<br>Name /Position<br>Hydrogeologist<br>Name /Position<br>haleel/Sr. Hydrogeologist<br>er: Name /Position<br>Approved:<br>Modeling Team Leader<br>Add Name /Position<br>APPROVED:<br>& Model Integr. Manager<br>Integration Manager: Name /Position | Aanagement Con<br>ded for public us<br><u>Signa</u><br><u>Unit Ul</u><br><u>Signa</u><br><u>Signa</u><br><u>a environmental n</u><br><u>Signa</u><br><u>Signa</u> | throl System (DMCS)? $\square$ Yes $\square$ No<br>e? $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Yes $\square$ No<br>$\square$ Yes $\square$ Ye                                                                                                                         |

ECF-300FF5-16-0087 Revision 0

# Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford Washington

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



P.O. Box 1600 Richland, Washington 99352

> Approved for Public Release; Further Dissemination Unlimited

ECF-300FF5-16-0087 Revision 0

## Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford Washington

Document Type: ENV Program/Project: EP&SP

T. B. Hammond INTERA, Inc.

Date Published October 2016

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



APPROVED By Julia Raymer at 8:41 am, Nov 01, 2016

**Release** Approval

Date

Approved for Public Release; Further Dissemination Unlimited

## ECF-300FF5-16-0087 Revision 0

#### TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

## ECF-300FF5-16-0087, REV. 0

## Contents

| 1 | Purpose                                                         |                                                                                           |  |
|---|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| 2 | Backgro                                                         | 3ackground1                                                                               |  |
|   | 2.1                                                             | Site Geologic Setting and Geologic Framework Model1                                       |  |
| 3 | Methode                                                         | ology                                                                                     |  |
|   | 3.1                                                             | Compilation and Conditioning of Site Soil Uranium Concentration Data                      |  |
|   | 3.2 Compilation and Conditioning of Site Borehole Geologic Data |                                                                                           |  |
|   | 3.3                                                             | Three-Dimensional Modeling of Site Geology and Soil Uranium<br>Concentration Distribution |  |
|   |                                                                 | 3.3.1 Geologic Framework Model Construction                                               |  |
|   |                                                                 | 3.3.2 Soil Uranium Concentration Distribution Modeling                                    |  |
| 4 | Assump                                                          | Assumptions and Inputs                                                                    |  |
|   | 4.1                                                             | Geologic Framework Model Uncertainty                                                      |  |
|   | 4.2                                                             | Inputs                                                                                    |  |
| 5 | Softwar                                                         | e Applications10                                                                          |  |
|   | 5.1                                                             | Approved Software                                                                         |  |
|   |                                                                 | 5.1.1 Description                                                                         |  |
|   |                                                                 | 5.1.2 Software Installation and Checkout                                                  |  |
|   | 5.2                                                             | Statement of Valid Software Application                                                   |  |
| 6 | Calculat                                                        | tion11                                                                                    |  |
| 7 | Results/                                                        | Conclusions11                                                                             |  |
| 8 | Referen                                                         | ces                                                                                       |  |

# Appendices

| A | Compiled Data for Uranium Soil Concentration Distribution Modeling                                                             | A-i |
|---|--------------------------------------------------------------------------------------------------------------------------------|-----|
| B | Uranium Soil Concentration Data                                                                                                | B-i |
| С | Well Information and Geologic Contacts Data Tables                                                                             | C-i |
| D | Software Installation and Checkout Forms                                                                                       | D-i |
| E | Comparison of Model and Post-Remedy Results for Validation of Geologic Framework<br>Model and Vadose Zone Uranium Distribution | E-i |

## ECF-300FF5-16-0087, REV. 0

# Figures

| Figure 1.  | Uranium Concentration Distribution                                                 |
|------------|------------------------------------------------------------------------------------|
| Figure 2.  | 300 Area Geologic Framework Model                                                  |
| Figure 3.  | 300 Area Uranium Concentration Distribution Plume Model14                          |
| Figure 4.  | 300 Area Uranium Concentration Distribution Plume Model15                          |
| Figure 5.  | 300 Area Uranium Concentration Distribution Plume Model Detailed Orthogonal View15 |
| Figure 6.  | Hf Silt Location Plan View                                                         |
| Figure 7.  | Hf Silt Location from the West                                                     |
| Figure 8.  | Hf Sandy Gravel Zone Features Excised into Hanford Formation Silty, Sandy Gravel17 |
| Figure 9.  | View of Hanford Formation Silty, Sandy Gravel Unit Showing Hf Sandy Gravel Zone18  |
| Figure 10. | Cross-Section through 300 Area GFM and Vadose Zone Uranium Distribution19          |
|            |                                                                                    |

## Tables

| Table 1. | Data from U238_soil_updated090115.csv Omitted from Interpolation              | 10 |
|----------|-------------------------------------------------------------------------------|----|
| Table 2. | Interpolation Parameters Used for Uranium Plume Interpolation in Leapfrog Geo | 11 |
| Table 3. | Hf Sandy Gravel Zone Borehole Locations and Lithologic Information            | 12 |

## ECF-300FF5-16-0087, REV. 0

## Terms

| 3D    | three-dimensional                         |
|-------|-------------------------------------------|
| CHPRC | CH2M HILL Plateau Remediation Company     |
| EAA   | Enhanced Attenuation Area                 |
| ECF   | environmental calculation file            |
| EDA   | Environmental Dashboard Application       |
| EMMA  | Environmental Model Management Archive    |
| GIS   | geographic information system             |
| GFM   | geologic framework model                  |
| HEIS  | Hanford Environmental Information System  |
| Hf    | Hanford formation                         |
| LiDAR | light detection and ranging               |
| PNNL  | Pacific Northwest National Laboratory     |
| PRZ   | periodically rewetted zone                |
| Rlm   | Ringold Lower Mud                         |
| STOMP | Subsurface Transport Over Multiple Phases |
| WCH   | Washington Closure Hanford                |

۷

## ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

vi

#### ECF-300FF5-16-0087, REV. 0

## 1 Purpose

The objectives of this environmental calculation file (ECF) are to document development of the three-dimensional (3D) geologic framework model (GFM) and the extents of vadose zone uranium contamination distribution for the 300-FF-5 Groundwater Operable Unit (OU). Leapfrog<sup>®</sup> Geo (version 2.3.2) was used to develop the GFM and vadose zone uranium contamination distribution for the identical 3D domain. The primary area of focus for the vadose uranium contamination distribution encompasses the area of highest observed soil uranium concentrations at depth within a periodically rewetted zone (PRZ). The PRZ represents a region within the deep vadose zone beneath the 300 Area that becomes saturated during times of high river stage. When the PRZ is rewetted, the uranium contamination adsorbed to sediment particles within the PRZ sediments can become mobilized and transported to groundwater.

The following process was used for the modeling efforts described herein:

- 1. Compilation and conditioning of site soil uranium concentration data
- 2. Compilation and conditioning of site borehole geologic data
- 3. 3D modeling of site geology and soil uranium concentration distribution using the Leapfrog Geo (version 2.3.2) software

GFM and uranium soil concentration distributions developed in this ECF are intended for use in fate and transport modeling efforts for the 300 Area uranium contamination remediation by polyphosphate injection and infiltration (PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography*). Studies have shown that phosphate reduces uranium mobility by forming uranium phosphate precipitates and coating surface phases of uranium with stable mineral phases (PNNL-21733, *Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment*). CH2M HILL Plateau Remediation Company (CHPRC) treated a 0.75 ac area, within the 300 Area, which was thought to contain the highest mobile uranium concentrations. The phosphate amendment included a solution of monosodium phosphate and pyrophosphate that was injected directly into the PRZ and upper aquifer through wells and infiltrated through the vadose zone using buried infiltration lines.

## 2 Background

This chapter describes the 300 Area geologic setting and geologic framework model.

## 2.1 Site Geologic Setting and Geologic Framework Model

Beneath the 300 Area, the Hanford formation (Hf) comprises the vadose zone that is made up of unconsolidated sandy gravels containing spatially (horizontally and vertically) variable amounts of silts and clays. Saturated Hf sediments are of the same materials as the vadose zone and are underlain by more consolidated materials of the Ringold formation unit E, hereinafter called Ringold E (WHC-EP-0500, *Geology and Hydrology of the 300 Area and Vicinity, Hanford Site, South-Central Washington*). Underlying Ringold E is the Ringold Lower Mud (Rlm) unit, consisting of predominately silts and clays, and underlying the Rlm is part of the Columbia River Basalt Group bedrock.

For the purposes of this ECF, the primary geologic unit of concern is the Hf. In the study area, the deep vadose zone and PRZ are located in the Hf; in these zones, uranium is periodically leached from and

<sup>&</sup>lt;sup>®</sup> Leapfrog is a registered trademark of ARANZ Geo Limited, Christchurch, New Zealand.

#### ECF-300FF5-16-0087, REV. 0

reabsorbed to sediment particles during water table fluctuations. In the existing Hanford south GFM (ECF-HANFORD-13-0029, *Development of the Hanford South Geologic Framework Model, Hanford Site, Washington*), the Hf is undifferentiated; however, variability in vertical and lateral distribution of fine materials in the vadose zone could affect the uranium contamination plume extents, as uranium has an affinity for the finer sediments (i.e., particles having <2mm size fraction (Shang et al., 2011, "Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity"). In order to honor the effect that the geology has on uranium distribution, it was necessary to construct a GFM specific to the 300 Area complete with detailed, differentiated Hf subunits. The subunits were defined through observation of changes in composition and grain size, as well as through stratigraphic position and depositional order in the Hf through studying the borehole geologic and geophysical logs of the study area. These logs were obtained from the Hanford Site Well Environmental Dashboard Application (EDA) website and from CHPRC for newly drilled boreholes as part of the Stage A Enhanced Attenuation Area (EAA) (ECF-300FF5-15-0014, *Determination of Vadose Zone Uranium Concentration Distribution Extents and Establishment of the Stage A Enhanced Attenuation Area for 300-FF-5*). The following specific Hf geologic subunits comprise the upper portion of the 300 Area GFM:

- The Hf is categorized into five subunits from land surface downward based on the observed sequence of deposition in the study area:
  - Hf sand unit 1—fine to coarse sand of mixed basaltic and felsic composition
  - Hf sandy gravel—unconsolidated mostly pebble to cobble gravels with sand
  - Hf sand unit 2—unconsolidated, fine to coarse sand (mostly basalt) with some silt
  - Hf Silt—100 percent silt unit identified in several wells drilled as part of the Stage A EAA uranium sequestration by polyphosphate remedy
  - Hf silty sandy gravel—unconsolidated mostly basalt pebble to cobble gravel with silt and sand
  - Hf gravel—unconsolidated predominantly basaltic pebble to cobble gravel with some sand and/or silt

These Hf subunits were interpreted, based on the following criteria:

- Hf sand unit  $1 \rightarrow 290$  percent sand of mostly basaltic composition
- Hf sandy gravel—between 50 and 60 percent gravel with sand fraction ranging 50 to 40 percent (gravels are predominantly basaltic basaltic)
- Hf sand unit 2—80 to 90 percent sand with silt, sand, or gravel fraction ranging from 20 to 10 percent
- Hf silt—100 percent silt described in borehole geologic logs as being moderately plastic and grayish-brown in color
- Hf silty sandy gravel—50 to 70 percent gravels to cobbles, 20 to 10 percent sands, and 20 to 10 percent silt (gravel to cobble fraction is mostly basaltic; sand is moderately to poorly sorted)
- Hf gravel—85 percent to 90 percent gravels with 15 percent to 10 percent sand and/or silt fractions (gravels are at least 50 percent basaltic)

Much of the superficial sediments in the study area have been reworked due to excavation and the addition of clean fill material brought in from other areas of the Hanford Site. This material will have very little to no silt content and, therefore, will not likely contain uranium.

#### ECF-300FF5-16-0087, REV. 0

The lower portion of the 300 Area GFM was constructed using interpolated unit-top surfaces for Ringold E and Rlm. The surfaces were extracted from the Hanford south GFM (ECF-HANFORD-13-0029). Newly interpreted borehole information is not conformable with the current version of the Hanford south GFM and this does have implications on flow and transport modeling for the area. The next update of the Hanford south GFM will reflect the new borehole information, and this discrepancy will be resolved.

Information gained from the GFM efforts described in this section and Stage A EAA drilling and sampling activities laid the backdrop for the EAA determination. Previous geological and characterization studies were instrumental in providing information used in the geologic and uranium contamination distribution modeling discussed herein.

## 3 Methodology

This chapter discusses the data and methods used for the three-dimensional modeling.

## 3.1 Compilation and Conditioning of Site Soil Uranium Concentration Data

Input data consisted of spatially referenced soil concentrations with sample dates ranging from 1991 through 2015. Soil concentrations of uranium-238 in pCi/g or  $\mu$ g/g were compiled from the Hanford Environmental Information System (HEIS) with the exception of data from Peterson, 2010, "Uranium in Sediment from FS-2 Test Pit, 618-1 Burial Ground Excavation," which are based on the following primary reports for the 300 Area:

- DOE/RL-92-32, *Expedited Response Action Assessment for 316-5 Process Trenches* (Appendix A labels: Washington Closure Hanford [WCH]).
- BHI-01164, 300 Area Process Trenches Verification Package (Appendix A labels: WCH)
- PNNL-17793, Uranium Contamination in the 300 Area: Emergent Data and their Impact on the Source Term Conceptual Model (Appendix A labels: PNNL-17793 Tables 5.11, 5.22, and 5.47)
- PNNL-16435, *Limited Field Investigation Report for Uranium Contamination in the 300 Area,* 300-FF-5 Operable Unit, Hanford Site, Washington (Appendix A labels PNNL-16435 Table D.2)
- PNNL-22032, Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments (Appendix A labels: PNNL-22032)
- Unpublished post-record of decision field investigation sample data from borings C8933, 399-1-67, and 399-1-68 (Appendix A labels: Borehole Data Tracking Spreadsheet.xlsx)
- Data from Peterson (2010) in the form of a letter report (Appendix A labels: 618-1\_BurialGroundExcavation)
- Unpublished data at the time of modeling (now available in HEIS) obtained from characterization sampling at wells 399-1-76 and 399-1-80 during drilling activities for the Stage A EAA (Appendix A labels: Borehole\_Data\_Tracking\_Spreadsheet\_399-1-76\_&\_80.xlsx and HEIS)
- Additional data that were retrieved from HEIS based upon the proximity to the modeling area (may be documented in reports but for the purposes of this ECF, they are labeled according to the originator of the data; originators (WCH and CHPRC) have been labeled accordingly in Appendix A, and all data points pulled from HEIS that are not associated with the listed reports, WCH, or CHPRC have been labeled as HEIS)
## ECF-300FF5-16-0087, REV. 0

The compiled data can be found in Table A-1 (Appendix A) of this document. Data from the Peterson (2010) letter report can be found in Appendix B.

The following process is used for compilation and conditioning of site soil uranium concentration data:

- Data downloaded from HEIS were selectively filtered by removing samples marked as duplicates and overburden/staging pile area measurements.
- Measurements from soil that were subsequently excavated after measurement were selectively removed from the data set.
- HEIS data that did not come with depth discrete measurements were assigned depths of 5 and 7.5 m for measurements and classified as shallow and deep, respectively. Sampling was performed at ground surface prior to excavation and given a depth of 0.3 m. The 5 and 7.5 m depths were sampled post-excavation within the trenches themselves (BHI-01164). Where a sampling depth range was given, the sampling depth was taken as the midpoint of the range. These depth assignments were done to estimate sampling depths more accurately during the cleanup excavation (BHI-01164).
- Soil sample results based on one laboratory analytical method (described in HEIS as UISO\_Plate\_AEA) were used for consistency and comparability of data. This method detects the isotopes of uranium using alpha spectroscopy.
- All data for soil that were below the detectable limit were set to zero.
- The newest data from boreholes C8933, 399-1-67, 399-1-68, 399-1-76, and 399-1-80 were received as total uranium soil concentration (µg/kg). Soil concentration results for the uranium-238 isotope were used in the calculations for uranium modeling as 99.3 percent of existing uranium is composed of uranium-238 (IUPAC, 1998, "Isotopic Compositions of the Elements"); therefore, the total uranium data were assumed to be a proxy for uranium-238 concentrations.
- All data were converted to  $\mu g/g$  if not received in those units.
- The data were then compiled into the worksheet U238\_soil\_updated0915.csv for use in Leapfrog Geo.

# 3.2 Compilation and Conditioning of Site Borehole Geologic Data

Before entering the uranium concentration data into Leapfrog Geo for plume interpolation, Hf detailed vadose zone and lower suprabasalt sediment geologic models of the suprabasalt sediments underlying the 300 Area were constructed. Data interpolation by Leapfrog Geo is carried out using radial basin functions (Buhmann, 2000, "Radial basis functions"). The Hf detailed vadose zone geologic model was developed using three sets of data:

- Current data sets from the existing GFM representing the entire Hanford site south of Gable Mountain and Gable Butte (ECF-HANFORD-13-0029)
- Interpretations of recently received borehole geologic logs from the area (PNNL-22032 and CHPRC geologic field logs from Stage A EAA)
- Interpretations of borehole and geophysical logs from EDA

## ECF-300FF5-16-0087, REV. 0

The following steps were involved in GFM data compilation and conditioning:

- 1. Identify a model domain within the 300 Area section of the Hanford South model, and extract the boreholes from this section. Locate additional boreholes not used in the Hanford south GFM by querying HEIS. Plot the additional boreholes in a geographic information system (GIS).
- 2. Obtain available borehole geologic and geophysical logs from EDA for selected locations of the GFM borehole data.
- 3. Interpret borehole geologic and geophysical logs for Hf subunits. Geophysical logs were used to look for consistency between the Hf subunits interpreted from the borehole logs and were especially helpful for matching up siltier units because their contacts are indicated by distinct count spikes.
- 4. Format borehole location and geologic data into Excel<sup>®</sup> comma separated value files for import into Leapfrog Geo. Details and examples of these formats can be found in ECF-HANFORD-13-0029.

Not all wells or borings within the selected Hf detailed vadose zone model domain were used in the GFM data set because the omitted well logs lacked sufficient detail for an accurate interpretation of the geologic units. A list of wells and boreholes with information deemed unsuitable for the aforementioned reason can be found in Table C-4 (Appendix C). However, some of the omitted wells were suitable enough for interpretation of major units (i.e. top of Ringold E) and, therefore, were used in Hanford South model interpolation. Thus, some wells in the collars and Hanford South lithology tables (Tables C-1 and C-3) will be included in Table C-4.

The lower suprabasalt sediment geologic model was constructed using borehole geologic data instead from existing surfaces from geologic unit volumes interpolated within the Hanford south GFM (ECF-HANFORD-13-0029). However, boreholes used in the Hanford south GFM interpolation were imported into the 300 Area lower suprabasalt sediment GFM to assign lithologies to the geologic unit volumes.

# 3.3 Three-Dimensional Modeling of Site Geology and Soil Uranium Concentration Distribution

Construction of the 300 Area GFM and soil uranium concentration distribution models first involved development of the site geology and then interpolation of the conditioned soil uranium concentration data all using the Leapfrog Geo 3D modeling software.

The 300 Area GFM construction used interpreted borehole data and pre-existing geologic unit surface grids to define geologic unit contacts as subsurface elevations. These data inputs are interpolated within the Leapfrog Geo framework to define geologic unit surfaces that form the upper (i.e., top of the geologic unit surface) and lower bounding model surfaces of the geologic unit intervals that, when combined together, represent the solid model.

Soil uranium concentration distribution modeling involved interpolating the data in Appendix A (including control points) within the boundary of the GFM, resulting in volumes correlating to the defined contamination concentration ranges of >30, >90, and >157  $\mu$ g/g. The concentration ranges represent values of 10 times background, 30 times background, and preliminary remediation goal values, respectively (ECF-300FF5-11-0151, *Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS*).

<sup>&</sup>lt;sup>®</sup> Excel is a registered trademark of Microsoft Corporation, Redmond, Washington.

#### ECF-300FF5-16-0087, REV. 0

# 3.3.1 Geologic Framework Model Construction

This subsection provides the sequence of steps (and the input files required in each step) for the user to construct or recreate the 300 Area GFM. A detailed explanation of the input file times, formatting, and general model boundary determination is outlined in ECF-HANFORD-13-0029. Appendix C contains GFM input data formatted for import into Leapfrog Geo.

- 1. Open Leapfrog Geo software, and create a new project.
- 2. Import borehole data by right clicking on the folder titled Drillhole Data and from the import data dialogue box navigate to "Vds\_collars\_300Area.csv". In the import data dialogue box, there will also be sections to import well alignment survey information (included in the collars table so also import "Vds\_collars\_300Area.csv" in this slot), well intervals, and screens. In this area, browse to the comma separated value tables entitled "Vds\_lithology\_300Area.csv", "HS\_062614\_lithology.csv", and "Area\_Screens.csv". The collars file contains the location information for both lithology files. The lithology file "Vds\_lithology\_300Area.csv" will be used in the construction of the detailed vadose zone model (see Step 7), and "HS\_062614\_lithology.csv" will be used to assign lithology to the volumes created in the construction of the lower suprabasalt sediment model but not used in any interpolation.
- 3. Follow the prompts in the Leapfrog Borehole Data dialogue box entering the well name column from the .csv file as Hole Id, the X coordinates column from the table as X data, the Y coordinates as Y data, the elevation as Z, borehole dip and azimuth information as the dip and azimuth, and the constructed depth as MAX DEPTH in the Leapfrog dialogue boxes. Follow prompts to import the screen top and bottom depths.
- 4. To add the upper surface of the model right click on the folder entitled Topographies, then New Topography, then Import Elevation Grid. Browse to the light detection and ranging (LiDAR) bath\_new.asc file (Aero-Metric LiDAR, 2008, *RCCC-Hanford Battelle/PNNL/DOE, Digital Orthophotography & LiDAR Surveys Photogrammetric Report*), and import it. (Note: Leapfrog will not accept the native 0.5 resolution due to the size of the file. Input 10 for the grid spacing.) In the import pop-up window, import the file so it is clipped to the model clipping boundary to import only the necessary extents of the raster. The model clipping boundary is as follows: X minimum and maximum of 593846.00 and 594683.19 respectively, and Y minimum and maximum of 115954.03 and 116815.54 (Washington State Plane [NAD83 North American Datum of 1983]), respectively.
- 5. To add the lower surface of the model, right click on the Meshes folder and import elevation grid, navigate to Sitewide\_tob\_ThompsenC (top of basalt surface [SGW-48478, *Interpretation and Integration of Seismic Data in the Gable Gap*]), and import the file. In the import pop-up window, import the file so is clipped to the model clipping boundary.
- 6. To add the Ringold E and Rlm surfaces of the model, right click on the Meshes folder and import elevation grid, then navigate to Rwie\_062614 and Rlm\_062614 (ECF-HANFORD-13-0029) and import both files.
- 7. Create Hf vadose model:
  - a. To create a new geological model, define a region that encompasses the boundary coordinates of the model. Right click on the folder entitled Geological Model, and click New Geological Model. In the Base Lithology dropdown, navigate to the lithology (which should appear by default). Set the X minimum and maximum to 593846.00 and 594683.19, respectively; and set the Y minimum and maximum to 115954.03 and 116815.54, respectively. Set the surface resolution

#### ECF-300FF5-16-0087, REV. 0

to 10, and click OK. These are the predefined model coordinates. Be sure to check the box to use the topography for the upper model extent.

- b. For the eastern model boundary, right click on the folder entitled GIS Data, Maps, and Photos and click Import Vector Data. Navigate to "River\_vds\_bdry.shp". Use this feature as a new boundary lateral extent. This shape file was created specifically for this calculation as a model boundary element. All polylines created for this modeling effort can be found with this ECF in the Environmental Model Management Archive (EMMA).
- c. Expand the new geological model, and right click Surface Chronology then drop down to New Deposit and select From Base Lithology. In the dropdown menu beneath Select primary lithology, select Hf sand unit 1. Click the radio button Use contacts below, and the Contacting/Avoided lithologies box should automatically populate with Hf sandy gravel and Hf sandy silty gravel. Double click on Hf sand unit 2 in order to move it from the Ignored lithologies to the Contacting/Avoided lithologies box. Click OK to add the Hf sandy gravel solids model geometry to the existing model.
- d. Right click on Surface Chronology then drop down to New Deposit, and select From Base Lithology. In the dropdown menu beneath Select primary lithology, select Hf sandy gravel. Click the radio button Contacts Below and Hf sand unit 2 and Hf silty sandy gravel. Click OK.
- e. The Hf sand unit 2 is not continuous throughout the model domain; therefore, this unit had to be modeled in several separate volumes representing the same lithology. Separate, localized pockets of Hf sand unit 2 were labeled in the input file "Vds\_lithology\_300Area.csv" as Hf sand units 3 and 4. Interpolation of the additional Hf sand units, as described for deposits listed, was unrealistic; therefore, an alternative approach was taken:
  - i. Right click on Surface Chronology then drop down to New Vein, and select From Base Lithology.
  - ii. In the pop-up window, select Hf sand unit 3 lithology. In the Surfacing tab, make sure that the Inherit resolution from GM and Include points at the ends of holes boxes are clicked. Click OK to add the Hf sand unit 3 solids model vein geometry to the existing model. Under the surface chronology, a vein surface icon for Hf sand unit 3 will be created.
- iii. Refine the vein morphology by clicking the dropdown arrow next to the vein surface icon for Hf sand unit 3 and then right clicking on "Hangingwall". Next select "Add polyline". Navigate to the "Hf S3 Hangingwall 3" curved polyline in the project tree and add it. All polylines created for this modeling effort can be found with this ECF in EMMA. No additional editing objects are required for the footwall.
- iv. Repeat steps i through iii for Hf sand unit 4 but add the curved polylines "Hf S4 Hangingwall 2" to the hangingwall and "Hf S4 Footwall 2" to the footwall:
- v. Right click Surface Chronology, then drop down to New Deposit and select From Base Lithology. In the dropdown menu, beneath Select primary lithology, select Hf sand unit 2. Click the radio button Contacts Below, and check Hf silty sandy gravel. Click OK to add the Hf sand unit 2 solids model geometry to the existing model. Since the bottom unit is Hf silty sandy gravel and only the top of basalt boundary surface is below it, Leapfrog automatically creates the volume for Hf silty sandy gravel. Therefore, it is automatically added to the surface chronology.

- 8. Create lower suprabasalt sediment model:
  - a. Right click on the folder entitled Geological Models, and click New geological model. In the Base Lithology dropdown, navigate to the lithology (HS\_062614\_lithology.csv). Set the X minimum and maximum to 593,180.55 and 594844.84, respectively; set the Y minimum and maximum to 114,496.49 and 117,830.16, respectively. Set the surface resolution to 100, and click OK. These are the predefined model coordinates. Be sure to check the box to use the topography for the upper model extent.
  - b. For the eastern model boundary, use "River\_vds\_bdry" as for the Hf vadose zone model.
  - c. Expand the new Geological Model and right click Surface Chronology, then drop down to New Deposit from Surface. Navigate to Rwie\_062614 and select it. Click OK to add the Ringold E solids model geometry to the existing model.
  - d. Continue constructing the Geologic Model by right clicking Surface Chronology, then drop down to New Deposit and select From Surface. Navigate to Rlm\_062614 and select it. Click OK to add Rlm solids model geometry to the existing model.
  - e. Add an additional lateral extent to include "HS Saturated Geology Volume Only 2.msh". This volume mesh was created in Leapfrog Geo by subtracting the Hf vadose model boundary mesh from the Lower Suprabasalt Sediment Model volume mesh using the Clip Volume tool.

# 3.3.2 Soil Uranium Concentration Distribution Modeling

This subsection provides the sequence of steps for the user to construct or recreate the 300 Area uranium vadose plume. A detailed explanation of the input file types, formatting, and general model boundary determination is provided in ECF-200UP1-14-0019, *Initial Groundwater Plume Development (Uranium, Technetium-99, Nitrate, and Iodine-129) to Support Fate and Transport Modeling for Remedial Design in the 200- UP-1 Groundwater Operable Unit*. Interpolation was carried out using the inbuilt interpolation utility in Leapfrog Geo. Leapfrog Geo carries out 3D interpolation using the ALGLIB<sup>®</sup> Fast RBF algorithm (Carr et al., 2001, "Reconstruction and Representation of 3D Objects with Radial Basis Functions"). The following steps are taken to construct or recreate the 300 Area uranium vadose zone plume:

- 1. In the same Leapfrog project containing the GFMs created in Section 3.2, import the soil uranium contamination data in Table A-1 by right clicking the Points folder and then clicking Import Points. Navigate to the .csv file "U238\_soil\_updated090115" (Section 3.1), and import it.
- Begin the plume construction process by right clicking the Interpolants folder and then clicking New Interpolant. Set the X minimum and maximum to 593180.6 and 594844.8, respectively; set the Y minimum and maximum to 114887.8 and 117830.2, respectively. Set the surface resolution to 1.0 m.
- Change the base of the interpolant to the top of basalt by expanding the interpolant. Right click on Boundary, and select New Lateral Extent then scroll down to From Surface, select Sitewide tob ThompsenC, the same top of basalt mesh used in the geologic model.
- 4. Default values for trends, sill and range were used. The plumes were not found to be sensitive to these parameters (the parameters were varied above and below the default values to evaluate this sensitivity). Model parameters are listed in Table 2.

<sup>&</sup>lt;sup>®</sup> ALGLIB is a registered trademark of the ALGLIB Project, Russian Federation.

## ECF-300FF5-16-0087, REV. 0

- 5. Volume control is added to the model with control points included in the "U238\_soil\_updated090115" data set when it is imported. No additional control other than points imported with the uranium concentration data set we used in the current interpolation.
- 6. In order to portray the uranium distribution more accurately in the PRZ at approximate 7.5 m below land surface, an upper bounding surface was used. This surface (plmcttr.asc) was created by exporting the topography (Lidar\_bath\_new.tif) from the model (constrained to the clipping boundary extents) and then subtracting 7.5 from the exported topography raster in GIS. However, this surface was not used to constrain the uranium distribution in the final interpolant.

# 4 Assumptions and Inputs

The following assumptions apply to the 3D vadose zone uranium distribution interpolations:

- 1. All data used in interpolation are correct and accurate.
- 2. All uranium concentrations are for the isotope uranium-238 because it is overwhelmingly abundant in proportion to other uranium isotopes in nature.

# 4.1 Geologic Framework Model Uncertainty

The principal source of uncertainty for identification of geologic units and their contacts is the quality of the descriptions and records of the drilling, sampling, and logging techniques used during borehole drilling, as well as the methods and materials used in well construction. The variable quality or lack of availability of borehole geophysical logs and laboratory data from borehole samples also contribute to this uncertainty. Many boreholes installed prior to the 1980s were drilled without a well site geologist present to describe the drill cuttings and samples. For these boreholes, only drillers' logs are available, and their quality varies greatly. Furthermore, varying quality of descriptions of subtle differences and gradational changes among geologic facies and across stratigraphic units can hamper reliable spatial correlation of sediment packages and individual facies.

As a result of the variability of data and the experience and professional judgment of the different investigators, many of the same geologic contacts have been picked at slightly different locations by different investigators. Different investigators may use different criteria for choosing contacts, depending on the objectives of the specific project (e.g., geologic or hydrologic in nature). Therefore, contact selection can be subjective and inconsistent. In some cases, the difference in contact elevation may be attributable to differences in the ground-surface elevations used by the different investigators

# 4.2 Inputs

Input data (U238\_soil\_updated090115.csv) for vadose uranium distribution interpolation are included in Appendices A and B. Input data (Vds\_lithology\_300Area.csv, HS\_062614\_lithology.csv, and Area\_Screens.csv) for the GFM are included in Appendix C. All uranium concentration data from wells 399-1-33, 399-1-35 through 37, C8933, and 399-1-23 (except for one value from 399-1-23) were ultimately omitted in interpolation because the low values in these locations resulted in unrealistic holes within the uranium distribution. One anomalously high value data point (316-5-TP4) was omitted because the duplicate point in its location, as well as several data points from different sampling depths within the same borehole, had much lower uranium concentrations.

#### ECF-300FF5-16-0087, REV. 0

|            |                                |                                | 1                              |                |             |                 |
|------------|--------------------------------|--------------------------------|--------------------------------|----------------|-------------|-----------------|
| Data Point | X<br>Coordinate <sup>a,b</sup> | Y<br>Coordinate <sup>a,b</sup> | Z<br>Coordinate <sup>a,c</sup> | HEIS<br>Number | Constituent | Value<br>(µg/g) |
| 300-18     | 593808.3                       | 117042.1                       | 112.85                         | J036W6         | Uranium-238 | 0               |
| 399-1-21B  | 594157.2                       | 116176.8                       | 92.9                           | B014W3         | Uranium-238 | 0               |
| 618-7      | 593212.6                       | 116509.2                       | 116.61                         | J17R55         | Uranium-238 | 0               |
| 618-7      | 593208                         | 116518                         | 116.78                         | J17R59         | Uranium-238 | 0               |
| 618-8      | 593821.1                       | 116477.9                       | 115.43                         | J11274         | Uranium-238 | 0               |
| 316-5-TP4  | 594090                         | 116455                         | 111.5                          | B01033         | Uranium-238 | 1080.3          |

| Table 1. | Data from U238 | soil | updated090115.csv | Omitted | from In | terpolation |
|----------|----------------|------|-------------------|---------|---------|-------------|
|          |                |      |                   |         |         |             |

a. All coordinates are in meters.

b. Horizontal datum is Washington State Plane (NAD83, North American Datum of 1983).

c. Vertical datum is NAVD88, North American Vertical Datum of 1988.

# 5 Software Applications

Leapfrog Geo, Microsoft Excel and Access<sup>®</sup>, and ArcGIS<sup>1</sup> software programs were used for this calculation. These are CHPRC approved software, managed and used in compliance with the requirements of PRC-PRO-IRM-309, *Controlled Software Management*. Leapfrog Geo is approved calculation software; approval is documented in CHPRC-01755, *Leapfrog-Hydro and Leapfrog-Geo Acceptance Test Report*. Microsoft Excel and ArcGIS software programs were used as spreadsheet software for this calculation.

# 5.1 Approved Software

For approved software used in this calculation, the required descriptions are provided in the following subsections.

# 5.1.1 Description

The following information has been identified for the software package used in the calculation:

- Software Title: Leapfrog Geo
- Software Version: 3.0.0
- Hanford Information System Inventory Identification Number: 2874 (Safety Software, Level C)
- Workstation type and property number: Dell Work Station INTERA #00771

# 5.1.2 Software Installation and Checkout

Copies of the Software Installation and Checkout Forms for the authorized users and authorized workstations for software used that requires this documentation are provided in Appendix D to this ECF.

<sup>&</sup>lt;sup>®</sup> Microsoft and Access are registered trademarks of Microsoft Corporation, Redmond, Washington.

<sup>&</sup>lt;sup>1</sup> ArcGIS is a product of Esri, Redlands, California.

# 5.2 Statement of Valid Software Application

The preparers of this calculation attest that the software identified and used for this calculation is appropriate for the application and has been within the range of intended uses for which it was tested and accepted by CHPRC.

# 6 Calculation

3D interpolation was carried out for soil uranium data contained in Appendices A and B. The overall approach was kept consistent with the steps defined in Chapter 3. Interpolation parameters were selected to interpolate the data to provide the best correlation to existing information (i.e., location of high depth discrete data values, nondetects, and uranium groundwater plume contours). Table 2 shows the interpolation parameters used for soil uranium.

#### Table 2. Interpolation Parameters Used for Uranium Plume Interpolation in Leapfrog Geo

|             |            | Trend                         |              |            |
|-------------|------------|-------------------------------|--------------|------------|
|             | Directions |                               | Ellipso      | id Ratio   |
| Dip         | Degree     | 0                             | Maximum      | 1          |
| Dip Azimuth | Degree     | 0                             | Intermediate | 1          |
| Pitch       | Degree     | 0                             | Minimum      | 1          |
|             |            | Interpolant                   |              |            |
| Sill        | Meters     | 600                           | Drift        | None       |
| Range       | Meters     | 50                            | Nugget       | 0          |
| Accuracy    | Meters     | 0.1                           | Interpolant  | Spheroidal |
|             |            |                               | Alpha        | 3          |
|             |            | Isosurface and Volumes        |              |            |
| Intervals   | µg/g       | <1.5; 3.0; 10; 30;<br>90; 157 |              |            |
|             |            | Isosurface and Volumes        |              |            |
| Resolution  | Meter      | 1.0                           |              |            |

# 7 Results/Conclusions

Figure 1 shows the results of the 3D vadose zone uranium distribution interpolation. The interpolated soil uranium concentrations along with other details are presented in a plan view. The interpolated vadose zone uranium concentration and isoconcentration contours are shown for the 7.5 m depth (below ground surface), which is the approximate target depth for the polyphosphate injection located in the PRZ. Figures 2 through 5 show the interpolated model geology and 3D uranium plumes to provide additional information.

Figures 6 and 7 illustrate the location of the Hf silt unit. It is important to note that since uranium contamination has an adsorption affinity for particles sized <2 mm (Shang et al., 2011), the location of silt

#### ECF-300FF5-16-0087, REV. 0

beneath the highest concentrations (>157  $\mu$ g/g) of the uranium vadose zone contamination distribution is significant.

Figures 8 and 9 show representations of a sandy gravel zone that appears to be excised through Hf silty, sandy gravel beneath the 300 Area. This feature was evident from the GFM interpretation of the detailed vadose zone borehole geologic data (Appendices C and D) assembled for the modeling efforts presented in this ECF (Figure 8). Table 3 lists interpreted borehole log locations containing evidence suggestive of the paleochannel outline, and no borehole locations contain unit information for Hf silty sandy gravel. The zone is filled with highly permeable Hf sandy gravel sediments and is underlain by low-permeability, silty sediments of the Ringold Formation. The significance of the excised zone is that it might contain less uranium due its slightly lower silt content than adjacent sediments. However, hydraulic properties of the excision fill material (Hf sandy gravel) and Hf silty sandy gravel are similar (Appendix E).

Figure 10 is a representation of the modeled geology and vadose zone uranium distribution in cross-section. The cross-section follows along the site direction of groundwater flow towards the Columbia River.

After completion of the Stage A remedy operations, three post-treatment borings were made to collect samples for comparing pre-remedy and post-remedy soil uranium conditions. Total uranium and borehole geology results were used as a validation data set to compare with the model results. Similarity between model and post remedy total uranium concentration results upon initial comparison showed confidence in the data set used to model the vadose zone uranium distribution discussed in this document. This was also the case when borehole geologies were compared. A detailed discussion of the model and post-remedy results can be found in Appendix E.

| Well<br>Name | From   | То      | Lithology | Total<br>Depth | X<br>Coordinate | Y<br>Coordinate | Z<br>Coordinate* |
|--------------|--------|---------|-----------|----------------|-----------------|-----------------|------------------|
| 399-1-57     | 0      | 11.5824 | Hf SG     | 36.1188        | 594382          | 116353.7        | 114.6343         |
| 399-1-7      | 0      | 24.86   | Hf SG     | 24.86          | 594260.1        | 116335.1        | 117.7757         |
| 399-1-8      | 0      | 34.6136 | Hf SG     | 34.6136        | 594257.8        | 116329.6        | 117.7526         |
| 399-1-9      | 0      | 57.1688 | Hf SG     | 35.052         | 594254          | 116330.4        | 117.728          |
| 399-2-3      | 0      | 21.812  | Hf SG     | 35.052         | 594377.4        | 116220.5        | 115.0428         |
| 399-1-2      | 0      | 2.1336  | Hf S      | 54.7304        | 594082.4        | 116329.5        | 117.9911         |
| 399-1-2      | 2.1336 | 30.7848 | Hf SG     | 54.7304        | 594082.4        | 116329.5        | 117.9911         |
| 399-1-5      | 0      | 1.8288  | Hf S      | 15.716         | 594111.7        | 116552.1        | 114.6323         |
| 399-1-5      | 1.8288 | 14.3256 | Hf SG     | 15.716         | 594111.7        | 116552.1        | 114.6323         |
| 399-1-20     | 0      | 56.9976 | Hf SG     | 54.7304        | 594257.3        | 116339.6        | 117.7588         |
| 399-1-68     | 0      | 12.5882 | Hf SG     | 12.5882        | 594166.8        | 116527          | 114.4458         |

#### Table 3. Hf Sandy Gravel Zone Borehole Locations and Lithologic Information

\* Z coordinate represents surveyed top elevation of well or borehole.

S = Sand; SG = Sandy Gravel

#### ECF-300FF5-16-0087, REV. 0



Note: Plume extents presented are from a depth of 7.5 m below ground surface.

Figure 1. Uranium Concentration Distribution

#### ECF-300FF5-16-0087, REV. 0



Note: Geologic units: red = Hf sand unit 1, orange = Hf sandy gravel, yellow = Hf sand unit 2, and green = Hf silty sandy gravel. Pink dots represent detailed vadose model well locations. Blue semitransparent shading represents the water table surface.

## Figure 2. 300 Area Geologic Framework Model



Note: Detailed plan view plume concentrations ( $\mu$ g/g) are yellow = >30, orange = >90, and red = >157. **Figure 3. 300 Area Uranium Concentration Distribution Plume Model** 

## ECF-300FF5-16-0087, REV. 0



Note: Detailed plan view plume concentrations ( $\mu$ g/g) are yellow = >30, orange = >90, and red = >157. **Figure 4. 300 Area Uranium Concentration Distribution Plume Model** 



Note: Plume concentrations ( $\mu g/g$ ) are yellow = >30, orange = >90, and red = >157. Figure 5. 300 Area Uranium Concentration Distribution Plume Model Detailed Orthogonal View

#### ECF-300FF5-16-0087, REV. 0



Note: The five wells with Hf silt contact data are shown (black dots). Uranium plume concentration outlines ( $\mu g/g$ ) are yellow = >30, orange = >90, and red = >157. Waste sites are shaded in gray. Notice that the northwestern plume portion lies with the >157  $\mu g/g$  contour.

## Figure 6. Hf Silt Location Plan View



Note: The five wells with Hf silt contact data are shown (black dots). Uranium plume concentration outlines ( $\mu$ g/g) are yellow = >30, orange = >90, and red = >157. Vadose zone uranium data points are also shown with their values corresponding to the values of the plume concentration outlines except for lower values with light blue = <10 and white = >10  $\mu$ g/g.

#### Figure 7. Hf Silt Location from the West

ECF-300FF5-16-0087, REV. 0



Note: The solid blue arrows indicate likely flow direction during HF silty sandy gravel excision. The dashed blue arrow indicates a possible scour flow direction, based on the current geologic model interpretation.

## Figure 8. Hf Sandy Gravel Zone Features Excised into Hanford Formation Silty, Sandy Gravel

#### ECF-300FF5-16-0087, REV. 0



Note: The solid arrows indicate possible flow direction during HF silty sandy gravel excision. The dashed arrow indicates a possible excision direction as evidenced from interpretation of new borehole data. Model image shows 5 times vertical exaggeration.

Figure 9. View of Hanford Formation Silty, Sandy Gravel Unit Showing Hf Sandy Gravel Zone

100m

ECF-300FF5-16-0087, REV. 0



A



G-31

#### ECF-300FF5-16-0087, REV. 0

## 8 References

- Aero-Metric LiDAR, 2008, RCCC-Hanford Battelle/PNNL/DOE, Digital Orthophotography & LiDAR Surveys Photogrammetric Report, prepared by Aero-metric, Seattle, Washington.
- BHI-01164, 1998, *300 Area Process Trenches Verification Package*, Rev. 0, Bechtel Hanford, Inc., Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D198200905.
- Buhmann, M.D., 2000, "Radial basis functions," *Acta Numerica* 9:1-38. Available at: https://www.math.ucdavis.edu/~saito/data/jim/buhmann-actanumerica.pdf.
- Carr, J.C., R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, and T.R. Evans, 2001, "Reconstruction and Representation of 3D Objects with Radial Basis Functions," in SIGGRAPH 2001: Proceedings of the 28<sup>th</sup> annual conference on Computer graphics and interactive techniques, ACM Press, New York, New York, 67-76. Available at: <u>http://wwwlb.cs.umd.edu/class/spring2005/cmsc828v/papers/siggraph01.pdf</u>.
- CHPRC-01755, 2016, *Leapfrog-Hydro and Leapfrog-Geo Acceptance Test Report*, Leapfrog-Hydro Version 2.3.2 and Leapfrog-Geo Version 3.0.0, Rev. 4, CH2M HILL Plateau Remediation Company, Richland, Washington.
- DOE/RL-92-32, 1992, *Expedited Response Action Assessment for 316-5 Process Trenches*, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- ECF-200UP1-14-0019, 2014, Initial Groundwater Plume Development (Uranium, Technetium-99, Nitrate, and Iodine-129) to Support Fate and Transport Modeling for Remedial Design in the 200- UP-1 Groundwater Operable Unit, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- ECF-300FF5-11-0151, 2012, Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS, Rev. 3, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078650H.
- ECF-300FF5-15-0014, 2015, Determination of Vadose Zone Uranium Concentration Distribution Extents and Establishment of the Stage A Enhanced Attenuation Area for 300-FF-5, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- ECF-HANFORD-13-0029, 2015, Development of the Hanford South Geologic Framework Model, Hanford Site, Washington, Rev. 2, CH2M HILL Plateau Remediation Company, Richland, Washington.
- IUPAC, 1998, "Isotopic Compositions of the Elements," International Union of Pure and Applied Chemistry, *Pure and Applied Chemistry* 70(1):217.
- NAD83, 1991, *North American Datum of 1983*, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.
- NAVD88, 1988, North American Vertical Datum of 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: http://www.ngs.noaa.gov/.

#### ECF-300FF5-16-0087, REV. 0

- Peterson, R.E., 2010, "Uranium in Sediment from FS-2 Test Pit, 618-1 Burial Ground Excavation," Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-16435, 2007, Limited Field Investigation Report for Uranium Contamination in the 300 Area, 300-FF-5 Operable Unit, Hanford Site, Washington, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=DA06586011.
- PNNL-17793, 2008, Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17793.pdf.
- PNNL-22032, 2012, Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments, Pacific Northwest National Laboratory, Richland, Washington. Available at: <a href="http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22032.pdf">http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22032.pdf</a>.
- PNNL-21733, 2012 Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-21733.pdf.
- PNNL-SA-25232, 2016, Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography, Pacific Northwest National Laboratory, Richland, Washington.
- PRC-PRO-IRM-309, 2014, *Controlled Software Management*, Revision 5, Change 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- Shang, Jianying, Liu Chongxuan, Zheming Wang, and John M. Zachara, 2011, "Effect of Grain Size on Uranium (VI) Surface Complexation Kinetics and Adsorption Additivity," *Environmental Science & Technology* 45(14):6025-6031. Available at: <u>http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1239&context=usdoepub</u>.
- SGW-48478, 2012, Interpretation and Integration of Seismic Data in the Gable Gap, Rev. 1, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0082286H.
- WHC-EP-0500, 1991, Geology and Hydrology of the 300 Area and Vicinity, Hanford Site, South-Central Washington, Westinghouse Hanford Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=E0017495</u>.

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

22

ECF-300FF5-16-0087, REV. 0

# Appendix A

Compiled Data for Uranium Soil Concentration Distribution Modeling

A-i

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

A-ii

#### ECF-300FF5-16-0087, REV. 0

# A1 Introduction

Table A-1 lists only the uranium concentration values that were used directly in the interpolation of the vadose zone uranium concentration distribution. Some values originally imported into Leapfrog Geo (described in Section 4.2 of the main text) may have been omitted from the interpolation because they were duplicate locations or caused unrealistic features within the interpolant. Therefore, these omitted values are not included in Table A-1. For example, multiple values imported for the exact same location result in an error in Leapfrog Geo so in these cases, only the highest values among the duplicates were retained. In the Data Source column of Table A-1, all data (except from Peterson, 2010, "Uranium in Sediment from FS-2 Test Pit, 618-1 Burial Ground Excavation") can be found in the Hanford Environmental Information System (HEIS). This column is intended to point out the particular entity (Washington Closure Hanford [WCH] or CH2M HILL Plateau Remediation Company [CHPRC]) or report from which the data can be referenced.

Soil concentrations of uranium-238 in pCi/g or  $\mu$ g/g were compiled from HEIS (accessed 02/15/2015), with the exception of the data from Peterson (2010), which are based on the following primary reports for the 300 Area:

- DOE/RL-92-32, *Expedited Response Action Assessment for 316-5 Process Trenches* (Table A-1 labels: WCH).
- BHI-01164, 300 Area Process Trenches Verification Package (Table A-1 labels: WCH).
- PNNL-17793, Uranium Contamination in the 300 Area: Emergent Data and their Impact on the Source Term Conceptual Model (Table A-1 labels: PNNL-17793 Tables 5.11, 5.22 and 5.47).
- PNNL-16435, Limited Field Investigation Report for Uranium Contamination in the 300 Area, 300-FF-5 Operable Unit, Hanford Site, Washington (Table A-1 labels PNNL-16435 Table D.2).
- PNNL-22032, Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments (Table A-1 labels: PNNL-22032).
- Unpublished post-record of decision field investigation sample data from borings C8933, 399-1-67, and 399-1-68 (Table A-1 labels: Borehole Data Tracking Spreadsheet.xlsx).
- Data from Peterson (2010) in the form of a letter report (Table A-1 labels: 618-1\_BurialGroundExcavation).
- Unpublished data at the time of modeling (now available in HEIS) obtained from characterization sampling at wells 399-1-76 and 399-1-80 during drilling activities for the Stage A Enhanced Attenuation Area (Table A-1 labels: Borehole\_Data\_Tracking\_Spreadsheet\_399-1-76\_&\_80.xlsx and HEIS).
- Additional data were retrieved from HEIS based upon the proximity to the modeling area. These data may be documented in reports but for the purposes of this calculation, they are labeled according to the originator of the data. The originators are WCH and CHPRC, as labeled in Table A-1. All data points pulled from HEIS that are not associated with the reports listed in this appendix, WCH, or CHPRC have been labeled as HEIS.

A-1

G-37

#### ECF-300FF5-16-0087, REV. 0

# A2 References

- BHI-01164, 1998, 300 Area Process Trenches Verification Package, Rev. 0, Bechtel Hanford, Inc., Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D198200905</u>.
- DOE/RL-92-32, 1992, *Expedited Response Action Assessment for 316-5 Process Trenches*, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- NAD83, 1991, *North American Datum of 1983*, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.
- NAVD88, 1988, North American Vertical Datum of 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: http://www.ngs.noaa.gov/.
- Peterson, R.E., 2010, "Uranium in Sediment from FS-2 Test Pit, 618-1 Burial Ground Excavation," Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-16435, 2007, Limited Field Investigation Report for Uranium Contamination in the 300 Area, 300-FF-5 Operable Unit, Hanford Site, Washington, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=DA06586011</u>.
- PNNL-17793, 2008, Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17793.pdf.
- PNNL-22032, 2012, Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22032.pdf</u>.

A-2

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 300 ASH PITS                              | B0L704         | 594366                           | 115989                           | 110.72                           | Uranium-238  | 0.45   | pCi/g | 8/13/1997   | WCH         | 5                      | 1.36   | μg/g  |
| 300 ASH PITS                              | B0L705         | 594359                           | 115947                           | 112.8                            | Uranium-238  | 0.77   | pCi/g | 8/14/1997   | WCH         | 5                      | 2.33   | μg/g  |
| 300 ASH PITS                              | B0L706         | 594315                           | 115936                           | 112.5                            | Uranium-238  | 0.73   | pCi/g | 8/14/1997   | WCH         | 5                      | 2.21   | μg/g  |
| 300 ASH PITS                              | B0L707         | 594284                           | 115946                           | 110.54                           | Uranium-238  | 0.78   | pCi/g | 8/14/1997   | WCH         | 5                      | 2.36   | μg/g  |
| 300 ASH PITS                              | B0L708         | 594250                           | 115973                           | 111.82                           | Uranium-238  | 0.82   | pCi/g | 8/14/1997   | WCH         | 5                      | 2.48   | µg∕g  |
| 300 ASH PITS                              | B0L709         | 594281                           | 115978                           | 110.06                           | Uranium-238  | 0.77   | pCi/g | 8/14/1997   | WCH         | 5                      | 2.33   | µg∕g  |
| 300-10                                    | B0L944         | 594043                           | 116569                           | 111.02                           | Uranium-238  | 0.82   | pCi/g | 8/26/1997   | WCH         | 5                      | 2.48   | µg∕g  |
| 300-10                                    | B0L945         | 594019                           | 116569                           | 112.62                           | Uranium-238  | 1.37   | pCi/g | 8/26/1997   | WCH         | 5                      | 4.15   | µg/g  |
| 300-10                                    | B0L959         | 594039                           | 116572                           | 112.12                           | Uranium-238  | 1.26   | pCi/g | 10/3/1997   | WCH         | 5                      | 3.82   | µg∕g  |
| 300-10                                    | B0L961         | 594017                           | 116573                           | 112.67                           | Uranium-238  | 1.13   | pCi/g | 10/3/1997   | WCH         | 5                      | 3.42   | µg∕g  |
| 300-18                                    | J036W6         | 593808.3                         | 117042.1                         | 112.85                           | Uranium-238  | 0      | pCi/g | 5/25/2005   | WCH         | 5                      | 0      | μg/g  |
| 300-18                                    | J036W7         | 593811.5                         | 117039.9                         | 112.45                           | Uranium-238  | 0.34   | pCi/g | 5/25/2005   | WCH         | 5                      | 1.03   | µg∕g  |
| 300-18                                    | J036W8         | 593814.7                         | 117046.3                         | 112.66                           | Uranium-238  | 0.31   | pCi/g | 5/25/2005   | WCH         | 5                      | 0.94   | µg∕g  |
| 300-18                                    | J036W9         | 593818.3                         | 117042.8                         | 112.6                            | Uranium-238  | 0.34   | pCi/g | 5/25/2005   | WCH         | 5                      | 1.03   | μg/g  |
| 300-259                                   | J19C15         | 594062.8                         | 116189.4                         | 115.01                           | Uranium-238  | 1.31   | pCi/g | 10/19/2009  | WCH         | 5                      | 3.97   | μg/g  |
| 300-259                                   | J19C16         | 594054.4                         | 116203.8                         | 115.03                           | Uranium-238  | 1.37   | pCi/g | 10/19/2009  | WCH         | 5                      | 4.15   | μg/g  |
| 300-259                                   | J19C17         | 594054.4                         | 116232.7                         | 114.91                           | Uranium-238  | 0.57   | pCi/g | 10/19/2009  | WCH         | 5                      | 1.73   | μg/g  |
| 300-259                                   | J19C18         | 594046.1                         | 116247.1                         | 114.95                           | Uranium-238  | 1.19   | pCi/g | 10/19/2009  | WCH         | 5                      | 3.61   | µg/g  |
| 300-259                                   | J19C19         | 594054.4                         | 116261.5                         | 114.71                           | Uranium-238  | 0.78   | pCi/g | 10/19/2009  | WCH         | 5                      | 2.36   | μg/g  |
| 300-259                                   | J19C20         | 594046.1                         | 116275.9                         | 114.58                           | Uranium-238  | 1.04   | pCi/g | 10/19/2009  | WCH         | 5                      | 3.15   | μg/g  |
| 300-259                                   | J19C21         | 594004.5                         | 116290.3                         | 115.27                           | Uranium-238  | 0.79   | pCi/g | 10/19/2009  | WCH         | 5                      | 2.39   | μg/g  |
| 300-259                                   | J19C22         | 594037.8                         | 116290.3                         | 114.52                           | Uranium-238  | 1.2    | pCi/g | 10/19/2009  | WCH         | 5                      | 3.64   | µg/g  |
| 300-259                                   | J19C23         | 594054.4                         | 116290.3                         | 114.36                           | Uranium-238  | 1.35   | pCi/g | 10/19/2009  | WCH         | 5                      | 4.09   | μg/g  |
| 300-259                                   | J19C24         | 594012.8                         | 116304.7                         | 114.09                           | Uranium-238  | 2.1    | pCi/g | 10/19/2009  | WCH         | 5                      | 6.36   | μg/g  |
| 300-259                                   | J19C25         | 594029.5                         | 116304.7                         | 114.08                           | Uranium-238  | 1.17   | pCi/g | 10/19/2009  | WCH         | 5                      | 3.55   | µg/g  |
| 300-259                                   | J19C26         | 594046.1                         | 116304.7                         | 114.06                           | Uranium-238  | 0.83   | pCi/g | 10/19/2009  | WCH         | 5                      | 2.52   | µg/g  |
| 300-275                                   | J17XW5         | 594293                           | 116987.6                         | 106.65                           | Uranium-238  | 0.4    | pCi/g | 11/19/2008  | WCH         | 5                      | 1.21   | µg/g  |
| 300-275                                   | J17XW6         | 594284.1                         | 116972.9                         | 107.42                           | Uranium-238  | 0.83   | pCi/g | 11/19/2008  | WCH         | 5                      | 2.52   | μg/g  |
| 300-275                                   | J17XW7         | 594288.2                         | 116965.4                         | 107.05                           | Uranium-238  | 1.71   | pCi/g | 11/19/2008  | WCH         | 5                      | 5.18   | μg/g  |

| Table A-1. 300 Area Uranium S | oil Concentration Data |
|-------------------------------|------------------------|
|-------------------------------|------------------------|

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate | Z Coordinate | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|--------------|--------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 300-275                                   | J17XW8         | 594301.3                         | 116972.5     | 105.68       | Uranium-238  | 1.33   | pCi/g | 11/19/2008  | WCH         | 5                      | 4.03   | μg/g  |
| 300-275                                   | J17XX0         | 594296.8                         | 116965.2     | 105.27       | Uranium-238  | 15.5   | pCi/g | 11/19/2008  | WCH         | 5                      | 46.97  | μg/g  |
| 300-275                                   | J17XX1         | 594292.3                         | 116957.8     | 108.02       | Uranium-238  | 0.96   | pCi/g | 11/19/2008  | WCH         | 5                      | 2.91   | μg/g  |
| 300-275                                   | J17XX2         | 594309.9                         | 116972.3     | 104.24       | Uranium-238  | 0.49   | pCi/g | 11/19/2008  | WCH         | 5                      | 1.48   | μg/g  |
| 300-275                                   | J17XX3         | 594305.4                         | 116964.9     | 105.14       | Uranium-238  | 0.39   | pCi/g | 11/19/2008  | WCH         | 5                      | 1.18   | μg/g  |
| 300-275                                   | J17XX4         | 594323                           | 116979.4     | 105.75       | Uranium-238  | 0.47   | pCi/g | 11/19/2008  | WCH         | 5                      | 1.42   | μg/g  |
| 300-275                                   | J17XX5         | 594318.5                         | 116972.1     | 104.32       | Uranium-238  | 0.63   | pCi/g | 11/19/2008  | WCH         | 5                      | 1.91   | μg/g  |
| 300-275                                   | J17XX6         | 594314                           | 116964.7     | 107.19       | Uranium-238  | 0.47   | pCi/g | 11/19/2008  | WCH         | 5                      | 1.42   | μg/g  |
| 300-275                                   | J17XX7         | 594327.1                         | 116971.8     | 105.61       | Uranium-238  | 1      | pCi/g | 11/19/2008  | WCH         | 5                      | 3.03   | μg/g  |
| 300-275                                   | J17XX8         | 594325.7                         | 116875.9     | 107.32       | Uranium-238  | 0.47   | pCi/g | 11/20/2008  | WCH         | 5                      | 1.42   | μg/g  |
| 300-275                                   | J17XX9         | 594328.9                         | 116875.9     | 107.56       | Uranium-238  | 0.76   | pCi/g | 11/20/2008  | WCH         | 5                      | 2.3    | μg/g  |
| 300-275                                   | J17XY0         | 594324.1                         | 116878.6     | 107.24       | Uranium-238  | 0.54   | pCi/g | 11/20/2008  | WCH         | 5                      | 1.64   | μg/g  |
| 300-275                                   | J17XY1         | 594327.3                         | 116878.6     | 107.04       | Uranium-238  | 0.63   | pCi/g | 11/20/2008  | WCH         | 5                      | 1.91   | μg/g  |
| 300-275                                   | J17XY2         | 594325.7                         | 116881.3     | 107.65       | Uranium-238  | 1.59   | pCi/g | 11/20/2008  | WCH         | 5                      | 4.82   | μg/g  |
| 300-275                                   | J17XY3         | 594328.9                         | 116881.3     | 107.94       | Uranium-238  | 1.79   | pCi/g | 11/20/2008  | WCH         | 5                      | 5.42   | μg/g  |
| 300-275                                   | J17XY4         | 594322.6                         | 116886.8     | 107.32       | Uranium-238  | 0.66   | pCi/g | 11/20/2008  | WCH         | 5                      | 2      | µg/g  |
| 300-275                                   | J17XY5         | 594325.7                         | 116886.8     | 107.62       | Uranium-238  | 1.35   | pCi/g | 11/20/2008  | WCH         | 5                      | 4.09   | μg/g  |
| 300-275                                   | J17XY6         | 594321                           | 116889.6     | 107.61       | Uranium-238  | 1.09   | pCi/g | 11/20/2008  | WCH         | 5                      | 3.3    | µg/g  |
| 300-275                                   | J17XY7         | 594324.1                         | 116889.6     | 106.64       | Uranium-238  | 0.89   | pCi/g | 11/20/2008  | WCH         | 5                      | 2.7    | µg/g  |
| 300-44                                    | B0M1V6         | 593847                           | 116939       | 112.64       | Uranium-238  | 0.24   | pCi/g | 9/25/1997   | WCH         | 5                      | 0.73   | µg/g  |
| 300-44                                    | B0M1V9         | 593847                           | 116949       | 112.36       | Uranium-238  | 0.29   | pCi/g | 9/25/1997   | WCH         | 5                      | 0.88   | µg/g  |
| 300-45                                    | B0L946         | 594050                           | 116446       | 111.06       | Uranium-238  | 1.18   | pCi/g | 9/22/1997   | WCH         | 5                      | 3.58   | μg/g  |
| 300-45                                    | B0L947         | 594055                           | 116456       | 110.58       | Uranium-238  | 1.2    | pCi/g | 9/22/1997   | WCH         | 5                      | 3.64   | μg/g  |
| 300-49                                    | B0Y6M6         | 594300                           | 116810       | 109.96       | Uranium-238  | 0.44   | pCi/g | 6/28/2000   | WCH         | 5                      | 1.33   | μg/g  |
| 300-49                                    | B0Y6M7         | 594300                           | 116830       | 109.34       | Uranium-238  | 0.64   | pCi/g | 6/28/2000   | WCH         | 5                      | 1.94   | μg/g  |
| 300-49                                    | B0Y6M8         | 594315                           | 116830       | 108.69       | Uranium-238  | 0.99   | pCi/g | 6/28/2000   | WCH         | 5                      | 3      | μg/g  |
| 300-49                                    | B0Y6M9         | 594295                           | 116845       | 108.76       | Uranium-238  | 1.32   | pCi/g | 6/28/2000   | WCH         | 5                      | 4      | μg/g  |
| 300-49                                    | B0Y6P0         | 594285                           | 116860       | 108.75       | Uranium-238  | 0.36   | pCi/g | 6/28/2000   | WCH         | 5                      | 1.09   | μg/g  |
| 300-49                                    | B0Y6P1         | 594350                           | 116875       | 107.76       | Uranium-238  | 0.86   | pCi/g | 6/28/2000   | WCH         | 5                      | 2.61   | μg/g  |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling<br>Location  | HEIS   | X Coordinate | Y Coordinate | Z Coordinate | Constituonto | Valued | Unite | Sampla Data | Data Sourco | Sample<br>Depth | Valuoo | Unite         |
|-----------------------|--------|--------------|--------------|--------------|--------------|--------|-------|-------------|-------------|-----------------|--------|---------------|
| 300-50                | B0Y756 | 594230       | 116725       | 109.36       | Uranium-238  | 4 76   | pCi/g | 7/5/2000    | WCH         | 5               | 14 42  |               |
| 300-50                | B0V758 | 594240       | 116725       | 109.38       | Uranium-238  | 7.2    | pCi/g | 7/5/2000    | WCH         | 5               | 21.82  | μ <u>σ</u> /σ |
| 300-50                | D01750 | 594170       | 116695       | 110.02       | Uranium 228  | 6      | pCi/g | 7/5/2000    | WCH         | 5               | 10.10  | μg/g          |
| 300-50                | D01739 | 504225       | 116605       | 100.81       | Uranium 228  | 5.45   | pCi/g | 7/5/2000    | WCH         | 5               | 16.52  | µg/g          |
| 300-50                | D01770 | 594233       | 116715       | 109.81       | Uranium 228  | 10.5   | pCi/g | 7/5/2000    | WCH         | 5               | 21.92  | µg/g          |
| 300-50                | D01//1 | 594220       | 116745       | 110.65       | Uranium 228  | 10.5   | pCi/g | 7/5/2000    | WCH         | 5               | 1.76   | µg/g          |
| 300-50                | B0Y//2 | 594165       | 116/45       | 110.65       | Uranium-238  | 0.58   | pCI/g | 7/5/2000    | WCH         | 5               | 1.70   | μg/g          |
| 300-8                 | J03VD4 | 593875       | 116628.6     | 112.32       | Uranium-238  | 0.77   | pCi/g | 7/27/2005   | WCH         | 5               | 2.33   | μg/g          |
| 300-8                 | J03VD5 | 593848.9     | 116609.4     | 112.51       | Uranium-238  | 0.53   | pC1/g | 7/27/2005   | WCH         | 5               | 1.61   | μg/g          |
| 300-8                 | J03VD6 | 593807.2     | 116644.2     | 113.36       | Uranium-238  | 0.38   | pC1/g | 7/27/2005   | WCH         | 5               | 1.15   | µg/g          |
| 300-8                 | J03VD7 | 593843.3     | 116666.1     | 113.26       | Uranium-238  | 0.53   | pCi/g | 7/27/2005   | WCH         | 5               | 1.61   | µg/g          |
| 300-8                 | J03VD8 | 593827.9     | 116736       | 112.07       | Uranium-238  | 0.65   | pCi/g | 7/27/2005   | WCH         | 5               | 1.97   | µg/g          |
| 300-8                 | J03VD9 | 593813.7     | 116727.2     | 113.6        | Uranium-238  | 0.6    | pCi/g | 7/27/2005   | WCH         | 5               | 1.82   | µg/g          |
| 300-8                 | J03VF0 | 593765.8     | 116694.3     | 112.85       | Uranium-238  | 0.62   | pCi/g | 7/27/2005   | WCH         | 5               | 1.88   | µg/g          |
| 300-8                 | J03VF1 | 593799.4     | 116597       | 112.8        | Uranium-238  | 0.69   | pCi/g | 7/27/2005   | WCH         | 5               | 2.09   | µg/g          |
| 300-8                 | J03VF2 | 593801.7     | 116578.9     | 113.94       | Uranium-238  | 0.42   | pCi/g | 7/28/2005   | WCH         | 5               | 1.27   | μg/g          |
| 300-8                 | J03VF3 | 593771.8     | 116565.7     | 112.97       | Uranium-238  | 0.62   | pCi/g | 7/28/2005   | WCH         | 5               | 1.88   | µg/g          |
| 300-8                 | J03VF4 | 593828.6     | 116526.1     | 114.18       | Uranium-238  | 0.31   | pCi/g | 7/28/2005   | WCH         | 5               | 0.94   | μg/g          |
| 300-8                 | J03VF5 | 593877.5     | 116437       | 114.79       | Uranium-238  | 1.19   | pCi/g | 7/28/2005   | WCH         | 5               | 3.61   | µg/g          |
| 300-8                 | J03VF6 | 593883.7     | 116385       | 112.21       | Uranium-238  | 0.99   | pCi/g | 7/28/2005   | WCH         | 5               | 3      | µg/g          |
| 300-8                 | J03VF7 | 593902.4     | 116342.7     | 113.89       | Uranium-238  | 1.47   | pCi/g | 7/28/2005   | WCH         | 5               | 4.45   | µg/g          |
| 300-8                 | J03VF8 | 593885.5     | 116513.6     | 112.72       | Uranium-238  | 0.84   | pCi/g | 7/28/2005   | WCH         | 5               | 2.55   | μg/g          |
| 300-8                 | J03VF9 | 593946.3     | 116462.5     | 112.29       | Uranium-238  | 0.29   | pCi/g | 7/28/2005   | WCH         | 5               | 0.88   | μg/g          |
| 300-FF-1<br>RI B00H44 | B00H44 | 594211       | 116130       | 105.5        | Uranium-238  | 2.9    | pCi/g | 12/6/1991   | HEIS        | 9.45            | 8.79   | µg/g          |
| 300-FF-1<br>RI B00H44 | B00H46 | 594211       | 116130       | 104.28       | Uranium-238  | 1.6    | pCi/g | 12/6/1991   | HEIS        | 10.67           | 4.85   | µg/g          |
| 300-FF-1<br>RI B00H44 | B00H48 | 594211       | 116130       | 102.76       | Uranium-238  | 1.1    | pCi/g | 12/6/1991   | HEIS        | 12.19           | 3.33   | µg/g          |
| 316-1                 | B0R3R1 | 594243       | 116057       | 109.98       | Uranium-238  | 48     | pCi/g | 12/17/1998  | WCH         | 5               | 145.45 | µg∕g          |
| 316-1                 | B0R3R4 | 594242       | 116031       | 110          | Uranium-238  | 16     | pCi/g | 12/17/1998  | WCH         | 5               | 48.48  | μg/g          |

А-5

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 316-1                                     | B0R3R5         | 594235                           | 116027                           | 109.93                           | Uranium-238  | 31     | pCi/g | 12/17/1998  | WCH         | 5                      | 93.94  | μg/g  |
| 316-1                                     | B0R3R6         | 594264                           | 116021                           | 109.84                           | Uranium-238  | 23     | pCi/g | 12/17/1998  | WCH         | 5                      | 69.7   | μg/g  |
| 316-1                                     | B0R3R7         | 594303                           | 116116                           | 109.95                           | Uranium-238  | 15     | pCi/g | 12/17/1998  | WCH         | 5                      | 45.45  | μg/g  |
| 316-1                                     | B0R3R8         | 594288                           | 116133                           | 109.87                           | Uranium-238  | 16     | pCi/g | 12/17/1998  | WCH         | 5                      | 48.48  | μg/g  |
| 316-1                                     | B0R3R9         | 594299                           | 116156                           | 109.91                           | Uranium-238  | 20     | pCi/g | 12/17/1998  | WCH         | 5                      | 60.61  | μg/g  |
| 316-1                                     | B0R3T0         | 594315                           | 116162                           | 109.79                           | Uranium-238  | 22     | pCi/g | 12/17/1998  | WCH         | 5                      | 66.67  | μg/g  |
| 316-1                                     | B0R3T1         | 594290                           | 116173                           | 109.83                           | Uranium-238  | 12     | pCi/g | 12/17/1998  | WCH         | 5                      | 36.36  | μg/g  |
| 316-1                                     | B0YNM1         | 594266                           | 116077                           | 109.92                           | Uranium-238  | 21.7   | pCi/g | 7/13/2000   | WCH         | 5                      | 65.76  | μg/g  |
| 316-1                                     | B0YNM2         | 594288                           | 116186                           | 109.76                           | Uranium-238  | 31.1   | pCi/g | 7/13/2000   | WCH         | 5                      | 94.24  | μg/g  |
| 316-1                                     | B0YNM3         | 594251                           | 116133                           | 109.85                           | Uranium-238  | 1.04   | pCi/g | 7/13/2000   | WCH         | 5                      | 3.15   | μg/g  |
| 316-1                                     | B0YNM4         | 594213                           | 116033                           | 110.03                           | Uranium-238  | 2.25   | pCi/g | 7/13/2000   | WCH         | 5                      | 6.82   | μg/g  |
| 316-1                                     | B0YNM5         | 594330                           | 116075                           | 109.66                           | Uranium-238  | 3.17   | pCi/g | 7/13/2000   | WCH         | 5                      | 9.61   | μg/g  |
| 316-1                                     | B0YNM6         | 594326                           | 116081                           | 109.72                           | Uranium-238  | 15.5   | pCi/g | 7/13/2000   | WCH         | 5                      | 46.97  | μg/g  |
| 316-1                                     | B0YNM7         | 594371                           | 116044                           | 109.59                           | Uranium-238  | 2.11   | pCi/g | 7/13/2000   | WCH         | 5                      | 6.39   | μg/g  |
| 316-1                                     | B0YNM8         | 594424                           | 116025                           | 109.6                            | Uranium-238  | 2.57   | pCi/g | 7/13/2000   | WCH         | 5                      | 7.79   | μg/g  |
| 316-1                                     | B0YNM9         | 594280                           | 116076                           | 109.91                           | Uranium-238  | 14.5   | pCi/g | 7/13/2000   | WCH         | 5                      | 43.94  | μg/g  |
| 316-1                                     | B0YNN0         | 594416                           | 116145                           | 109.49                           | Uranium-238  | 6.49   | pCi/g | 7/13/2000   | WCH         | 5                      | 19.67  | μg/g  |
| 316-1                                     | B0YNN1         | 594203                           | 116066                           | 109.99                           | Uranium-238  | 3.12   | pCi/g | 7/14/2000   | WCH         | 5                      | 9.45   | μg/g  |
| 316-1                                     | B0YNN2         | 594203                           | 116132                           | 109.97                           | Uranium-238  | 11.9   | pCi/g | 7/14/2000   | WCH         | 5                      | 36.06  | μg/g  |
| 316-1                                     | B0YNN3         | 594235                           | 116109                           | 109.89                           | Uranium-238  | 2.21   | pCi/g | 7/14/2000   | WCH         | 5                      | 6.7    | μg/g  |
| 316-1                                     | B0YNN4         | 594218                           | 116142                           | 109.88                           | Uranium-238  | 4.94   | pCi/g | 7/14/2000   | WCH         | 5                      | 14.97  | μg/g  |
| 316-1                                     | B0YNN5         | 594219                           | 116175                           | 109.8                            | Uranium-238  | 15.5   | pCi/g | 7/14/2000   | WCH         | 5                      | 46.97  | μg/g  |
| 316-1                                     | B0YNN6         | 594190                           | 116152                           | 109.96                           | Uranium-238  | 28.9   | pCi/g | 7/14/2000   | WCH         | 5                      | 87.58  | μg/g  |
| 316-1                                     | B0YNN7         | 594179                           | 116155                           | 109.9                            | Uranium-238  | 1.72   | pCi/g | 7/14/2000   | WCH         | 5                      | 5.21   | μg/g  |
| 316-1                                     | B0YNN8         | 594206                           | 116102                           | 110.07                           | Uranium-238  | 9.33   | pCi/g | 7/14/2000   | WCH         | 5                      | 28.27  | μg/g  |
| 316-1                                     | B0YNN9         | 594220                           | 116087                           | 110.07                           | Uranium-238  | 8.85   | pCi/g | 7/14/2000   | WCH         | 5                      | 26.82  | μg/g  |
| 316-1                                     | B0YNP0         | 594214                           | 116111                           | 110.15                           | Uranium-238  | 8.72   | pCi/g | 7/14/2000   | WCH         | 5                      | 26.42  | μg/g  |
| 316-1-TP1                                 | B00H52         | 594280.8                         | 116110.2                         | 109.99                           | Uranium-238  | 1      | pCi/g | 11/21/1991  | HEIS        | 4.88                   | 3.03   | μg/g  |
| 316-1-TP1                                 | B00H53         | 594280.8                         | 116110.2                         | 108.47                           | Uranium-238  | 2.7    | pCi/g | 11/21/1991  | HEIS        | 6.4                    | 8.18   | μg/g  |

| Table A-1. 300 Area Ur | ranium Soil ( | <b>Concentration Data</b> |  |
|------------------------|---------------|---------------------------|--|
|------------------------|---------------|---------------------------|--|

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 316-1-TP1                                 | B00H54         | 594280.8                         | 116110.2                         | 106.94                           | Uranium-238  | 1.4    | pCi/g | 11/21/1991  | HEIS        | 7.93                   | 4.24   | μg/g  |
| 316-1-TP1                                 | B00H55         | 594280.8                         | 116110.2                         | 105.73                           | Uranium-238  | 1.9    | pCi/g | 11/21/1991  | HEIS        | 9.14                   | 5.76   | μg/g  |
| 316-1-TP1                                 | B00H56         | 594280.8                         | 116110.2                         | 104.2                            | Uranium-238  | 3.1    | pCi/g | 11/21/1991  | HEIS        | 10.67                  | 9.39   | µg∕g  |
| 316-1-TP2                                 | B00H68         | 594243.4                         | 116032.2                         | 110.14                           | Uranium-238  | 1.5    | pCi/g | 12/3/1991   | HEIS        | 4.88                   | 4.55   | µg/g  |
| 316-1-TP2                                 | B00H69         | 594243.4                         | 116032.2                         | 108.62                           | Uranium-238  | 1.2    | pCi/g | 12/3/1991   | HEIS        | 6.4                    | 3.64   | µg/g  |
| 316-1-TP2                                 | B00H70         | 594243.4                         | 116032.2                         | 107.09                           | Uranium-238  | 1.6    | pCi/g | 12/3/1991   | HEIS        | 7.93                   | 4.85   | µg/g  |
| 316-1-TP2                                 | B00H71         | 594243.4                         | 116032.2                         | 105.57                           | Uranium-238  | 0.9    | pCi/g | 12/3/1991   | HEIS        | 9.45                   | 2.73   | µg/g  |
| 316-1-TP2                                 | B00H72         | 594243.4                         | 116032.2                         | 104.05                           | Uranium-238  | 2.9    | pCi/g | 12/3/1991   | HEIS        | 10.97                  | 8.79   | µg/g  |
| 316-1-TP2                                 | B00H73         | 594243.4                         | 116032.2                         | 102.52                           | Uranium-238  | 1      | pCi/g | 12/3/1991   | HEIS        | 12.5                   | 3.03   | µg/g  |
| 316-1-TP3                                 | B00H84         | 594215.2                         | 116119.4                         | 110.15                           | Uranium-238  | 26.2   | pCi/g | 12/6/1991   | HEIS        | 4.88                   | 79.39  | µg/g  |
| 316-1-TP3                                 | B00H86         | 594215.2                         | 116119.4                         | 108.63                           | Uranium-238  | 1.9    | pCi/g | 12/6/1991   | HEIS        | 6.4                    | 5.76   | µg/g  |
| 316-1-TP3                                 | B00H88         | 594215.2                         | 116119.4                         | 107.1                            | Uranium-238  | 6.8    | pCi/g | 12/6/1991   | HEIS        | 7.93                   | 20.61  | µg/g  |
| 316-2                                     | B0L633         | 594182.5                         | 116677                           | 109.9                            | Uranium-238  | 23.8   | pCi/g | 6/26/1997   | WCH         | 5                      | 72.12  | µg/g  |
| 316-2                                     | B0L635         | 594191                           | 116658                           | 109.72                           | Uranium-238  | 36.8   | pCi/g | 6/26/1997   | WCH         | 5                      | 111.52 | µg/g  |
| 316-2                                     | B0L636         | 594242.5                         | 116704.5                         | 109.64                           | Uranium-238  | 7.21   | pCi/g | 7/2/1997    | WCH         | 5                      | 21.85  | µg/g  |
| 316-2                                     | B0L649         | 594335                           | 116641                           | 109.54                           | Uranium-238  | 0.92   | pCi/g | 7/30/1997   | WCH         | 5                      | 2.79   | µg/g  |
| 316-2                                     | B0L650         | 594350                           | 116559.5                         | 109.54                           | Uranium-238  | 4.24   | pCi/g | 7/31/1997   | WCH         | 5                      | 12.85  | µg/g  |
| 316-2                                     | B0L648         | 594325                           | 116480                           | 109.59                           | Uranium-238  | 1.52   | pCi/g | 8/8/1997    | WCH         | 5                      | 4.61   | µg/g  |
| 316-2                                     | B0V024         | 594195                           | 116582                           | 109.66                           | Uranium-238  | 15     | pCi/g | 3/12/1999   | WCH         | 5                      | 45.45  | μg/g  |
| 316-2                                     | B0V025         | 594180                           | 116575                           | 109.77                           | Uranium-238  | 17.8   | pCi/g | 3/12/1999   | WCH         | 5                      | 53.94  | µg/g  |
| 316-2                                     | B0V026         | 594213                           | 116605                           | 109.68                           | Uranium-238  | 4.09   | pCi/g | 3/12/1999   | WCH         | 5                      | 12.39  | µg/g  |
| 316-2                                     | B0V027         | 594201                           | 116489                           | 109.76                           | Uranium-238  | 79     | pCi/g | 3/12/1999   | WCH         | 5                      | 239.39 | µg/g  |
| 316-2                                     | B0V028         | 594142                           | 116619                           | 109.9                            | Uranium-238  | 2.98   | pCi/g | 3/12/1999   | WCH         | 5                      | 9.03   | µg/g  |
| 316-2                                     | B0V029         | 594185                           | 116629                           | 109.83                           | Uranium-238  | 11.9   | pCi/g | 3/12/1999   | WCH         | 5                      | 36.06  | µg/g  |
| 316-2                                     | B0V030         | 594233                           | 116587                           | 109.66                           | Uranium-238  | 101    | pCi/g | 3/12/1999   | WCH         | 5                      | 306.06 | µg/g  |
| 316-2                                     | B0V031         | 594258                           | 116561                           | 109.69                           | Uranium-238  | 43.7   | pCi/g | 3/12/1999   | WCH         | 5                      | 132.42 | µg/g  |
| 316-2                                     | B0V032         | 594289                           | 116582                           | 109.71                           | Uranium-238  | 34.9   | pCi/g | 3/12/1999   | WCH         | 5                      | 105.76 | µg/g  |
| 316-2                                     | B0V033         | 594343                           | 116517                           | 109.54                           | Uranium-238  | 35.2   | pCi/g | 3/12/1999   | WCH         | 5                      | 106.67 | µg/g  |
| 316-2                                     | B0V034         | 594250                           | 116511                           | 109.7                            | Uranium-238  | 119    | pCi/g | 3/12/1999   | WCH         | 5                      | 360.61 | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee  | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|---------|-------|
| 316-2                                     | B0V035         | 594226                           | 116541                           | 109.74                           | Uranium-238  | 66.1   | pCi/g | 3/12/1999   | WCH         | 5                      | 200.3   | μg/g  |
| 316-2-TP2                                 | B01GG2         | 594204.4                         | 116622.4                         | 109.81                           | Uranium-238  | 0.9    | pCi/g | 12/14/1991  | HEIS        | 4.88                   | 2.73    | μg/g  |
| 316-2-TP2                                 | B01GG3         | 594204.4                         | 116622.4                         | 108.29                           | Uranium-238  | 1      | pCi/g | 12/14/1991  | HEIS        | 6.4                    | 3.03    | μg/g  |
| 316-2-TP2                                 | B01GG4         | 594204.4                         | 116622.4                         | 106.76                           | Uranium-238  | 1.4    | pCi/g | 12/14/1991  | HEIS        | 7.93                   | 4.24    | μg/g  |
| 316-2-TP2                                 | B01GG5         | 594204.4                         | 116622.4                         | 105.24                           | Uranium-238  | 1.2    | pCi/g | 12/14/1991  | HEIS        | 9.45                   | 3.64    | μg/g  |
| 316-2-TP3                                 | B01GJ7         | 594285.5                         | 116620.2                         | 109.87                           | Uranium-238  | 2.1    | pCi/g | 12/16/1991  | HEIS        | 4.88                   | 6.36    | μg/g  |
| 316-2-TP3                                 | B01GJ8         | 594285.5                         | 116620.2                         | 108.35                           | Uranium-238  | 2.2    | pCi/g | 12/16/1991  | HEIS        | 6.4                    | 6.67    | μg/g  |
| 316-2-TP3                                 | B01GJ9         | 594285.5                         | 116620.2                         | 106.82                           | Uranium-238  | 2.7    | pCi/g | 12/16/1991  | HEIS        | 7.93                   | 8.18    | μg/g  |
| 316-2-TP3                                 | B01GK0         | 594285.5                         | 116620.2                         | 105.3                            | Uranium-238  | 1.6    | pCi/g | 12/16/1991  | HEIS        | 9.45                   | 4.85    | μg/g  |
| 316-5                                     | B0M4N1         | 594091                           | 116451                           | 114.8                            | Uranium-238  | 45.2   | pCi/g | 10/7/1997   | WCH         | 0.3                    | 136.97  | μg/g  |
| 316-5                                     | B0M4N4         | 594076                           | 116451                           | 114.93                           | Uranium-238  | 32.3   | pCi/g | 10/7/1997   | WCH         | 0.3                    | 97.88   | μg/g  |
| 316-5                                     | B0L950         | 594076                           | 116930                           | 113.56                           | Uranium-238  | 5.38   | pCi/g | 11/12/1997  | WCH         | 0.3                    | 16.3    | μg/g  |
| 316-5                                     | B0L952         | 594044                           | 116913                           | 112.57                           | Uranium-238  | 3.28   | pCi/g | 11/12/1997  | WCH         | 0.3                    | 9.94    | μg/g  |
| 316-5                                     | B0L953         | 594028                           | 116910                           | 112.96                           | Uranium-238  | 0.71   | pCi/g | 11/12/1997  | WCH         | 0.3                    | 2.15    | μg/g  |
| 316-5                                     | B0L954         | 594012                           | 116879                           | 113.06                           | Uranium-238  | 119    | pCi/g | 11/12/1997  | WCH         | 0.3                    | 360.61  | μg/g  |
| 316-5                                     | B0L955         | 594025                           | 116874                           | 113.05                           | Uranium-238  | 103    | pCi/g | 11/12/1997  | WCH         | 0.3                    | 312.12  | μg/g  |
| 316-5                                     | B0L956         | 594088                           | 116880                           | 112.78                           | Uranium-238  | 41.2   | pCi/g | 11/12/1997  | WCH         | 0.3                    | 124.85  | μg/g  |
| 316-5                                     | B0L963         | 594070                           | 116816                           | 113.52                           | Uranium-238  | 27.2   | pCi/g | 11/13/1997  | WCH         | 0.3                    | 82.42   | µg/g  |
| 316-5                                     | B0MD75         | 594088                           | 116918                           | 112.68                           | Uranium-238  | 74.7   | pCi/g | 11/13/1997  | WCH         | 0.3                    | 226.36  | μg/g  |
| 316-5                                     | B0MD78         | 594070                           | 116840                           | 113.52                           | Uranium-238  | 74.7   | pCi/g | 11/13/1997  | WCH         | 0.3                    | 226.36  | µg/g  |
| 316-5                                     | B0MDK0         | 594088                           | 116836                           | 112.85                           | Uranium-238  | 34.8   | pCi/g | 11/13/1997  | WCH         | 0.3                    | 105.45  | μg/g  |
| 316-5                                     | B0MDK3         | 594088                           | 116882                           | 112.79                           | Uranium-238  | 22     | pCi/g | 11/13/1997  | WCH         | 0.3                    | 66.67   | μg/g  |
| 316-5                                     | B0N1R4         | 594070                           | 116857                           | 113.09                           | Uranium-238  | 55.6   | pCi/g | 2/3/1998    | WCH         | 0.3                    | 168.48  | µg/g  |
| 316-5-TP1                                 | B01045         | 594090                           | 116862                           | 111.5                            | Uranium-238  | 4.29   | pCi/g | 7/30/1991   | HEIS        | 3.5                    | 13      | µg/g  |
| 316-5-TP1                                 | B01044         | 594090                           | 116862                           | 111.5                            | Uranium-238  | 30.14  | pCi/g | 7/30/1991   | HEIS        | 3.5                    | 91.33   | µg/g  |
| 316-5-TP10                                | B014Q8         | 594076                           | 116478                           | 110.06                           | Uranium-238  | 18.62  | pCi/g | 9/20/1991   | HEIS        | 5.03                   | 56.42   | µg/g  |
| 316-5-TP2                                 | B01042         | 594090                           | 116557                           | 111.5                            | Uranium-238  | 32.88  | pCi/g | 7/30/1991   | HEIS        | 3.5                    | 99.64   | µg/g  |
| 316-5-TP2                                 | B01041         | 594090                           | 116557                           | 111.5                            | Uranium-238  | 8.64   | pCi/g | 7/30/1991   | HEIS        | 3.5                    | 26.18   | μg/g  |
| 316-5-TP3                                 | B01036         | 594090                           | 116475                           | 111.5                            | Uranium-238  | 1072   | pCi/g | 7/31/1991   | HEIS        | 3.5                    | 3248.48 | μg/g  |

| Table A-1. 300 Area Ur | ranium Soil ( | <b>Concentration Data</b> |  |
|------------------------|---------------|---------------------------|--|
|------------------------|---------------|---------------------------|--|

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 316-5-TP3                                 | B01035         | 594090                           | 116475                           | 111.5                            | Uranium-238  | 49.83  | pCi/g | 7/31/1991   | HEIS        | 3.5                    | 151    | μg/g  |
| 316-5-TP4                                 | B01033         | 594090                           | 116455                           | 111.5                            | Uranium-238  | 356.5  | pCi/g | 7/31/1991   | HEIS        | 3.5                    | 1080.3 | µg∕g  |
| 316-5-TP4                                 | B01032         | 594090                           | 116455                           | 111.5                            | Uranium-238  | 9.19   | pCi/g | 7/31/1991   | HEIS        | 3.5                    | 27.85  | µg∕g  |
| 331 LSLDF                                 | J134V6         | 594640                           | 115369                           | 110.65                           | Uranium-238  | 0.46   | pCi/g | 4/18/2007   | WCH         | 5                      | 1.39   | µg∕g  |
| 331 LSLDF                                 | J134V8         | 594640                           | 115359                           | 110.83                           | Uranium-238  | 0.47   | pCi/g | 4/19/2007   | WCH         | 5                      | 1.42   | µg∕g  |
| 399-1-10B                                 | B010S4         | 594350.9                         | 116728.8                         | 104.88                           | Uranium-238  | 1.1    | pCi/g | 9/10/1991   | HEIS        | 9.6                    | 3.33   | μg/g  |
| 399-1-10B                                 | B010T4         | 594350.9                         | 116728.8                         | 99.05                            | Uranium-238  | 0.28   | pCi/g | 9/12/1991   | HEIS        | 15.43                  | 0.85   | µg∕g  |
| 399-1-10B                                 | B014V1         | 594350.9                         | 116728.8                         | 93.08                            | Uranium-238  | 0.31   | pCi/g | 9/25/1991   | HEIS        | 21.4                   | 0.94   | μg/g  |
| 399-1-10B                                 | B014V5         | 594350.9                         | 116728.8                         | 86.35                            | Uranium-238  | 0.25   | pCi/g | 9/28/1991   | HEIS        | 28.13                  | 0.76   | μg/g  |
| 399-1-10B                                 | B014V6         | 594350.9                         | 116728.8                         | 80.86                            | Uranium-238  | 0.33   | pCi/g | 9/30/1991   | HEIS        | 33.62                  | 1      | μg/g  |
| 399-1-10B                                 | B014V7         | 594350.9                         | 116728.8                         | 79.12                            | Uranium-238  | 0.51   | pCi/g | 10/1/1991   | HEIS        | 35.36                  | 1.55   | μg/g  |
| 399-1-13B                                 | B010S2         | 593909.6                         | 116549.2                         | 105.19                           | Uranium-238  | 0.22   | pCi/g | 9/5/1991    | HEIS        | 13.52                  | 0.67   | μg/g  |
| 399-1-13B                                 | B010S8         | 593909.6                         | 116549.2                         | 99.2                             | Uranium-238  | 0.51   | pCi/g | 9/11/1991   | HEIS        | 19.51                  | 1.55   | µg/g  |
| 399-1-13B                                 | B014T7         | 593909.6                         | 116549.2                         | 94.02                            | Uranium-238  | 0.62   | pCi/g | 9/13/1991   | HEIS        | 24.69                  | 1.88   | µg/g  |
| 399-1-13B                                 | B014T9         | 593909.6                         | 116549.2                         | 87.92                            | Uranium-238  | 0.54   | pCi/g | 9/17/1991   | HEIS        | 30.79                  | 1.64   | μg/g  |
| 399-1-13B                                 | B014V0         | 593909.6                         | 116549.2                         | 82.74                            | Uranium-238  | 0.24   | pCi/g | 9/20/1991   | HEIS        | 35.97                  | 0.73   | μg/g  |
| 399-1-14B                                 | B010R8         | 593910.9                         | 116779.1                         | 105.42                           | Uranium-238  | 0.23   | pCi/g | 9/3/1991    | HEIS        | 11.36                  | 0.7    | µg/g  |
| 399-1-14B                                 | B010R9         | 593910.9                         | 116779.1                         | 100.32                           | Uranium-238  | 0.33   | pCi/g | 9/5/1991    | HEIS        | 16.46                  | 1      | µg/g  |
| 399-1-14B                                 | B010S3         | 593910.9                         | 116779.1                         | 93.77                            | Uranium-238  | 0.47   | pCi/g | 9/10/1991   | HEIS        | 23.01                  | 1.42   | µg/g  |
| 399-1-14B                                 | B010T3         | 593910.9                         | 116779.1                         | 87.79                            | Uranium-238  | 0.61   | pCi/g | 9/12/1991   | HEIS        | 28.99                  | 1.85   | µg/g  |
| 399-1-14B                                 | B014V9         | 593910.9                         | 116779.1                         | 82.2                             | Uranium-238  | 0.25   | pCi/g | 9/18/1991   | HEIS        | 34.58                  | 0.76   | μg/g  |
| 399-1-21B                                 | B014W0         | 594157.2                         | 116176.8                         | 105.03                           | Uranium-238  | 0.42   | pCi/g | 10/30/1991  | HEIS        | 11.95                  | 1.27   | µg/g  |
| 399-1-21B                                 | B014W1         | 594157.2                         | 116176.8                         | 98.99                            | Uranium-238  | 0.37   | pCi/g | 11/1/1991   | HEIS        | 17.99                  | 1.12   | µg/g  |
| 399-1-21B                                 | B014W3         | 594157.2                         | 116176.8                         | 92.9                             | Uranium-238  | 0      | pCi/g | 11/5/1991   | HEIS        | 24.08                  | 0      | µg/g  |
| 399-1-21B                                 | B014W5         | 594157.2                         | 116176.8                         | 86.38                            | Uranium-238  | 0.8    | pCi/g | 11/8/1991   | HEIS        | 30.6                   | 2.42   | µg/g  |
| 399-1-22                                  | B014N1         | 594201.9                         | 116519.3                         | 109.35                           | Uranium-238  | 10.84  | pCi/g | 10/9/1991   | HEIS        | 5.49                   | 32.85  | µg/g  |
| 399-1-22                                  | B014N2         | 594201.9                         | 116519.3                         | 107.52                           | Uranium-238  | 7.81   | pCi/g | 10/11/1991  | HEIS        | 7.32                   | 23.67  | µg/g  |
| 399-1-22                                  | B014N7         | 594201.9                         | 116519.3                         | 106                              | Uranium-238  | 2.4    | pCi/g | 10/11/1991  | HEIS        | 8.84                   | 7.27   | µg/g  |
| 399-1-22                                  | B014N3         | 594201.9                         | 116519.3                         | 105.39                           | Uranium-238  | 1.5    | pCi/g | 10/11/1991  | HEIS        | 9.45                   | 4.55   | μg/g  |

| Table A-1. 300 Area Uranium S | oil Concentration Data |
|-------------------------------|------------------------|
|-------------------------------|------------------------|

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source             | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------------------|------------------------|--------|-------|
| 399-1-23                                  | B1JXM7         | 594113.5                         | 116453.2                         | 86.04                            | Uranium-238  | 0.26   | pCi/g | 7/26/2006   | HEIS                    | 29.41                  | 0.79   | μg/g  |
| 399-1-23                                  | C5000-36A      | 594113.5                         | 116453                           | 112.15                           | N/A          | 0.64   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 3.35                   | 1.94   | µg∕g  |
| 399-1-23                                  | C5000-36E      | 594113.5                         | 116453                           | 111.84                           | N/A          | 0.7    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 3.66                   | 2.12   | µg/g  |
| 399-1-23                                  | C5000-37A      | 594113.5                         | 116453                           | 111.54                           | N/A          | 0.63   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 3.96                   | 1.91   | µg/g  |
| 399-1-23                                  | C5000-38B      | 594113.5                         | 116453                           | 109.4                            | N/A          | 1.12   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 6.1                    | 3.39   | µg/g  |
| 399-1-23                                  | C5000-38C      | 594113.5                         | 116453                           | 109.1                            | N/A          | 2.24   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 6.4                    | 6.79   | µg/g  |
| 399-1-23                                  | C5000-39B      | 594113.5                         | 116453                           | 108.49                           | N/A          | 5.03   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 7.01                   | 15.24  | µg/g  |
| 399-1-23                                  | C5000-39D      | 594113.5                         | 116453                           | 107.88                           | N/A          | 1.48   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 7.62                   | 4.48   | µg/g  |
| 399-1-23                                  | C5000-40A      | 594113.5                         | 116453                           | 106.36                           | N/A          | 2.31   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 9.14                   | 7      | µg/g  |
| 399-1-23                                  | C5000-40B      | 594113.5                         | 116453                           | 106.05                           | N/A          | 0.83   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 9.45                   | 2.52   | µg/g  |
| 399-1-23                                  | C5000-40C      | 594113.5                         | 116453                           | 105.75                           | N/A          | 1.19   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 9.75                   | 3.61   | µg/g  |
| 399-1-23                                  | C5000-40E      | 594113.5                         | 116453                           | 105.14                           | N/A          | 0.38   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.36                  | 1.15   | µg/g  |
| 399-1-23                                  | C5000-41B      | 594113.5                         | 116453                           | 104.83                           | N/A          | 1      | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.67                  | 3.03   | µg/g  |
| 399-1-23                                  | C5000-41C      | 594113.5                         | 116453                           | 104.53                           | N/A          | 1.05   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.97                  | 3.18   | µg/g  |
| 399-1-23                                  | C5000-41E      | 594113.5                         | 116453                           | 103.92                           | N/A          | 1.18   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 11.58                  | 3.58   | µg/g  |
| 399-1-23                                  | C5000-43A      | 594113.5                         | 116453                           | 102.09                           | N/A          | 0.89   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 13.41                  | 2.7    | µg/g  |
| 399-1-23                                  | C5000-44E      | 594113.5                         | 116453                           | 100.26                           | N/A          | 1.19   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 15.24                  | 3.61   | µg/g  |
| 399-1-23                                  | C5000-45B      | 594113.5                         | 116453                           | 99.35                            | N/A          | 1.15   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 16.15                  | 3.48   | µg/g  |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling                      |           | NG P (                           | N.C. P. (                        | 7.0 1 1          |              |        |       |             |                         | Sample       |          |           |
|-------------------------------|-----------|----------------------------------|----------------------------------|------------------|--------------|--------|-------|-------------|-------------------------|--------------|----------|-----------|
| Location<br>Name <sup>a</sup> | Number    | A Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | (m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source             | Depth<br>(m) | Valuee   | Units     |
| 399-1-23                      | C5000-45C | 594113.5                         | 116453                           | 99.04            | N/A          | 1.47   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 16.46        | 4.45     | µg/g      |
| 399-1-23                      | C5000-45D | 594113.5                         | 116453                           | 98.74            | N/A          | 1.23   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 16.76        | 3.73     | µg/g      |
| 399-1-23                      | C5000-46D | 594113.5                         | 116453                           | 97.52            | N/A          | 0.46   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 17.98        | 1.39     | µg/g      |
| 399-1-23                      | C5000-47C | 594113.5                         | 116453                           | 96.75            | N/A          | 0.59   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 18.75        | 1.79     | µg/g      |
| 399-1-23                      | C5000-48E | 594113.5                         | 116453                           | 95.38            | N/A          | 0.7    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 20.12        | 2.12     | $\mu g/g$ |
| 399-1-23                      | C5000-50B | 594113.5                         | 116453                           | 93.86            | N/A          | 0.88   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 21.64        | 2.67     | µg/g      |
| 399-1-23                      | C5000-51E | 594113.5                         | 116453                           | 92.03            | N/A          | 0.5    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 23.47        | 1.52     | μg/g      |
| 399-1-33                      | B1PD60    | 594113.3                         | 116430.5                         | 115.61           | Uranium-238  | 0.72   | pCi/g | 8/20/2007   | HEIS                    | 0            | 2.18     | µg/g      |
| 399-1-35                      | B1PD68    | 594122.3                         | 116432.1                         | 115.59           | Uranium-238  | 0.93   | pCi/g | 8/20/2007   | HEIS                    | 0            | 2.82     | µg/g      |
| 399-1-36                      | B1PD72    | 594108.5                         | 116438.8                         | 115.81           | Uranium-238  | 0.15   | pCi/g | 8/20/2007   | HEIS                    | 0            | 0.45     | µg/g      |
| 399-1-37                      | B1PD76    | 594110.2                         | 116438.2                         | 115.73           | Uranium-238  | 0.51   | pCi/g | 8/20/2007   | HEIS                    | 0            | 1.55     | μg/g      |
| 399-1-41                      | B207H4    | 594166.2                         | 116439.9                         | 103.71           | Uranium-238  | 3.1    | pCi/g | 4/15/2009   | HEIS                    | 11.28        | 9.39     | µg/g      |
| 399-1-46                      | B207H8    | 594171.5                         | 116427.4                         | 103.92           | Uranium-238  | 0.92   | pCi/g | 4/22/2009   | HEIS                    | 11.05        | 2.79     | μg/g      |
| 399-1-51                      | B207J2    | 594176.7                         | 116414.9                         | 102.89           | Uranium-238  | 0.66   | pCi/g | 4/28/2009   | HEIS                    | 12.04        | 2        | µg/g      |
| 399-1-54                      | B25C44    | 594273.9                         | 116643                           | 111.3085         | Uranium-238  | 2.65   | pCi/g | 9/21/2010   | WCH                     | 3.2615       | 8.030303 | µg/g      |
| 399-1-54                      | B25C45    | 594273.9                         | 116643                           | 110.608          | Uranium-238  | 3.91   | pCi/g | 9/21/2010   | WCH                     | 3.962        | 11.84848 | µg∕g      |
| 399-1-54                      | B25C46    | 594273.9                         | 116643                           | 109.7845         | Uranium-238  | 2.04   | pCi/g | 9/21/2010   | WCH                     | 4.7855       | 6.181818 | µg∕g      |
| 399-1-54                      | B25C47    | 594273.9                         | 116643                           | 109.0985         | Uranium-238  | 2.51   | pCi/g | 9/21/2010   | WCH                     | 5.4715       | 7.606061 | µg/g      |
| 399-1-54                      | B25C48    | 594273.9                         | 116643                           | 108.291          | Uranium-238  | 1.5    | pCi/g | 9/21/2010   | WCH                     | 6.279        | 4.545455 | µg/g      |
| 399-1-54                      | B25C49    | 594273.9                         | 116643                           | 107.6665         | Uranium-238  | 1.72   | pCi/g | 9/22/2010   | WCH                     | 6.9035       | 5.212121 | µg/g      |
| 399-1-54                      | B25C51    | 594273.9                         | 116643                           | 105.9445         | Uranium-238  | 0.809  | pCi/g | 11/10/2010  | WCH                     | 8.6255       | 2.451515 | µg/g      |
| 399-1-54                      | B28302    | 594273.9                         | 116643                           | 103.22           | Uranium-238  | 0.95   | pCi/g | 11/10/2010  | CHPRC                   | 11.35        | 2.878788 | µg/g      |
| 399-1-54                      | B28305    | 594273.9                         | 116643                           | 93.4             | Uranium-238  | 0.14   | pCi/g | 11/12/2010  | CHPRC                   | 21.17        | 0.424242 | µg/g      |
| 399-1-54                      | B28302    | 594273.9                         | 116643                           | 103.295          | U-238        | 0.95   | pCi/g | N/A         | HEIS                    | 11.35        | 2.88     | µg/g      |
| 399-1-54                      | B28305    | 594273.9                         | 116643                           | 93.475           | U-238        | 0.14   | pCi/g | N/A         | HEIS                    | 21.17        | 0.42     | µg∕g      |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|----------|-------|
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 111.1562                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 3.41376                | 7.88     | μg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 110.5466                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 4.02336                | 11.63    | μg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 109.6932                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 4.8768                 | 6.07     | μg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 109.236                          | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 5.334                  | 1.43     | µg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 108.9312                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 5.6388                 | 7.47     | µg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 108.1082                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 6.46176                | 4.46     | µg/g  |
| 399-1-54                                  | N/A            | 594273.9                         | 116643                           | 106.0356                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 8.5344                 | 1.11     | µg/g  |
| 399-1-55                                  | B27F39         | 594152.3                         | 116487.3                         | 111.1855                         | Uranium-238  | 0.605  | pCi/g | 8/20/2010   | WCH         | 3.4445                 | 1.833333 | µg/g  |
| 399-1-55                                  | B27F40         | 594152.3                         | 116487.3                         | 110.469                          | Uranium-238  | 5.45   | pCi/g | 8/20/2010   | WCH         | 4.161                  | 16.51515 | µg/g  |
| 399-1-55                                  | B27F41         | 594152.3                         | 116487.3                         | 109.5855                         | Uranium-238  | 7.15   | pCi/g | 8/20/2010   | WCH         | 5.0445                 | 21.66667 | µg/g  |
| 399-1-55                                  | B27F42         | 594152.3                         | 116487.3                         | 108.885                          | Uranium-238  | 9.26   | pCi/g | 8/20/2010   | WCH         | 5.745                  | 28.06061 | µg/g  |
| 399-1-55                                  | B27F43         | 594152.3                         | 116487.3                         | 108.214                          | Uranium-238  | 9.2    | pCi/g | 8/20/2010   | WCH         | 6.416                  | 27.87879 | µg/g  |
| 399-1-55                                  | B27F44         | 594152.3                         | 116487.3                         | 107.421                          | Uranium-238  | 38.6   | pCi/g | 8/20/2010   | WCH         | 7.209                  | 116.9697 | µg/g  |
| 399-1-55                                  | B27F46         | 594152.3                         | 116487.3                         | 106.568                          | Uranium-238  | 33.2   | pCi/g | 8/20/2010   | WCH         | 8.062                  | 100.6061 | µg/g  |
| 399-1-55                                  | B27F47         | 594152.3                         | 116487.3                         | 105.806                          | Uranium-238  | 21     | pCi/g | 8/23/2010   | WCH         | 8.824                  | 63.63636 | µg/g  |
| 399-1-55                                  | B27F48         | 594152.3                         | 116487.3                         | 105.0895                         | Uranium-238  | 13.5   | pCi/g | 8/23/2010   | WCH         | 9.5405                 | 40.90909 | µg/g  |
| 399-1-55                                  | B27F45         | 594152.3                         | 116487.3                         | 104.372                          | Uranium-238  | 16.7   | pCi/g | 8/23/2010   | WCH         | 10.258                 | 50.60606 | µg/g  |
| 399-1-55                                  | B27F50         | 594152.3                         | 116487.3                         | 103.61                           | Uranium-238  | 9.25   | pCi/g | 8/23/2010   | WCH         | 11.02                  | 28.0303  | µg/g  |
| 399-1-55                                  | B27DL7         | 594152.3                         | 116487.3                         | 97.485                           | Uranium-238  | 0.44   | pCi/g | 8/24/2010   | CHPRC       | 17.145                 | 1.333333 | µg/g  |
| 399-1-55                                  | B27DL5         | 594152.3                         | 116487.3                         | 93.77                            | Uranium-238  | 0.29   | pCi/g | 8/24/2010   | CHPRC       | 20.86                  | 0.878788 | µg/g  |
| 399-1-55                                  | B27DL6         | 594152.3                         | 116487.3                         | 80.57                            | Uranium-238  | 0.43   | pCi/g | 8/26/2010   | CHPRC       | 34.06                  | 1.30303  | µg/g  |
| 399-1-55                                  | B27DL7         | 594152.1                         | 116487.4                         | 97.74                            | U-238        | 0.44   | pCi/g | N/A         | HEIS        | 17.145                 | 1.33     | µg/g  |
| 399-1-55                                  | B27DL5         | 594152.1                         | 116487.4                         | 94.025                           | U-238        | 0.29   | pCi/g | N/A         | HEIS        | 20.86                  | 0.88     | µg/g  |
| 399-1-55                                  | B27DL6         | 594152.1                         | 116487.4                         | 80.825                           | U-238        | 0.43   | pCi/g | N/A         | HEIS        | 34.06                  | 1.3      | µg/g  |
| 399-1-55                                  | N/A            | 594152.1                         | 116487.4                         | 107.204                          | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 7.68096                | 74.8     | µg/g  |
| 399-1-55                                  | N/A            | 594152.1                         | 116487.4                         | 105.741                          | Uranium-239  | N/A    | μg/g  | N/A         | PNNL-22032  | 9.144                  | 38.1     | µg/g  |
| 399-1-55                                  | N/A            | 594152.1                         | 116487.4                         | 104.217                          | Uranium-240  | N/A    | μg/g  | N/A         | PNNL-22032  | 10.668                 | 28       | µg/g  |
| 399-1-55                                  | N/A            | 594152.1                         | 116487.4                         | 102.9978                         | Uranium-241  | N/A    | μg/g  | N/A         | PNNL-22032  | 11.8872                | 13.3     | µg/g  |
| 399-1-56                                  | B27KN6         | 594090.9                         | 116725.3                         | 111.5075                         | Uranium-238  | 1.1    | pCi/g | 9/13/2010   | WCH         | 3.3225                 | 3.333333 | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|----------|-------|
| 399-1-56                                  | B27KN7         | 594090.9                         | 116725.3                         | 110.7605                         | Uranium-238  | 0.741  | pCi/g | 9/13/2010   | WCH         | 4.0695                 | 2.245455 | μg/g  |
| 399-1-56                                  | B27KN8         | 594090.9                         | 116725.3                         | 110.0755                         | Uranium-238  | 0.822  | pCi/g | 9/13/2010   | WCH         | 4.7545                 | 2.490909 | µg/g  |
| 399-1-56                                  | B27KN9         | 594090.9                         | 116725.3                         | 109.176                          | Uranium-238  | 4.58   | pCi/g | 9/13/2010   | WCH         | 5.654                  | 13.87879 | µg/g  |
| 399-1-56                                  | B27KP1         | 594090.9                         | 116725.3                         | 108.292                          | Uranium-238  | 4.51   | pCi/g | 9/13/2010   | WCH         | 6.538                  | 13.66667 | µg/g  |
| 399-1-56                                  | B27KP3         | 594090.9                         | 116725.3                         | 107.5755                         | Uranium-238  | 3.7    | pCi/g | 9/13/2010   | WCH         | 7.2545                 | 11.21212 | µg/g  |
| 399-1-56                                  | B27KP4         | 594090.9                         | 116725.3                         | 106.905                          | Uranium-238  | 3.52   | pCi/g | 9/13/2010   | WCH         | 7.925                  | 10.66667 | µg/g  |
| 399-1-56                                  | B27K66         | 594090.9                         | 116725.3                         | 104.512                          | Uranium-238  | 0.54   | pCi/g | 9/14/2010   | CHPRC       | 10.318                 | 1.636364 | µg/g  |
| 399-1-56                                  | B27K69         | 594090.9                         | 116725.3                         | 97.32                            | Uranium-238  | 0.62   | pCi/g | 9/17/2010   | CHPRC       | 17.51                  | 1.878788 | µg/g  |
| 399-1-56                                  | B27K66         | 594090.9                         | 116725.3                         | 104.361                          | U-238        | 0.54   | pCi/g | N/A         | HEIS        | 10.318                 | 1.64     | µg/g  |
| 399-1-56                                  | B27K69         | 594090.9                         | 116725.3                         | 97.169                           | U-238        | 0.62   | pCi/g | N/A         | HEIS        | 17.51                  | 1.88     | µg/g  |
| 399-1-56                                  | N/A            | 594090.9                         | 116725.3                         | 103.9805                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 10.69848               | 1.8      | µg/g  |
| 399-1-56                                  | N/A            | 594090.9                         | 116725.3                         | 109.4974                         | Uranium-239  | N/A    | μg/g  | N/A         | PNNL-22032  | 5.1816                 | 3.9      | µg/g  |
| 399-1-56                                  | N/A            | 594090.9                         | 116725.3                         | 108.644                          | Uranium-240  | N/A    | μg/g  | N/A         | PNNL-22032  | 6.03504                | 12.48    | µg/g  |
| 399-1-56                                  | N/A            | 594090.9                         | 116725.3                         | 107.6686                         | Uranium-241  | N/A    | μg/g  | N/A         | PNNL-22032  | 7.0104                 | 4.74     | µg/g  |
| 399-1-56                                  | N/A            | 594090.9                         | 116725.3                         | 105.535                          | Uranium-242  | N/A    | μg/g  | N/A         | PNNL-22032  | 9.144                  | 3.57     | µg/g  |
| 399-1-57                                  | B25DM5         | 594382                           | 116353.7                         | 110.896                          | Uranium-238  | 0.377  | pCi/g | 8/9/2010    | WCH         | 3.734                  | 1.142424 | µg/g  |
| 399-1-57                                  | B25DM6         | 594382                           | 116353.7                         | 110.134                          | Uranium-238  | 0.423  | pCi/g | 8/9/2010    | WCH         | 4.496                  | 1.281818 | µg/g  |
| 399-1-57                                  | B25DM7         | 594382                           | 116353.7                         | 109.372                          | Uranium-238  | 0.239  | pCi/g | 8/9/2010    | WCH         | 5.258                  | 0.724242 | µg/g  |
| 399-1-57                                  | B25DM8         | 594382                           | 116353.7                         | 108.61                           | Uranium-238  | 0.546  | pCi/g | 8/9/2010    | WCH         | 6.02                   | 1.654545 | µg/g  |
| 399-1-57                                  | B25DM9         | 594382                           | 116353.7                         | 107.848                          | Uranium-238  | 0.37   | pCi/g | 8/9/2010    | WCH         | 6.782                  | 1.121212 | µg/g  |
| 399-1-57                                  | B25DN0         | 594382                           | 116353.7                         | 107.086                          | Uranium-238  | 0.678  | pCi/g | 8/10/2010   | WCH         | 7.544                  | 2.054545 | µg/g  |
| 399-1-57                                  | B25DN1         | 594382                           | 116353.7                         | 106.324                          | Uranium-238  | 0.564  | pCi/g | 8/10/2010   | WCH         | 8.306                  | 1.709091 | µg/g  |
| 399-1-57                                  | B25DN2         | 594382                           | 116353.7                         | 105.7145                         | Uranium-238  | 0.823  | pCi/g | 8/10/2010   | WCH         | 8.9155                 | 2.493939 | µg/g  |
| 399-1-57                                  | B25DN3         | 594382                           | 116353.7                         | 105.0285                         | Uranium-238  | 0.638  | pCi/g | 8/10/2010   | WCH         | 9.6015                 | 1.933333 | µg/g  |
| 399-1-57                                  | B261D6         | 594382                           | 116353.7                         | 104.19                           | Uranium-238  | 0.32   | pCi/g | 8/10/2010   | CHPRC       | 10.44                  | 0.969697 | µg/g  |
| 399-1-57                                  | B261D7         | 594382                           | 116353.7                         | 99.47                            | Uranium-238  | 0.36   | pCi/g | 8/11/2010   | CHPRC       | 15.16                  | 1.090909 | µg/g  |
| 399-1-57                                  | B261D8         | 594382                           | 116353.7                         | 93.43                            | Uranium-238  | 0.57   | pCi/g | 8/12/2010   | CHPRC       | 21.2                   | 1.727273 | µg/g  |
| 399-1-57                                  | B276T9         | 594382                           | 116353.7                         | 78.8905                          | Uranium-238  | 0.31   | pCi/g | 8/18/2010   | CHPRC       | 35.7395                | 0.939394 | µg/g  |
| 399-1-57                                  | B261D6         | 594382                           | 116353.7                         | 104.307                          | U-238        | 0.32   | pCi/g | N/A         | HEIS        | 10.44                  | 0.97     | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate | Z Coordinate | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee   | Units       |
|-------------------------------------------|----------------|----------------------------------|--------------|--------------|--------------|--------|-------|-------------|-------------|------------------------|----------|-------------|
| 399-1-57                                  | B261D7         | 594382                           | 116353.7     | 99.587       | U-238        | 0.36   | pCi/g | N/A         | HEIS        | 15.16                  | 1.09     | μg/g        |
| 399-1-57                                  | B261D8         | 594382                           | 116353.7     | 93.547       | U-238        | 0.57   | pCi/g | N/A         | HEIS        | 21.2                   | 1.73     | <u>μg/g</u> |
| 399-1-57                                  | B276T9         | 594382                           | 116353.7     | 79.0075      | U-238        | 0.31   | pCi/g | N/A         | HEIS        | 35.7395                | 0.94     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 110.937      | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 3.81                   | 1.18     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 109.8702     | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 4.8768                 | 1.26     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 108.3462     | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 6.4008                 | 1.62     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 106.8222     | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 7.9248                 | 2.02     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 105.603      | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 9.144                  | 2.45     | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 104.9934     | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 9.7536                 | 1.9      | μg/g        |
| 399-1-57                                  | N/A            | 594382                           | 116353.7     | 104.079      | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032  | 10.668                 | 1.44     | μg/g        |
| 399-1-58                                  | B27K77         | 593910.8                         | 116352.6     | 113.4455     | Uranium-238  | 0.694  | pCi/g | 8/27/2010   | WCH         | 6.3245                 | 2.10303  | μg/g        |
| 399-1-58                                  | B27K78         | 593910.8                         | 116352.6     | 112.47       | Uranium-238  | 0.81   | pCi/g | 8/30/2010   | WCH         | 7.3                    | 2.454545 | μg/g        |
| 399-1-58                                  | B27K79         | 593910.8                         | 116352.6     | 111.86       | Uranium-238  | 0.552  | pCi/g | 8/30/2010   | WCH         | 7.91                   | 1.672727 | μg/g        |
| 399-1-58                                  | B27K80         | 593910.8                         | 116352.6     | 110.8695     | Uranium-238  | 0.392  | pCi/g | 8/30/2010   | WCH         | 8.9005                 | 1.187879 | µg/g        |
| 399-1-58                                  | B27K81         | 593910.8                         | 116352.6     | 109.8805     | Uranium-238  | 0.444  | pCi/g | 8/30/2010   | WCH         | 9.8895                 | 1.345455 | µg/g        |
| 399-1-58                                  | B27K82         | 593910.8                         | 116352.6     | 109.85       | Uranium-238  | 0.336  | pCi/g | 8/30/2010   | WCH         | 9.92                   | 1.018182 | µg/g        |
| 399-1-58                                  | B27K83         | 593910.8                         | 116352.6     | 109.09       | Uranium-238  | 0.512  | pCi/g | 8/30/2010   | WCH         | 10.68                  | 1.551515 | µg/g        |
| 399-1-58                                  | B27K84         | 593910.8                         | 116352.6     | 108.355      | Uranium-238  | 0.331  | pCi/g | 8/30/2010   | WCH         | 11.415                 | 1.00303  | µg/g        |
| 399-1-58                                  | B27K86         | 593910.8                         | 116352.6     | 107.59       | Uranium-238  | 0.293  | pCi/g | 8/30/2010   | WCH         | 12.18                  | 0.887879 | µg/g        |
| 399-1-58                                  | B27K87         | 593910.8                         | 116352.6     | 106.83       | Uranium-238  | 0.345  | pCi/g | 8/30/2010   | WCH         | 12.94                  | 1.045455 | µg/g        |
| 399-1-58                                  | B27K88         | 593910.8                         | 116352.6     | 106.07       | Uranium-238  | 0.37   | pCi/g | 8/30/2010   | WCH         | 13.7                   | 1.121212 | µg/g        |
| 399-1-58                                  | B27K89         | 593910.8                         | 116352.6     | 105.37       | Uranium-238  | 0.434  | pCi/g | 8/31/2010   | WCH         | 14.4                   | 1.315152 | µg/g        |
| 399-1-58                                  | B27M31         | 593910.8                         | 116352.6     | 97.75        | Uranium-238  | 0.76   | pCi/g | 8/31/2010   | CHPRC       | 22.02                  | 2.30303  | µg/g        |
| 399-1-58                                  | B27JT2         | 593910.8                         | 116352.6     | 93.18        | Uranium-238  | 0.13   | pCi/g | 9/1/2010    | CHPRC       | 26.59                  | 0.393939 | µg/g        |
| 399-1-58                                  | B27M31         | 593910.8                         | 116352.6     | 97.831       | U-238        | 0.76   | pCi/g | N/A         | HEIS        | 22.02                  | 2.3      | µg/g        |
| 399-1-58                                  | B27JT2         | 593910.8                         | 116352.6     | 93.261       | U-238        | 0.13   | pCi/g | N/A         | HEIS        | 26.59                  | 0.39     | µg/g        |
| 399-1-58                                  | N/A            | 593910.8                         | 116352.6     | 106.7446     | N/A          | N/A    | N/A   | N/A         | PNNL-22032  | 13.1064                | 0.343    | µg/g        |
| 399-1-59                                  | B27PY2         | 594077.4                         | 116135.9     | 114.298      | Uranium-238  | 0.649  | pCi/g | 12/9/2010   | WCH         | 6.477                  | 1.966667 | µg/g        |
| 399-1-59                                  | B27PY3         | 594077.4                         | 116135.9     | 113.445      | Uranium-238  | 0.501  | pCi/g | 12/9/2010   | WCH         | 7.33                   | 1.518182 | µg/g        |

| Table A-1. 300 Area Uranium Soil | Concentration Data |
|----------------------------------|--------------------|
|----------------------------------|--------------------|

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                   | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-----------------------------------------------|------------------------|----------|-------|
| 399-1-59                                  | B27PY4         | 594077.4                         | 116135.9                         | 112.683                          | Uranium-238  | 0.757  | pCi/g | 12/9/2010   | WCH                                           | 8.092                  | 2.293939 | µg/g  |
| 399-1-59                                  | B27PY5         | 594077.4                         | 116135.9                         | 111.951                          | Uranium-238  | 0.552  | pCi/g | 12/9/2010   | WCH                                           | 8.824                  | 1.672727 | µg/g  |
| 399-1-59                                  | B27R02         | 594077.4                         | 116135.9                         | 111.189                          | Uranium-238  | 0.674  | pCi/g | 12/9/2010   | WCH                                           | 9.586                  | 2.042424 | µg/g  |
| 399-1-59                                  | B27R06         | 594077.4                         | 116135.9                         | 110.457                          | Uranium-238  | 0.399  | pCi/g | 12/9/2010   | WCH                                           | 10.318                 | 1.209091 | µg/g  |
| 399-1-59                                  | B27R07         | 594077.4                         | 116135.9                         | 109.695                          | Uranium-238  | 0.698  | pCi/g | 12/9/2010   | WCH                                           | 11.08                  | 2.115152 | µg/g  |
| 399-1-59                                  | B27R08         | 594077.4                         | 116135.9                         | 108.905                          | Uranium-238  | 0.79   | pCi/g | 12/10/2010  | WCH                                           | 11.87                  | 2.393939 | µg/g  |
| 399-1-59                                  | B27R09         | 594077.4                         | 116135.9                         | 108.205                          | Uranium-238  | 0.628  | pCi/g | 12/10/2010  | WCH                                           | 12.57                  | 1.90303  | µg/g  |
| 399-1-59                                  | B27R10         | 594077.4                         | 116135.9                         | 107.38                           | Uranium-238  | 5.47   | pCi/g | 12/10/2010  | WCH                                           | 13.395                 | 16.57576 | µg/g  |
| 399-1-59                                  | B27R11         | 594077.4                         | 116135.9                         | 106.615                          | Uranium-238  | 0.531  | pCi/g | 12/10/2010  | WCH                                           | 14.16                  | 1.609091 | µg/g  |
| 399-1-59                                  | B27R12         | 594077.4                         | 116135.9                         | 105.975                          | Uranium-238  | 0.515  | pCi/g | 12/10/2010  | WCH                                           | 14.8                   | 1.560606 | µg/g  |
| 399-1-59                                  | B2B1K0         | 594077.4                         | 116135.9                         | 104.335                          | Uranium-238  | 0.625  | pCi/g | 12/13/2010  | WCH                                           | 16.44                  | 1.893939 | µg/g  |
| 399-1-59                                  | B27JW6         | 594077.4                         | 116135.9                         | 95.585                           | Uranium-238  | 0.78   | pCi/g | 12/13/2010  | CHPRC                                         | 25.19                  | 2.363636 | µg/g  |
| 399-1-59                                  | B27JW2         | 594077.4                         | 116135.9                         | 94.09                            | Uranium-238  | 0.68   | pCi/g | 12/14/2010  | CHPRC                                         | 26.685                 | 2.060606 | µg/g  |
| 399-1-59                                  | B27JW3         | 594077.4                         | 116135.9                         | 84.793                           | Uranium-238  | 0.22   | pCi/g | 12/15/2010  | CHPRC                                         | 35.982                 | 0.666667 | µg/g  |
| 399-1-59                                  | B27JW5         | 594077.4                         | 116135.9                         | 75.832                           | Uranium-238  | 0.35   | pCi/g | 12/15/2010  | CHPRC                                         | 44.943                 | 1.060606 | µg/g  |
| 399-1-59                                  | B27JW6         | 594077.4                         | 116135.9                         | 95.585                           | U-238        | 0.78   | pCi/g | N/A         | HEIS                                          | 25.19                  | 2.36     | µg/g  |
| 399-1-59                                  | B27JW2         | 594077.4                         | 116135.9                         | 94.09                            | U-238        | 0.68   | pCi/g | N/A         | HEIS                                          | 26.685                 | 2.06     | μg/g  |
| 399-1-59                                  | B27JW3         | 594077.4                         | 116135.9                         | 84.793                           | U-238        | 0.22   | pCi/g | N/A         | HEIS                                          | 35.982                 | 0.67     | µg/g  |
| 399-1-59                                  | B27JW5         | 594077.4                         | 116135.9                         | 75.832                           | U-238        | 0.35   | pCi/g | N/A         | HEIS                                          | 44.943                 | 1.06     | µg/g  |
| 399-1-59                                  | N/A            | 594077.4                         | 116135.9                         | 107.9734                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                    | 12.8016                | 0.722    | µg/g  |
| 399-1-59                                  | N/A            | 594077.4                         | 116135.9                         | 106.4494                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                    | 14.3256                | 0.685    | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 111.6                            | Total U      | 408    | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.05                   | 0.408    | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 110.8                            | Total U      | 14,700 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.81                   | 14.7     | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 110                              | Total U      | 16,800 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 4.57                   | 16.8     | µg/g  |
| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                   | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-----------------------------------------------|------------------------|--------|-------|
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 109.3                            | Total U      | 34,800 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 5.33                   | 34.8   | μg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 108.2                            | Total U      | 26,100 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 6.4                    | 26.1   | μg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 107.4                            | Total U      | 16,900 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 7.16                   | 16.9   | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 107.4                            | Total U      | 20,600 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 7.16                   | 20.6   | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 106.7                            | Total U      | 41,400 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 7.92                   | 41.4   | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 105.9                            | Total U      | 20,800 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 8.69                   | 20.8   | μg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 104.8                            | Total U      | 25,800 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 9.75                   | 25.8   | μg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 104.1                            | Total U      | 12,300 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 10.52                  | 12.3   | µg/g  |
| 399-1-67                                  | N/A            | 594161.8                         | 116482                           | 103.9                            | Total U      | 19,900 | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 10.67                  | 19.9   | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 111.3                            | Total U      | 6,590  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.05                   | 6.59   | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 111.3                            | Total U      | 6,520  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.05                   | 6.52   | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 110.6                            | Total U      | 3,120  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.66                   | 3.12   | μg/g  |

|                                           |                |                                  |                                  |                                  |              |        |       | 1 Dutu      |                                               |                        |          |       |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-----------------------------------------------|------------------------|----------|-------|
| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                   | Sample<br>Depth<br>(m) | Valuee   | Units |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 109.9                            | Total U      | 3,390  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 4.42                   | 3.39     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 109.3                            | Total U      | 4,210  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 5.03                   | 4.21     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 108.5                            | Total U      | 4,420  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 5.79                   | 4.42     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 107.7                            | Total U      | 2,010  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 6.55                   | 2.01     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 107                              | Total U      | 4,390  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 7.32                   | 4.39     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 106.1                            | Total U      | 3,090  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 8.23                   | 3.09     | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 105.3                            | Total U      | 3,200  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 8.99                   | 3.2      | µg/g  |
| 399-1-68                                  | N/A            | 594165                           | 116527                           | 104.7                            | Total U      | 2,030  | µg/Kg | N/A         | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 9.6                    | 2.03     | µg/g  |
| 399-2-32                                  | B27PB4         | 594284.6                         | 116195.1                         | 110.407                          | Uranium-238  | 8.06   | pCi/g | 11/2/2010   | WCH                                           | 4.343                  | 24.42424 | µg/g  |
| 399-2-32                                  | B27PB5         | 594284.6                         | 116195.1                         | 109.645                          | Uranium-238  | 9.09   | pCi/g | 11/2/2010   | WCH                                           | 5.105                  | 27.54545 | μg/g  |
| 399-2-32                                  | B27PB6         | 594284.6                         | 116195.1                         | 108.883                          | Uranium-238  | 2.16   | pCi/g | 11/2/2010   | WCH                                           | 5.867                  | 6.545455 | µg/g  |
| 399-2-32                                  | B27PB7         | 594284.6                         | 116195.1                         | 108.121                          | Uranium-238  | 1.72   | pCi/g | 11/2/2010   | WCH                                           | 6.629                  | 5.212121 | µg/g  |
| 399-2-32                                  | B27PB9         | 594284.6                         | 116195.1                         | 107.359                          | Uranium-238  | 2.56   | pCi/g | 11/2/2010   | WCH                                           | 7.391                  | 7.757576 | µg/g  |
| 399-2-32                                  | B27PC0         | 594284.6                         | 116195.1                         | 106.597                          | Uranium-238  | 1.15   | pCi/g | 11/2/2010   | WCH                                           | 8.153                  | 3.484848 | μg/g  |
| 399-2-32                                  | B27PC1         | 594284.6                         | 116195.1                         | 105.835                          | Uranium-238  | 1.08   | pCi/g | 11/3/2010   | WCH                                           | 8.915                  | 3.272727 | µg/g  |
| 399-2-32                                  | B27PC5         | 594284.6                         | 116195.1                         | 105.072                          | Uranium-238  | 1.04   | pCi/g | 11/3/2010   | WCH                                           | 9.678                  | 3.151515 | µg/g  |
| 399-2-32                                  | B27PC2         | 594284.6                         | 116195.1                         | 104.31                           | Uranium-238  | 1.41   | pCi/g | 11/3/2010   | WCH                                           | 10.44                  | 4.272727 | µg/g  |
| 399-2-32                                  | B27JV3         | 594284.6                         | 116195.1                         | 102.025                          | Uranium-238  | 0.38   | pCi/g | 11/4/2010   | CHPRC                                         | 12.725                 | 1.151515 | µg/g  |
| 399-2-32                                  | B28PN2         | 594284.6                         | 116195.1                         | 98.215                           | Uranium-238  | 1.5    | pCi/g | 11/5/2010   | CHPRC                                         | 16.535                 | 4.545455 | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------|------------------------|----------|-------|
| 399-2-32                                  | B27JV4         | 594284.6                         | 116195.1                         | 77.4885                          | Uranium-238  | 0.57   | pCi/g | 11/9/2010   | CHPRC                                      | 37.2615                | 1.727273 | μg/g  |
| 399-2-32                                  | B27JV3         | 594284.6                         | 116195.1                         | 102.122                          | U-238        | 0.38   | pCi/g | N/A         | HEIS                                       | 12.725                 | 1.15     | μg/g  |
| 399-2-32                                  | B28PN2         | 594284.6                         | 116195.1                         | 98.312                           | U-238        | 1.5    | pCi/g | N/A         | HEIS                                       | 16.535                 | 4.55     | μg/g  |
| 399-2-32                                  | B27JV4         | 594284.6                         | 116195.1                         | 77.5855                          | U-238        | 0.57   | pCi/g | N/A         | HEIS                                       | 37.2615                | 1.73     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 110.1226                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 4.7244                 | 22.44    | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 109.3606                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 5.4864                 | 27.04    | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 108.751                          | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 6.096                  | 5.59     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 108.5986                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 6.2484                 | 6.43     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 107.8366                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 7.0104                 | 5.14     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 107.227                          | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 7.62                   | 3.13     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 107.0746                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 7.7724                 | 7.62     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 106.3126                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 8.5344                 | 3.42     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 106.0078                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 8.8392                 | 2.19     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 105.5506                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 9.2964                 | 5.3      | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 105.2458                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 9.6012                 | 2.27     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 104.4838                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 10.3632                | 1.81     | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 104.0266                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 10.8204                | 4.2      | µg/g  |
| 399-2-32                                  | N/A            | 594284.6                         | 116195.1                         | 103.2646                         | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 11.5824                | 4.2      | µg/g  |
| 399-2-4                                   | B014M1         | 594207.2                         | 116120.4                         | 108.54                           | Uranium-238  | 2.7    | pCi/g | 9/26/1991   | HEIS                                       | 6.4                    | 8.18     | µg/g  |
| 399-2-4                                   | B014M2         | 594207.2                         | 116120.4                         | 107.01                           | Uranium-238  | 1.1    | pCi/g | 9/26/1991   | HEIS                                       | 7.93                   | 3.33     | µg/g  |
| 399-2-4                                   | B014M3         | 594207.2                         | 116120.4                         | 105.49                           | Uranium-238  | 0.8    | pCi/g | 9/27/1991   | HEIS                                       | 9.45                   | 2.42     | µg/g  |
| 399-2-4                                   | B014M4         | 594207.2                         | 116120.4                         | 104.57                           | Uranium-238  | 0.8    | pCi/g | 9/27/1991   | HEIS                                       | 10.37                  | 2.42     | µg/g  |
| 399-2-5                                   | B1PL46-1       | 594287.8                         | 116068.8                         | 109.88                           | Uranium-238  | 0.65   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 5.12                   | 1.97     | µg/g  |
| 399-2-5                                   | B1PL47-1       | 594287.8                         | 116068.8                         | 108.26                           | Uranium-238  | 0.75   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 6.74                   | 2.27     | µg/g  |
| 399-2-5                                   | B1PL48-1       | 594287.8                         | 116068.8                         | 106.89                           | Uranium-238  | 1.35   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 8.11                   | 4.09     | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------|------------------------|--------|-------|
| 399-2-5                                   | B1PL49-1       | 594287.8                         | 116068.8                         | 105.79                           | Uranium-238  | 1.82   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 9.21                   | 5.52   | µg/g  |
| 399-2-5                                   | B1PL50-2       | 594287.8                         | 116068.8                         | 104.24                           | Uranium-238  | 0.67   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 10.76                  | 2.03   | µg/g  |
| 399-2-5                                   | B1PL51-1       | 594287.8                         | 116068.8                         | 101.8                            | Uranium-238  | 0.55   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 13.2                   | 1.67   | µg/g  |
| 399-2-5                                   | C5708-56.5     | 594287.8                         | 116068.8                         | 97.78                            | Uranium-238  | 0.85   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 17.22                  | 2.58   | µg/g  |
| 399-2-5                                   | C5708-67       | 594287.8                         | 116068.8                         | 94.58                            | Uranium-238  | 0.4    | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 20.42                  | 1.21   | µg/g  |
| 399-2-5                                   | B1PL54-1       | 594287.8                         | 116068.8                         | 92.2                             | Uranium-238  | 0.61   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.11 | 22.8                   | 1.85   | µg/g  |
| 399-3-18                                  | B1JXM3         | 594464.7                         | 116020                           | 106.75                           | Uranium-238  | 0.41   | pCi/g | 7/26/2006   | HEIS                                       | 10.98                  | 1.24   | μg/g  |
| 399-3-18                                  | C4999-3B       | 594465                           | 116020                           | 114.94                           | N/A          | 0.96   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 2.74                   | 2.91   | μg/g  |
| 399-3-18                                  | C4999-5D       | 594465                           | 116020                           | 112.19                           | N/A          | 0.54   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 5.49                   | 1.64   | μg/g  |
| 399-3-18                                  | C4999-6D       | 594465                           | 116020                           | 110.67                           | N/A          | 0.71   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 7.01                   | 2.15   | μg/g  |
| 399-3-18                                  | C4999-9B       | 594465                           | 116020                           | 108.38                           | N/A          | 0.84   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 9.3                    | 2.55   | µg/g  |
| 399-3-18                                  | C4999-9C       | 594465                           | 116020                           | 108.08                           | N/A          | 1.23   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 9.6                    | 3.73   | μg/g  |
| 399-3-18                                  | C4999-10C      | 594465                           | 116020                           | 106.86                           | N/A          | 1.04   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 10.82                  | 3.15   | μg/g  |
| 399-3-18                                  | C4999-10D      | 594465                           | 116020                           | 106.55                           | N/A          | 1.2    | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 11.13                  | 3.64   | μg/g  |
| 399-3-18                                  | C4999-11B      | 594465                           | 116020                           | 105.64                           | N/A          | 0.82   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 12.04                  | 2.48   | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source             | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------------------|------------------------|--------|-------|
| 399-3-18                                  | C4999-11D      | 594465                           | 116020                           | 105.03                           | N/A          | 3.54   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.65                  | 10.73  | µg/g  |
| 399-3-18                                  | C4999-12C      | 594465                           | 116020                           | 103.66                           | N/A          | 2.18   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 14.02                  | 6.61   | μg/g  |
| 399-3-18                                  | C4999-12D      | 594465                           | 116020                           | 103.35                           | N/A          | 0.91   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 14.33                  | 2.76   | μg/g  |
| 399-3-18                                  | C4999-15A      | 594465                           | 116020                           | 100                              | N/A          | 1.19   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 17.68                  | 3.61   | μg/g  |
| 399-3-18                                  | C4999-17B      | 594465                           | 116020                           | 97.26                            | N/A          | 3.06   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 20.42                  | 9.27   | μg/g  |
| 399-3-18                                  | C4999-21C      | 594465                           | 116020                           | 91.47                            | N/A          | 0.68   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 26.21                  | 2.06   | μg/g  |
| 399-3-18                                  | C4999-22E      | 594465                           | 116020                           | 90.1                             | N/A          | 0.91   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 27.58                  | 2.76   | μg/g  |
| 399-3-18                                  | C4999-25B      | 594465                           | 116020                           | 87.35                            | N/A          | 0.64   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 30.33                  | 1.94   | μg/g  |
| 399-3-18                                  | C4999-27B      | 594465                           | 116020                           | 84.76                            | N/A          | 0.53   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 32.92                  | 1.61   | μg/g  |
| 399-3-18                                  | C4999-31E      | 594465                           | 116020                           | 78.97                            | N/A          | 1.19   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 38.71                  | 3.61   | μg/g  |
| 399-3-19                                  | B1JXN1         | 594071.9                         | 116030.2                         | 95.46                            | Uranium-238  | 0.35   | pCi/g | 7/26/2006   | HEIS                    | 25.15                  | 1.06   | µg∕g  |
| 399-3-19                                  | C5001-64E      | 594072                           | 116030                           | 116.08                           | N/A          | 0.44   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 4.57                   | 1.33   | μg/g  |
| 399-3-19                                  | C5001-66A      | 594072                           | 116030                           | 114.25                           | N/A          | 0.4    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 6.4                    | 1.21   | μg/g  |
| 399-3-19                                  | C5001-68B      | 594072                           | 116030                           | 111.81                           | N/A          | 0.43   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 8.84                   | 1.3    | μg/g  |
| 399-3-19                                  | C5001-69C      | 594072                           | 116030                           | 110.59                           | N/A          | 0.48   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.06                  | 1.45   | μg/g  |
| 399-3-19                                  | C5001-69D      | 594072                           | 116030                           | 110.29                           | N/A          | 0.48   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.36                  | 1.45   | μg/g  |
| 399-3-19                                  | C5001-70C      | 594072                           | 116030                           | 108.92                           | N/A          | 0.49   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 11.73                  | 1.48   | μg/g  |
| 399-3-19                                  | C5001-70D      | 594072                           | 116030                           | 108.61                           | N/A          | 0.57   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.04                  | 1.73   | μg/g  |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source             | Sample<br>Depth<br>(m) | Valuee | Units     |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------------------|------------------------|--------|-----------|
| 399-3-19                                  | C5001-70E      | 594072                           | 116030                           | 108.31                           | N/A          | 0.44   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.34                  | 1.33   | $\mu g/g$ |
| 399-3-19                                  | C5001-71E      | 594072                           | 116030                           | 108                              | N/A          | 0.5    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.65                  | 1.52   | μg/g      |
| 399-3-19                                  | C5001-73B      | 594072                           | 116030                           | 105.47                           | N/A          | 0.5    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 15.18                  | 1.52   | $\mu g/g$ |
| 399-3-19                                  | C5001-74B      | 594072                           | 116030                           | 104.34                           | N/A          | 0.46   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 16.31                  | 1.39   | μg/g      |
| 399-3-19                                  | C5001-76C      | 594072                           | 116030                           | 100.99                           | N/A          | 0.49   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 19.66                  | 1.48   | $\mu g/g$ |
| 399-3-19                                  | C5001-76D      | 594072                           | 116030                           | 100.69                           | N/A          | 0.54   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 19.96                  | 1.64   | $\mu g/g$ |
| 399-3-19                                  | C5001-78A      | 594072                           | 116030                           | 97.94                            | N/A          | 0.52   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 22.71                  | 1.58   | $\mu g/g$ |
| 399-3-19                                  | C5001-79A      | 594072                           | 116030                           | 95.81                            | N/A          | 0.86   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 24.84                  | 2.61   | $\mu g/g$ |
| 399-3-19                                  | C5001-80A      | 594072                           | 116030                           | 94.59                            | N/A          | 0.92   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 26.06                  | 2.79   | μg/g      |
| 399-3-20                                  | B1JXN5         | 594375.4                         | 115849.7                         | 97.06                            | Uranium-238  | 0.38   | pCi/g | 7/26/2006   | HEIS                    | 23.4                   | 1.15   | μg/g      |
| 399-3-20                                  | C5002-84C      | 594375                           | 115850                           | 115.57                           | N/A          | 0.37   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 4.88                   | 1.12   | $\mu g/g$ |
| 399-3-20                                  | C5002-86E      | 594375                           | 115850                           | 113.9                            | N/A          | 0.55   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 6.55                   | 1.67   | $\mu g/g$ |
| 399-3-20                                  | C5002-87D      | 594375                           | 115850                           | 112.98                           | N/A          | 0.5    | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 7.47                   | 1.52   | $\mu g/g$ |
| 399-3-20                                  | C5002-90A      | 594375                           | 115850                           | 110.54                           | N/A          | 0.59   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 9.91                   | 1.79   | $\mu g/g$ |
| 399-3-20                                  | C5002-90C      | 594375                           | 115850                           | 109.93                           | N/A          | 0.58   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 10.52                  | 1.76   | µg/g      |
| 399-3-20                                  | C5002-91C      | 594375                           | 115850                           | 108.41                           | N/A          | 0.47   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.04                  | 1.42   | µg/g      |
| 399-3-20                                  | C5002-91D      | 594375                           | 115850                           | 108.11                           | N/A          | 0.49   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 12.34                  | 1.48   | µg/g      |
| 399-3-20                                  | C5002-92D      | 594375                           | 115850                           | 105.67                           | N/A          | 0.47   | pCi/g | N/A         | PNNL-16435<br>Table D.2 | 14.78                  | 1.42   | μg/g      |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------|------------------------|----------|-------|
| 399-3-20                                  | C5002-93E      | 594375                           | 115850                           | 103.99                           | N/A          | 0.65   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 16.46                  | 1.97     | µg/g  |
| 399-3-20                                  | C5002-94D      | 594375                           | 115850                           | 100.49                           | N/A          | 0.57   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 19.96                  | 1.73     | µg/g  |
| 399-3-20                                  | C5002-98E      | 594375                           | 115850                           | 95.73                            | N/A          | 0.4    | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 24.72                  | 1.21     | µg/g  |
| 399-3-20                                  | C5002-99D      | 594375                           | 115850                           | 95.46                            | N/A          | 0.8    | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 24.99                  | 2.42     | µg/g  |
| 399-3-20                                  | C5002-100A     | 594375                           | 115850                           | 94.85                            | N/A          | 0.71   | pCi/g | N/A         | PNNL-16435<br>Table D.2                    | 25.6                   | 2.15     | µg/g  |
| 399-3-21                                  | B1PD84         | 594379.8                         | 115854.3                         | 120.37                           | Uranium-238  | 0.25   | pCi/g | 8/20/2007   | HEIS                                       | 0                      | 0.76     | μg/g  |
| 399-3-22                                  | B1PL37         | 594217.7                         | 115947.5                         | 109.33                           | Uranium-238  | 0.38   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 9.14                   | 1.15     | µg/g  |
| 399-3-22                                  | B1PL38         | 594217.7                         | 115947.5                         | 107.8                            | Uranium-238  | 0.38   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 10.67                  | 1.15     | µg/g  |
| 399-3-22                                  | B1PL56-2       | 594217.7                         | 115947.5                         | 105.91                           | Uranium-238  | 0.49   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 12.56                  | 1.48     | µg/g  |
| 399-3-22                                  | B1PL57-2       | 594217.7                         | 115947.5                         | 105.18                           | Uranium-238  | 1.2    | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 13.29                  | 3.64     | μg/g  |
| 399-3-22                                  | B1PL58-2       | 594217.7                         | 115947.5                         | 99.88                            | Uranium-238  | 0.41   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 18.59                  | 1.24     | µg/g  |
| 399-3-22                                  | B1PL59-3       | 594217.7                         | 115947.5                         | 99.15                            | Uranium-238  | 0.56   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 19.32                  | 1.7      | µg/g  |
| 399-3-22                                  | B1PL60-1       | 594217.7                         | 115947.5                         | 97.9                             | Uranium-238  | 0.93   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 20.57                  | 2.82     | μg/g  |
| 399-3-22                                  | B1PL61-1       | 594217.7                         | 115947.5                         | 92.96                            | Uranium-238  | 0.91   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.22 | 25.51                  | 2.76     | μg/g  |
| 399-3-33                                  | B25F13         | 594500.7                         | 115966.5                         | 111.863                          | Uranium-238  | 0.746  | pCi/g | 11/18/2010  | WCH                                        | 6.477                  | 2.260606 | µg/g  |

A-22

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------|------------------------|----------|-------|
| 399-3-33                                  | B25F14         | 594500.7                         | 115966.5                         | 111.101                          | Uranium-238  | 0.325  | pCi/g | 11/18/2010  | WCH                                        | 7.239                  | 0.984848 | µg/g  |
| 399-3-33                                  | B25F15         | 594500.7                         | 115966.5                         | 110.339                          | Uranium-238  | 0.988  | pCi/g | 11/18/2010  | WCH                                        | 8.001                  | 2.993939 | µg/g  |
| 399-3-33                                  | B25F16         | 594500.7                         | 115966.5                         | 109.577                          | Uranium-238  | 0.651  | pCi/g | 11/18/2010  | WCH                                        | 8.763                  | 1.972727 | µg/g  |
| 399-3-33                                  | B25F17         | 594500.7                         | 115966.5                         | 108.815                          | Uranium-238  | 1.04   | pCi/g | 11/19/2010  | WCH                                        | 9.525                  | 3.151515 | µg/g  |
| 399-3-33                                  | B25F18         | 594500.7                         | 115966.5                         | 108.052                          | Uranium-238  | 0.571  | pCi/g | 11/19/2010  | WCH                                        | 10.288                 | 1.730303 | µg/g  |
| 399-3-33                                  | B25F19         | 594500.7                         | 115966.5                         | 107.29                           | Uranium-238  | 2.81   | pCi/g | 11/19/2010  | WCH                                        | 11.05                  | 8.515152 | μg/g  |
| 399-3-33                                  | B25F20         | 594500.7                         | 115966.5                         | 106.53                           | Uranium-238  | 2.14   | pCi/g | 11/19/2010  | WCH                                        | 11.81                  | 6.484848 | μg/g  |
| 399-3-33                                  | B25F21         | 594500.7                         | 115966.5                         | 105.16                           | Uranium-238  | 4.06   | pCi/g | 11/19/2010  | WCH                                        | 13.18                  | 12.30303 | μg/g  |
| 399-3-33                                  | B28J86         | 594500.7                         | 115966.5                         | 104.395                          | Uranium-238  | 2.94   | pCi/g | 12/1/2010   | WCH                                        | 13.945                 | 8.909091 | µg/g  |
| 399-3-33                                  | B282Y1         | 594500.7                         | 115966.5                         | 103.63                           | Uranium-238  | 1.2    | pCi/g | 12/1/2010   | CHPRC                                      | 14.71                  | 3.636364 | µg/g  |
| 399-3-33                                  | B28PY0         | 594500.7                         | 115966.5                         | 100.735                          | Uranium-238  | 0.27   | pCi/g | 12/3/2010   | CHPRC                                      | 17.605                 | 0.818182 | μg/g  |
| 399-3-33                                  | B282Y1         | 594500.7                         | 115966.5                         | 103.66                           | Uranium-238  | 1.2    | pCi/g | N/A         | HEIS                                       | 14.71                  | 3.64     | µg/g  |
| 399-3-33                                  | B28PY0         | 594500.7                         | 115966.5                         | 100.765                          | Uranium-238  | 0.27   | pCi/g | N/A         | HEIS                                       | 17.605                 | 0.82     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 111.482                          | Uranium-238  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 6.858                  | 2.22     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 110.72                           | Uranium-239  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 7.62                   | 0.97     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 109.958                          | Uranium-240  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 8.382                  | 2.94     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 109.196                          | Uranium-241  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 9.144                  | 1.94     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 108.434                          | Uranium-242  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 9.906                  | 3.09     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 107.672                          | Uranium-243  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 10.668                 | 1.2      | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 106.91                           | Uranium-244  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 11.43                  | 8.36     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 106.148                          | Uranium-245  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 12.192                 | 6.37     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 104.7764                         | Uranium-246  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 13.5636                | 12.08    | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 109.8056                         | Uranium-247  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 8.5344                 | 0.617    | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 107.672                          | Uranium-248  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 10.668                 | 1.7      | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 106.4528                         | Uranium-249  | N/A    | µg/g  | N/A         | PNNL-22032                                 | 11.8872                | 8.76     | µg/g  |
| 399-3-33                                  | N/A            | 594500.7                         | 115966.5                         | 105.5384                         | Uranium-250  | N/A    | μg/g  | N/A         | PNNL-22032                                 | 12.8016                | 0.722    | µg/g  |
| 399-4-14                                  | B1PL64-2       | 594396.2                         | 115604.7                         | 106.86                           | Uranium-238  | 1      | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.47 | 11.13                  | 3.03     | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------|------------------------|----------|-------|
| 399-4-14                                  | B1PL65-2       | 594396.2                         | 115604.7                         | 105.34                           | Uranium-238  | 0.51   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.47 | 12.65                  | 1.55     | µg/g  |
| 399-4-14                                  | C5707-43       | 594396.2                         | 115604.7                         | 104.88                           | Uranium-238  | 0.65   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.47 | 13.11                  | 1.97     | µg/g  |
| 399-4-14                                  | B1PL66-1       | 594396.2                         | 115604.7                         | 93.51                            | Uranium-238  | 0.28   | pCi/g | N/A         | PNNL-17793:<br>Emergent Data<br>Table 5.47 | 24.48                  | 0.85     | µg/g  |
| 399-4-15                                  | B2B8N6         | 594343                           | 115692.9                         | 112.015                          | Uranium-238  | 0.653  | pCi/g | 1/26/2011   | WCH                                        | 6.325                  | 1.978788 | µg/g  |
| 399-4-15                                  | B2B8N7         | 594343                           | 115692.9                         | 111.2075                         | Uranium-238  | 0.438  | pCi/g | 1/26/2011   | WCH                                        | 7.1325                 | 1.327273 | µg∕g  |
| 399-4-15                                  | B2B8N8         | 594343                           | 115692.9                         | 110.491                          | Uranium-238  | 0.579  | pCi/g | 1/26/2011   | WCH                                        | 7.849                  | 1.754545 | µg/g  |
| 399-4-15                                  | B2B8N9         | 594343                           | 115692.9                         | 109.897                          | Uranium-238  | 0.359  | pCi/g | 1/26/2011   | WCH                                        | 8.443                  | 1.087879 | μg/g  |
| 399-4-15                                  | B2B8P0         | 594343                           | 115692.9                         | 108.692                          | Uranium-238  | 0.366  | pCi/g | 1/26/2011   | WCH                                        | 9.648                  | 1.109091 | µg/g  |
| 399-4-15                                  | B2B8P1         | 594343                           | 115692.9                         | 108.2225                         | Uranium-238  | 0.402  | pCi/g | 1/27/2011   | WCH                                        | 10.1175                | 1.218182 | µg/g  |
| 399-4-15                                  | B2B8P2         | 594343                           | 115692.9                         | 107.29                           | Uranium-238  | 0.216  | pCi/g | 1/27/2011   | WCH                                        | 11.05                  | 0.654545 | μg/g  |
| 399-4-15                                  | B2B8P3         | 594343                           | 115692.9                         | 106.44                           | Uranium-238  | 0.396  | pCi/g | 1/27/2011   | WCH                                        | 11.9                   | 1.2      | µg/g  |
| 399-4-15                                  | B2B8P6         | 594343                           | 115692.9                         | 105.83                           | Uranium-238  | 0.47   | pCi/g | 1/27/2011   | WCH                                        | 12.51                  | 1.424242 | µg/g  |
| 399-4-15                                  | B2B8P7         | 594343                           | 115692.9                         | 105.08                           | Uranium-238  | 0.404  | pCi/g | 1/28/2011   | WCH                                        | 13.26                  | 1.224242 | µg/g  |
| 399-4-15                                  | B2B8P8         | 594343                           | 115692.9                         | 104.06                           | Uranium-238  | 0.516  | pCi/g | 1/28/2011   | WCH                                        | 14.28                  | 1.563636 | µg/g  |
| 399-4-15                                  | B2B919         | 594343                           | 115692.9                         | 103.39                           | Uranium-238  | 0.18   | pCi/g | 1/28/2011   | CHPRC                                      | 14.95                  | 0.545455 | µg/g  |
| 399-4-15                                  | B2B920         | 594343                           | 115692.9                         | 96.32                            | Uranium-238  | 0.19   | pCi/g | 2/1/2011    | CHPRC                                      | 22.02                  | 0.575758 | μg/g  |
| 399-4-15                                  | B2B922         | 594343                           | 115692.9                         | 91.59                            | Uranium-238  | 0.7    | pCi/g | 2/1/2011    | CHPRC                                      | 26.75                  | 2.121212 | µg/g  |
| 399-4-15                                  | B2B921         | 594343                           | 115692.9                         | 86.8235                          | Uranium-238  | 0.38   | pCi/g | 2/3/2011    | CHPRC                                      | 31.5165                | 1.151515 | μg/g  |
| 399-6-3                                   | B29FV7         | 593697.4                         | 116062.8                         | 113.217                          | Uranium-238  | 0.469  | pCi/g | 12/17/2010  | WCH                                        | 5.563                  | 1.421212 | µg/g  |
| 399-6-3                                   | B29FT3         | 593697.4                         | 116062.8                         | 112.379                          | Uranium-238  | 0.446  | pCi/g | 12/20/2010  | WCH                                        | 6.401                  | 1.351515 | μg/g  |
| 399-6-3                                   | B29FT4         | 593697.4                         | 116062.8                         | 111.617                          | Uranium-238  | 0.544  | pCi/g | 12/20/2010  | WCH                                        | 7.163                  | 1.648485 | µg/g  |
| 399-6-3                                   | B29FT5         | 593697.4                         | 116062.8                         | 110.855                          | Uranium-238  | 0.379  | pCi/g | 12/20/2010  | WCH                                        | 7.925                  | 1.148485 | µg/g  |
| 399-6-3                                   | B29FT6         | 593697.4                         | 116062.8                         | 110.1695                         | Uranium-238  | 0.363  | pCi/g | 12/20/2010  | WCH                                        | 8.6105                 | 1.1      | µg/g  |
| 399-6-3                                   | B29FT7         | 593697.4                         | 116062.8                         | 109.255                          | Uranium-238  | 0.53   | pCi/g | 12/20/2010  | WCH                                        | 9.525                  | 1.606061 | µg/g  |
| 399-6-3                                   | B29FT8         | 593697.4                         | 116062.8                         | 108.492                          | Uranium-238  | 0.632  | pCi/g | 12/20/2010  | WCH                                        | 10.288                 | 1.915152 | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate | Y Coordinate | Z Coordinate | Constituente | Valued | Units | Sample Date | Data Source | Sample<br>Depth | Valuee   | Units |
|-------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------|-------|-------------|-------------|-----------------|----------|-------|
| 399-6-3                                   | B29FT9         | 593697.4     | 116062.8     | 107.73       | Uranium-238  | 0 484  | nCi/g | 12/20/2010  | WCH         | 11.05           | 1 466667 | 119/9 |
| 399-6-3                                   | B29FV0         | 593697.4     | 116062.8     | 106.97       | Uranium-238  | 0.528  | nCi/g | 12/20/2010  | WCH         | 11.81           | 1.100007 | 119/9 |
| 399-6-3                                   | B29FV2         | 593697.4     | 116062.8     | 106.285      | Uranium-238  | 0.557  | nCi/g | 12/21/2010  | WCH         | 12 495          | 1 687879 | 110/0 |
| 399-6-3                                   | B29FV4         | 593697.4     | 116062.8     | 105.445      | Uranium-238  | 0.594  | nCi/g | 12/21/2010  | WCH         | 13 335          | 1.8      | 119/9 |
| 399-6-3                                   | B29FV5         | 593697.4     | 116062.8     | 104.68       | Uranium-238  | 0.685  | pCi/g | 12/21/2010  | WCH         | 14.1            | 2.075758 | ug/g  |
| 399-6-3                                   | B29FJ0         | 593697.4     | 116062.8     | 103.845      | Uranium-238  | 0.11   | pCi/g | 12/21/2010  | CHPRC       | 14.935          | 0.333333 | ug/g  |
| 399-6-3                                   | B29FJ3         | 593697.4     | 116062.8     | 97.06        | Uranium-238  | 0.28   | pCi/g | 12/27/2010  | CHPRC       | 21.72           | 0.848485 | ug/g  |
| 399-6-3                                   | B29FJ2         | 593697.4     | 116062.8     | 92.705       | Uranium-238  | 0.39   | pCi/g | 12/28/2010  | CHPRC       | 26.075          | 1.181818 | μg/g  |
| 399-6-3                                   | B29FJ0         | 593697.4     | 116062.8     | 103.869      | U-238        | 0.11   | pCi/g | N/A         | HEIS        | 14.935          | 0.33     | μg/g  |
| 399-6-3                                   | B29FJ3         | 593697.4     | 116062.8     | 97.084       | U-238        | 0.28   | pCi/g | N/A         | HEIS        | 21.72           | 0.85     | μg/g  |
| 399-6-3                                   | B29FJ2         | 593697.4     | 116062.8     | 92.729       | U-238        | 0.39   | pCi/g | N/A         | HEIS        | 26.075          | 1.18     | μg/g  |
| 399-6-4                                   | B29DX1         | 593824.6     | 115934.2     | 112.364      | Uranium-238  | 0.382  | pCi/g | 12/30/2010  | WCH         | 6.416           | 1.157576 | μg/g  |
| 399-6-4                                   | B29DX2         | 593824.6     | 115934.2     | 111.571      | Uranium-238  | 0.523  | pCi/g | 12/30/2010  | WCH         | 7.209           | 1.584848 | μg/g  |
| 399-6-4                                   | B29DX3         | 593824.6     | 115934.2     | 110.962      | Uranium-238  | 0.546  | pCi/g | 12/30/2010  | WCH         | 7.818           | 1.654545 | μg/g  |
| 399-6-4                                   | B29DX4         | 593824.6     | 115934.2     | 110.0935     | Uranium-238  | 0.316  | pCi/g | 12/30/2010  | WCH         | 8.6865          | 0.957576 | μg/g  |
| 399-6-4                                   | B29DX5         | 593824.6     | 115934.2     | 109.132      | Uranium-238  | 0.525  | pCi/g | 12/30/2010  | WCH         | 9.648           | 1.590909 | μg/g  |
| 399-6-4                                   | B29DX6         | 593824.6     | 115934.2     | 108.4465     | Uranium-238  | 0.67   | pCi/g | 12/30/2010  | WCH         | 10.3335         | 2.030303 | μg/g  |
| 399-6-4                                   | B29DX7         | 593824.6     | 115934.2     | 107.84       | Uranium-238  | 0.329  | pCi/g | 1/3/2011    | WCH         | 10.94           | 0.99697  | μg/g  |
| 399-6-4                                   | B29DX8         | 593824.6     | 115934.2     | 106.88       | Uranium-238  | 0.421  | pCi/g | 1/3/2011    | WCH         | 11.9            | 1.275758 | μg/g  |
| 399-6-5                                   | B29DY1         | 593824.6     | 115935       | 106.677      | Uranium-238  | 0.435  | pCi/g | 1/5/2011    | WCH         | 12.665          | 1.318182 | µg/g  |
| 399-6-5                                   | B29DY2         | 593824.6     | 115935       | 105.977      | Uranium-238  | 0.307  | pCi/g | 1/5/2011    | WCH         | 13.365          | 0.930303 | µg/g  |
| 399-6-5                                   | B29DY4         | 593824.6     | 115935       | 105.212      | Uranium-238  | 0.642  | pCi/g | 1/5/2011    | WCH         | 14.13           | 1.945455 | µg/g  |
| 399-6-5                                   | B29DY5         | 593824.6     | 115935       | 104.392      | Uranium-238  | 0.442  | pCi/g | 1/6/2011    | WCH         | 14.95           | 1.339394 | µg/g  |
| 399-6-5                                   | B29DR4         | 593824.6     | 115935       | 103.022      | Uranium-238  | 0.084  | pCi/g | 1/6/2011    | CHPRC       | 16.32           | 0.254545 | µg/g  |
| 399-6-5                                   | B29DR5         | 593824.6     | 115935       | 101.042      | Uranium-238  | 0.086  | pCi/g | 1/7/2011    | CHPRC       | 18.3            | 0.260606 | µg/g  |
| 399-6-5                                   | B29DR7         | 593824.6     | 115935       | 89.582       | Uranium-238  | 0.4    | pCi/g | 1/10/2011   | CHPRC       | 29.76           | 1.212121 | μg/g  |
| 399-6-5                                   | B29DR6         | 593824.6     | 115935       | 86.5015      | Uranium-238  | 0.3    | pCi/g | 1/10/2011   | CHPRC       | 32.8405         | 0.909091 | μg/g  |
| 399-8-5B                                  | B010J8         | 593392       | 116567.3     | 116.04       | Uranium-238  | 0.1    | pCi/g | 8/6/1991    | HEIS        | 6.1             | 0.3      | μg/g  |
| 399-8-5B                                  | B010K1         | 593392       | 116567.3     | 114.21       | Uranium-238  | 0.08   | pCi/g | 8/6/1991    | HEIS        | 7.93            | 0.24     | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 399-8-5B                                  | B010K3         | 593392                           | 116567.3                         | 113.07                           | Uranium-238  | 0.01   | pCi/g | 8/7/1991    | HEIS        | 9.07                   | 0.03   | μg/g  |
| 399-8-5B                                  | B010K7         | 593392                           | 116567.3                         | 111.16                           | Uranium-238  | 0.1    | pCi/g | 8/7/1991    | HEIS        | 10.98                  | 0.3    | μg/g  |
| 399-8-5B                                  | B010L0         | 593392                           | 116567.3                         | 109.94                           | Uranium-238  | 0.1    | pCi/g | 8/7/1991    | HEIS        | 12.2                   | 0.3    | μg/g  |
| 399-8-5B                                  | B010L2         | 593392                           | 116567.3                         | 108.27                           | Uranium-238  | 0.16   | pCi/g | 8/8/1991    | HEIS        | 13.87                  | 0.48   | μg/g  |
| 399-8-5B                                  | B010L4         | 593392                           | 116567.3                         | 106.2                            | Uranium-238  | 0.1    | pCi/g | 8/8/1991    | HEIS        | 15.94                  | 0.3    | µg/g  |
| 399-8-5B                                  | B010L6         | 593392                           | 116567.3                         | 104.88                           | Uranium-238  | 0.18   | pCi/g | 8/8/1991    | HEIS        | 17.26                  | 0.55   | μg/g  |
| 399-8-5C                                  | B00YM6         | 593386.1                         | 116573.6                         | 104.45                           | Uranium-238  | 0.08   | pCi/g | 7/8/1991    | HEIS        | 17.68                  | 0.24   | μg/g  |
| 399-8-5C                                  | B00YM7         | 593386.1                         | 116573.6                         | 97.74                            | Uranium-238  | 0.38   | pCi/g | 7/10/1991   | HEIS        | 24.39                  | 1.15   | µg/g  |
| 399-8-5C                                  | B00YM9         | 593386.1                         | 116573.6                         | 92.41                            | Uranium-238  | 0.4    | pCi/g | 7/12/1991   | HEIS        | 29.72                  | 1.21   | μg/g  |
| 399-8-5C                                  | B00YN2         | 593386.1                         | 116573.6                         | 79.76                            | Uranium-238  | 0.13   | pCi/g | 7/26/1991   | HEIS        | 42.37                  | 0.39   | μg/g  |
| 399-8-5C                                  | B00YN5         | 593386.1                         | 116573.6                         | 74.12                            | Uranium-238  | 0.17   | pCi/g | 7/31/1991   | HEIS        | 48.01                  | 0.52   | μg/g  |
| 399-8-5C                                  | B00YN6         | 593386.1                         | 116573.6                         | 68.48                            | Uranium-238  | 1      | pCi/g | 8/8/1991    | HEIS        | 53.65                  | 3.03   | µg∕g  |
| 600-47                                    | J036X2         | 594137.2                         | 117635.5                         | 111.06                           | Uranium-238  | 0.67   | pCi/g | 5/25/2005   | WCH         | 5                      | 2.03   | µg∕g  |
| 600-47                                    | J036X3         | 594237.3                         | 117620.3                         | 110.92                           | Uranium-238  | 0.75   | pCi/g | 5/25/2005   | WCH         | 5                      | 2.27   | μg/g  |
| 600-47                                    | J036X4         | 594266.8                         | 117603.5                         | 110.3                            | Uranium-238  | 1.29   | pCi/g | 5/25/2005   | WCH         | 5                      | 3.91   | μg/g  |
| 600-47                                    | J036X5         | 594224.3                         | 117418.8                         | 108.24                           | Uranium-238  | 1.58   | pCi/g | 5/25/2005   | WCH         | 5                      | 4.79   | μg/g  |
| 618-1                                     | J19HP6         | 594022                           | 116273.1                         | 115.23                           | Uranium-238  | 1.47   | pCi/g | 1/26/2010   | WCH         | 5                      | 4.45   | μg/g  |
| 618-1                                     | J19HP7         | 594019.7                         | 116278                           | 115.2                            | Uranium-238  | 1.27   | pCi/g | 1/26/2010   | WCH         | 5                      | 3.85   | µg/g  |
| 618-1                                     | J19HP8         | 594023.2                         | 116248.6                         | 115.18                           | Uranium-238  | 1.5    | pCi/g | 1/26/2010   | WCH         | 5                      | 4.55   | µg/g  |
| 618-1                                     | J19HP9         | 594048.7                         | 116221.6                         | 114.91                           | Uranium-238  | 0.75   | pCi/g | 1/26/2010   | WCH         | 5                      | 2.27   | μg/g  |
| 618-1                                     | J19HR0         | 594012.1                         | 116182.1                         | 115.27                           | Uranium-238  | 2.17   | pCi/g | 1/26/2010   | WCH         | 5                      | 6.58   | μg/g  |
| 618-1                                     | J19J25         | 593991.4                         | 116204.9                         | 115.15                           | Uranium-238  | 0.99   | pCi/g | 1/26/2010   | WCH         | 5                      | 3      | µg/g  |
| 618-1                                     | J19J28         | 594003.7                         | 116250.4                         | 115.19                           | Uranium-238  | 8.23   | pCi/g | 1/26/2010   | WCH         | 5                      | 24.94  | µg/g  |
| 618-1                                     | J19J29         | 594008.4                         | 116244.2                         | 115.31                           | Uranium-238  | 0.97   | pCi/g | 1/26/2010   | WCH         | 5                      | 2.94   | μg/g  |
| 618-1                                     | J19J30         | 593995                           | 116228.7                         | 115.23                           | Uranium-238  | 0.88   | pCi/g | 1/26/2010   | WCH         | 5                      | 2.67   | µg/g  |
| 618-1                                     | J19J31         | 593998.8                         | 116215.1                         | 115.23                           | Uranium-238  | 1.46   | pCi/g | 1/26/2010   | WCH         | 5                      | 4.42   | µg/g  |
| 618-1                                     | J19J32         | 593992.6                         | 116185                           | 115.18                           | Uranium-238  | 0.81   | pCi/g | 1/26/2010   | WCH         | 5                      | 2.45   | µg/g  |
| 618-1                                     | J19J34         | 594036                           | 116263                           | 115.17                           | Uranium-238  | 0.93   | pCi/g | 1/26/2010   | WCH         | 5                      | 2.82   | µg/g  |
| 618-1                                     | J19HP2         | 594013                           | 116210                           | 112.76                           | Uranium-238  | 3.75   | pCi/g | 1/26/2010   | WCH         | 7.5                    | 11.36  | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                          | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------|------------------------|--------|-------|
| 618-1                                     | J19HP3         | 594017                           | 116204.5                         | 112.82                           | Uranium-238  | 65.2   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 197.58 | μg/g  |
| 618-1                                     | J19HP4         | 594021                           | 116199                           | 112.77                           | Uranium-238  | 9      | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 27.27  | μg/g  |
| 618-1                                     | J19HP5         | 594025.7                         | 116191.4                         | 112.68                           | Uranium-238  | 3.11   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 9.42   | μg/g  |
| 618-1                                     | J19HR1         | 594021.9                         | 116205.6                         | 112.76                           | Uranium-238  | 26.2   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 79.39  | µg/g  |
| 618-1                                     | J19HR2         | 594010.7                         | 116204.9                         | 112.87                           | Uranium-238  | 11.8   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 35.76  | μg/g  |
| 618-1                                     | J19J26         | 594023.4                         | 116190.2                         | 112.77                           | Uranium-238  | 2.31   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 7      | µg/g  |
| 618-1                                     | J19J27         | 594035.7                         | 116191.6                         | 112.73                           | Uranium-238  | 5.37   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 16.27  | µg/g  |
| 618-1                                     | J19J33         | 594013                           | 116194                           | 112.81                           | Uranium-238  | 3.68   | pCi/g | 1/26/2010   | WCH                                  | 7.5                    | 11.15  | µg/g  |
| 618-1                                     | J19HH7         | 594007.8                         | 116255.3                         | 115.34                           | Uranium-238  | 1.19   | pCi/g | 1/27/2010   | WCH                                  | 5                      | 3.61   | µg/g  |
| 618-1                                     | J19HH8         | 594004.9                         | 116197.2                         | 115.44                           | Uranium-238  | 0.9    | pCi/g | 1/27/2010   | WCH                                  | 5                      | 2.73   | µg/g  |
| 618-1                                     | J19HH9         | 594027.1                         | 116271.6                         | 114.97                           | Uranium-238  | 1.45   | pCi/g | 1/27/2010   | WCH                                  | 5                      | 4.39   | µg/g  |
| 618-1                                     | J19HJ0         | 594043.2                         | 116204.7                         | 115.06                           | Uranium-238  | 0.81   | pCi/g | 1/27/2010   | WCH                                  | 5                      | 2.45   | µg/g  |
| 618-1                                     | J19HN3         | 594012.7                         | 116203.7                         | 112.88                           | Uranium-238  | 29.1   | pCi/g | 1/27/2010   | WCH                                  | 7.5                    | 88.18  | µg/g  |
| 618-1                                     | J19HN4         | 594015                           | 116193.2                         | 112.85                           | Uranium-238  | 2.98   | pCi/g | 1/27/2010   | WCH                                  | 7.5                    | 9.03   | µg/g  |
| 618-1                                     | J19HN5         | 594029.3                         | 116203.9                         | 112.64                           | Uranium-238  | 32     | pCi/g | 1/27/2010   | WCH                                  | 7.5                    | 96.97  | µg/g  |
| 618-1                                     | J19HN6         | 594031.4                         | 116189.2                         | 112.73                           | Uranium-238  | 2.84   | pCi/g | 1/27/2010   | WCH                                  | 7.5                    | 8.61   | µg/g  |
| 618-1                                     | J19XD1         | 594017                           | 116204.5                         | 113.5                            | Uranium-238  | 43.3   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 0.61                   | 131.21 | μg/g  |
| 618-1                                     | J19XD2         | 594017                           | 116204.5                         | 113                              | Uranium-238  | 25.3   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 1.22                   | 76.67  | μg/g  |
| 618-1                                     | J19XD3         | 594017                           | 116204.5                         | 112                              | Uranium-238  | 20.3   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 1.83                   | 61.52  | μg/g  |
| 618-1                                     | J19XD4         | 594017                           | 116204.5                         | 111.5                            | Uranium-238  | 5.79   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 2.44                   | 17.55  | µg/g  |
| 618-1                                     | J19XD5         | 594017                           | 116204.5                         | 111                              | Uranium-238  | 21.7   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 3.05                   | 65.76  | μg/g  |

|                                           |                |                                  |                                  |                                  |              |        |       | Dutu        |                                      |                        |        |       |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------|------------------------|--------|-------|
| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                          | Sample<br>Depth<br>(m) | Valuee | Units |
| 618-1                                     | J19XD6         | 594017                           | 116204.5                         | 110                              | Uranium-238  | 17.6   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 3.66                   | 53.33  | μg/g  |
| 618-1                                     | J19XD7         | 594017                           | 116204.5                         | 109.5                            | Uranium-238  | 9.84   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 4.27                   | 29.82  | μg/g  |
| 618-1                                     | J19XD8         | 594017                           | 116204.5                         | 109                              | Uranium-238  | 8.49   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 4.88                   | 25.73  | μg/g  |
| 618-1                                     | J19XD9         | 594017                           | 116204.5                         | 108                              | Uranium-238  | 6.17   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 5.49                   | 18.7   | µg/g  |
| 618-1                                     | J19FX0         | 594017                           | 116204.5                         | 107.5                            | Uranium-238  | 5.46   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 6.1                    | 16.55  | µg/g  |
| 618-1                                     | J19FX1         | 594017                           | 116204.5                         | 107                              | Uranium-238  | 7.4    | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 6.71                   | 22.42  | μg/g  |
| 618-1                                     | J19FX2         | 594017                           | 116204.5                         | 106                              | Uranium-238  | 8.68   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 7.32                   | 26.3   | μg/g  |
| 618-1                                     | J19FX3         | 594017                           | 116204.5                         | 105.5                            | Uranium-238  | 20.7   | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 7.92                   | 62.73  | µg/g  |
| 618-1                                     | J19FX4         | 594017                           | 116204.5                         | 105                              | Uranium-238  | 22     | pCi/g | N/A         | 618-<br>1_BurialGround<br>Excavation | 8.23                   | 66.67  | µg/g  |
| 618-12                                    | B0L651         | 594291                           | 116436                           | 109.77                           | Uranium-238  | 8.59   | pCi/g | 8/11/1997   | WCH                                  | 5                      | 26.03  | μg/g  |
| 618-12                                    | B0L653         | 594249                           | 116450                           | 109.66                           | Uranium-238  | 10.8   | pCi/g | 8/11/1997   | WCH                                  | 5                      | 32.73  | µg/g  |
| 618-12                                    | B0L654         | 594212                           | 116445                           | 109.77                           | Uranium-238  | 4.84   | pCi/g | 8/12/1997   | WCH                                  | 5                      | 14.67  | µg/g  |
| 618-12                                    | B0L655         | 594205                           | 116412                           | 109.85                           | Uranium-238  | 1.83   | pCi/g | 8/12/1997   | WCH                                  | 5                      | 5.55   | μg/g  |
| 618-12                                    | B0L656         | 594161                           | 116436                           | 109.95                           | Uranium-238  | 3.73   | pCi/g | 8/12/1997   | WCH                                  | 5                      | 11.3   | μg/g  |
| 618-12                                    | B0L657         | 594167                           | 116388                           | 109.91                           | Uranium-238  | 2.32   | pCi/g | 8/12/1997   | WCH                                  | 5                      | 7.03   | μg/g  |
| 618-12                                    | B0L658         | 594261                           | 116406                           | 109.77                           | Uranium-238  | 8.01   | pCi/g | 8/13/1997   | WCH                                  | 5                      | 24.27  | μg/g  |
| 618-12                                    | B0L659         | 594284                           | 116478                           | 109.74                           | Uranium-238  | 17.5   | pCi/g | 8/13/1997   | WCH                                  | 5                      | 53.03  | μg/g  |

A-28

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 618-13                                    | J18PX0         | 592856.7                         | 116243.9                         | 115.79                           | Uranium-238  | 0.63   | pCi/g | 4/28/2009   | WCH         | 5                      | 1.91   | μg/g  |
| 618-13                                    | J18PX1         | 592878.9                         | 116248                           | 120.13                           | Uranium-238  | 1.7    | pCi/g | 4/28/2009   | WCH         | 5                      | 5.15   | μg/g  |
| 618-13                                    | J18PX2         | 592856                           | 116236                           | 116.14                           | Uranium-238  | 0.65   | pCi/g | 4/28/2009   | WCH         | 5                      | 1.97   | μg/g  |
| 618-13                                    | J18PX3         | 592877.9                         | 116222.5                         | 118.95                           | Uranium-238  | 0.73   | pCi/g | 4/28/2009   | WCH         | 5                      | 2.21   | μg/g  |
| 618-13                                    | J18R00         | 592861                           | 116248                           | 115.11                           | Uranium-238  | 0.68   | pCi/g | 4/28/2009   | WCH         | 5                      | 2.06   | µg∕g  |
| 618-13                                    | J18R01         | 592880                           | 116240                           | 120.33                           | Uranium-238  | 0.96   | pCi/g | 4/28/2009   | WCH         | 5                      | 2.91   | µg∕g  |
| 618-2                                     | J13DJ6         | 594033.6                         | 116361.8                         | 113.39                           | Uranium-238  | 1.9    | pCi/g | 9/7/2006    | WCH         | 5                      | 5.76   | µg∕g  |
| 618-2                                     | J13DJ7         | 594035.9                         | 116351.8                         | 113.37                           | Uranium-238  | 1.77   | pCi/g | 9/7/2006    | WCH         | 5                      | 5.36   | μg/g  |
| 618-2                                     | J13DJ9         | 591502.9                         | 116331.3                         | 120.73                           | Uranium-238  | 2.2    | pCi/g | 9/7/2006    | WCH         | 5                      | 6.67   | μg/g  |
| 618-2                                     | J13DK0         | 594027                           | 116315.6                         | 113.96                           | Uranium-238  | 2.14   | pCi/g | 9/7/2006    | WCH         | 5                      | 6.48   | μg/g  |
| 618-2                                     | J13DJ0         | 594023.2                         | 116341.4                         | 111.12                           | Uranium-238  | 14.8   | pCi/g | 9/7/2006    | WCH         | 7.5                    | 44.85  | μg/g  |
| 618-2                                     | J13DJ2         | 594037.2                         | 116341.5                         | 110.95                           | Uranium-238  | 5.22   | pCi/g | 9/7/2006    | WCH         | 7.5                    | 15.82  | μg/g  |
| 618-2                                     | J13DJ3         | 594032.4                         | 116321.2                         | 111.24                           | Uranium-238  | 165    | pCi/g | 9/7/2006    | WCH         | 7.5                    | 500    | μg/g  |
| 618-2                                     | J13DJ4         | 594034.3                         | 116357.7                         | 110.88                           | Uranium-238  | 2.87   | pCi/g | 9/7/2006    | WCH         | 7.5                    | 8.7    | µg/g  |
| 618-2                                     | J13DH9         | 594043.4                         | 116319.6                         | 111.18                           | Uranium-238  | 10.7   | pCi/g | 9/7/2006    | WCH         | 7.5                    | 32.42  | µg/g  |
| 618-2                                     | J13DJ5         | 594038.7                         | 116321.8                         | 111.16                           | Uranium-238  | 3.52   | pCi/g | 9/7/2006    | WCH         | 7.5                    | 10.67  | μg/g  |
| 618-2                                     | J13DN0         | 594010                           | 116319                           | 111.58                           | Uranium-238  | 50.1   | pCi/g | 9/26/2006   | WCH         | 7.5                    | 151.82 | μg/g  |
| 618-2                                     | J13DN1         | 594018                           | 116318                           | 111.46                           | Uranium-238  | 10.3   | pCi/g | 9/26/2006   | WCH         | 7.5                    | 31.21  | µg/g  |
| 618-2                                     | J13DN2         | 594039                           | 116320                           | 111.2                            | Uranium-238  | 13.4   | pCi/g | 9/26/2006   | WCH         | 7.5                    | 40.61  | µg/g  |
| 618-2                                     | J13DN3         | 594015                           | 116339                           | 111.37                           | Uranium-238  | 0.49   | pCi/g | 9/26/2006   | WCH         | 7.5                    | 1.48   | µg/g  |
| 618-2                                     | J13DN4         | 594032                           | 116339                           | 111.11                           | Uranium-238  | 0.5    | pCi/g | 9/26/2006   | WCH         | 7.5                    | 1.52   | µg/g  |
| 618-2                                     | J13H86         | 594041                           | 116335                           | 110.89                           | Uranium-238  | 6.28   | pCi/g | 9/28/2006   | WCH         | 7.5                    | 19.03  | μg/g  |
| 618-2                                     | J13H87         | 594044                           | 116334.4                         | 110.79                           | Uranium-238  | 6.71   | pCi/g | 9/28/2006   | WCH         | 7.5                    | 20.33  | µg/g  |
| 618-3                                     | J10TX0         | 593976                           | 116378                           | 114.2                            | Uranium-238  | 79.4   | pCi/g | 11/30/2005  | WCH         | 5                      | 240.61 | µg/g  |
| 618-3                                     | J10TX1         | 593957                           | 116380                           | 114.53                           | Uranium-238  | 25.4   | pCi/g | 11/30/2005  | WCH         | 5                      | 76.97  | µg/g  |
| 618-3                                     | J10TX2         | 593972                           | 116396                           | 114.14                           | Uranium-238  | 11.9   | pCi/g | 11/30/2005  | WCH         | 5                      | 36.06  | μg/g  |
| 618-3                                     | J11264         | 593949.7                         | 116378.2                         | 114.67                           | Uranium-238  | 0.75   | pCi/g | 1/31/2006   | WCH         | 5                      | 2.27   | μg/g  |
| 618-3                                     | J11266         | 593970                           | 116387.4                         | 114.19                           | Uranium-238  | 0.75   | pCi/g | 1/31/2006   | WCH         | 5                      | 2.27   | µg/g  |
| 618-3                                     | J11267         | 593946.2                         | 116333.1                         | 114.43                           | Uranium-238  | 0.55   | pCi/g | 1/31/2006   | WCH         | 5                      | 1.67   | µg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate | Y Coordinate | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|--------------|--------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 618-3                                     | J11268         | 593974.4     | 116324.4     | 114.55                           | Uranium-238  | 0.45   | pCi/g | 1/31/2006   | WCH         | 5                      | 1.36   | μg/g  |
| 618-4                                     | J00H62         | 593930.9     | 117019.6     | 108.63                           | Uranium-238  | 1.08   | pCi/g | 2/12/2003   | WCH         | 7.5                    | 3.27   | μg/g  |
| 618-4                                     | J00WT8         | 593890.6     | 116994.6     | 108.97                           | Uranium-238  | 2.14   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 6.48   | μg/g  |
| 618-4                                     | J00WT9         | 593903.2     | 116988.7     | 108.78                           | Uranium-238  | 1.54   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 4.67   | μg/g  |
| 618-4                                     | J00WV0         | 593928.7     | 117030.9     | 108.61                           | Uranium-238  | 0.51   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 1.55   | μg/g  |
| 618-4                                     | J00WV1         | 593948       | 117022.6     | 108.52                           | Uranium-238  | 2.05   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 6.21   | μg/g  |
| 618-4                                     | J00WX2         | 593866.4     | 116974.7     | 109                              | Uranium-238  | 1.18   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 3.58   | μg/g  |
| 618-4                                     | J00WX3         | 593870.2     | 116968.9     | 109                              | Uranium-238  | 3.38   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 10.24  | μg/g  |
| 618-4                                     | J00WX4         | 593874       | 116961.4     | 109.28                           | Uranium-238  | 6.9    | pCi/g | 8/25/2003   | WCH         | 7.5                    | 20.91  | μg/g  |
| 618-4                                     | J00WX5         | 593883.6     | 116957       | 109.51                           | Uranium-238  | 0.43   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 1.3    | μg/g  |
| 618-4                                     | J00WX8         | 593933.8     | 117025       | 108.51                           | Uranium-238  | 1.15   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 3.48   | µg/g  |
| 618-4                                     | J00WX9         | 593935.6     | 117017.3     | 108.56                           | Uranium-238  | 0.51   | pCi/g | 8/25/2003   | WCH         | 7.5                    | 1.55   | µg∕g  |
| 618-4                                     | J00WV3         | 593893.9     | 117011.4     | 111.85                           | Uranium-238  | 0.68   | pCi/g | 8/26/2003   | WCH         | 5                      | 2.06   | µg/g  |
| 618-4                                     | J00WV4         | 593895.6     | 116969.2     | 111.71                           | Uranium-238  | 1.23   | pCi/g | 8/26/2003   | WCH         | 5                      | 3.73   | µg∕g  |
| 618-4                                     | J00WV5         | 593978.1     | 117033.6     | 110.88                           | Uranium-238  | 3.07   | pCi/g | 8/26/2003   | WCH         | 5                      | 9.3    | µg∕g  |
| 618-4                                     | J00WV6         | 593968.7     | 117055.1     | 111.08                           | Uranium-238  | 1.91   | pCi/g | 8/26/2003   | WCH         | 5                      | 5.79   | µg∕g  |
| 618-5                                     | J00HM5         | 594167.9     | 116804.8     | 105.97                           | Uranium-238  | 12.2   | pCi/g | 2/26/2003   | WCH         | 7.5                    | 36.97  | µg∕g  |
| 618-5                                     | J00HM8         | 594182.1     | 116820.9     | 105.63                           | Uranium-238  | 3.06   | pCi/g | 2/26/2003   | WCH         | 7.5                    | 9.27   | μg/g  |
| 618-5                                     | J00YK3         | 594205.9     | 116865.4     | 108.05                           | Uranium-238  | 0.56   | pCi/g | 9/24/2003   | WCH         | 5                      | 1.7    | µg∕g  |
| 618-5                                     | J00YK4         | 594145.3     | 116817.6     | 108.33                           | Uranium-238  | 0.85   | pCi/g | 9/24/2003   | WCH         | 5                      | 2.58   | µg∕g  |
| 618-5                                     | J00YK5         | 594154.5     | 116776.5     | 109.3                            | Uranium-238  | 0.75   | pCi/g | 9/24/2003   | WCH         | 5                      | 2.27   | µg∕g  |
| 618-5                                     | J00YK6         | 594224.3     | 116838.4     | 108.24                           | Uranium-238  | 1.05   | pCi/g | 9/24/2003   | WCH         | 5                      | 3.18   | µg/g  |
| 618-5                                     | J00YJ8         | 594185.5     | 116845.7     | 105.68                           | Uranium-238  | 5.86   | pCi/g | 9/24/2003   | WCH         | 7.5                    | 17.76  | µg/g  |
| 618-5                                     | J00YJ9         | 594162.6     | 116827.3     | 105.67                           | Uranium-238  | 8.87   | pCi/g | 9/24/2003   | WCH         | 7.5                    | 26.88  | µg/g  |
| 618-5                                     | J00YK0         | 594169.9     | 116813.9     | 105.79                           | Uranium-238  | 6.28   | pCi/g | 9/24/2003   | WCH         | 7.5                    | 19.03  | µg/g  |
| 618-5                                     | J00YK1         | 594196.7     | 116830.2     | 105.48                           | Uranium-238  | 1.74   | pCi/g | 9/24/2003   | WCH         | 7.5                    | 5.27   | µg/g  |
| 618-5-TP2                                 | B01GK8         | 594189.4     | 116834.4     | 106.79                           | Uranium-238  | 3      | pCi/g | 1/27/1992   | HEIS        | 6.1                    | 9.09   | µg/g  |
| 618-5-TP2                                 | B01GN3         | 594189.4     | 116834.4     | 105.27                           | Uranium-238  | 11.66  | pCi/g | 1/27/1992   | HEIS        | 7.62                   | 35.33  | µg/g  |
| 618-7                                     | J17J15         | 593288       | 116578       | 116.85                           | Uranium-238  | 0.85   | pCi/g | 9/10/2008   | WCH         | 5                      | 2.58   | μg/g  |

| Table A-1. 300 Area Uranium Soil C | Concentration Data |
|------------------------------------|--------------------|
|------------------------------------|--------------------|

| Sampling<br>Location | HEIS   | X Coordinate     | Y Coordinate     | Z Coordinate     |              |        |       |             |             | Sample<br>Depth |        |           |
|----------------------|--------|------------------|------------------|------------------|--------------|--------|-------|-------------|-------------|-----------------|--------|-----------|
| Name <sup>a</sup>    | Number | (m) <sup>b</sup> | (m) <sup>b</sup> | (m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | (m)             | Valuee | Units     |
| 618-7                | J17J17 | 593298           | 116618           | 116.68           | Uranium-238  | 1.03   | pCi/g | 9/10/2008   | WCH         | 5               | 3.12   | μg/g      |
| 618-7                | J17J18 | 593243           | 116611           | 116.25           | Uranium-238  | 1.7    | pCi/g | 9/10/2008   | WCH         | 5               | 5.15   | μg/g      |
| 618-7                | J17J19 | 593146           | 116631           | 117.23           | Uranium-238  | 0.99   | pCi/g | 10/6/2008   | WCH         | 5               | 3      | μg/g      |
| 618-7                | J17J21 | 593192           | 116630           | 116.81           | Uranium-238  | 0.54   | pCi/g | 10/6/2008   | WCH         | 5               | 1.64   | μg/g      |
| 618-7                | J17J22 | 593246           | 116572           | 116.54           | Uranium-238  | 0.73   | pCi/g | 10/6/2008   | WCH         | 5               | 2.21   | μg/g      |
| 618-7                | J17J27 | 593296           | 116600           | 116.66           | Uranium-238  | 0.44   | pCi/g | 10/6/2008   | WCH         | 5               | 1.33   | $\mu g/g$ |
| 618-7                | J17J28 | 593241           | 116630           | 116.4            | Uranium-238  | 4.24   | pCi/g | 10/6/2008   | WCH         | 5               | 12.85  | μg/g      |
| 618-7                | J17J29 | 593194           | 116596           | 116.14           | Uranium-238  | 0.77   | pCi/g | 10/6/2008   | WCH         | 5               | 2.33   | μg/g      |
| 618-7                | J17J23 | 593193           | 116589           | 116.33           | Uranium-238  | 4.26   | pCi/g | 10/13/2008  | WCH         | 5               | 12.91  | μg/g      |
| 618-7                | J17J24 | 593193           | 116610           | 114.22           | Uranium-238  | 5.05   | pCi/g | 10/13/2008  | WCH         | 5               | 15.3   | μg/g      |
| 618-7                | J17J25 | 593146           | 116609           | 116.33           | Uranium-238  | 1.23   | pCi/g | 10/13/2008  | WCH         | 5               | 3.73   | μg/g      |
| 618-7                | J17J26 | 593243           | 116592           | 116.23           | Uranium-238  | 2.03   | pCi/g | 10/13/2008  | WCH         | 5               | 6.15   | μg/g      |
| 618-7                | J17J31 | 593142           | 116590           | 116.3            | Uranium-238  | 0.59   | pCi/g | 10/15/2008  | WCH         | 5               | 1.79   | μg/g      |
| 618-7                | J17J32 | 593143           | 116570           | 116.55           | Uranium-238  | 0.31   | pCi/g | 10/15/2008  | WCH         | 5               | 0.94   | μg/g      |
| 618-7                | J17R51 | 593298           | 116635           | 116.83           | Uranium-238  | 7.9    | pCi/g | 10/15/2008  | WCH         | 5               | 23.94  | μg/g      |
| 618-7                | J17R29 | 593172.1         | 116568           | 116.77           | Uranium-238  | 0.36   | pCi/g | 10/15/2008  | WCH         | 5               | 1.09   | μg/g      |
| 618-7                | J17R30 | 593207.4         | 116602.1         | 116.17           | Uranium-238  | 0.68   | pCi/g | 10/15/2008  | WCH         | 5               | 2.06   | μg/g      |
| 618-7                | J17R31 | 593262           | 116507           | 116.71           | Uranium-238  | 6.42   | pCi/g | 10/15/2008  | WCH         | 5               | 19.45  | μg/g      |
| 618-7                | J17R32 | 593308           | 116614           | 116.81           | Uranium-238  | 0.32   | pCi/g | 10/15/2008  | WCH         | 5               | 0.97   | μg/g      |
| 618-7                | J17R33 | 593231           | 116619           | 116.19           | Uranium-238  | 1.25   | pCi/g | 10/15/2008  | WCH         | 5               | 3.79   | μg/g      |
| 618-7                | J17R34 | 593150.6         | 116571.9         | 116.44           | Uranium-238  | 1.23   | pCi/g | 10/15/2008  | WCH         | 5               | 3.73   | μg/g      |
| 618-7                | J17R35 | 593234.2         | 116577           | 116.62           | Uranium-238  | 1.47   | pCi/g | 10/15/2008  | WCH         | 5               | 4.45   | μg/g      |
| 618-7                | J17R36 | 593253.8         | 116577           | 116.64           | Uranium-238  | 2.89   | pCi/g | 10/15/2008  | WCH         | 5               | 8.76   | μg/g      |
| 618-7                | J17R55 | 593212.6         | 116509.2         | 116.61           | Uranium-238  | 0      | pCi/g | 10/16/2008  | WCH         | 5               | 0      | μg/g      |
| 618-7                | J17R54 | 593174.2         | 116506.4         | 116.23           | Uranium-238  | 0.4    | pCi/g | 10/16/2008  | WCH         | 5               | 1.21   | μg/g      |
| 618-7                | J17R56 | 593244.7         | 116511.2         | 116.75           | Uranium-238  | 0.53   | pCi/g | 10/16/2008  | WCH         | 5               | 1.61   | μg/g      |
| 618-7                | J17R57 | 593286           | 116503.5         | 116.36           | Uranium-238  | 0.39   | pCi/g | 10/16/2008  | WCH         | 5               | 1.18   | μg/g      |
| 618-7                | J17R59 | 593208           | 116518           | 116.78           | Uranium-238  | 0      | pCi/g | 10/16/2008  | WCH         | 5               | 0      | μg/g      |
| 618-7                | J17R60 | 593237.2         | 116514.1         | 116.75           | Uranium-238  | 0.21   | pCi/g | 10/16/2008  | WCH         | 5               | 0.64   | μg/g      |

| Sampling<br>Location | HEIS    | X Coordinate     | Y Coordinate | Z Coordinate | Constituents | Valued | I to  | Carrielle Date | Data Samu | Sample<br>Depth | Values | The te |
|----------------------|---------|------------------|--------------|--------------|--------------|--------|-------|----------------|-----------|-----------------|--------|--------|
| 618 7                | INUMBER | (III)"<br>503180 | (m)*         | (m)*         | Uranium 238  | 0.53   | Dills | 10/21/2008     | WCH       | (III)           | 1.61   |        |
| 618.7                | J17DV2  | 593180           | 116691       | 117.88       | Uranium 228  | 0.53   | pCi/g | 10/21/2008     | WCH       | 5               | 1.01   | μg/g   |
| 618-7                | JI/KK3  | 593203           | 116681       | 117.97       | Uranium-238  | 0.54   | pCI/g | 10/21/2008     | WCH       | 5               | 1.64   | μg/g   |
| 618-7                | JT/RK4  | 593185           | 116681       | 118.19       | Uranium-238  | 0.54   | pCi/g | 10/21/2008     | WCH       | 5               | 1.64   | μg/g   |
| 618-7                | J17WL0  | 593214           | 116/15       | 117.61       | Uranium-238  | 0.18   | pC1/g | 11/14/2008     | WCH       | 5               | 0.55   | μg/g   |
| 618-7                | JI7WL1  | 593215           | 116/02       | 117.72       | Uranium-238  | 0.45   | pC1/g | 11/14/2008     | WCH       | 5               | 1.36   | µg/g   |
| 618-7                | J17XN3  | 593320           | 116599       | 117.05       | Uranium-238  | 0.93   | pCi/g | 11/15/2008     | WCH       | 5               | 2.82   | µg/g   |
| 618-7                | J17XN4  | 593317           | 116582       | 117.16       | Uranium-238  | 0.89   | pCi/g | 11/15/2008     | WCH       | 5               | 2.7    | μg/g   |
| 618-7                | J17XV9  | 593309           | 116594       | 116.87       | Uranium-238  | 0.24   | pCi/g | 11/18/2008     | WCH       | 5               | 0.73   | µg/g   |
| 618-7                | J17XW0  | 593318           | 116599       | 117          | Uranium-238  | 0.87   | pCi/g | 11/18/2008     | WCH       | 5               | 2.64   | µg/g   |
| 618-7                | J17XW1  | 593303           | 116579       | 116.92       | Uranium-238  | 0.95   | pCi/g | 11/18/2008     | WCH       | 5               | 2.88   | μg/g   |
| 618-7                | J17XW3  | 593312           | 116573       | 117.21       | Uranium-238  | 0.39   | pCi/g | 11/18/2008     | WCH       | 5               | 1.18   | µg/g   |
| 618-8                | J11274  | 593821.1         | 116477.9     | 115.43       | Uranium-238  | 0      | pCi/g | 1/31/2006      | WCH       | 5               | 0      | µg/g   |
| 618-8                | J11271  | 593818.2         | 116509.1     | 114.22       | Uranium-238  | 0.44   | pCi/g | 1/31/2006      | WCH       | 5               | 1.33   | μg/g   |
| 618-8                | J11273  | 593816.6         | 116488.3     | 115.41       | Uranium-238  | 0.73   | pCi/g | 1/31/2006      | WCH       | 5               | 2.21   | μg/g   |
| 618-8                | J11275  | 593839.5         | 116453.3     | 115.08       | Uranium-238  | 0.52   | pCi/g | 1/31/2006      | WCH       | 5               | 1.58   | µg/g   |
| 628-4                | B0Y9W1  | 594155           | 116275       | 110.05       | Uranium-238  | 0.82   | pCi/g | 7/13/2000      | WCH       | 5               | 2.48   | µg/g   |
| 628-4                | B0Y9W2  | 594170           | 116290       | 110.12       | Uranium-238  | 0.72   | pCi/g | 7/13/2000      | WCH       | 5               | 2.18   | µg/g   |
| 628-4                | B0Y9W3  | 594165           | 116295       | 110.67       | Uranium-238  | 0.63   | pCi/g | 7/13/2000      | WCH       | 5               | 1.91   | µg/g   |
| 628-4                | B0Y9W4  | 594170           | 116300       | 110.83       | Uranium-238  | 0.89   | pCi/g | 7/13/2000      | WCH       | 5               | 2.7    | µg/g   |
| 628-4                | B0Y9W5  | 594170           | 116280       | 109.97       | Uranium-238  | 1.24   | pCi/g | 7/13/2000      | WCH       | 5               | 3.76   | μg/g   |
| 628-4                | B0Y9W6  | 594180           | 116275       | 110.02       | Uranium-238  | 0.94   | pCi/g | 7/13/2000      | WCH       | 5               | 2.85   | μg/g   |
| 699-S19-E14          | B010R0  | 594249.9         | 117716.2     | 107.72       | Uranium-238  | 0.12   | pCi/g | 8/19/1991      | HEIS      | 6.34            | 0.36   | μg/g   |
| 699-S19-E14          | B010R3  | 594249.9         | 117716.2     | 106.29       | Uranium-238  | 0.11   | pCi/g | 8/19/1991      | HEIS      | 7.77            | 0.33   | μg/g   |
| 699-S19-E14          | B010R5  | 594249.9         | 117716.2     | 104.85       | Uranium-238  | 0.13   | pCi/g | 8/20/1991      | HEIS      | 9.21            | 0.39   | μg/g   |
| 699-S22-E9B          | B010H5  | 592696.1         | 116756.4     | 107.74       | Uranium-238  | 0.09   | pCi/g | 7/26/1991      | HEIS      | 6.37            | 0.27   | μg/g   |
| 699-S22-E9B          | B010H8  | 592696.1         | 116756.4     | 106.11       | Uranium-238  | 0.09   | pCi/g | 7/29/1991      | HEIS      | 8               | 0.27   | μg/g   |
| 699-S22-E9C          | B00YK0  | 592689           | 116752.6     | 105.61       | Uranium-238  | 0.06   | pCi/g | 6/10/1991      | HEIS      | 8.53            | 0.18   | μg/g   |
| 699-S22-E9C          | B00YK2  | 592689           | 116752.6     | 99.5         | Uranium-238  | 0.38   | pCi/g | 6/19/1991      | HEIS      | 14.64           | 1.15   | μg/g   |
| 699-S22-E9C          | B00YK4  | 592689           | 116752.6     | 93.41        | Uranium-238  | 0.31   | pCi/g | 6/21/1991      | HEIS      | 20.73           | 0.94   | μg/g   |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------|------------------------|--------|-------|
| 699-S22-E9C                               | B00YK6         | 592689                           | 116752.6                         | 87.31                            | Uranium-238  | 0.33   | pCi/g | 6/26/1991   | HEIS        | 26.83                  | 1      | μg/g  |
| 699-S22-E9C                               | B00YK8         | 592689                           | 116752.6                         | 81.86                            | Uranium-238  | 0.14   | pCi/g | 7/2/1991    | HEIS        | 32.28                  | 0.42   | μg/g  |
| 699-S22-E9C                               | B00YK9         | 592689                           | 116752.6                         | 76.04                            | Uranium-238  | 0.18   | pCi/g | 7/11/1991   | HEIS        | 38.1                   | 0.55   | μg/g  |
| 699-S22-E9C                               | B00YL1         | 592689                           | 116752.6                         | 63.95                            | Uranium-238  | 1      | pCi/g | 8/1/1991    | HEIS        | 50.19                  | 3.03   | μg/g  |
| 699-S27-E9B                               | B00YP6         | 592727.3                         | 115328.7                         | 112.8                            | Uranium-238  | 0.1    | pCi/g | 7/24/1991   | HEIS        | 6.4                    | 0.3    | μg/g  |
| 699-S27-E9B                               | B00YP8         | 592727.3                         | 115328.7                         | 110.97                           | Uranium-238  | 0.16   | pCi/g | 7/25/1991   | HEIS        | 8.23                   | 0.48   | μg/g  |
| 699-S27-E9B                               | B00YQ0         | 592727.3                         | 115328.7                         | 109.75                           | Uranium-238  | 0.1    | pCi/g | 7/25/1991   | HEIS        | 9.45                   | 0.3    | μg/g  |
| 699-S27-E9B                               | B00YQ4         | 592727.3                         | 115328.7                         | 108.22                           | Uranium-238  | 0.08   | pCi/g | 7/26/1991   | HEIS        | 10.98                  | 0.24   | μg/g  |
| 699-S27-E9B                               | B00YQ7         | 592727.3                         | 115328.7                         | 106.7                            | Uranium-238  | 0.1    | pCi/g | 7/26/1991   | HEIS        | 12.5                   | 0.3    | μg/g  |
| 699-S27-E9C                               | B00VS1         | 592720.9                         | 115324.8                         | 106.41                           | Uranium-238  | 0.14   | pCi/g | 6/3/1991    | HEIS        | 12.84                  | 0.42   | μg/g  |
| 699-S27-E9C                               | B00YJ1         | 592720.9                         | 115324.8                         | 100.76                           | Uranium-238  | 0.04   | pCi/g | 6/11/1991   | HEIS        | 18.49                  | 0.12   | μg/g  |
| 699-S27-E9C                               | B00YJ2         | 592720.9                         | 115324.8                         | 94.55                            | Uranium-238  | 0.23   | pCi/g | 6/14/1991   | HEIS        | 24.7                   | 0.7    | μg/g  |
| 699-S27-E9C                               | B00YJ4         | 592720.9                         | 115324.8                         | 88.65                            | Uranium-238  | 0.32   | pCi/g | 6/20/1991   | HEIS        | 30.6                   | 0.97   | μg/g  |
| 699-S27-E9C                               | B00YJ6         | 592720.9                         | 115324.8                         | 83.74                            | Uranium-238  | 0.14   | pCi/g | 6/28/1991   | HEIS        | 35.51                  | 0.42   | μg/g  |
| 699-S27-E9C                               | B00YJ7         | 592720.9                         | 115324.8                         | 77.58                            | Uranium-238  | 0.01   | pCi/g | 7/16/1991   | HEIS        | 41.67                  | 0.03   | μg/g  |
| 699-S27-E9C                               | B00YJ9         | 592720.9                         | 115324.8                         | 69.49                            | Uranium-238  | 0.15   | pCi/g | 8/7/1991    | HEIS        | 49.76                  | 0.45   | μg/g  |
| 699-S27-E9C                               | B010M2         | 592720.9                         | 115324.8                         | 64.31                            | Uranium-238  | 0.93   | pCi/g | 8/12/1991   | HEIS        | 54.94                  | 2.82   | μg/g  |
| 699-S29-E16B                              | B010P3         | 594746.9                         | 114738.8                         | 109.69                           | Uranium-238  | 0.17   | pCi/g | 8/14/1991   | HEIS        | 6.26                   | 0.52   | μg/g  |
| 699-S29-E16B                              | B010P6         | 594746.9                         | 114738.8                         | 108.24                           | Uranium-238  | 0.13   | pCi/g | 8/15/1991   | HEIS        | 7.71                   | 0.39   | µg/g  |
| 699-S29-E16B                              | B010P9         | 594746.9                         | 114738.8                         | 104.9                            | Uranium-238  | 0.19   | pCi/g | 8/15/1991   | HEIS        | 11.05                  | 0.58   | μg/g  |
| 699-S29-E16C                              | B00YL5         | 594742.4                         | 114730.5                         | 103.88                           | Uranium-238  | 0.09   | pCi/g | 6/26/1991   | HEIS        | 12.04                  | 0.27   | μg/g  |
| 699-S29-E16C                              | B00YL7         | 594742.4                         | 114730.5                         | 98.69                            | Uranium-238  | 0.08   | pCi/g | 7/2/1991    | HEIS        | 17.23                  | 0.24   | µg/g  |
| 699-S29-E16C                              | B00YL8         | 594742.4                         | 114730.5                         | 92.68                            | Uranium-238  | 0.06   | pCi/g | 7/9/1991    | HEIS        | 23.24                  | 0.18   | μg/g  |
| 699-S29-E16C                              | B00YM0         | 594742.4                         | 114730.5                         | 86.76                            | Uranium-238  | 0.19   | pCi/g | 7/12/1991   | HEIS        | 29.16                  | 0.58   | μg/g  |
| 699-S29-E16C                              | B00YM1         | 594742.4                         | 114730.5                         | 80.61                            | Uranium-238  | 1.5    | pCi/g | 7/26/1991   | HEIS        | 35.31                  | 4.55   | µg/g  |
| 699-S29-E16C                              | B00YM3         | 594742.4                         | 114730.5                         | 74.46                            | Uranium-238  | 0.78   | pCi/g | 7/31/1991   | HEIS        | 41.46                  | 2.36   | µg/g  |
| 699-S29-E16C                              | B00YM4         | 594742.4                         | 114730.5                         | 68.6                             | Uranium-238  | 0.93   | pCi/g | 8/5/1991    | HEIS        | 47.32                  | 2.82   | µg/g  |
| 699-S29-E16C                              | B010M0         | 594742.4                         | 114730.5                         | 62.58                            | Uranium-238  | 0.13   | pCi/g | 8/12/1991   | HEIS        | 53.34                  | 0.39   | μg/g  |

Table A-1. 300 Area Uranium Soil Concentration Data

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                   | Sample<br>Depth<br>(m) | Valuee   | Units     |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-----------------------------------------------|------------------------|----------|-----------|
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 112.1                            | Total U      | 460    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.35                   | 0.46     | µg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 111.5                            | Total U      | 688    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 3.96                   | 0.688    | µg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 110.9                            | Total U      | 540    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 4.57                   | 0.54     | μg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 110.2                            | Total U      | 508    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 5.33                   | 0.508    | µg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 110.2                            | Total U      | 622    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 5.33                   | 0.622    | µg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 109.4                            | Total U      | 726    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 6.1                    | 0.726    | μg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 108.6                            | Total U      | 739    | µg/Kg | 12/31/2014  | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 6.86                   | 0.739    | µg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 107.4                            | Total U      | 8,180  | µg/Kg | 1/6/2015    | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 8.08                   | 8.18     | μg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 106.2                            | Total U      | 7,130  | µg/Kg | 1/6/2015    | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 9.3                    | 7.13     | μg/g      |
| C8933                                     | N/A            | 594113.1                         | 116440.5                         | 104.2                            | Total U      | 2,030  | µg/Kg | 1/7/2015    | Borehole Data<br>Tracking<br>Spreadsheet.xlsx | 11.28                  | 2.03     | µg/g      |
| N/A                                       | N/A            | 594108.3                         | 116510.5                         | 114.5657                         | N/A          | N/A    | N/A   | N/A         | control                                       | 0                      | 31       | $\mu g/g$ |
| N/A                                       | N/A            | 594108.3                         | 116510.5                         | 104.9647                         | N/A          | N/A    | N/A   | N/A         | control                                       | 1                      | 31       | μg/g      |
| N/A                                       | N/A            | 594104.7                         | 116409.2                         | 115.2667                         | Ur           | N/A    | N/A   | N/A         | control                                       | 0                      | 31       | µg/g      |
| N/A                                       | N/A            | 594104.7                         | 116409.2                         | 105.4905                         | N/A          | N/A    | N/A   | N/A         | control                                       | 1                      | 31       | μg/g      |
| N/A                                       | N/A            | 594091.4                         | 116556                           | 114.2829                         | N/A          | N/A    | N/A   | N/A         | control                                       | 0                      | 31       | μg/g      |
| N/A                                       | N/A            | 593981                           | 116850                           | 111                              | N/A          | 1      | N/A   | N/A         | control                                       | 0                      | 3.030303 | $\mu g/g$ |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                                                   | Sample<br>Depth<br>(m) | Valuee   | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------------------------------------------------------------------------|------------------------|----------|-------|
| N/A                                       | N/A            | 593983                           | 116891                           | 111                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 0                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594051                           | 116849                           | 110                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 0                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594128                           | 116935                           | 109                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 0                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594128                           | 116935                           | 106.5                            | N/A          | 1      | N/A   | N/A         | control                                                                       | 2.5                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593981                           | 116850                           | 108.5                            | N/A          | 1      | N/A   | N/A         | control                                                                       | 2.5                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593983                           | 116891                           | 108.5                            | N/A          | 1      | N/A   | N/A         | control                                                                       | 2.5                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594051                           | 116849                           | 107.5                            | N/A          | 1      | N/A   | N/A         | control                                                                       | 2.5                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593981                           | 116850                           | 106                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 5                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593983                           | 116891                           | 106                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 5                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594051                           | 116849                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 5                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594128                           | 116935                           | 104                              | N/A          | 1      | N/A   | N/A         | control                                                                       | 5                      | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594055                           | 116456                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594050                           | 116446                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594043                           | 116569                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593946                           | 116462                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593909                           | 116549                           | 105                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594055                           | 116456                           | 100                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 594050                           | 116446                           | 100                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | µg/g  |
| N/A                                       | N/A            | 594043                           | 116569                           | 100                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593946                           | 116462                           | 100                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| N/A                                       | N/A            | 593909                           | 116549                           | 100                              | N/A          | 1      | N/A   | N/A         | control                                                                       | N/A                    | 3.030303 | μg/g  |
| 399-1-76                                  | B31MY3         | 594117.8                         | 116460.6                         | 111.7365                         | Uranium      | 987    | µg/Kg | 7/13/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 3.429                  | 0.987    | μg/g  |
| 399-1-76                                  | B31MY8         | 594117.8                         | 116460.6                         | 110.9745                         | Uranium      | 1,300  | µg/Kg | 7/13/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 4.191                  | 1.3      | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate | Y Coordinate | Z Coordinate | Constituente | Valued | Units | Sample Date | Data Source                                                                   | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------|-------|-------------|-------------------------------------------------------------------------------|------------------------|--------|-------|
| 399-1-76                                  | B31MY9         | 594117.8     | 116460.6     | NA           | Uranium      | 141    | μg/Kg | 7/13/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | NA                     | 0.141  | μg/g  |
| 399-1-76                                  | B31N04         | 594117.8     | 116460.6     | 110.2125     | Uranium      | 1,180  | µg/Kg | 7/13/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 4.953                  | 1.18   | µg/g  |
| 399-1-76                                  | B31N14         | 594117.8     | 116460.6     | 108.5361     | Uranium      | 2,540  | µg/Kg | 7/13/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 6.6294                 | 2.54   | µg/g  |
| 399-1-76                                  | B31N15         | 594117.8     | 116460.6     | 108.5361     | Uranium      | 2,140  | µg/Kg | 7/13/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 6.6294                 | 2.14   | μg/g  |
| 399-1-76                                  | B31N20         | 594117.8     | 116460.6     | 107.7741     | Uranium      | 2,500  | µg/Kg | 7/13/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 7.3914                 | 2.5    | µg/g  |
| 399-1-76                                  | B31N25         | 594117.8     | 116460.6     | 107.1645     | Uranium      | 5,900  | µg/Kg | 7/13/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 8.001                  | 5.9    | µg/g  |
| 399-1-76                                  | B31N30         | 594117.8     | 116460.6     | 106.4025     | Uranium      | 11,500 | µg/Kg | 7/13/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 8.763                  | 11.5   | µg/g  |
| 399-1-76                                  | B31N35         | 594117.8     | 116460.6     | 105.6405     | Uranium      | 4,490  | µg/Kg | 7/13/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 9.525                  | 4.49   | µg/g  |

A-36

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                                                    | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|--------------------------------------------------------------------------------|------------------------|--------|-------|
| 399-1-80                                  | B31N65         | 594089.7                         | 116454.9                         | 111.7365                         | Uranium      | 1,440  | μg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 3.429                  | 1.44   | μg/g  |
| 399-1-80                                  | B31N70         | 594089.7                         | 116454.9                         | 111.005                          | Uranium      | 1180   | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 4.16052                | 1.18   | µg/g  |
| 399-1-80                                  | B31N75         | 594089.7                         | 116454.9                         | 110.2125                         | Uranium      | 1,270  | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 4.953                  | 1.27   | µg/g  |
| 399-1-80                                  | B31N76         | 594089.7                         | 116454.9                         | 110.2125                         | Uranium      | 1,030  | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 4.953                  | 1.03   | µg/g  |
| 399-1-80                                  | B31N81         | 594089.7                         | 116454.9                         | 109.4505                         | Uranium      | 1,100  | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 5.715                  | 1.1    | µg/g  |
| 399-1-80                                  | B31N86         | 594089.7                         | 116454.9                         | 108.6885                         | Uranium      | 12,000 | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 6.477                  | 12     | µg/g  |
| 399-1-80                                  | B31N91         | 594089.7                         | 116454.9                         | 107.7741                         | Uranium      | 5,440  | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 7.3914                 | 5.44   | µg/g  |
| 399-1-80                                  | B31N92         | 594089.7                         | 116454.9                         | NA                               | Uranium      | 248    | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS_ | NA                     | 0.248  | μg/g  |

| Sampling<br>Location<br>Name <sup>a</sup> | HEIS<br>Number | X Coordinate<br>(m) <sup>b</sup> | Y Coordinate<br>(m) <sup>b</sup> | Z Coordinate<br>(m) <sup>b</sup> | Constituentc | Valued | Units | Sample Date | Data Source                                                                   | Sample<br>Depth<br>(m) | Valuee | Units |
|-------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------|-------|-------------|-------------------------------------------------------------------------------|------------------------|--------|-------|
| 399-1-80                                  | B31N97         | 594089.7                         | 116454.9                         | 107.0121                         | Uranium      | 10,600 | µg/Kg | 7/14/2015   | Borehole_Data_<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS | 8.1534                 | 10.6   | µg/g  |
| 399-1-80                                  | B31NB2         | 594089.7                         | 116454.9                         | 106.4025                         | Uranium      | 9,290  | µg/Kg | 7/14/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 8.763                  | 9.29   | µg/g  |
| 399-1-80                                  | B31NB7         | 594089.7                         | 116454.9                         | 105.4881                         | Uranium      | 6,500  | µg/Kg | 7/14/2015   | Borehole_Data<br>Tracking_Sprea<br>dsheet_399-1-<br>76_&_80.xlsx<br>and HEIS  | 9.6774                 | 6.5    | µg/g  |

a. See Figure 1 for sampling locations.

A-38

G-74

b. All coordinates are in meters. Horizontal coordinates (X and Y) use Washington State Plane (NAD83, North American Datum of 1983), and vertical coordinates (Z) use NAVD88, North American Vertical Datum of 1988.

c. Constituent name or indicator, as listed in the corresponding Data Source column.

d. Value is unaltered straight from its source.

e. Value is converted from source units (pCi/L) to model units ( $\mu$ g/g).

CHPRC = CH2M HILL Plateau Remediation Company

HEIS = Hanford Environmental Information System

N/A = not applicable

WCH = Washington Closure Hanford

ECF-300FF5-16-0087, REV. 0

# Appendix B

**Uranium Soil Concentration Data** 

B-i

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

B-ii

#### ECF-300FF5-16-0087, REV. 0

| Sample<br>No. | Sample<br>Depth<br>(ft below<br>ground<br>surface) | Field<br>Record:<br>Estimated<br>Elevation<br>in m<br>(NAVD88) | Adjusted<br>Elevation<br>in m<br>(NAVD88) | рН   | Total<br>Uranium<br>(µg/g) | U-233/234<br>(pCi/g) | U-235<br>(pCi/g) | U-238<br>(pCi/g) | Total<br>Uranium<br>Calculated<br>from<br>Isotopes<br>(μg/g) |
|---------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|------|----------------------------|----------------------|------------------|------------------|--------------------------------------------------------------|
| J19XD1        | 2                                                  | 111.5                                                          | 113.5                                     | 4.39 | 143.0                      | 46.2                 | 3.4              | 43.3             | 130.3                                                        |
| J19XD2        | 4                                                  | 111.0                                                          | 113.0                                     | 3.84 | 77.7                       | 23.5                 | 1.9              | 25.3             | 76.1                                                         |
| J19XD3        | 6                                                  | 110.0                                                          | 112.0                                     | 4.42 | 71.0                       | 21.3                 | 1.2              | 20.3             | 60.9                                                         |
| J19XD4        | 8                                                  | 109.5                                                          | 111.5                                     | 3.99 | 16.2                       | 5.2                  | 0.4              | 5.8              | 17.4                                                         |
| J19XD5        | 10                                                 | 109.0                                                          | 111.0                                     | 4.51 | 72.0                       | 21.8                 | 1.2              | 21.7             | 65.0                                                         |
| J19XD6        | 12                                                 | 108.0                                                          | 110.0                                     | 4.57 | 58.4                       | 18.1                 | 1.2              | 17.6             | 52.9                                                         |
| J19XD7        | 14                                                 | 107.5                                                          | 109.5                                     | 4.07 | 32.6                       | 10.7                 | 0.6              | 9.8              | 29.5                                                         |
| J19XD8        | 16                                                 | 107.0                                                          | 109.0                                     | 4.08 | 30.2                       | 9.1                  | 0.6              | 8.5              | 25.5                                                         |
| J19XD9        | 18                                                 | 106.0                                                          | 108.0                                     | 3.91 | 18.2                       | 6.1                  | 0.6              | 6.2              | 18.6                                                         |
| J19FX0        | 20                                                 | 105.5                                                          | 107.5                                     | 4.12 | 16.7                       | 5.3                  | 0.3              | 5.5              | 16.4                                                         |
| J19FX1        | 22                                                 | 105.0                                                          | 107.0                                     | 3.99 | 22.4                       | 6.9                  | 0.4              | 7.4              | 22.2                                                         |
| J19FX2        | 24                                                 | 104.0                                                          | 106.0                                     | 4.00 | 31.6                       | 9.8                  | 0.3              | 8.7              | 25.9                                                         |
| J19FX3        | 26                                                 | 103.5                                                          | 105.5                                     | 4.04 | 76.5                       | 22.1                 | 1.7              | 20.7             | 62.3                                                         |
| J19FX4        | 27                                                 | 103.0                                                          | 105.0                                     | 3.97 | 73.7                       | 22.2                 | 1.9              | 22.0             | 66.3                                                         |

Table B-1. Uranium Soil Concentration Data

Reference: NAVD88 = North America Vertical Datum of 1988.

Notes: Table data are from Peterson, 2010, "Uranium in Sediment from FS-2 Test Pit, 618-1 Burial Ground Excavation."

Total uranium in solids was measured by method UTOT\_KPA; isotopic uranium was measured by method UISO\_PLATE\_AEA and included uranium-233/234, uranium-235, and uranium-238; pH was measured using SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, Third Edition; Final Update V, method 9045.

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

B-2

ECF-300FF5-16-0087, REV. 0

# Appendix C

# Well Information and Geologic Contacts Data Tables

C-i

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

C-ii

# ECF-300FF5-16-0087, REV. 0

| Depths, and Surface Elevations |              |              |              |          |     |         |  |  |
|--------------------------------|--------------|--------------|--------------|----------|-----|---------|--|--|
| Well Name                      | X Coordinate | Y Coordinate | Z Coordinate | Depth    | Dip | Azimuth |  |  |
| 399-1-1                        | 594360       | 116588.8     | 114.9648     | 25.4696  | 90  | 0       |  |  |
| 399-1-10A                      | 594346.5     | 116734       | 114.202      | 15.716   | 90  | 0       |  |  |
| 399-1-10B                      | 594350.8     | 116728.8     | 114.4801     | 38.2712  | 90  | 0       |  |  |
| 399-1-11                       | 594109.8     | 116660.2     | 115.2807     | 16.41704 | 90  | 0       |  |  |
| 399-1-12                       | 594040.2     | 116548.5     | 117.3435     | 21.812   | 90  | 0       |  |  |
| 399-1-13A                      | 593910.4     | 116557.3     | 118.5868     | 19.0688  | 90  | 0       |  |  |
| 399-1-13B                      | 593909.6     | 116549.2     | 118.6545     | 39.73424 | 90  | 0       |  |  |
| 399-1-14A                      | 593901.1     | 116778.2     | 116.8506     | 17.24    | 90  | 0       |  |  |
| 399-1-14B                      | 593910.9     | 116779.1     | 116.782      | 38.4236  | 90  | 0       |  |  |
| 399-1-16A                      | 594318.1     | 116414.2     | 116.8101     | 16.478   | 90  | 0       |  |  |
| 399-1-16B                      | 594324.7     | 116411.6     | 116.8682     | 37.9664  | 90  | 0       |  |  |
| 399-1-16C                      | 594312       | 116410.4     | 116.9818     | 56.2544  | 90  | 0       |  |  |
| 399-1-16D                      | 594315.5     | 116404.6     | 117.0962     | 57.4736  | 90  | 0       |  |  |
| 399-1-17A                      | 594112.9     | 116413.8     | 115.2667     | 14.4968  | 90  | 0       |  |  |
| 399-1-17B                      | 594104.8     | 116417.7     | 115.5572     | 37.052   | 90  | 0       |  |  |
| 399-1-17C                      | 594104.7     | 116409.2     | 115.5987     | 54.7304  | 90  | 0       |  |  |
| 399-1-2                        | 594082.4     | 116329.5     | 117.9911     | 32.7848  | 90  | 0       |  |  |
| 399-1-20                       | 594257.3     | 116339.6     | 117.7588     | 58.9976  | 90  | 0       |  |  |
| 399-1-21B                      | 594157.2     | 116176.8     | 116.6382     | 37.052   | 90  | 0       |  |  |
| 399-1-23                       | 594113.5     | 116453.2     | 115.3971     | 37.3568  | 90  | 0       |  |  |
| 399-1-26                       | 594108.3     | 116456.2     | 115.1657     | 17.3924  | 90  | 0       |  |  |
| 399-1-3                        | 594254.2     | 116334.9     | 117.7332     | 33.242   | 90  | 0       |  |  |
| 399-1-33                       | 594113.3     | 116430.5     | 115.6783     | 15.0208  | 90  | 0       |  |  |
| 399-1-34                       | 594101.2     | 116433.8     | 115.6977     | 17.3924  | 90  | 0       |  |  |
| 399-1-35                       | 594122.3     | 116432.1     | 115.6916     | 16.9352  | 90  | 0       |  |  |
| 399-1-38                       | 594117.4     | 116435.4     | 115.5915     | 16.84376 | 90  | 0       |  |  |
| 399-1-4                        | 594020.6     | 116699.6     | 116.6163     | 32.7848  | 90  | 0       |  |  |
| 399-1-5                        | 594111.7     | 116552.1     | 114.6323     | 15.716   | 90  | 0       |  |  |
| 399-1-54                       | 594273.9     | 116643       | 114.5853     | 36.1188  | 90  | 0       |  |  |
| 399-1-55                       | 594152.3     | 116487.3     | 114.6316     | 34.4424  | 90  | 0       |  |  |
| 399-1-56                       | 594090.9     | 116725.3     | 114.2395     | 37.6428  | 90  | 0       |  |  |
| 399-1-57                       | 594382       | 116353.7     | 114.6343     | 36.1188  | 90  | 0       |  |  |
| 399-1-58                       | 593910.8     | 116352.6     | 119.5085     | 38.4048  | 90  | 0       |  |  |
| 399-1-59                       | 594077.4     | 116135.9     | 120.5487     | 45.32376 | 90  | 0       |  |  |
| 399-1-65                       | 594164.3     | 116481.2     | 114.6368     | 15.14856 | 90  | 0       |  |  |
| 399-1-66                       | 594168.5     | 116505       | 114.6305     | 15.24    | 90  | 0       |  |  |
| 399-1-67                       | 594162.4     | 116481.6     | 114.5984     | 12.4054  | 90  | 0       |  |  |

#### Table C-1. Geologic Framework Model Well Names, Locations, Maximum Drill Depths, and Surface Elevations

C-1

#### ECF-300FF5-16-0087, REV. 0

|           | Depths, and Surface Elevations |              |              |          |     |         |  |  |  |  |
|-----------|--------------------------------|--------------|--------------|----------|-----|---------|--|--|--|--|
| Well Name | X Coordinate                   | Y Coordinate | Z Coordinate | Depth    | Dip | Azimuth |  |  |  |  |
| 399-1-68  | 594166.8                       | 116527       | 114.4458     | 12.58824 | 90  | 0       |  |  |  |  |
| 399-1-69  | 594169.7                       | 116505.1     | 114.6575     | 12.3444  | 90  | 0       |  |  |  |  |
| 399-1-7   | 594260.1                       | 116335.1     | 117.7757     | 24.86    | 90  | 0       |  |  |  |  |
| 399-1-70  | 594125.1                       | 116508.9     | 114.5195     | 14.9047  | 90  | 0       |  |  |  |  |
| 399-1-71  | 594126.3                       | 116508.9     | 114.51       | 35.052   | 90  | 0       |  |  |  |  |
| 399-1-72  | 594080.3                       | 116494.2     | 114.8809     | 14.66088 | 90  | 0       |  |  |  |  |
| 399-1-73  | 594081.7                       | 116494.2     | 114.889      | 12.3444  | 90  | 0       |  |  |  |  |
| 399-1-74  | 594097.7                       | 116475.3     | 114.8288     | 15.3924  | 90  | 0       |  |  |  |  |
| 399-1-75  | 594098.7                       | 116475.6     | 114.8446     | 12.3444  | 90  | 0       |  |  |  |  |
| 399-1-76  | 594117.8                       | 116460.6     | 115.1655     | 15.49908 | 90  | 0       |  |  |  |  |
| 399-1-77  | 594118.7                       | 116460.5     | 115.174      | 12.24382 | 90  | 0       |  |  |  |  |
| 399-1-78  | 594153.8                       | 116463.2     | 114.8702     | 15.27048 | 90  | 0       |  |  |  |  |
| 399-1-79  | 594154.8                       | 116463.1     | 114.8595     | 12.192   | 90  | 0       |  |  |  |  |
| 399-1-8   | 594257.8                       | 116329.6     | 117.7526     | 34.6136  | 90  | 0       |  |  |  |  |
| 399-1-80  | 594089.7                       | 116454.9     | 114.8724     | 15.3924  | 90  | 0       |  |  |  |  |
| 399-1-81  | 594090.9                       | 116454.9     | 114.8952     | 12.40536 | 90  | 0       |  |  |  |  |
| 399-1-82  | 594151.8                       | 116427.4     | 115.06       | 15.3924  | 90  | 0       |  |  |  |  |
| 399-1-83  | 594152.5                       | 116427.4     | 115.06       | 12.1859  | 90  | 0       |  |  |  |  |
| 399-1-84  | 594174.5                       | 116451.4     | 114.9117     | 18.288   | 90  | 0       |  |  |  |  |
| 399-1-85  | 594175.5                       | 116451.4     | 114.9033     | 12.3444  | 90  | 0       |  |  |  |  |
| 399-1-86  | 594137.8                       | 116478.7     | 114.8187     | 15.17904 | 90  | 0       |  |  |  |  |
| 399-1-87  | 594138.6                       | 116478.8     | 114.8394     | 12.192   | 90  | 0       |  |  |  |  |
| 399-1-89  | 594087.2                       | 116467.5     | 114.8606     | 15.24    | 90  | 0       |  |  |  |  |
| 399-1-9   | 594254                         | 116330.4     | 117.728      | 57.1688  | 90  | 0       |  |  |  |  |
| 399-1-90  | 594102.7                       | 116478.2     | 114.8546     | 15.24    | 90  | 0       |  |  |  |  |
| 399-1-91  | 594118.2                       | 116489.1     | 114.8083     | 15.29182 | 90  | 0       |  |  |  |  |
| 399-1-92  | 594132.8                       | 116466.6     | 115.0367     | 15.10284 | 90  | 0       |  |  |  |  |
| 399-1-93  | 594117                         | 116470.8     | 115.0163     | 15.3924  | 90  | 0       |  |  |  |  |
| 399-1-94  | 594130.8                       | 116479.7     | 114.9393     | 15.29182 | 90  | 0       |  |  |  |  |
| 399-1-95  | 594143.9                       | 116488.4     | 114.7328     | 15.3924  | 90  | 0       |  |  |  |  |
| 399-1-96  | 594146.2                       | 116473.8     | 114.8872     | 15.05102 | 90  | 0       |  |  |  |  |
| 399-1-97  | 594157.9                       | 116480.2     | 114.4927     | 15.24    | 90  | 0       |  |  |  |  |
| 399-2-1   | 594467.2                       | 116121.2     | 114.4859     | 25.4696  | 90  | 0       |  |  |  |  |
| 399-2-10  | 594234.6                       | 116094.5     | 115.0018     | 22.574   | 90  | 0       |  |  |  |  |
| 399-2-11  | 594236.3                       | 116074.5     | 115.0198     | 21.23288 | 90  | 0       |  |  |  |  |
| 399-2-12  | 594252.5                       | 116086       | 114.9006     | 21.812   | 90  | 0       |  |  |  |  |
| 399-2-13  | 594237.2                       | 116064.6     | 115.0427     | 21.08048 | 90  | 0       |  |  |  |  |

## Table C-1. Geologic Framework Model Well Names, Locations, Maximum Drill Depths, and Surface Elevations

# ECF-300FF5-16-0087, REV. 0

| Depths, and Surface Elevations |              |              |              |          |     |         |  |  |
|--------------------------------|--------------|--------------|--------------|----------|-----|---------|--|--|
| Well Name                      | X Coordinate | Y Coordinate | Z Coordinate | Depth    | Dip | Azimuth |  |  |
| 399-2-14                       | 594245.3     | 116070.2     | 114.9721     | 20.288   | 90  | 0       |  |  |
| 399-2-15                       | 594253.3     | 116076       | 114.8933     | 20.7452  | 90  | 0       |  |  |
| 399-2-16                       | 594261.6     | 116081.9     | 114.8862     | 20.8976  | 90  | 0       |  |  |
| 399-2-17                       | 594245.1     | 116060.3     | 115.0073     | 21.2024  | 90  | 0       |  |  |
| 399-2-18                       | 594254.2     | 116066.1     | 114.9096     | 21.812   | 90  | 0       |  |  |
| 399-2-19                       | 594262.7     | 116071.8     | 114.8948     | 20.53184 | 90  | 0       |  |  |
| 399-2-2                        | 594385.7     | 116282.6     | 114.987      | 21.812   | 90  | 0       |  |  |
| 399-2-20                       | 594270.6     | 116077.6     | 114.8935     | 20.8976  | 90  | 0       |  |  |
| 399-2-21                       | 594263.3     | 116061.9     | 114.9121     | 20.80616 | 90  | 0       |  |  |
| 399-2-22                       | 594279.7     | 116073.4     | 114.9422     | 21.812   | 90  | 0       |  |  |
| 399-2-23                       | 594272.3     | 116057.6     | 114.9105     | 20.288   | 90  | 0       |  |  |
| 399-2-24                       | 594280.7     | 116063.3     | 114.9038     | 22.574   | 90  | 0       |  |  |
| 399-2-25                       | 594269.2     | 116088.1     | 114.8715     | 54.1208  | 90  | 0       |  |  |
| 399-2-26                       | 594244       | 116081       | 114.952      | 20.92808 | 90  | 0       |  |  |
| 399-2-27                       | 594244.1     | 116078.2     | 114.9676     | 21.3548  | 90  | 0       |  |  |
| 399-2-28                       | 594246.4     | 116080       | 114.9319     | 21.812   | 90  | 0       |  |  |
| 399-2-29                       | 594270.8     | 116068.1     | 114.9064     | 20.7452  | 90  | 0       |  |  |
| 399-2-3                        | 594377.4     | 116220.5     | 115.0428     | 21.812   | 90  | 0       |  |  |
| 399-2-30                       | 594271.2     | 116065.5     | 114.9072     | 21.5072  | 90  | 0       |  |  |
| 399-2-31                       | 594273.6     | 116067.2     | 114.91       | 21.2024  | 90  | 0       |  |  |
| 399-2-32                       | 594284.6     | 116195.1     | 114.7519     | 36.8808  | 90  | 0       |  |  |
| 399-2-5                        | 594287.7     | 116068.8     | 114.9128     | 41.9288  | 90  | 0       |  |  |
| 399-2-7                        | 594235.2     | 116084.5     | 115.0642     | 20.8976  | 90  | 0       |  |  |
| 399-2-8                        | 594243.5     | 116090.3     | 114.9766     | 20.288   | 90  | 0       |  |  |
| 399-2-9                        | 594237.7     | 116089.7     | 115.0128     | 21.812   | 90  | 0       |  |  |
| 399-3-1                        | 594481.3     | 116008       | 117.8439     | 25.7744  | 90  | 0       |  |  |
| 399-3-18                       | 594464.7     | 116020       | 117.6155     | 41.9288  | 90  | 0       |  |  |
| 399-3-19                       | 594071.9     | 116030.2     | 120.7012     | 33.5468  | 90  | 0       |  |  |
| 399-3-23                       | 594237.9     | 116054.7     | 115.0415     | 21.812   | 90  | 0       |  |  |
| 399-3-24                       | 594238.8     | 116044.6     | 115.0263     | 21.812   | 90  | 0       |  |  |
| 399-3-25                       | 594255.1     | 116056       | 114.925      | 21.812   | 90  | 0       |  |  |
| 399-3-26                       | 594239.8     | 116034.8     | 114.9963     | 22.1168  | 90  | 0       |  |  |
| 399-3-27                       | 594247.9     | 116040.7     | 115.0011     | 20.8976  | 90  | 0       |  |  |
| 399-3-28                       | 594256.1     | 116046       | 114.9311     | 21.6596  | 90  | 0       |  |  |
| 399-3-29                       | 594264.3     | 116052       | 114.9796     | 21.5072  | 90  | 0       |  |  |
| 399-3-30                       | 594246.3     | 116051.4     | 115.0074     | 20.7452  | 90  | 0       |  |  |
| 399-3-31                       | 594246.7     | 116048.3     | 115.0085     | 21.2024  | 90  | 0       |  |  |

## Table C-1. Geologic Framework Model Well Names, Locations, Maximum Drill Depths, and Surface Elevations

C-3

#### ECF-300FF5-16-0087, REV. 0

|                  |              |              |              | -        |     |         |
|------------------|--------------|--------------|--------------|----------|-----|---------|
| Well Name        | X Coordinate | Y Coordinate | Z Coordinate | Depth    | Dip | Azimuth |
| 399-3-32         | 594249.1     | 116050.1     | 114.9859     | 21.2024  | 90  | 0       |
| 399-3-33         | 594500.7     | 115966.5     | 118.3221     | 41.148   | 90  | 0       |
| 399-8-3          | 593626.1     | 116683.6     | 120.4763     | 33.0896  | 90  | 0       |
| C8933            | 594113.1     | 116440.5     | 115.6402     | 12.10056 | 90  | 0       |
| C9580            | 594088.7     | 116456.4     | 114.8352     | 10.668   | 90  | 0       |
| C9581            | 594116.8     | 116462.1     | 115.1454     | 10.668   | 90  | 0       |
| C9582            | 594161.1     | 116484       | 114.5966     | 10.668   | 90  | 0       |
| North Pond Pit 1 | 594351.8     | 116435.4     | 114.4814     | 6.7056   | 90  | 0       |
| North Pond Pit 2 | 594156.8     | 116387.4     | 114.8828     | 3.6576   | 90  | 0       |
| South Pond Pit 1 | 594400.8     | 116127       | 114.5267     | 6.7056   | 90  | 0       |
| South Pond Pit 2 | 594236.7     | 116021.7     | 114.9242     | 6.7056   | 90  | 0       |

#### Table C-1. Geologic Framework Model Well Names, Locations, Maximum Drill Depths. and Surface Elevations

Note: All coordinates, elevations, and depths in this table are in meters. The vertical datum is from NAVD88, *North American Vertical Datum of 1988*, and the horizontal coordinate system Washington State Plane (NAD83, *North American Datum of 1983*). Geologic units (indicated in Appendix D [Tables D-3 and D-3]) are explained in Section 2.1 in the main text of this calculation.

| Well Name | From Depth | To Depth | Lithology | <b>Total Depth</b> |
|-----------|------------|----------|-----------|--------------------|
| 399-1-17B | 0          | 1.524    | Hf S      | 37.052             |
| 399-1-17B | 1.524      | 16.764   | Hf SG     | 37.052             |
| 399-1-17B | 16.764     | 37.052   | Hf SSG    | 37.052             |
| 399-1-17C | 0          | 1.2192   | Hf S      | 54.7304            |
| 399-1-17C | 1.2192     | 6.096    | Hf SG     | 54.7304            |
| 399-1-17C | 6.096      | 54.7304  | Hf SSG    | 54.7304            |
| 399-1-23  | 0          | 0.9144   | Hf S      | 37.3568            |
| 399-1-26  | 0          | 1.2192   | Hf S      | 17.3924            |
| 399-1-26  | 1.2192     | 5.6388   | Hf SG     | 17.3924            |
| 399-1-26  | 5.6388     | 17.3924  | Hf SSG    | 17.3924            |
| 399-1-33  | 0          | 1.3716   | Hf S      | 14.02              |
| 399-1-33  | 1.3716     | 7.0104   | Hf SSG    | 14.02              |
| 399-1-33  | 7.0104     | 16.0208  | Hf G      | 16.0208            |
| 399-1-34  | 0          | 1.92024  | Hf S      | 17.3924            |

#### Table C-2. Detailed Vadose Zone Geologic Framework Model Lithology

#### ECF-300FF5-16-0087, REV. 0

| Well Name        | From Depth | To Depth | Lithology | Total Depth |
|------------------|------------|----------|-----------|-------------|
| 399-1-34         | 1.92024    | 8.9916   | Hf SG     | 17.3924     |
| 399-1-34         | 8.9916     | 17.3924  | Hf SSG    | 17.3924     |
| 399-1-35         | 0          | 1.524    | Hf S      | 16.9352     |
| 399-1-54         | 0          | 8.8392   | Hf SG     | 36.1188     |
| 399-1-55         | 0          | 11.2776  | Hf SG     | 34.4424     |
| 399-1-55         | 11.2776    | 12.4968  | Hf SSG    | 34.4424     |
| 399-1-55         | 12.4968    | 34.4324  | Hf G      | 34.4424     |
| 399-1-56         | 0          | 5.0292   | Hf S      | 37.6428     |
| 399-1-56         | 5.0292     | 12.192   | Hf SG     | 37.6428     |
| 399-1-57         | 0          | 11.5824  | Hf SG     | 36.1188     |
| 399-1-57         | 11.5824    | 36.1088  | Hf G      | 36.1188     |
| 399-1-58         | 0          | 1.8288   | Hf S      | 38.4048     |
| 399-1-58         | 1.8288     | 7.0104   | Hf SG     | 38.4048     |
| 399-1-7          | 0          | 24.86    | Hf SG     | 24.86       |
| 399-1-8          | 0          | 34.6136  | Hf SG     | 34.6136     |
| 399-1-9          | 0          | 57.1688  | Hf SG     | 35.052      |
| 399-2-2          | 0          | 7.62     | Hf SG     | 35.052      |
| 399-2-2          | 7.62       | 21.812   | Hf SSG    | 35.052      |
| 399-2-3          | 0          | 21.812   | Hf SG     | 35.052      |
| 399-1-59         | 0          | 5.1816   | Hf SSG    | 38.4048     |
| 399-2-32         | 0          | 4.2672   | Hf SG     | 35.052      |
| 399-2-32         | 4.2672     | 36.8808  | Hf SSG    | 35.052      |
| 399-3-33         | 0          | 5.4864   | Hf S      | 35.052      |
| 399-3-33         | 5.4864     | 41.148   | Hf SSG    | 35.052      |
| 399-8-3          | 0          | 3.3528   | Hf S      | 33.0896     |
| 399-8-3          | 3.3528     | 33.0896  | Hf SG     | 33.0896     |
| North Pond Pit-1 | 0          | 6.7056   | Hf SSG    | 35.052      |
| North Pond Pit-2 | 0          | 3.6576   | Hf SSG    | 35.052      |
| South Pond Pit-1 | 0          | 6.7056   | Hf SSG    | 35.052      |
| South Pond Pit-2 | 0          | 6.7056   | Hf SSG    | 35.052      |
| 399-1-2          | 0          | 2.1336   | Hf S      | 54.7304     |
| 399-1-2          | 2.1336     | 30.7848  | Hf SG     | 54.7304     |
| 399-1-5          | 0          | 1.8288   | Hf S      | 15.716      |
| 399-1-5          | 1.8288     | 14.3256  | Hf SG     | 15.716      |
| 399-1-12         | 0          | 6.096    | Hf S      | 19.812      |
| 399-1-12         | 6.096      | 9.144    | Hf SG     | 19.812      |

Table C-2. Detailed Vadose Zone Geologic Framework Model Lithology

#### ECF-300FF5-16-0087, REV. 0

| Well Name | From Depth | To Depth | Lithology | Total Depth |
|-----------|------------|----------|-----------|-------------|
| 399-1-12  | 9.144      | 10.668   | Hf S2     | 19.812      |
| 399-1-12  | 10.668     | 19.812   | Hf SSG    | 19.812      |
| 399-1-20  | 0          | 56.9976  | Hf SG     | 54.7304     |
| 399-1-16B | 10.668     | 13.716   | Hf S3     | 35.2044     |
| 399-1-16B | 13.716     | 35.2044  | Hf SSG    | 35.2044     |
| 399-1-16C | 9.144      | 12.192   | Hf S3     | 54.2544     |
| 399-1-13A | 0          | 4.2672   | Hf S      | 17.0688     |
| 399-1-13A | 4.2672     | 10.3632  | Hf SG     | 17.0688     |
| 399-1-13A | 10.3632    | 17.0688  | HfSSG     | 17.0688     |
| 399-1-21B | 0          | 2.7432   | Hf S      | 35.052      |
| 399-1-54  | 8.8392     | 36.1088  | Hf SSG    | 36.1188     |
| 399-1-56  | 12.192     | 37.6328  | Hf SSG    | 37.6428     |
| 399-1-58  | 7.0104     | 38.3948  | Hf SSG    | 38.4048     |
| 399-1-65  | 0          | 3.47472  | Hf SG     | 15.14856    |
| 399-1-65  | 3.47472    | 13.5636  | Hf SSG    | 15.14856    |
| 399-1-65  | 13.5636    | 15.14856 | Hf S2     | 15.14856    |
| 399-1-66  | 0          | 15.24    | Hf SSG    | 15.24       |
| 399-1-69  | 0          | 3.6576   | Hf SG     | 12.3444     |
| 399-1-69  | 3.6576     | 10.42416 | Hf SSG    | 12.3444     |
| 399-1-69  | 10.42416   | 12.3444  | Hf G      | 12.3444     |
| 399-1-70  | 0          | 14.9047  | Hf SSG    | 14.9047     |
| 399-1-71  | 0          | 12.192   | Hf SSG    | 12.192      |
| 399-1-72  | 0          | 1.2192   | Hf SG     | 14.66088    |
| 399-1-72  | 1.2192     | 14.66088 | Hf SSG    | 14.66088    |
| 399-1-73  | 0          | 1.524    | Hf SG     | 12.3444     |
| 399-1-73  | 1.524      | 9.144    | Hf SSG    | 12.3444     |
| 399-1-73  | 9.144      | 9.4488   | Silt      | 12.3444     |
| 399-1-73  | 9.4488     | 12.3444  | Hf SSG    | 12.3444     |
| 399-1-74  | 0          | 4.2672   | Hf SG     | 15.3924     |
| 399-1-74  | 4.2672     | 15.3924  | Hf SSG    | 15.3924     |
| 399-1-75  | 0          | 4.2672   | Hf SG     | 12.3444     |
| 399-1-75  | 4.2672     | 12.3444  | Hf SSG    | 12.3444     |
| 399-1-76  | 0          | 2.5908   | Hf SG     | 15.49908    |
| 399-1-76  | 2.5908     | 15.49908 | Hf SSG    | 15.49908    |
| 399-1-77  | 0          | 1.2192   | Hf SG     | 12.24382    |
| 399-1-77  | 1.2192     | 12.24382 | Hf SSG    | 12.24382    |
| 399-1-78  | 0          | 12.4968  | HfSSG     | 15.27048    |

# Table C-2. Detailed Vadose Zone Geologic Framework Model Lithology

C-6

#### ECF-300FF5-16-0087, REV. 0

| Well Name | From Depth | To Depth | Lithology                                            | Total Depth |  |  |  |  |  |  |
|-----------|------------|----------|------------------------------------------------------|-------------|--|--|--|--|--|--|
| 399-1-78  | 12.4968    | 14.0208  | Silt                                                 | 15.27048    |  |  |  |  |  |  |
| 399-1-78  | 14.0208    | 15.27048 | Hf SSG                                               | 15.27048    |  |  |  |  |  |  |
| 399-1-79  | 0          | 12.192   | Hf SSG                                               | 12.192      |  |  |  |  |  |  |
| 399-1-80  | 0          | 2.98704  | Hf SG                                                | 15.3924     |  |  |  |  |  |  |
| 399-1-80  | 2.98704    | 15.3924  | Hf SSG                                               | 15.3924     |  |  |  |  |  |  |
| 399-1-81  | 0          | 2.7432   | Hf SG                                                | 12.40536    |  |  |  |  |  |  |
| 399-1-81  | 2.7432     | 12.40536 | Hf SSG                                               | 12.40536    |  |  |  |  |  |  |
| 399-1-82  | 0          | 0.9144   | Hf S                                                 | 15.3924     |  |  |  |  |  |  |
| 399-1-83  | 0          | 0.97536  | Hf S                                                 | 12.1859     |  |  |  |  |  |  |
| 399-1-83  | 0.97536    | 5.1816   | Hf SG                                                | 12.1859     |  |  |  |  |  |  |
| 399-1-83  | 5.1816     | 8.5344   | Hf S4                                                | 12.1859     |  |  |  |  |  |  |
| 399-1-83  | 8.5344     | 12.1859  | Hf SSG                                               | 12.1859     |  |  |  |  |  |  |
| 399-1-84  | 0          | 12.4968  | Hf SSG                                               | 18.288      |  |  |  |  |  |  |
| 399-1-84  | 12.4968    | 14.0208  | Silt                                                 | 18.288      |  |  |  |  |  |  |
| 399-1-84  | 14.0208    | 16.1544  | Hf SSG                                               | 18.288      |  |  |  |  |  |  |
| 399-1-84  | 16.1544    | 18.288   | Ringold Formation Member<br>of Wooded Island, unit E | 18.288      |  |  |  |  |  |  |
| 399-1-86  | 0          | 15.17904 | Hf SSG                                               | 15.17904    |  |  |  |  |  |  |
| 399-1-87  | 0          | 12.192   | Hf SSG                                               | 12.192      |  |  |  |  |  |  |
| 399-1-89  | 0          | 15.24    | Hf SSG                                               | 15.24       |  |  |  |  |  |  |
| 399-1-90  | 0          | 15.24    | Hf SSG                                               | 15.24       |  |  |  |  |  |  |
| 399-1-91  | 0          | 10.0584  | Hf SSG                                               | 15.29182    |  |  |  |  |  |  |
| 399-1-91  | 10.0584    | 10.668   | Silt                                                 | 15.29182    |  |  |  |  |  |  |
| 399-1-91  | 10.668     | 15.29182 | Hf SSG                                               | 15.29182    |  |  |  |  |  |  |
| 399-1-92  | 0          | 0.97536  | Hf S                                                 | 15.10284    |  |  |  |  |  |  |
| 399-1-92  | 0.97536    | 15.10284 | Hf SSG                                               | 15.10284    |  |  |  |  |  |  |
| 399-1-93  | 0          | 1.0668   | Hf S                                                 | 15.3924     |  |  |  |  |  |  |
| 399-1-93  | 1.0668     | 6.096    | Hf SG                                                | 15.3924     |  |  |  |  |  |  |
| 399-1-93  | 6.096      | 9        | Hf SSG                                               | 15.3924     |  |  |  |  |  |  |
| 399-1-93  | 9          | 11       | Silt                                                 | 15.3924     |  |  |  |  |  |  |
| 399-1-93  | 11         | 15.3924  | Hf G                                                 | 15.3924     |  |  |  |  |  |  |
| 399-1-94  | 0          | 1.09728  | Hf S                                                 | 15.29182    |  |  |  |  |  |  |
| 399-1-94  | 1.09728    | 15.29182 | Hf SSG                                               | 15.29182    |  |  |  |  |  |  |
| 399-1-95  | 0          | 15.3924  | Hf SSG                                               | 15.3924     |  |  |  |  |  |  |
| 399-1-96  | 0          | 14.6304  | Hf SSG                                               | 15.05102    |  |  |  |  |  |  |
| 399-1-96  | 14.6304    | 15.05102 | Hf S2                                                | 15.05102    |  |  |  |  |  |  |
| 399-1-97  | 0          | 15.24    | Hf SSG                                               | 15.24       |  |  |  |  |  |  |

# Table C-2. Detailed Vadose Zone Geologic Framework Model Lithology

C-7
#### ECF-300FF5-16-0087, REV. 0

| Well Name | <b>From Depth</b> | To Depth | Lithology                                            | Total Depth |
|-----------|-------------------|----------|------------------------------------------------------|-------------|
| 399-1-85  | 0                 | 12.3444  | Hf SSG                                               | 12.3444     |
| 399-1-59  | 23.5              | 38.4048  | Ringold Formation Member<br>of Wooded Island, unit E | 38.4048     |
| 399-1-17A | 0                 | 6.096    | Hf SG                                                | 14.4968     |
| 399-1-33  | 7.0104            | 11.8872  | Hf SG                                                | 14.02       |
| 399-1-33  | 11.8872           | 13.8684  | Hf SSG                                               | 14.02       |
| 399-1-4   | 0                 | 1.8288   | Hf S                                                 | 32.7848     |
| 399-1-4   | 1.8288            | 32.7848  | Hf SSG                                               | 32.7848     |
| 399-1-59  | 8.8392            | 23.5     | Hf SSG                                               | 38.4048     |
| 399-1-67  | 0                 | 8.2296   | Hf SG                                                | 12.4054     |
| 399-1-16B | 0                 | 3.048    | Hf SG                                                | 35.2044     |
| 399-1-16B | 3.048             | 10.668   | Hf SSG                                               | 35.2044     |
| 399-1-21B | 2.7432            | 6.096    | Hf SG                                                | 35.052      |
| 399-1-21B | 6.096             | 7.4676   | Hf S2                                                | 35.052      |
| 399-1-59  | 5.1816            | 8.8392   | Hf S2                                                | 38.4048     |
| 399-1-23  | 0.9144            | 9.7536   | Hf SSG                                               | 37.3568     |
| 399-1-35  | 1.524             | 6.096    | Hf SSG                                               | 16.9352     |
| C8933     | 0                 | 10.88136 | Hf SG                                                | 12.10056    |
| 399-1-16C | 0                 | 4.572    | Hf S                                                 | 54.2544     |
| 399-1-16C | 4.572             | 9.144    | Hf SG                                                | 54.2544     |
| 399-1-16C | 12.192            | 13.716   | Hf SSG                                               | 54.2544     |
| 399-1-67  | 8.2296            | 12.4054  | Hf SSG                                               | 12.4054     |
| 399-1-68  | 0                 | 12.5882  | Hf SG                                                | 12.5882     |
| 399-1-17A | 6.096             | 8.8392   | Hf SSG                                               | 14.4968     |
| 399-1-17A | 8.8392            | 12.192   | Hf S4                                                | 14.4968     |
| 399-1-82  | 0.9144            | 6.03504  | Hf SG                                                | 15.3924     |
| 399-1-82  | 6.03504           | 8.6868   | Hf S4                                                | 15.3924     |
| 399-1-82  | 8.6868            | 15.3924  | HfSSG                                                | 15.3924     |

### Table C-2. Detailed Vadose Zone Geologic Framework Model Lithology

Hf = Hanford formation; S = Sand, SG = Sandy Gravel; SSG = Silty Sandy Gravel

Note: All coordinates, elevations, and depths in this table are in meters. The vertical datum is from NAVD88, *North American Vertical Datum of 1988*, and the horizontal coordinate system Washington State Plane (NAD83, *North American Datum of 1983*). Geologic units (indicated in Appendix D [Tables D-3 and D-3]) are explained in Section 2.1 in the main text of this calculation.

|           |            |          |           | 57                 |
|-----------|------------|----------|-----------|--------------------|
| Well Name | From Depth | To Depth | Lithology | <b>Total Depth</b> |
| 399-1-10B | 0          | 16.9672  | Hanford   | 36.2712            |

#### Table C-3. Lower Suprabasalt Sediment Geologic Framework Model Lithology

# ECF-300FF5-16-0087, REV. 0

| Table C-3. Lower S | Suprabasalt Sediment | t Geologic Framework | Model Lithology |
|--------------------|----------------------|----------------------|-----------------|
|                    |                      |                      |                 |

| Well Name | From Depth | To Depth | Lithology  | <b>Total Depth</b> |
|-----------|------------|----------|------------|--------------------|
| 399-1-10B | 16.972     | 34.437   | Ringold E  | 36.2712            |
| 399-1-10B | 34.437     | 35.437   | Ringold LM | 36.2712            |
| 399-1-13A | 0          | 15.84    | Hanford    | 17.0688            |
| 399-1-13B | 0          | 18.82    | Hanford    | 37.73424           |
| 399-1-13B | 18.82      | 35.351   | Ringold E  | 37.73424           |
| 399-1-16B | 0          | 15.844   | Hanford    | 35.9664            |
| 399-1-16B | 15.844     | 34.741   | Ringold E  | 35.9664            |
| 399-1-16C | 0          | 16.453   | Hanford    | 54.2544            |
| 399-1-16C | 16.453     | 35.046   | Ringold E  | 54.2544            |
| 399-1-16C | 35.046     | 53.334   | Ringold LM | 54.2544            |
| 399-1-16C | 53.334     | 54.334   | Basalt     | 54.2544            |
| 399-1-16D | 0          | 16.453   | Hanford    | 55.4736            |
| 399-1-16D | 16.453     | 33.522   | Ringold E  | 55.4736            |
| 399-1-16D | 33.522     | 54.858   | Ringold LM | 55.4736            |
| 399-1-16D | 54.858     | 55.858   | Basalt     | 55.4736            |
| 399-1-17B | 0          | 15.539   | Hanford    | 35.052             |
| 399-1-17B | 15.539     | 32.913   | Ringold E  | 35.052             |
| 399-1-17C | 0          | 15.539   | Hanford    | 52.7304            |
| 399-1-17C | 15.539     | 35.046   | Ringold E  | 52.7304            |
| 399-1-17C | 35.046     | 50.591   | Ringold LM | 52.7304            |
| 399-1-17C | 50.591     | 51.591   | Basalt     | 52.7304            |
| 399-1-2   | 0          | 18.343   | Hanford    | 30.7848            |
| 399-1-20  | 0          | 15.234   | Hanford    | 56.9976            |
| 399-1-20  | 15.234     | 36.113   | Ringold E  | 56.9976            |
| 399-1-20  | 36.113     | 53.639   | Ringold LM | 56.9976            |
| 399-1-20  | 53.639     | 54.639   | Basalt     | 56.9976            |
| 399-1-21B | 0          | 20.873   | Hanford    | 35.052             |
| 399-1-21B | 20.873     | 32.913   | Ringold E  | 35.052             |
| 399-1-23  | 16.149     | 30.474   | Ringold E  | 35.3568            |
| 399-1-8   | 0          | 14.015   | Hanford    | 32.6136            |
| 399-1-8   | 14.015     | 31.998   | Ringold E  | 32.6136            |
| 399-1-9   | 0          | 15.234   | Hanford    | 55.1688            |
| 399-1-9   | 15.234     | 35.046   | Ringold E  | 55.1688            |
| 399-1-9   | 35.046     | 51.81    | Ringold LM | 55.1688            |
| 399-1-9   | 51.81      | 54.553   | Ringold A  | 55.1688            |
| 399-1-9   | 54.553     | 55.553   | Basalt     | 55.1688            |
| 399-2-1   | 0          | 14.32    | Hanford    | 23.4696            |
| 399-2-11  | 0          | 17.063   | Hanford    | 19.23288           |

# ECF-300FF5-16-0087, REV. 0

| Table C-3. Lower | Suprabasalt Sediment | Geologic Framework M | odel Lithology |
|------------------|----------------------|----------------------|----------------|
|                  |                      |                      |                |

| Well Name | From Depth | To Depth | Lithology  | <b>Total Depth</b> |
|-----------|------------|----------|------------|--------------------|
| 399-2-12  | 0          | 19.806   | Hanford    | 19.812             |
| 399-2-13  | 0          | 16.911   | Hanford    | 19.08048           |
| 399-2-15  | 0          | 16.758   | Hanford    | 18.7452            |
| 399-2-16  | 0          | 16.606   | Hanford    | 18.8976            |
| 399-2-18  | 0          | 17.368   | Hanford    | 19.812             |
| 399-2-19  | 0          | 16.454   | Hanford    | 18.53184           |
| 399-2-2   | 0          | 18.282   | Hanford    | 19.812             |
| 399-2-20  | 0          | 17.063   | Hanford    | 18.8976            |
| 399-2-21  | 0          | 16.758   | Hanford    | 18.80616           |
| 399-2-22  | 0          | 17.52    | Hanford    | 19.812             |
| 399-2-24  | 0          | 17.673   | Hanford    | 20.574             |
| 399-2-25  | 0          | 17.673   | Hanford    | 52.1208            |
| 399-2-25  | 17.673     | 37.18    | Ringold E  | 52.1208            |
| 399-2-25  | 37.18      | 49.677   | Ringold LM | 52.1208            |
| 399-2-25  | 49.677     | 50.677   | Basalt     | 52.1208            |
| 399-2-26  | 0          | 17.673   | Hanford    | 18.92808           |
| 399-2-29  | 0          | 16.911   | Hanford    | 18.7452            |
| 399-2-30  | 0          | 16.911   | Hanford    | 19.5072            |
| 399-2-31  | 0          | 17.063   | Hanford    | 19.2024            |
| 399-2-5   | 0          | 17.063   | Hanford    | 39.9288            |
| 399-2-5   | 17.063     | 38.094   | Ringold E  | 39.9288            |
| 399-2-7   | 0          | 16.454   | Hanford    | 18.8976            |
| 399-3-18  | 0          | 14.015   | Hanford    | 39.9288            |
| 399-3-18  | 14.015     | 38.399   | Ringold E  | 39.9288            |
| 399-3-23  | 0          | 16.454   | Hanford    | 19.812             |
| 399-3-24  | 0          | 16.149   | Hanford    | 19.812             |
| 399-3-25  | 0          | 17.368   | Hanford    | 19.812             |
| 399-3-26  | 0          | 15.844   | Hanford    | 20.1168            |
| 399-3-27  | 0          | 15.539   | Hanford    | 18.8976            |
| 399-3-28  | 0          | 17.063   | Hanford    | 19.6596            |
| 399-3-29  | 0          | 15.996   | Hanford    | 19.5072            |
| 399-3-30  | 0          | 16.911   | Hanford    | 18.7452            |
| 399-3-31  | 0          | 16.911   | Hanford    | 19.2024            |
| 399-8-3   | 17.977     | 26.817   | Ringold E  | 31.0896            |
| 399-1-14B | 0          | 14.325   | Hanford    | 36.4236            |
| 399-1-14B | 14.325     | 33.069   | Ringold E  | 36.4236            |
| 399-1-14B | 33.069     | 36.4236  | Ringold LM | 36.4236            |
| 399-1-4   | 0          | 13.715   | Hanford    | 30.7848            |

# ECF-300FF5-16-0087, REV. 0

| Table C-3. Lower S | Suprabasalt Sediment | t Geologic Framework | Model Lithology |
|--------------------|----------------------|----------------------|-----------------|
|                    |                      |                      |                 |

| Well Name | From Depth | To Depth | Lithology | <b>Total Depth</b> |
|-----------|------------|----------|-----------|--------------------|
| 399-1-4   | 13.715     | 30.7848  | Ringold E | 30.7848            |
| 399-1-1   | 0          | 23.4696  | Hanford   | 23.4696            |
| 399-1-1   | 23.4696    | 24.4696  | Ringold E | 23.4696            |
| 399-1-10A | 0          | 1.524    | Fill      | 13.716             |
| 399-1-10A | 1.524      | 13.716   | Hanford   | 13.716             |
| 399-1-10A | 13.716     | 14.716   | Ringold E | 13.716             |
| 399-1-11  | 0          | 12.8016  | Hanford   | 14.41704           |
| 399-1-11  | 12.8016    | 15.41704 | Ringold E | 14.41704           |
| 399-1-12  | 0          | 3.3528   | Fill      | 19.812             |
| 399-1-12  | 3.3528     | 14.05128 | Hanford   | 19.812             |
| 399-1-12  | 14.05128   | 20.812   | Ringold E | 19.812             |
| 399-1-14A | 0          | 0.762    | Fill      | 15.24              |
| 399-1-14A | 0.762      | 14.3256  | Hanford   | 15.24              |
| 399-1-16A | 0          | 1.2192   | Fill      | 14.478             |
| 399-1-16A | 1.2192     | 14.478   | Hanford   | 14.478             |
| 399-1-16A | 14.478     | 15.478   | Ringold E | 14.478             |
| 399-1-17A | 0          | 12.4968  | Hanford   | 12.4968            |
| 399-1-17A | 12.4968    | 13.4968  | Ringold E | 12.4968            |
| 399-1-26  | 0          | 14.7828  | Hanford   | 15.3924            |
| 399-1-26  | 14.7828    | 16.3924  | Ringold E | 15.3924            |
| 399-1-33  | 0          | 13.1064  | Hanford   | 14.0208            |
| 399-1-33  | 13.1064    | 15.0208  | Ringold E | 14.0208            |
| 399-1-34  | 0          | 11.8872  | Hanford   | 15.3924            |
| 399-1-34  | 11.8872    | 16.3924  | Ringold E | 15.3924            |
| 399-1-35  | 0          | 11.8872  | Hanford   | 14.9352            |
| 399-1-35  | 11.8872    | 15.9352  | Ringold E | 14.9352            |
| 399-1-38  | 0          | 15.84376 | Hanford   | 14.84376           |
| 399-3-1   | 0          | 2.4384   | Fill      | 23.7744            |
| 399-3-1   | 2.4384     | 14.3256  | Hanford   | 23.7744            |
| 399-3-1   | 14.3256    | 24.7744  | Ringold E | 23.7744            |
| 399-1-14A | 14.3256    | 16.24    | Ringold E | 15.24              |
| 399-1-5   | 0          | 1.83     | Fill      | 13.716             |
| 399-1-5   | 1.83       | 13.11    | Hanford   | 13.716             |
| 399-1-5   | 13.11      | 13.716   | Ringold E | 13.716             |
| 399-3-32  | 0          | 3.01     | Fill      | 19.2024            |
| 399-3-32  | 3.01       | 17.063   | Hanford   | 19.2024            |
| 399-3-32  | 17.063     | 19.2024  | Ringold E | 19.2024            |
| 399-2-23  | 0          | 4.88     | Fill      | 18.288             |

# ECF-300FF5-16-0087, REV. 0

# Table C-3. Lower Suprabasalt Sediment Geologic Framework Model Lithology

| Well Name | From Depth | To Depth | Lithology  | <b>Total Depth</b> |
|-----------|------------|----------|------------|--------------------|
| 399-2-23  | 4.88       | 16.46    | Hanford    | 18.288             |
| 399-2-23  | 16.46      | 18.288   | Ringold E  | 18.288             |
| 399-2-27  | 0          | 3.05     | Fill       | 19.3548            |
| 399-2-27  | 3.05       | 15.54    | Hanford    | 19.3548            |
| 399-2-27  | 15.54      | 19.3548  | Ringold E  | 19.3548            |
| 399-3-19  | 0          | 3.96     | Fill       | 31.5468            |
| 399-3-19  | 3.96       | 25.3     | Hanford    | 31.5468            |
| 399-1-13B | 35.351     | 37.73424 | Ringold LM | 37.73424           |
| 399-1-2   | 18.343     | 30.7848  | Ringold E  | 30.7848            |
| 399-1-21B | 32.913     | 35.052   | Ringold LM | 35.052             |
| 399-1-23  | 0          | 0.304    | Fill       | 35.3568            |
| 399-1-23  | 0.304      | 16.149   | Hanford    | 35.3568            |
| 399-1-23  | 30.474     | 35.3568  | Ringold LM | 35.3568            |
| 399-1-3   | 0          | 3.35     | Fill       | 31.242             |
| 399-1-3   | 3.35       | 13.405   | Hanford    | 31.242             |
| 399-1-3   | 13.405     | 32.242   | Ringold E  | 31.242             |
| 399-1-7   | 0          | 15.85    | Hanford    | 22.86              |
| 399-1-7   | 15.85      | 22.86    | Ringold E  | 22.86              |
| 399-2-1   | 14.33      | 23.4696  | Ringold E  | 23.4696            |
| 399-2-10  | 0          | 3.05     | Fill       | 20.574             |
| 399-2-10  | 3.05       | 18.13    | Hanford    | 20.574             |
| 399-2-10  | 18.13      | 20.574   | Ringold E  | 20.574             |
| 399-2-14  | 0          | 3.05     | Fill       | 18.288             |
| 399-2-14  | 3.05       | 16.606   | Hanford    | 18.288             |
| 399-2-14  | 16.606     | 18.288   | Ringold E  | 18.288             |
| 399-2-17  | 0          | 3.05     | Fill       | 19.2024            |
| 399-2-17  | 3.05       | 16.911   | Hanford    | 19.2024            |
| 399-2-17  | 16.911     | 19.2024  | Ringold E  | 19.2024            |
| 399-2-2   | 18.282     | 19.812   | Ringold E  | 19.812             |
| 399-2-28  | 0          | 2.44     | Fill       | 19.812             |
| 399-2-28  | 2.44       | 17.216   | Hanford    | 19.812             |
| 399-2-28  | 17.216     | 19.812   | Ringold E  | 19.812             |
| 399-2-3   | 0          | 18.29    | Hanford    | 19.812             |
| 399-2-3   | 18.29      | 19.812   | Ringold E  | 19.812             |
| 399-2-8   | 0          | 2.74     | Fill       | 18.288             |
| 399-2-8   | 2.74       | 16.149   | Hanford    | 18.288             |
| 399-2-8   | 16.149     | 18.288   | Ringold E  | 18.288             |
| 399-2-9   | 0          | 2.74     | Fill       | 19.812             |

### ECF-300FF5-16-0087, REV. 0

| Table     | C-5. LOwer Suprabasa | it Seament Geologic |            | lology             |
|-----------|----------------------|---------------------|------------|--------------------|
| Well Name | From Depth           | To Depth            | Lithology  | <b>Total Depth</b> |
| 399-2-9   | 2.74                 | 18.13               | Hanford    | 19.812             |
| 399-2-9   | 18.13                | 19.812              | Ringold E  | 19.812             |
| 399-8-3   | 0                    | 2.13                | Fill       | 31.0896            |
| 399-8-3   | 26.817               | 31.0896             | Ringold LM | 31.0896            |
| 399-3-19  | 25.3                 | 31.5468             | Ringold E  | 31.5468            |
| 399-8-3   | 2.13                 | 17.977              | Hanford    | 31.0896            |

| Table C-3. Lower | Suprabasalt Sediment | Geologic Framework | Model Litholoav |
|------------------|----------------------|--------------------|-----------------|
|                  |                      |                    |                 |

Note: All coordinates, elevations, and depths in this table are in meters. The vertical datum is from NAVD88, North American Vertical Datum of 1988, and the horizontal coordinate system Washington State Plane (NAD83, North American Datum of 1983). Geologic units (indicated in Appendix D [Tables D-3 and D-3]) are explained in Section 2.1 in the main text of this calculation.

| Table C-4. Wells within Hanford Formation Detailed Vadose Geologic Framework |
|------------------------------------------------------------------------------|
| Model Domain Omitted from Interpolation                                      |

|          | Wells Not in Hanford Formation Detailed Vadose Model |           |          |  |  |  |
|----------|------------------------------------------------------|-----------|----------|--|--|--|
| B8765    | 399-1-19                                             | 399-1-14A | 399-1-1  |  |  |  |
| 399-1-63 | 399-1-11                                             | 399-1-21A | 399-2-19 |  |  |  |
| 399-2-27 | 399-3-1                                              | 399-3-30  | 399-2-39 |  |  |  |
| 399-2-25 | 399-2-5                                              | 399-3-31  | 399-2-40 |  |  |  |
| 399-2-26 | 399-1-42                                             | 399-1-29  | 399-3-35 |  |  |  |
| 399-2-29 | 399-1-43                                             | 399-1-51  |          |  |  |  |
| 399-2-31 | 399-1-44                                             | 399-1-52  |          |  |  |  |
| 399-3-29 | 399-1-24                                             | 399-1-10B |          |  |  |  |
| 399-2-24 | 399-2-37                                             | 399-1-13B |          |  |  |  |
| C5387    | 399-3-36                                             | 399-1-14B |          |  |  |  |
| C5388    | B8767                                                | 399-1-16D |          |  |  |  |
| 399-2-10 | B8768                                                | 399-2-20  |          |  |  |  |
| 399-2-11 | 399-1-22                                             | 399-3-24  |          |  |  |  |
| 399-2-16 | 399-3-32                                             | 399-3-25  |          |  |  |  |
| 399-3-23 | 399-2-30                                             | 399-1-40  |          |  |  |  |
| 399-1-31 | 399-3-18                                             | 399-2-38  |          |  |  |  |
| 399-3-34 | 399-1-27                                             | B8761     |          |  |  |  |
| C6341    | 399-1-28                                             | B8766     |          |  |  |  |
| C6342    | 399-1-37                                             | 399-2-28  |          |  |  |  |
| C6343    | 399-3-19                                             | 399-1-39  |          |  |  |  |
| C6345    | 399-1-3                                              | 399-1-41  |          |  |  |  |
| C6346    | 399-1-45                                             | 399-2-23  |          |  |  |  |
| 399-2-18 | 399-2-4                                              | C3961     |          |  |  |  |
| 399-2-21 | 399-2-12                                             | B8762     |          |  |  |  |

### ECF-300FF5-16-0087, REV. 0

|           |                            | eu nom interpolation        |  |
|-----------|----------------------------|-----------------------------|--|
|           | Wells Not in Hanford Forma | ntion Detailed Vadose Model |  |
| 399-2-22  | 399-2-13                   | B8763                       |  |
| 399-1-61  | 399-2-14                   | B8764                       |  |
| 399-1-62  | 399-2-15                   | B8769                       |  |
| 399-1-46  | 399-1-38                   | B8770                       |  |
| 399-1-47  | 399-2-1                    | C6344                       |  |
| 399-1-48  | 399-1-60                   | 399-3-37                    |  |
| 399-1-49  | 399-2-33                   | 399-1-36                    |  |
| 399-1-50  | 399-1-53                   | 399-1-64                    |  |
| 399-2-34  | C3962                      | C9581                       |  |
| 399-2-36  | 399-2-6                    | C9580                       |  |
| 399-2-35  | 399-2-7                    | C9582                       |  |
| 399-3-26  | 399-2-8                    | C5389                       |  |
| 399-3-27  | 399-2-9                    | 399-2-17                    |  |
| 399-3-28  | 399-1-25                   | 399-1-30                    |  |
| 399-1-16A | 399-1-10A                  | 399-1-32                    |  |

### Table C-4. Wells within Hanford Formation Detailed Vadose Geologic Framework Model Domain Omitted from Interpolation

C-14

ECF-300FF5-16-0087, REV. 0

# Appendix D

# Software Installation and Checkout Forms

D-i

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

D-ii

### ECF-300FF5-16-0087, REV. 0

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT F                                                                                                                                                                         | FORM                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Software Owner Instructions:                                                                                                                                                                                       |                                 |
| Complete Fields 1-13, then run test cases in Field 14. Compare test case results listed in Field 15 to con<br>If results are the same, sign and date Field 19. If not, resolve differences and repeat above steps. | responding Test Report outputs. |
| Software Subject Matter Expert Instructions:                                                                                                                                                                       |                                 |
| Assign test personnel. Approve the installation of the code by signing and dating Field 21, then maintain<br>support documentation.                                                                                | form as part of the software    |
| GENERAL INFORMATION:                                                                                                                                                                                               |                                 |
| 1. Software Name: LeapIrog Geo                                                                                                                                                                                     | Software Version No.: 3.0.0     |
| EXECUTABLE INFORMATION:                                                                                                                                                                                            |                                 |
| <ol> <li>Executable Name (include path):</li> </ol>                                                                                                                                                                |                                 |
| /geo.exe                                                                                                                                                                                                           |                                 |
| 3. Executable Size (bytes):                                                                                                                                                                                        |                                 |
| COMPILATION INFORMATION:                                                                                                                                                                                           |                                 |
| 4. Hardware System (i.e., property number of ID):                                                                                                                                                                  |                                 |
| Vendor Supplied                                                                                                                                                                                                    |                                 |
| 5. Operating System (include version number):                                                                                                                                                                      |                                 |
| Windows (Vendor supplied)                                                                                                                                                                                          |                                 |
| INSTALLATION AND CHECKOUT INFORMATION:                                                                                                                                                                             |                                 |
| <ol><li>Hardware System (i.e., property number or ID):</li></ol>                                                                                                                                                   |                                 |
| INTERA Lenovo Laptop #00771                                                                                                                                                                                        |                                 |
| <ol><li>Operating System (include version number):</li></ol>                                                                                                                                                       |                                 |
| Windows 8.1 Pro                                                                                                                                                                                                    |                                 |
| 8. Open Problem Report?  No O Yes PR/CR No.                                                                                                                                                                        |                                 |
| TEST CASE INFORMATION:                                                                                                                                                                                             |                                 |
| 9. Directory/Path:                                                                                                                                                                                                 |                                 |
| (leapfrog)                                                                                                                                                                                                         |                                 |
| 10. Procedure(s):                                                                                                                                                                                                  |                                 |
| per CHPRC 01754 Rev 1, Leapfrog-Hydro and Leapfrog-Geo Software Test                                                                                                                                               | : Plan                          |
| 11. Libraries:                                                                                                                                                                                                     |                                 |
| N/A                                                                                                                                                                                                                |                                 |
| 12. Input Files:                                                                                                                                                                                                   |                                 |
| per CHPRC-01754 Rev 1, Leapfrog-Hydro and Leapfrog-Geo Software Test                                                                                                                                               | Plan                            |
| 13. Output Files:                                                                                                                                                                                                  |                                 |
| per CHPRC-01754 Rev 1, Leapfrog-Hydro and Leapfrog-Geo Software Test                                                                                                                                               | Plan                            |
| 14. Test Cases:                                                                                                                                                                                                    |                                 |
| Vendor Installation Package, TC-1, TC-2, TC-3, TC-4, Tc-5, TC-6                                                                                                                                                    |                                 |
| 15. Test Case Results:                                                                                                                                                                                             |                                 |
| Pass                                                                                                                                                                                                               |                                 |
| 16. Test Performed By: Travis Hammond                                                                                                                                                                              |                                 |
| 17. Test Results:      Satisfactory, Accepted for Use O Unsatisfactory                                                                                                                                             |                                 |
| 18. Disposition (include HISI update):                                                                                                                                                                             |                                 |
| Accepted; installation added to Hanford Off-Site user list                                                                                                                                                         |                                 |
|                                                                                                                                                                                                                    |                                 |

Page 1 of 2

A-6005-149 (REV 0)

# ECF-300FF5-16-0087, REV. 0

| CHPRC SOFTWARE INST         | ALLATION AND CH | ECKOUT FO | ORM (contin | ued)              |
|-----------------------------|-----------------|-----------|-------------|-------------------|
| Software Name: Leapfrog Geo |                 |           | Software V  | ersion No.: 3.0.0 |
| repared By:                 |                 |           | -           |                   |
| 9. Jallung Mrg              | WE Nichols      |           |             | 4 JAN 2016        |
| Software Owner (Signature)  |                 | Print     |             | Date              |
| 0. Test Personnel:          |                 |           |             |                   |
| n'ch. Ihm                   | TB Hammond      |           |             | 12/16/10          |
| Sigh                        |                 | Print     |             | Date              |
|                             |                 |           |             |                   |
| Sign                        |                 | Print     |             | Date              |
| Sign                        |                 | Print     |             | Date              |
| orgin                       |                 | - Tink    |             | Date              |
| pproved by.                 | N/P ner CMD     |           |             |                   |
| Software SME (Signature)    | W/K per bhr     | Print     | -           | Date              |
| contrario ciniz (orginatio) |                 |           |             | 0010              |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             |                 |           |             |                   |
|                             | Deces A sta     |           |             | A 6005 140 /DE    |
|                             | Page 2 of 2     |           |             | A-6005-149 (RE)   |

D-2

ECF-300FF5-16-0087, REV. 0

# Appendix E

Comparison of Model and Post-Remedy Results for Validation of Geologic Framework Model and Vadose Zone Uranium Distribution

E-i

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

E-ii

# ECF-300FF5-16-0087, REV. 0

# Terms

| EAA | Enhanced Attenuation Area |
|-----|---------------------------|
| GFM | geologic framework model  |
| Hf  | Hanford formation         |
| S   | Sand                      |
| SG  | Sandy Gravel              |
| SSG | Silty Sandy Gravel        |

E-iii

# ECF-300FF5-16-0087, REV. 0

This page intentionally left blank.

E-iv

### ECF-300FF5-16-0087, REV. 0

# E1 Introduction

The existing geologic framework model (GFM) and vadose zone uranium models were completed using data from before the Stage A Enhanced Attenuation Area (EAA) polyphosphate remedy. In order to demonstrate that existing models perform in a manner that does not require alterations, comparisons were examined between the models and data from three boreholes drilled after the Stage A EAA polyphosphate remedy. The post-remedy boreholes were located next to pre-remedy borehole locations in an effort to obtain data at approximately the same locations as the pre-remedy samples were taken.

# E1.1 Comparison of Geologic Sections

A comparison was made between data derived from the geologic logging in three boreholes drilled after the Stage A EAA remedy (PNNL-25420, *Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582*) and the elevations of geologic unit surfaces interpolated by the current GFM, which utilizes pre-remedy information. Table E-1 lists the elevations of the differentiated Hanford formation (Hf) units at the locations of the post-remedy boreholes for the GFM (modeled) versus the unit elevations as interpreted from borehole geologic logs. The following significant differences were encountered (also outlined in Table E-1):

- Hf S (sand) is present at two borehole locations (C9580 and C9582) in the GFM but is absent in postremedy geologic logs.
- Hf SG (sandy gravel) is present in the GFM at the location of C9581 but is absent in the C9581 geologic log.
- A thin silt lens is present in the C9580 geologic log but is absent in the GFM at that location.
- The presence of significant differences between the elevation of the Hf SSG (silty sandy gravel) surface in the GFM at the locations of C9580 and C9582 and elevations of the Hf SSG in the geologic logs.

These differences do not warrant alteration of the GFM for the following reasons:

- Hf S unit present in the GFM at locations C9580 and C9582 is very thin (0.18 and 0.04 m, respectively), and its hydraulic properties are very similar to the underlying Hf SG. For example, Hf S has a hydraulic conductivity of 3.20 m/day, while Hf SG has a hydraulic conductivity of 2.85 m/day (PNNL-18564, Selection and Traceability of Parameters to Support Hanford-Specific RESRAD Analyses: Fiscal Year 2008 Status Report).
- Similarity in hydraulic properties of Hf S and Hf SG at C9581 do warrant updating the GFM.
- The silt lens, which is absent in the GFM at the location of C9580 but present in its geologic log, is too thin and its extents are too uncertain to have a significant impact in the site numerical model.
- Saturated hydraulic conductivities of Hf SG and underlying Hf SSG are the same (2.85 m/day [PNNL-18564]) in the site numerical model. Therefore, the differences in elevations of the Hf SSG surface in the GFM at the locations of C9580 and C9582 between elevations of that unit in the geologic logs do warrant alteration of the GFM.

The significance of the excised zone is that it might contain less uranium due its slightly lower silt content than adjacent sediments. However, hydraulic properties of the excision fill material (Hf sandy gravel) and Hf silty sandy gravel are similar.

E-1

| Borehole | Evaluation  | Hf S   | Hf SG  | Silt   | Hf SSG | Total Depth |
|----------|-------------|--------|--------|--------|--------|-------------|
| 00500    | Modeled     | 114.86 | 114.68 |        | 112.43 | 101.47      |
| 09380    | Interpreted |        | 114.86 | 109.98 | 109.68 | 104.19      |
| 00501    | Modeled     | 115.09 | 114.28 |        | 111.54 | 101.41      |
| 09581    | Interpreted | 115.09 |        |        | 112.35 | 104.42      |
| C0.592   | Modeled     | 114.59 | 114.55 |        | 104.64 | 101.46      |
| 09382    | Interpreted |        | 114.59 |        | 108.80 | 103.92      |

| Table E-1. Differences between Geologic Framework Model Surfaces ar | nd |
|---------------------------------------------------------------------|----|
| Post-Remedy Borehole Geologic Interpretation                        |    |

Note: Unit elevations are in meters above mean sea level, based on NAVD88 North American Vertical Datum of 1988.

# E1.2 Vadose Zone Uranium Distribution Comparison

Depth discrete sampling for uranium analysis at one post-remedy borehole was compared to the uranium distribution modeled from the Stage A EAA pre-remedy information at the same location (Figure E-1).Comparison of the modeled uranium distribution and observed post-remedy total uranium concentrations at the post-remedy borehole locations showed significant differences at C9580 and C9581 and more similar results at C9852 (Figures E-2 through E-4).

At borehole locations C9580 and C9581, modeled uranium concentrations are considerably higher than observed concentrations. The reason for these large differences stem back to the data set used in the pre-remedy vadose zone uranium contamination distribution interpolation. To capture the full extent of the contamination, the use of pre-excavation data from samples dating back to 1991 collection from 300 Area cleanup verification packages was required. Pre-excavation Sample B01036, with total uranium value of 3,248.48  $\mu$ g/g (converted from pCi/g), had a large impact on the model interpolation that resulted in the high concentration (>30  $\mu$ g/g) uranium distribution to extend beyond the locations of C9580 and C9581 (Figures E-5 and E-6), which resulted in modeled concentrations largely exceeding post-remedy concentration distribution because the extents of the current pre-remedy distribution are a conservative estimate that lie well within the uncertainties of the model considering the relatively small uranium data set used for interpolation. Pre-remedy depth discrete sampling results from wells 399-1-80 and 399-1-76 that were used in the model also had low uranium concentrations similar to C9580 and C9581, respectively. Thus, it is unlikely that incorporating the post-remedy uranium sample data would have a significant impact on the vadose uranium contamination distribution extents (Figures E-2 through E-4).

#### ECF-300FF5-16-0087, REV. 0

### E2 References

- DOE/RL-92-32, 1992, *Expedited Response Action Assessment for 316-5 Process Trenches*, Rev. 1, United States Department of Energy, Richland Operations Office, Richland, Washington.
- NAVD88, 1988, *North American Vertical Datum of 1988*, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: <u>http://www.ngs.noaa.gov/</u>.
- PNNL-18564, 2009, Selection and Traceability of Parameters to Support Hanford-Specific RESRAD Analyses: Fiscal Year 2008 Status Report, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical reports/PNNL-18564.pdf.
- PNNL-25420, 2016, Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582, Pacific Northwest National Laboratory, Richland, Washington.



Note: The post-remedy boreholes indicated include C9580, C9581, and C9582 (from PNNL-25420, Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582).

Figure E-1. Locations of Post Stage A EAA Remedy Boreholes

E-4

ECF-300FF5-16-0087, REV. 0



Figure E-2. Modeled and Observed Results Comparison at the Location of C9580



Figure E-3. Modeled and Observed Results Comparison at the Location of C9581

ECF-300FF5-16-0087, REV. 0



Figure E-4. Modeled and Observed Results Comparison at the Location of C9582



Note: Pre-remedy boreholes are blue points with blue labels, and post-remedy boreholes are black points with black labels.

Figure E-5. Plan View of Vadose Zone Uranium Distribution Showing the Pre-Remedy and Post-Remedy Comparison Borehole Locations



Note: Pre-remedy boreholes are blue points with blue labels, and post-remedy boreholes are black points with black labels.

Figure E-6. Oblique View of Vadose Zone Uranium Distribution Showing Pre-Remedy and Post-Remedy Comparison Borehole Locations

⊡ %

| Section 1: Cor                                                                                                                                                                                                                           | npleted by the Respons                                                                                                                                                                                                                         | ible Manager                                                                                                                                                         |                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: 300                                                                                                                                                                                                                             | - F.F 2                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                                                      |                                                                     | <b>RELEASE / ISSUE</b>                                                                                                                                                                                                                                                                                                                                                                                           |
| Date: 09/01/                                                                                                                                                                                                                             | 2016                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calculation Tit<br>Stage A Enha                                                                                                                                                                                                          | e & Description: Uranin<br>nced Attenuation Re                                                                                                                                                                                                 | um Transport Mode<br>emedy at 300-FF-5                                                                                                                               | ling in Support of<br>Operable Unit                                                                                                                                  | the                                                                 | DATE:<br>Nov 01, 2016                                                                                                                                                                                                                                                                                                                                                                                            |
| Section 2: Con                                                                                                                                                                                                                           | npleted by Preparer                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calculation No.                                                                                                                                                                                                                          | ECF-300FF5-16-00                                                                                                                                                                                                                               | 91                                                                                                                                                                   | Revisio                                                                                                                                                              | <b>n No.:</b> 0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                              | Povisi                                                                                                                                                               | on History                                                                                                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pavision No.                                                                                                                                                                                                                             | Do                                                                                                                                                                                                                                             |                                                                                                                                                                      | Dete                                                                                                                                                                 |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                        | Tnitial iggue                                                                                                                                                                                                                                  | scription                                                                                                                                                            | Date                                                                                                                                                                 |                                                                     | Affected Pages ADD ROW                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                                                                                                        | initial issue                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>Section 3</u> : Com                                                                                                                                                                                                                   | pleted by the Responsi                                                                                                                                                                                                                         | ble Manager                                                                                                                                                          |                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Section 3: Com<br>Document Cont<br>Is the documen<br>Does documen<br>Does documen<br>S. Mehta<br>A. Mayenna/<br>Preparer:<br>P. Allena/M<br>Checker:<br>R. Khaleel/<br>Senior Review<br>P. Baynes/P<br>Responsible M<br>Section 5: Appli | pleted by the Responsi<br>rol:<br>it intended to be contro<br>t contain scientific and<br>t contain controlled-use<br>ument Review & Approv<br>Modeler<br>Senior Scientist<br>rer:<br>roject Manager<br>lanager:<br>icable if calculation is a | ble Manager<br>Iled within the Docur<br>technical information<br>e information?<br>val<br>Name /Position<br>Name /Position<br>Name /Position<br>risk assessment or u | nent Management Con<br>n intended for public us<br><i>Jims</i><br><i>Signa</i><br><i>Signa</i><br><i>Signa</i><br><i>Patrick A</i> .<br><i>Signa</i><br><i>Signa</i> | trol System<br>e?<br>ture<br>ture<br>ture<br>Bayne<br>ture<br>bodel | $\begin{array}{c c} (DMCS)? & Yes & Nc \\ \hline & Yes & Nc \\ \hline & 1 \\ \hline & 2016 \\ \hline \\ & 21 \\ \hline \\ & 2016 \\ \hline \\ & 215 \\ \hline \\ & 2016 \\ \hline \\ & Date \\ \hline \\ & 9 \\ \hline \\ & 1 \\ \hline \\ & 2016 \\ \hline \\ & Date \\ \hline \\ & 9 \\ \hline \\ & 1 \\ \hline \\ & 2016 \\ \hline \\ & Date \\ \hline \end{array}$ |

ECF-300FF5-16-0091 Revision 0

# Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



Approved for Public Release; Further Dissemination Unlimited

ECF-300FF5-16-0091 Revision 0

# Uranium Transport Modeling in Support of the Stage A Enhanced Attenuation Remedy at 300-FF-5 Operable Unit

Document Type: ENV F

Program/Project: EP&SP

S. Mehta CH2M HILL Plateau Remediation Company A. Mayenna INTERA, Inc.

Date Published October 2016

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



**APPROVED** By Julia Raymer at 9:24 am, Nov 01, 2016

Release Approval

Date

Approved for Public Release; Further Dissemination Unlimited

# ECF-300FF5-16-0091 Revision 0

#### TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

# ECF-300FF5-16-0091, REV. 0

# Contents

| <ul> <li>2 Background</li></ul>                                                                                                                                                                                      | 2-1<br>3-1<br>4-1<br>5-1<br>5-1<br>5-2<br>6-1<br>6-1<br>6-7<br>6-13<br>6-26                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <ul> <li>3 Methodology</li></ul>                                                                                                                                                                                     | <b>3-1</b><br><b>4-1</b><br><b>5-1</b><br><b>5-2</b><br><b>6-1</b><br><b>6-7</b><br>6-13<br>6-26 |
| <ul> <li>4 Assumptions and Inputs</li> <li>5 Software Applications</li> <li>5.1 Software Details</li> <li>5.2 Software Installation and Checkout</li> <li>6 Observations and Conceptual Model Development</li> </ul> | <b>4-1</b><br><b>5-1</b><br><b>5-2</b><br><b>6-1</b><br><b>6-7</b><br>6-13<br>6-26               |
| <ul> <li>5 Software Applications</li></ul>                                                                                                                                                                           | <b>5-1</b><br>5-2<br><b>6-1</b><br>6-7<br>6-13<br>6-26                                           |
| <ul> <li>5.1 Software Details</li></ul>                                                                                                                                                                              | 5-1<br>5-2<br><b>6-1</b><br>6-1<br>6-7<br>6-13<br>6-26                                           |
| <ul> <li>5.1 Software Details</li> <li>5.2 Software Installation and Checkout.</li> <li>6 Observations and Conceptual Model Development</li></ul>                                                                    | 5-1<br>5-2<br>6-1<br>6-1<br>6-7<br>6-13<br>6-26                                                  |
| 6 Observations and Conceptual Model Development                                                                                                                                                                      | 6-1<br>6-1<br>6-7<br>6-13<br>6-26                                                                |
|                                                                                                                                                                                                                      | 6-1<br>6-7<br>6-13<br>6-26                                                                       |
| 6.1 Stage A Dhosphate Injection and Infiltration                                                                                                                                                                     | 6-7<br>6-13<br>6-26                                                                              |
| 6.2 Monitoring Results from Stage A Treatment                                                                                                                                                                        | 6-13<br>6-26                                                                                     |
| 6.2 Comparison of Post Treatment and Pretreatment Samples                                                                                                                                                            | 6-26                                                                                             |
| 6.3 Comparison of Post-Treatment and Pretreatment Samples                                                                                                                                                            | 0-20                                                                                             |
| 6.2.2. Eleve Through Column Loophing Tests                                                                                                                                                                           | 6 27                                                                                             |
| 6.5.2 Flow-Through Column Leaching Tests                                                                                                                                                                             | 0-3/                                                                                             |
| 6.3.3 Labite Uranium Batch Test                                                                                                                                                                                      | 6-41                                                                                             |
| 6.3.4 Identification of Mineral Phases Using Surface Analysis                                                                                                                                                        | 6-41                                                                                             |
| 6.3.5 Observations of High Moisture Content                                                                                                                                                                          | 6-43                                                                                             |
| 6.4 Determination of Desorption Parameters Using Post-Treatment Flow-Through<br>Column Leach Tests                                                                                                                   | 6-44                                                                                             |
| 7 Three-Dimensional Flow and Transport Modeling Using STOMP                                                                                                                                                          | 7-1                                                                                              |
| 7.1 Background Information                                                                                                                                                                                           | 7-1                                                                                              |
| 7.2 Development of Hydrogeologic Model                                                                                                                                                                               | 7-2                                                                                              |
| 7.3 Development of 3D STOMP Model Domain                                                                                                                                                                             | 7-5                                                                                              |
| 7.4 Development of Flow Model                                                                                                                                                                                        | 7-5                                                                                              |
| 7.4.1 Recharge                                                                                                                                                                                                       | 7-5                                                                                              |
| 7.4.2 Automated Water Level Network Data Usage                                                                                                                                                                       | 7-9                                                                                              |
| 7.5 Model Calibration                                                                                                                                                                                                | 7-10                                                                                             |
| 7.6 Determination of Fate and Transport Parameters                                                                                                                                                                   | 7-12                                                                                             |
| 7.6.1 Saturated Zone Hydraulic Conductivity                                                                                                                                                                          | 7-12                                                                                             |
| 7.6.2 Macrodispersivity                                                                                                                                                                                              | 7-15                                                                                             |
| 7.6.3 Porosity                                                                                                                                                                                                       | 7-15                                                                                             |
| 7.6.4 Particle Density and Bulk Density                                                                                                                                                                              | 7-17                                                                                             |
| 7.6.5 Saturation-Pressure and Relative Permeability Relationships                                                                                                                                                    | 7-17                                                                                             |
| 7.6.6 Molecular Diffusion Coefficient                                                                                                                                                                                | 7-17                                                                                             |
| 7.6.7 Specific Storativity                                                                                                                                                                                           | 7-18                                                                                             |
| 7.6.8 Uranium Sorption                                                                                                                                                                                               | - 10                                                                                             |

# ECF-300FF5-16-0091, REV. 0

|   | 7.7  | Devel  | opment of Initial Conditions                                        | 7-18 |
|---|------|--------|---------------------------------------------------------------------|------|
|   | 7.8  | Mode   | ling Uranium and Phosphate Transport                                | 7-24 |
|   |      | 7.8.1  | Modeling Uranium Transport Prior to Treatment (No Action Case)      | 7-24 |
|   |      | 7.8.2  | Phosphate Transport Modeling During and Post-Treatment Time Periods | 7-29 |
|   |      | 7.8.3  | Uranium Transport Modeling During and Post-Treatment Period         | 7-36 |
| 8 | Conc | lusion | s                                                                   | 8-1  |
| 9 | Refe | rences |                                                                     | 9-1  |

# Appendices

| Α | Presentation of Sampling Data for Selected Wells                                   | A-i          |
|---|------------------------------------------------------------------------------------|--------------|
| B | Geochemical Evaluations and Reactive Transport Modeling                            | . <b>B-i</b> |
| С | Mathematical Model for Estimating Kinetic Sorption-Desorption Parameters           | .C-i         |
| D | MATLAB Files for Sample B347P4 Bulk Soil Kinetic Sorption Model Calculation        | D-i          |
| Е | Assessment of Effect of Polyphosphate Injection/Infiltration on Aquifer Properties | . E-i        |
| F | Software Installation and Checkout Forms                                           | . F-i        |

# Figures

| Figure 6-1.  | Location of Injection Wells Along with Monitoring Wells and Soil Sampling<br>Locations for Stage A Area                                        | 6-2  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 6-2.  | Infiltration System in the Stage A Treatment Area                                                                                              | 6-4  |
| Figure 6-3.  | Daily Sampled Concentrations at the Mixing Skid During (a) Injection Period<br>and (b) Infiltration Period                                     | 6-5  |
| Figure 6-4.  | Measured pH of the Solution Following Mixing at the Skids Prior to (a) Injection<br>and (b) Infiltration                                       | 6-6  |
| Figure 6-5.  | Uranium and Phosphate Trends from Daily Sampling of Wells                                                                                      | 6-8  |
| Figure 6-6.  | Electrical Conductivity in Selected Monitoring Wells Fitted with Data Loggers                                                                  | 6-10 |
| Figure 6-7.  | Correlation between Electrical Conductivity and Phosphate Concentration in<br>Monitoring Wells                                                 | 6-11 |
| Figure 6-8.  | Correlation between Electrical Conductivity and Phosphate Concentration at the<br>Mixing Skids Prior to Injection and Infiltration             | 6-11 |
| Figure 6-9.  | Location of ERT Sensors (Electrodes) Along Two Cross-Sections (A-A' and B-B')<br>Relative to Stage A Treatment Area                            | 6-12 |
| Figure 6-10. | Changes in Bulk Conductivity Observed Using ERT Imaging Along Two Lines for Selected Time Periods                                              | 6-14 |
| Figure 6-11. | Depth Averaged Phosphate Migration Rate Estimated from ERT Imaging Based on<br>Breakthrough Magnitude Change in Bulk Conductivity of 0.002 S/m | 6-14 |
| Figure 6-12. | Results from Monitoring Wells Located Away from the Stage A Treatment Area                                                                     | 6-15 |
| Figure 6-13. | Phosphate and Uranium Concentrations Observed in Wells                                                                                         | 6-17 |
| Figure 6-14. | Borehole Locations to Evaluate Analyte Concentrations in Sediment                                                                              | 6-19 |

# ECF-300FF5-16-0091, REV. 0

| Figure 6-15.  | Total Uranium Concentration Profiles based on (a) Pre-Treatment Borehole<br>Samples and (b) Collocated Post-Treatment Borehole Samples                                                                                                      | 6-22 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 6-16.  | Concentration of Phosphate (Total P as Phosphate) Based on 0.5 M Nitric Acid Extraction on (a) Pretreatment Samples and (b) Post-Treatment Samples                                                                                          | 6-25 |
| Figure 6-17.  | Phosphate Concentrations (total P as Phosphate) in Post-Treatment Samples<br>Analyzed Using Water Extraction (Ion Chromatography [IC]) and Total Digestion<br>(ICP-Atomic Emission Spectroscopy [ICP-AES; same as ICP-OES])                 | 6-26 |
| Figure 6-18.  | Results from Sequential Extraction of Uranium Performed on Pretreatment<br>Boreholes (Left) and Post-Treatment Boreholes (Right)                                                                                                            | 6-28 |
| Figure 6-19.  | Results from Sequential Extraction of Calcium Performed on Pretreatment<br>Boreholes (Left) and Post-Treatment Boreholes (Right)                                                                                                            | 6-30 |
| Figure 6-20.  | Results from Sequential Extraction of Iron Performed on Pretreatment Boreholes (Left) and Post-Treatment Boreholes (Right)                                                                                                                  | 6-32 |
| Figure 6-21.  | Results from Sequential Extraction of Aluminum Performed on Pretreatment<br>Boreholes (Left) and Post-Treatment Boreholes (Right)                                                                                                           | 6-33 |
| Figure 6-22.  | Results from Sequential Extraction of Manganese Performed on Pretreatment<br>Boreholes (Left) and Post-Treatment Boreholes (Right)                                                                                                          | 6-34 |
| Figure 6-23.  | Eh-pH Diagram Presenting the Orthophosphate Aqueous Complex Stability Field<br>for (a) Infiltrated Water Composition and (b) Hypothetical Water Where<br>Orthophosphate, Bicarbonate, and Calcium Concentrations Are Approximately<br>Equal | 6-35 |
| Figure 6-24.  | Conceptual Model of Probable Reactions Occurring in the Subsurface from<br>Infiltration of Phosphate Bearing Solutions                                                                                                                      | 6-36 |
| Figure 6-25.  | Stability Field of Uranium Aqueous Complexes Under Varying<br>Orthophosphate to Bicarbonate Ratio and pH                                                                                                                                    | 6-37 |
| Figure 6-26.  | Results of Effluent Uranium Concentrations from Column Leach Tests Performed<br>on Field-Textured Sediments from Post-Treatment Samples                                                                                                     | 6-39 |
| Figure 6-27.  | Results of Effluent Uranium Concentrations from Column Leach Tests Performed<br>on <2 mm Size Sediments from Post-Treatment Samples                                                                                                         | 6-39 |
| Figure 6-28.  | Comparison of Effluent Uranium Concentrations Column Leach Tests Performed<br>on Field-Textured Samples from Post-Treatment and Pretreatment Boreholes                                                                                      | 6-40 |
| Figure 6-29.  | Composite Uranium Concentrations Recovered During Labile Leach Testing                                                                                                                                                                      | 6-42 |
| Figure 6-30.  | Spectral Analysis and Elemental Mapping Results of B347R7 Sample<br>Collected from Borehole C9582 at Depth of 9 to 9.1 m (29.5 to 30 ft)                                                                                                    | 6-43 |
| Figure 7-1. C | Columbia River Stage Fluctuations and Effect on Water Levels and Dissolved<br>Uranium Concentration at Well 399-1-17A                                                                                                                       | 7-2  |
| Figure 7-2.   | View of the 300 Area Geologic Framework Model                                                                                                                                                                                               |      |
| Figure 7-3.   | Generalized Hydrostratigraphy at the 300 Area                                                                                                                                                                                               |      |
| Figure 7-4.   | 3D STOMP Model Domain to Evaluate the Stage A Remedy                                                                                                                                                                                        | 7-6  |
| Figure 7-5.   | Distribution of Hydrogeologic Units along a Cross-Section                                                                                                                                                                                   | 7-7  |
| Figure 7-6.   | Model Domain Showing the Grid Discretization along with Boundary<br>Designations                                                                                                                                                            | 7-7  |
| Figure 7-7.   | Location of the River Gage (SWS-1) in the 300 Area                                                                                                                                                                                          | 7-8  |

### ECF-300FF5-16-0091, REV. 0

| Figure 7-8.  | Comparison of Hourly and Daily Averaged Columbia River Stage Data at the 300 Area                                                                                                                                                    | 7-9  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 7-9.  | Location of Automated Water Level Network in the Vicinity of Model Domain                                                                                                                                                            | 7-9  |
| Figure 7-10. | Daily and Hourly Averaged Water Levels at (a) 399-1-12 and (b) 399-3-3                                                                                                                                                               | 7-11 |
| Figure 7-11. | Comparison of Daily Averaged Hydraulic Heads for SWS-1 River Gage (East Boundary) and 399-1-12 (West Boundary)                                                                                                                       | 7-12 |
| Figure 7-12. | Zones of Variable Hydraulic Conductivity for the Hanford Unit in the Unconfined Aquifer                                                                                                                                              | 7-14 |
| Figure 7-13. | Darcy Flux Distribution Along a 2D Cross-Section for Selected Times within a Year                                                                                                                                                    | 7-16 |
| Figure 7-14. | Distribution of Initial Soil Labile Uranium Concentration Along<br>an East-West-Trending Cross-Section Through the Stage A EAA                                                                                                       | 7-20 |
| Figure 7-15. | Comparison of Model Simulated Hydraulic Heads and Observed Heads at (a) 399-1-12 and (b) 399-2-2                                                                                                                                     | 7-22 |
| Figure 7-16. | Location Map of Monitoring Wells within the Model Domain                                                                                                                                                                             | 7-23 |
| Figure 7-17. | Measured and Simulated Groundwater Uranium Concentrations During the Calibration Period at Wells (a) 399-1-12, (b) 399-1-23, (c) 399-1-17A, (d) 399-1-2, (e) 399-1-7, and (f) 399-2-2.                                               | 7-25 |
| Figure 7-18. | Simulated Uranium Plumes in Years 2015, 2022, and 2040 under No Action Scenario                                                                                                                                                      | 7-27 |
| Figure 7-19. | Simulated Phosphate Concentration in Aquifers (a) 399-1-23, (b) 399-1-17A, and (c) 399-1-7                                                                                                                                           | 7-30 |
| Figure 7-20. | Simulated Phosphate Concentration Distribution in the Aquifer for (a) November 20, 2015; (b) November 30, 2015; (c) December 14, 2015; (d) December 20, 2015; (e) December 30, 2015; (f) January 15, 2016; and (g) December 31, 2016 | 7-31 |
| Figure 7-21. | Post-Injection Phosphate Concentrations (mg/L) Contours based on Observations on (a) November 20, 2015; (b) December 3, 2015; (c) December 10, 2015                                                                                  | 7-33 |
| Figure 7-22. | Phosphate Concentration (mg/L) Comparison between Model Simulated and<br>Interpolated Data Based on Observations                                                                                                                     | 7-35 |
| Figure 7-23. | Simulated Uranium Concentrations for (a) 399-1-23 and (b) 399-1-17A Compared to Observed Data Before and Following Treatment                                                                                                         | 7-37 |
| Figure 7-24. | Post-Treatment Simulated Uranium Concentrations at End of December 2016<br>(a) 10 Times Reduction in Desorption Rate, (b) 5 Times Reduction in Desorption<br>Rates, and (c) No Action Case                                           | 7-39 |
| Figure 7-25. | Long-Term Simulated Uranium Concentrations for (a) 399-1-23 and (b) 399-1-17A Comparing the Predicted Post-Treatment Results to the No Action Case                                                                                   | 7-41 |

# ECF-300FF5-16-0091, REV. 0

# Tables

| Table 6-1. | Summary of Polyphosphate Solution Injection and Infiltration Schedule                                                                              | 6-1  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 6-2. | Pretreatment Sediment Analysis for Total Uranium by the GEL Laboratory and PNNL for Samples Located Greater Than 6 m (20 ft) in Depth Below Ground |      |
|            | Surface                                                                                                                                            | 6-20 |
| Table 6-3. | Post-Treatment Sediment Analysis for Total Uranium by the ALS Lab and PNNL for Samples Located Greater Than 20 ft in Depth Below Ground Surface    | 6-23 |
| Table 6-4. | Flow-Through Column Test Parameters for Post-Treatment Samples                                                                                     | 6-38 |
| Table 6-5. | Selected Samples and Flow-Through Column Test Parameters                                                                                           | 6-44 |
| Table 7-1. | Model Parameters Used in the Simulations                                                                                                           | 7-21 |

vii

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

viii

# ECF-300FF5-16-0091, REV. 0

# Terms

| 3D      | three-dimensional                                        |
|---------|----------------------------------------------------------|
| AWLN    | automated water level network                            |
| bgs     | below ground surface                                     |
| CHPRC   | CH2M HILL Plateau Remediation Company                    |
| COC     | contaminant of concern                                   |
| DOE     | U.S. Department of Energy                                |
| EA      | enhanced attenuation                                     |
| EAA     | Enhanced Attenuation Area                                |
| EC      | electrical conductivity                                  |
| ECF     | environmental calculation file                           |
| EPA     | U.S. Environmental Protection Agency                     |
| ERT     | electrical resistivity tomography                        |
| GFM     | geologic framework model                                 |
| GWB     | Geochemist's Workbench                                   |
| HEIS    | Hanford Environmental Information System                 |
| Hf      | Hanford formation                                        |
| IC      | ion chromatography                                       |
| ICP-AES | inductively coupled plasma-atomic emission spectroscopy  |
| ICP-OES | inductively coupled plasma-optical emission spectroscopy |
| ID      | identification                                           |
| OU      | operable unit                                            |
| PNNL    | Pacific Northwest National Laboratory                    |
| PRZ     | periodically rewetted zone                               |
| RLM     | Ringold Lower Mud                                        |
| ROD     | record of decision                                       |
| SAP     | sampling and analysis plan                               |
| SEM/EDX | scanning electron microscope/energy dispersive x-ray     |
| STOMP   | Subsurface Transport Over Multiple Phases                |

ix
# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

#### ECF-300FF5-16-0091, REV. 0

#### 1 Purpose

Completion of 300 Area cleanup on the Hanford Site is being accomplished under the 2013 U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) record of decision (ROD) and amendment (EPA and DOE, 2013, *Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1* [hereafter referred to as the 300 Area ROD/ROD Amendment]), which identifies uranium as a contaminant of concern (COC). Part of the selected remedy for uranium contamination in groundwater is enhanced attenuation (EA) of uranium over a 12,140 m<sup>2</sup> (3 ac) area using phosphate solutions to reduce the uranium concentrations in the aquifer. The desired goal of injection and infiltration is to deliver phosphate in high concentrations to the vadose zone (and top of the aquifer), where uranium and sequester it. The EA remedy is being implemented in two sequential stages: Stage A and Stage B; Stage A covers an area of 3,035 m<sup>2</sup> (0.75 ac), and Stage B covers the remaining portion (9,105 m<sup>2</sup> [2.25 ac]).

The objectives of this report are two-fold: first, present monitoring data and observations on uranium and phosphate concentrations in the PRZ and aquifer following injections and infiltration; second, using numerical modeling, evaluate the fate and transport of uranium following the remedial action. During Stage A treatment, which occurred from November 6 through 18, 2015, high concentration polyphosphate amended solutions were injected into the aquifer and into the periodically rewetted zone (PRZ) along with surficial infiltration (below the root zone) into the vadose zone.

This report synthesizes relevant information for conducting fate and transport modeling to evaluate uranium concentrations in the aquifer in the vicinity of Stage A Enhanced Attenuation Area (EAA). Information gathered from geochemical evaluations of pretreatment and post-treatment soil samples, sequential extraction tests, batch desorption and flow-through column tests, mineral phase analysis, and observations made in the field regarding uranium and phosphate concentrations in groundwater are all used in developing parameters and conceptual models for conducting fate and transport calculations. For forward (predictive) modeling, an understanding of the processes governing uranium sequestration is needed so that proof-of-principle can be sufficiently justified. For this purpose, reactive transport modeling, predictive fate and transport modeling was conducted to estimate uranium concentrations in the future.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

#### ECF-300FF5-16-0091, REV. 0

# 2 Background

The sampling and analysis plan (SAP) (DOE/RL-2014-42, *300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan*) presents the plans for the 300-FF-5 Groundwater Operable Unit (OU) remedy implementations, performance monitoring, and groundwater monitoring. The SAP is prepared in accordance with the groundwater remedial actions presented in the 300 Area ROD/ROD Amendment (EPA and DOE, 2013). The SAP supplements information provided in DOE/RL-2014-13, *Integrated Remedial Design Report/Remedial Action Work Plan for the 300 Area (300-FF-1, 300-FF-2 & 300-FF-5 Operable Units)*, and DOE/RL-2014-13-ADD2, *Remedial Design Report/Remedial Action Work Plan for the 300 Area Groundwater*. The 300-FF-5 OU comprises groundwater contaminated by releases from facilities and waste sites associated with past operation of uranium fuel production, research, and development in the 300 Area Industrial Complex. The 300 Area ROD/ROD Amendment identifies uranium, gross alpha, nitrate, tritium, trichloroethene, and *cis*-1,2-dichloroethene as groundwater COCs.

A key part of the groundwater remedy selected in the 300 Area ROD/ROD Amendment (EPA and DOE, 2013) was EA of uranium using sequestration by phosphate application in the vadose zone and PRZ. Uranium sequestration will be implemented using a staged approach. Stage A will consist of performing infiltration/injection in one section of the EAA, covering approximately 0.3 ha (0.75 ac). The treatment effectiveness of the Stage A phosphate application will be evaluated by comparing the overall decrease in uranium leachability in vadose zone and PRZ soil samples, taking into consideration a fate and transport model assumption that 50 percent of mobile uranium will be reduced from phosphate treatment. Treatment effectiveness will also be evaluated based on other factors from Stage A implementation, such as phosphate distribution efficiency, the degree of uranium mobilization to groundwater, and changes to hydraulic conductivity of the aquifer due to precipitation of phosphate minerals. The EA remedial action for the 300 Area is considered complete upon implementation of Stage A and Stage B infiltration and injection in the EAA unless otherwise agreed to by DOE and EPA following the Stage A delivery performance report. Stage B will be performed if a high likelihood of treatment effectiveness can be expected, based upon all the considerations from the Stage A evaluation. If Stage B is performed, Stage A results will be used to refine the Stage B approach for the remaining untreated portions of the EAA.

This report is structured in the following manner. Chapter 3 discusses the general methodology followed for evaluation of data towards building the fate and transport model for uranium, while Chapter 4 summarizes the approach regarding assumptions and inputs. Chapter 5 describes the software applications used, and Chapter 6 provides a discussion of key observations from monitoring along with development of a conceptual model. Chapter 7 discusses the development and results from the fate and transport model. Appendix A provides additional details based on monitoring of wells during treatment operations and post-treatment time period. Appendix B provides the details on reactive transport modeling that help in the development of parameter values for fate and transport modeling. Appendix C provide details on deriving kinetic sorption-desorption parameters based on leaching test results. Appendix D provides the results that help in the evaluation of any changes in hydraulic properties in the aquifer following treatment.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

#### ECF-300FF5-16-0091, REV. 0

# 3 Methodology

The following steps were undertaken to simulate post-treatment uranium concentrations in groundwater:

- 1. Obtain detailed information on the operational parameters and outcomes of the injections and infiltration conducted in Stage A.
  - a. Evaluate concentrations of phosphate, sodium, and potassium in the amended solutions prior to injection and infiltration.
  - b. Evaluate temporal changes in injection and infiltration rates, along with field sampled pH during the operations.
- 2. Evaluate data from 26 groundwater monitoring wells used in Stage A.
  - a. Evaluate uranium and phosphate concentrations before, during, and after treatment in the seven wells monitored daily during treatment.
  - b. Evaluate information collected from continuous electrical conductivity (EC) values from the six wells with data loggers in relation to the timing of injection/infiltration.
  - c. Correlate specific conductance values and phosphate concentrations in the dilute solutions at the mixing skids.
  - d. Evaluate the results available from electrical resistivity tomography (ERT) surveying regarding distribution of infiltrated phosphate bearing solutions. Review results related to breakthrough times and average velocity of the wetted front.
- 3. Evaluate data from sediment samples obtained from three pretreatment and three post-treatment boreholes.
  - a. Compare pretreatment and post-treatment concentrations of uranium in the sediment.
  - b. Evaluate the concentration of precipitated phosphate and compare data from water extracts, acid extracts, and total digestion of pretreatment and post-treatment samples and their concentrations relative to depth within the borehole and to the PRZ.
  - c. Compare the data (phosphorous [P], calcium [Ca], aluminum [Al], iron [Fe], manganese [Mn], and uranium [U]) from sequential extraction tests conducted on pretreatment and post-treatment sediment samples, and interpret the data in terms of geochemical processes to explain the results.
  - d. Compare the leaching behavior of the sediments subjected to flow-through column leach tests. Compare pretreatment and post-treatment leaching behavior of sediments in relation to uranium concentrations and proximity to the PRZ.
  - e. Review the results from batch tests and surface analyses on post-treatment samples.
- 4. Develop conceptual model of possible geochemical reactions that occurred within the host rock as a result of treatment that led to sequestration of uranium. Perform detailed reactive transport modeling.
- 5. Simulate the fate and transport of uranium in the vadose zone and unconfined groundwater aquifer to evaluate the effectiveness of the Stage A remedy by predicting groundwater uranium concentrations in the near future.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

ECF-300FF5-16-0091, REV. 0

# 4 Assumptions and Inputs

Assumptions and inputs related to fate and transport modeling are discussed in Chapters 6 and 7, where details are presented. Appendix A provides additional information, based on monitoring data, to support fate and transport modeling.

Sections 6.3 and 6.4 provide assumptions and inputs information related to reactive transport modeling discussed in Appendix B; Chapter 7 provides information regarding development of three-dimensional (3D) flow and transport modeling for evaluating the uranium concentrations. Appendix C provides information on determination of desorption parameters based on column leach tests.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

ECF-300FF5-16-0091, REV. 0

# 5 Software Applications

The following software products were used in the development of this report:

- Subsurface Transport Over Multiple Phases (STOMP©<sup>1</sup>) was the primary software used for this environmental calculation file (ECF). Tecplot<sup>®</sup>, a commercial graphics software package, was used for graphical display of results.
- The Geochemist's Workbench<sup>®</sup> (GWB) software was used for performing reactive transport modeling.
- MATLAB<sup>®</sup> software was used for estimating kinetic sorption-desorption parameters, based on leaching test results.

# 5.1 Software Details

STOMP (PNNL-12030, STOMP Subsurface Transport Over Multiple Phases Version 2.0 Theory Guide; PNNL-15782, STOMP Subsurface Transport Over Multiple Phases Version 4.0 User's Guide; PNNL-11216, STOMP Subsurface Transport Over Multiple Phases Application Guide) was the software used for this calculation; as approved software, the information required is provided in this section.

The fate and transport calculations are performed using CH2M HILL Plateau Remediation Company (CHPRC) Build 4 of the STOMP software, registered in the Hanford Information System Inventory under identification (ID) number 2471. STOMP use by CHPRC is managed under the following software lifecycle documents: CHPRC-00222, STOMP Functional Requirements Document; CHPRC-00176, STOMP Software Management Plan; CHPRC-00211, STOMP Software Test Plan; CHPRC-00515, STOMP Acceptance Test Report; and CHPRC-00269, STOMP Requirements Traceability Matrix. STOMP was executed on the Green Linux cluster (owned and operated by INTERA, Inc. at its Richland, Washington office).

GWB (Version 11.0.3) is used for conducting geochemical evaluations and reactive transport modeling (presented in Appendix B). The GWB software is registered in the Hanford Information System Inventory under identification (ID) number 3845. Use of GWB by CHPRC is managed under CHPRC-01874, *The Geochemist's Workbench Integrated Software Management Plan Version 11.0.3*. The software was executed on the Blue Windows 2008 server (owned and operated by INTERA, Inc. at its Richland, Washington office).

Kinetic and equilibrium sorption models were solved using MATLAB R2011b 7.13.0.564 software. In this ECF, MATLAB was used analogously with a flat-file spreadsheet in which the calculation is wholly incorporated into this ECF and where the calculations, mathematical formulas, and input data were verified by the technical review of this ECF. Appendix D provides details regarding the calculations for one column using the single-site kinetic sorption model. The entire input file used in MATLAB is

<sup>&</sup>lt;sup>1</sup> Battelle Memorial Institute (Battelle) retains copyright on all versions, revisions, and operational modes of the Subsurface Transport Over Multiple Phases (STOMP) software simulator, as permitted by the U.S. Department of Energy. STOMP is used here under a limited government use license.

<sup>&</sup>lt;sup>®</sup> Tecplot is a registered trademark of TecPlot, Inc., Bellevue, Washington.

<sup>&</sup>lt;sup>®</sup> Geochemist's Workbench is a registered trademark of Aqueous Solutions LLC, Champaign, Illinois.

<sup>&</sup>lt;sup>®</sup> MATLAB is a registered trademark of The MathWorks, Inc., Natick, Massachusetts.

#### ECF-300FF5-16-0091, REV. 0

documented in Appendix D and verified by comparison to the mathematical formulation presented in Appendix C.

# 5.2 Software Installation and Checkout

A copy of the Software Installation and Checkout Form for STOMP and GWB installation used in this ECF is provided in Appendix F.

ECF-300FF5-16-0091, REV. 0

# 6 Observations and Conceptual Model Development

This chapter discusses observations made during Stage A treatment operations and the post-treatment time period that are relevant to fate and transport modeling. A conceptual model is also developed, based on evaluation of field-scale and lab-scale data.

# 6.1 Stage A Phosphate Injection and Infiltration

The operational period for Stage A infiltration and injections toward the goal of uranium sequestration was November 6 through 18, 2015. Treatment of the vadose zone, PRZ, and aquifer was conducted using a mixed effort of surface infiltration, direct injection to the PRZ, and chemical injection to the top of the aquifer. The polyphosphate solution injection and infiltration schedule for Stage A is summarized in Table 6-1. Beginning on November 6, 2015, application of the phosphate solutions mixed with river water was injected into the aquifer via groundwater wells configured with inflatable packers set at the interface point between the PRZ and the aquifer. The location of the injection wells within the Stage A area along with monitoring wells is shown in Figure 6-1. The rate of injection was approximately 189 L/min (50 gal/min) per well with simultaneous injections conducted in six wells, as shown in Table 6-1. The duration of various injections ranged from about 8 hours.

| Operation Day<br>(Date) | Aquifer Injection<br>Wells*           | PRZ Injection<br>Wells*               | Average Infiltration<br>Rate Achieved<br>(L/min [gal/min]) | Total Injection<br>Rate Achieved<br>(L/min [gal/min]) |
|-------------------------|---------------------------------------|---------------------------------------|------------------------------------------------------------|-------------------------------------------------------|
| 1 (Nov. 6)              | 1-89, 1-90, 1-91,<br>1-92, 1-93, 1-94 |                                       |                                                            | 1,136 (300)                                           |
| 2 (Nov. 7)              |                                       |                                       | 212 (56)                                                   |                                                       |
| 3 (Nov. 8)              |                                       |                                       | 198 (52)                                                   |                                                       |
| 4 (Nov. 9)              | 1-92, 1-93, 1-94,<br>1-95, 1-96, 1-97 |                                       | 197 (52)                                                   | 1,136 (300)                                           |
| 5 (Nov. 10)             |                                       |                                       | 202(53)                                                    |                                                       |
| 6 (Nov. 11)             |                                       |                                       | 254 (67)                                                   |                                                       |
| 7 (Nov. 12)             |                                       |                                       | 316 (84)                                                   |                                                       |
| 8 (Nov. 13)             |                                       |                                       | 311 (82)                                                   |                                                       |
| 9 (Nov. 14)             |                                       |                                       | 303 (80)                                                   |                                                       |
| 10 (Nov. 15)            |                                       |                                       | 298 (79)                                                   |                                                       |
| 11 (Nov. 16)            | 1-95, 1-96, 1-97,<br>1-89, 1-90, 1-91 |                                       |                                                            | 1,136 (300)                                           |
|                         |                                       | 1-89, 1-90, 1-91,<br>1-92, 1-93, 1-94 |                                                            | 1,136 (300)                                           |
| 12 (Nov. 17)            |                                       | 1-92, 1-93, 1-94,<br>1-95, 1-96, 1-97 |                                                            | 1,136 (300)                                           |
| 13 (Nov. 18)            |                                       | 1-95, 1-96, 1-97,<br>1-89, 1-90, 1-91 |                                                            | 1,136 (300)                                           |

Table 6-1. Summary of Polyphosphate Solution Injection and Infiltration Schedule

\* All well names begin with 399-.

ECF-300FF5-16-0091, REV. 0



Figure 6-1. Location of Injection Wells Along with Monitoring Wells and Soil Sampling Locations for Stage A Area

#### ECF-300FF5-16-0091, REV. 0

Infiltration was initiated the following day (November 7, 2015) and concluded on November 15, 2015. A single mixing skid was used to mix concentrated phosphate solutions with Columbia River water and deliver it to a main distribution header and then through 44 buried drip lines (Figure 6-2). Once infiltration commenced, the system was operated continually (24 hr/day) for 9 days. During the first 4 days of infiltration, the mixed chemical solution was delivered at an approximate flow rate of about 212 L/min (56 gal/min). After the 15 psi pressure regulators connecting the header to the drip lines were replaced with 20 psi pressure regulators, flows increased to approximately 303 L/min (80 gal/min) for the remaining 5 days of infiltration. Some temporal variability in flow rates were observed during infiltration due to adjustments made to the mixing pumps during operations.

During the third day of infiltration, a second injection to the aquifer was conducted (Table 6-1). A final injection into the aquifer occurred on November 16, 2015 after infiltration had ended. The first of three injections to the PRZ also occurred on November 16, 2015 where phosphate solutions mixed with river water were injected into the same groundwater wells configured with packers, but only the solution was delivered to the top of the packer, which forced fluids out through a well interval screened in the PRZ.

Each injection well had two screened intervals: one in the aquifer, and the other in the PRZ. The screened intervals were about 3.1 m (10 ft) each, with approximate depths of 10.9 to 14 m (35.8 to 45.9 ft) below ground surface (bgs) for the aquifer and 6.2 to 9.3 m (20.3 to 30.5 ft) bgs for the PRZ. Minor depth variations occurred during construction; additional details are provided in SGW-59455, *300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report*.

The objective of injection and infiltration was to deliver phosphate in high concentrations to the vadose zone (and top of the aquifer), where uranium is present in the sediments, to precipitate phosphate-bearing mineral phases that can bind labile uranium and sequester it. Based on a number of past experimental studies conducted with polyphosphate solutions to bind uranium, such as PNNL-17818, 300 *Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe,* and PNNL-21733, *Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment*, it was determined that polyphosphate solutions of high concentrations should be injected/infiltrated. Since most experiments were conducted using a phosphate concentration of about 50 mM, this concentration was initially selected as a target concentration with minor adjustment to account for polyphosphate solution (mixture of orthophosphate and pyrophosphate). However, to account for dilution within the PRZ and aquifer during injection, the target concentrations were raised higher for the injected solutions compared to the infiltrated solutions.

The polyphosphate solutions were composed of a mixture of 90 percent orthophosphate (mixture of NaH<sub>2</sub>PO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub>-KH<sub>2</sub>PO<sub>4</sub>-K<sub>2</sub>HPO<sub>4</sub>) and 10 percent pyrophosphate (Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>). The orthophosphate solutions were prepared by mixing sodium hydroxide and potassium hydroxide with the phosphoric acid. The initial solutions were prepared at high concentrations, and then they were mixed with river water (using mixing skids) prior to injection and infiltration. The composition of the injected and infiltrated solutions for the three primary components (sodium, potassium, and phosphate) are shown in Figure 6-3 (a, b) based on daily samples collected following mixing in the skids. Concentrations are higher on the days when solutions were being injected, and lower when they were infiltrated, as per the design objectives. During injection, phosphate concentrations varied from about 8,000 mg/L to 9,000 mg/L (84 to 95 mM), reflecting variability in the manufacturing of the concentrations were generally maintained around 5,000 mg/L (53 mM) except for the first day of infiltration when the concentrations were around 12,000 mg/L (126 mM) due to operational issues related to mixing with river water. Sodium and potassium concentrations varied in proportion to the phosphate concentrations, with the sodium concentrations being slightly greater than potassium concentrations.



Figure 6-2. Infiltration System in the Stage A Treatment Area

6-4

G-138

#### ECF-300FF5-16-0091, REV. 0



Note: No sample taken on November 13, 2015.

Figure 6-3. Daily Sampled Concentrations at the Mixing Skid During (a) Injection Period and (b) Infiltration Period

#### ECF-300FF5-16-0091, REV. 0

Figure 6-4 (a and b) shows the field sampled pH of the solution during the infiltration and injection period. The pH of the final mixed solution remained above 7 for most of the time period, typically in the range of 7 to 7.3, with short-term fluctuations outside this range. The intraday sharp declines in pH, followed by rises noticeable on November 9 and 10, 2015, likely reflect instrument error rather than changes in composition of the solution.





Figure 6-4. Measured pH of the Solution Following Mixing at the Skids Prior to (a) Injection and (b) Infiltration

# 6.2 Monitoring Results from Stage A Treatment

There are 26 individual monitoring wells, consisting of 13 collocated well pairs (including 2 existing well pairs and 1 well from the post-ROD investigation). For each well pair, one well is screened in the PRZ, and one well is screened in the aquifer to enable monitoring of each zone. As shown in Figure 6-1, the monitoring well system includes three monitoring well pairs upgradient (north and west) of the Stage A area, six monitoring well pairs within the Stage A area, and four monitoring well pairs downgradient (south and east) of the Stage A area (SGW-59455). The aquifer monitoring wells are generally screened from 10.9 m to 14 m (35.8 to 45.9 ft) bgs, while the PRZ monitoring wells are generally screened from 6.2 to 9.3 m (20.3 to 30.5 ft) bgs. Additional details are presented in SGW-59455.

Seven of these monitoring wells (a combination of PRZ and aquifer monitoring wells) were sampled daily, during and following Stage A, while other wells were sampled intermittently. Data loggers were also placed in six monitoring wells that were screened in the aquifer to provide continuous monitoring of water level fluctuations and EC. Details of the sampling plan are provided in SGW-58976, Field Instructions for Uranium Sequestration in the 300 Area. Data were also evaluated from groundwater monitoring wells being monitored by Pacific Northwest National Laboratory (PNNL) that were located away from the Stage A area.

The seven monitoring wells where daily sampling was conducted included two aquifer/PRZ well pairs (399-1-65/399-1-67 and 399-1-74/399-1-75) and three PRZ wells (399-1-77, 399-1-81, and 399-1-87). The uranium versus phosphate concentrations from the seven daily monitoring wells are presented in Figure 6-5. Uranium concentrations are shown in µg/L, while phosphate concentrations (total phosphorus as phosphate) are shown in mg/L. Results of the two aquifer/PRZ well pairs show that uranium and phosphate concentrations are higher in wells screened in the PRZ compared to wells screened in the aquifer. The observed peak in uranium concentrations precedes the peak in phosphate concentration because the labile fraction of uranium travels as an aqueous complex with the infiltrated water, while the phosphate undergoes chemical reactions with the sediment and is retarded in the vadose zone. The sharp increase in phosphate after November 16, 2015 occurs from PRZ injections that peak on November 18, 2015 (the last day of PRZ injection). A gradual decline in phosphate concentration is observed following the PRZ injection. While the phosphate concentrations are increasing, the uranium concentrations show a steep decline resulting likely from uranium-phosphate-calcium aqueous complexation and co-precipitation of amorphous monocalcium phosphate (PNNL-21733) with structural incorporation of uranium under circumneutral pH conditions (Mehta et al., 2016, "Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate"). The uranium concentrations continue to remain low following treatment (ended on November 18, 2015), indicating that aqueous complexation, surface complexation, and mineral phase precipitation processes continue to sequester uranium from the phosphate that is still retained in the vadose zone. Other monitoring wells, within and around the Stage A area, that were sampled (usually on a weekly basis) also show similar trends. Additional monitoring results are presented in Appendix A.

ECF-300FF5-16-0091, REV. 0



Figure 6-5. Uranium and Phosphate Trends from Daily Sampling of Wells (page 1 of 2)

ECF-300FF5-16-0091, REV. 0



Figure 6-5. Uranium and Phosphate Trends from Daily Sampling of Wells (page 2 of 2)

The six aquifer monitoring wells where data loggers were installed are 399-1-70, 399-1-76, 399-1-80, 399-1-82, 399-1-84, and 399-1-86. Of these, EC results are shown for wells 399-1-86 and 399-1-76 in Figure 6-6 because they are located close to the injection wells or just at the edge of the Stage A area (Figure 6-1). All others are located either outside the Stage A area or away from injection wells, leading to either negligible or no change in EC from injection/infiltration. The time periods of injections are indicated as vertical lines along with EC measurements. EC increases from background of about 500  $\mu$ S/cm following injection events, but the increase is greatest from PRZ injections. EC results for 399-1-86 indicate that high concentrations (~3,000  $\mu$ S/cm) were being maintained in the aquifer even after 2 weeks had passed since the injections ended. The sharp temporary decline in EC after November 22, 2015 is attributed to a data logger disturbance during post-treatment deactivation activities undertaken at the site. EC in 399-1-76 shows a gradual decline following injection after peaking at 9,000  $\mu$ S/cm. Since this well is located at the downgradient edge of Stage A area, it received higher concentrations due to injections at multiple locations and mixing of waters; in comparison, 399-1-86 was probably only affected by one or two nearby injection wells.

ECF-300FF5-16-0091, REV. 0



Figure 6-6. Electrical Conductivity in Selected Monitoring Wells Fitted with Data Loggers

6-10

G-144

#### ECF-300FF5-16-0091, REV. 0

Figure 6-7 presents the correlation between EC and measured phosphate concentrations (total phosphorus reported as phosphate). Based on this correlation, the EC value of 3,000  $\mu$ S/cm approximates to about 2,190 mg/L of phosphate, while 9,000  $\mu$ S/cm (peak value) is approximately equal to 7,400 mg/L of phosphate, which is close to the peak concentrations observed in the PRZ wells during injection (Figure 6-5). Figure 6-8 presents the correlation between EC and measured phosphate concentrations at the mixing skids prior to injection and infiltration. It indicates a similar strong correlation based on which 9,000  $\mu$ S/cm is approximately equal to 6,800 mg/L phosphate. These results indicate that high phosphate concentrations were delivered to the PRZ (and aquifer), and the concentrations remained high in the aquifer for at least 2 weeks (duration of monitoring using data loggers) following injection.





Figure 6-7. Correlation between Electrical Conductivity and Phosphate Concentration in Monitoring Wells



Note: Total P is reported as phosphate.



ECF-300FF5-16-0091, REV. 0

During the injection and infiltration period, continuous imaging was performed in real time, using time-lapse ERT, to evaluate amendment delivery performance in the subsurface (PNNL-SA-25232, *Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography*). ERT monitoring was conducted along two transects extending 89.9 m (295 ft) (transect A-A') and 70.1 m (230 ft) (transect B-B') within the treatment zone, as shown in Figure 6-9. A single ERT measurement is conducted by injecting current between a pair of electrodes and measuring the resulting voltage across several other electrode pairs. Using an array of electrodes, many such measurements are strategically collected to optimize imaging resolution. This set of measurements, termed ERT survey, is processed using a computationally intensive tomographic inversion algorithm that approximates the subsurface conductivity distribution that gave rise to the measurements. When time-lapse imaging is conducted, surveys are continuously collected and processed to provide a chronological sequence of image frames that illustrate the change in bulk conductivity with time. Subtracting the baseline image (in this case, pretreatment image) from the time-lapse images reveals the change in bulk conductivity caused by the phosphate amendment, thereby revealing the distribution of amendment in space and time. Additional details are presented in PNNL-SA-25232.



Note: White, gray, and black contour lines represent increases in bulk conductivity of 0.002, 0.003, and 0.004 S/m, respectively. Figure 6-9. Location of ERT Sensors (Electrodes) Along Two Cross-Sections (A-A' and B-B') Relative to Stage A Treatment Area

#### ECF-300FF5-16-0091, REV. 0

Results of the ERT survey are presented in Figure 6-10 for 5 selected days of operations, from November 11 (sixth day of operation) through November 15, 2015 (tenth day of operation). The results show variable concentrations of phosphate solutions, with increased change in bulk conductivity correlating with higher concentration of phosphate (the primary ion in the solution). The variable concentrations indicate that the heterogeneities in the subsurface (variable permeability layers) lead to variable distribution of phosphate. The contour of 0.002 S/m and 0.003 S/m (white and gray contours) gets to the water table located at about 10 m depth by the tenth day of operation (November 15, 2015), while the contour of 0.004 S/m gets to a depth of about 6 m in most of the cross-section. Although earlier arrival is observed in cross-section A-A' for the location on the west side, most cross-section lengths of the contour lines are fairly uniform, indicating that the effect of heterogeneities leads to establishment of uniform distribution of infiltrated phosphate solution. Using the breakthrough times of 0.002 S/m contour at the water table, the average migration velocity is estimated in Figure 6-11. It ranges from about 0.5 m/day to 3 m/day, with most of the area experiencing migration velocity of about 1 to 1.5 m/day.

Results from monitoring wells located downgradient of the Stage A treatment area are presented in Figures 6-12 and 6-13. Figure 6-12(a) presents the location of monitoring wells downgradient of the Stage A treatment area, while Figure 6-12(b) shows EC measurements at 399-1-23. This well is located downgradient of Stage A and received injected and infiltrated solutions, as indicated by the changes in EC corresponding to various injections. Based on elevated EC values (greater than the background value that ranges from 450 to 500 µS/cm), it can be inferred that phosphate concentrations at 399-1-23 continued to remain high for 2 weeks after the treatment period. Figure 6-13 presents uranium and phosphate concentrations, based on sampling of wells 399-1-23, 399-1-17Å, and 399-1-7, which are located approximately along the groundwater flow path downgradient of the Stage A treatment area. The decline in uranium concentrations correlates with the increase in phosphate concentrations, reflecting changes that have occurred in the Stage A treatment area. As the phosphate pulse moves downgradient, it gets retarded and dispersed. Uranium concentrations declined in all downgradient wells and have remained low over the 6 months of monitoring following treatment. A small rebound in uranium concentrations is noticeable in the wells, but concentrations have remained substantially lower than those prior to the treatment. This indicates that prior to treatment, uranium concentrations in this part of the aquifer were derived largely from the Stage A area.

# 6.3 Comparison of Post-Treatment and Pretreatment Samples

To evaluate performance of the remedy within the Stage A treatment area, three boreholes were drilled to collect post-treatment sediment samples for further analysis. Locations of the three boreholes (C9580, C9581, and C9582) are shown in bold red color (Figure 6-14). These boreholes were drilled adjacent to three boreholes where pretreatment samples were collected (shown in light red color in Figure 6-14), so a comparison can be made. Details of the analysis of post-treatment borehole samples are provided in PNNL-25420, *Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582*; results of similar analyses conducted on pretreatment samples are provided in PNNL-24911, *Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8940 and C9451*, and SGW-58830, *300-FF-5 Supplemental Post-ROD Field Investigation Summary*.





Figure 6-10. Changes in Bulk Conductivity Observed Using ERT Imaging Along Two Lines for Selected Time Periods



Figure 6-11. Depth Averaged Phosphate Migration Rate Estimated from ERT Imaging Based on Breakthrough Magnitude Change in Bulk Conductivity of 0.002 S/m



Figure 6-12. Results from Monitoring Wells Located Away from the Stage A Treatment Area (page 1 of 2)

ECF-300FF5-16-0091, REV. 0



Figure 6-12. Results from Monitoring Wells Located Away from the Stage A Treatment Area (page 2 of 2)

6-16

G-150

ECF-300FF5-16-0091, REV. 0



Figure 6-13. Phosphate and Uranium Concentrations Observed in Wells (page 1 of 2)

6-17

G-151

ECF-300FF5-16-0091, REV. 0



Note: 399-1-23 (a), 399-1-17A (b), and 399-1-7(c) are located downgradient of the Stage A treatment zone.

Figure 6-13. Phosphate and Uranium Concentrations Observed in Wells (page 2 of 2)

Three pretreatment boreholes of interest (Figure 6-14) are C8940 (399-1-76), C9451 (399-1-80), and C9451 (399-1-67). Sediment samples collected from various depths were analyzed for total uranium concentration using a contract (e.g., GEL or ALS) laboratory, and then specific sampling depths were selected for detailed laboratory evaluations performed at PNNL. The detailed laboratory tests consisted of sequential uranium extraction tests, labile uranium leach tests, flow-through column tests on both intact (field-texture) split-spoon liner samples and <2-mm repacked columns, and identification of uranium mineral phase(s) and surface coating(s). Total uranium analysis results for the pretreatment samples are presented in Table 6-2. GEL was the contract laboratory used for this evaluation. Later, when selected samples were sent to PNNL for detailed analyses, total uranium concentrations were recalculated based on the results of sequential extraction. These are also presented in Table 6-2 for comparison purposes. The results indicate that where total uranium concentrations were low, the GEL and PNNL results matched but, where total uranium concentrations were high, the GEL analysis consistently resulted in lower concentrations compared to PNNL results. Since detailed laboratory evaluations were conducted by PNNL, to be internally consistent, the total uranium concentrations from PNNL are used in further analysis. Figure 6-15 (part a) shows the vertical profiles of total uranium concentrations based on sampled depth intervals from the pretreatment boreholes.

Total uranium analyses results for post-treatment samples collected from C9580, C9581, and C9582 are presented in Table 6-3. Samples from various depth intervals were sent to the contract laboratory (ALS). Based on uranium concentrations, a subset of samples was selected for detailed laboratory analyses conducted at PNNL. Total uranium results from both labs, presented in Table 6-3, indicate reasonable comparisons between the two labs. Figure 6-15 (part b) shows the vertical profiles of total uranium concentrations based on sampled depth intervals from the post-treatment boreholes.



Note: Bold red represents post-treatment boreholes, while pretreatment sampling locations are shown in light red.

Figure 6-14. Borehole Locations to Evaluate Analyte Concentrations in Sediment

#### ECF-300FF5-16-0091, REV. 0

| Well ID             | Sample<br>ID<br>(GEL<br>Lab) | Borehole,<br>Sampling<br>Interval | Depth Below<br>Ground in m<br>(ft) | GEL Lab Based<br>Total Uranium<br>in Sediment<br>Sample (µg/g) | PNNL Lab<br>Based Total<br>Uranium (μg/g)<br>(Total from<br>Sequential<br>Extraction) | Sample<br>ID<br>(PNNL<br>Leach) |
|---------------------|------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| C8940<br>(399-1-76) | B31N14                       | I-005B                            | 6.6 to 6.7<br>(21.5 to 22)         | 2.54                                                           |                                                                                       |                                 |
|                     | B31N15                       | I-005B<br>(Duplicate)             | 6.6 to 6.7<br>(21.5 to 22)         | 2.14                                                           |                                                                                       |                                 |
|                     | B31N20                       | I-006B                            | 7.3 to 7.5<br>(24 to 24.5)         | 2.50                                                           |                                                                                       |                                 |
|                     | B31N25                       | I-007B                            | 7.9 to 8.1<br>(26 to 26.5)         | 5.90                                                           |                                                                                       |                                 |
|                     | B31N30                       | I-008B                            | 8.7 to 8.8<br>(28.5 to 29)         | 11.50                                                          | 14.4                                                                                  | B31N29                          |
|                     | B31N35                       | I-009B                            | 9.4 to 9.6<br>(31 to 31.5)         | 4.49                                                           |                                                                                       |                                 |
| C9451<br>(399-1-80) | B31N86                       | I-005B                            | 6.4 to 6.6<br>(21 to 21.5)         | 12.0                                                           | 12.72                                                                                 | B31N85                          |
|                     | B31N91                       | I-006B                            | 7.3 to 7.5<br>(24 to 24.5)         | 5.44                                                           |                                                                                       |                                 |
|                     | B31N97                       | I-007B                            | 8.1 to 8.2<br>(26.5 to 27)         | 10.6                                                           | 13.02                                                                                 | B31N96                          |
|                     | B31NB2                       | I-008B                            | 8.7 to 8.8<br>(28.5 to 29)         | 9.29                                                           | 14.96                                                                                 | B31NB1                          |
|                     | B31NB7                       | I-009B                            | 9.6 to 9.8<br>(31.5 to 32)         | 6.5                                                            |                                                                                       |                                 |
| C8936<br>(399-1-67) | B30524                       | I-004B                            | 5.3 to 6.1<br>(17.5 to 20)         | 34.8                                                           | 57.66                                                                                 | B30525                          |
|                     | B30529                       | I-005B                            | 6.4 to 7<br>(21 to 23)             | 26.1                                                           |                                                                                       |                                 |
|                     | B30534                       | I-006B                            | 7.2 to 7.8<br>(23.5 to 25.5)       | 16.9                                                           |                                                                                       |                                 |
|                     | B30535                       | I-006B<br>(Duplicate)             | 7.2 to 7.8<br>(23.5 to 25.5)       | 20.6                                                           |                                                                                       |                                 |
|                     | B30540                       | I-007B                            | 7.9 to 8.7<br>(26-28.5)            | 41.4                                                           | 125.79                                                                                | B30538                          |
|                     | B30545                       | I-008B                            | 8.7 to 9.4<br>(28.5 to 31)         | 20.8                                                           | 31.0                                                                                  | B30546                          |

# Table 6-2. Pretreatment Sediment Analysis for Total Uranium by the GEL Laboratory and PNNL for Samples Located Greater Than 6 m (20 ft) in Depth Below Ground Surface

#### ECF-300FF5-16-0091, REV. 0

# Table 6-2. Pretreatment Sediment Analysis for Total Uranium by the GEL Laboratory and PNNL for Samples Located Greater Than 6 m (20 ft) in Depth Below Ground Surface PNNL Lab Based Total

| Well ID | Sample<br>ID<br>(GEL<br>Lab) | Borehole,<br>Sampling<br>Interval | Depth Below<br>Ground in m<br>(ft) | GEL Lab Based<br>Total Uranium<br>in Sediment<br>Sample (µg/g) | Based Total<br>Uranium (μg/g)<br>(Total from<br>Sequential<br>Extraction) | Sample<br>ID<br>(PNNL<br>Leach) |
|---------|------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|
|         | B30550                       | I-009B                            | 9.8 to 10.5<br>(32 to 34.5)        | 25.8                                                           |                                                                           |                                 |
|         | B309C9                       | (Contingency)                     | 10.5 to 11.1<br>(34.5 to 36.5)     | 12.3                                                           |                                                                           |                                 |
|         | B30552                       | I-0010                            | 10.7<br>(35)                       | 19.9                                                           |                                                                           |                                 |

ECF-300FF5-16-0091, REV. 0



Figure 6-15. Total Uranium Concentration Profiles based on (a) Pre-Treatment Borehole Samples and (b) Collocated Post-Treatment Borehole Samples

#### ECF-300FF5-16-0091, REV. 0

| Well ID | Sample ID<br>(GEL Lab) | Borehole,<br>Sampling<br>Interval | Depth<br>(ft below<br>ground<br>surface) | ALS Lab<br>Based<br>Total Uranium<br>in Sediment<br>Sample (μg/g) | PNNL Lab Based<br>Total Uranium<br>(μg/g)<br>(Total from<br>Sequential<br>Extraction) | Sample ID<br>(PNNL<br>Leach) |
|---------|------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|
| C9581   | B347J9                 | I-001                             | 6.1 to 6.9<br>(20 to 22.5)               | 1.2                                                               |                                                                                       |                              |
|         | B347K5                 | I-002                             | 6.9 to 7.6<br>(22.5 to 25)               | 1.6                                                               |                                                                                       |                              |
|         | B347L0                 | I-003                             | 7.6 to 8.4<br>(25 to 27.5)               | 5.3                                                               |                                                                                       |                              |
|         | B347L5                 | I-004                             | 8.4 to 9.1<br>(27.5 to 30)               | 4.3                                                               | 5.8                                                                                   | B347L4                       |
|         | B347L6                 |                                   |                                          | 4.4                                                               |                                                                                       |                              |
|         | B347M1                 | I-005                             | 9.1 to 9.9<br>(30 to 32.5)               | 2.9                                                               |                                                                                       |                              |
| C9580   | B347C7                 | I-001                             | 6.1 to 6.9<br>(20 to 22.5)               | 2.6                                                               | 2.3                                                                                   | B347C6                       |
|         | B3347C9                |                                   |                                          | 1.7                                                               |                                                                                       |                              |
|         | B347D3                 | I-002                             | 6.9 to 7.6<br>(22.5 to 25)               | 2.0                                                               |                                                                                       |                              |
|         | B347D9                 | I-003                             | 7.6 to 8.4<br>(25 to 27.5)               | 3.2                                                               | 4.7                                                                                   | B347D8                       |
|         | B347F4                 | I-004                             | 8.4 to 9.1<br>(27.5 to 30)               | 7.6                                                               | 13.3                                                                                  | B347F1,<br>B347F3            |
|         | B347F9                 | I-005                             | 9.1 to 9.9<br>(30 to 32.5)               | 1.4                                                               |                                                                                       |                              |
|         | B347H4                 | I-006                             | 9.9 to 10.7<br>(32.5 to 35)              | 2.6                                                               |                                                                                       |                              |
| C9582   | B347P1                 | I-001                             | 6.1 to 6.9<br>(20 to 22.5)               | 71.0                                                              | 74.8                                                                                  | B347P0                       |
|         | B347P6                 | I-002                             | 6.9 to 7.6<br>(22.5 to 25)               | 100.0                                                             | 102.3                                                                                 | B347P4,<br>B347P5,<br>B347P8 |
|         | B347R2                 | I-003                             | 7.6 to 8.4<br>(25 to 27.5)               | 32.0                                                              | 48.1                                                                                  | B347R0,<br>B347R1            |
|         | B347R3                 |                                   |                                          | 31.0                                                              |                                                                                       |                              |
|         | B347R8                 | I-004                             | 8.4 to 9.1<br>(27.5 to 30)               | 39.0                                                              |                                                                                       |                              |
|         | B347T8                 | I-006                             | 9.9 to 10.7<br>(32.5 to 35)              | 19.0                                                              | 33.4                                                                                  | B347T6,<br>B347T7            |

# Table 6-3. Post-Treatment Sediment Analysis for Total Uranium by the ALS Lab and PNNL for Samples Located Greater Than 20 ft in Depth Below Ground Surface

#### ECF-300FF5-16-0091, REV. 0

Comparing total uranium concentrations between the collocated pretreatment and post-treatment boreholes (Figure 6-15) indicates that uranium concentrations remained largely unchanged in the sediment following treatment. (NOTE: For the purpose of comparison, the pretreatment borehole profile for 399-1-67 [C8936] has been used based on PNNL data instead of GEL data.) This shows that most of the uranium present in the sediment remained in place, and only a limited amount was displaced during injection and infiltration.

Acid extractions using 0.5 M nitric acid were conducted on selected post-treatment samples (boreholes C9580, C9581, and C9582) as well as pretreatment samples from boreholes C8940 (399-1-76) and C9451 (399-1-80) to evaluate the precipitated phosphate concentration by etching the sediments without digesting the sample (PNNL-25420). For each sample, 0.5 M nitric acid was added at a solid-to-solution ratio of 1 g/2 mL. The sample was then agitated on an orbital shaker for 15 minutes, centrifuged, decanted, and filtered. The results in terms of phosphate concentration (total P as phosphate) are presented in Figure 6-16 (pretreatment samples are shown in part a, and post-treatment samples [prior to any leaching] are shown in part b). Results from pretreatment samples provide an average phosphate concentration of 1,750 mg/kg, indicating that some residual phosphate existed prior to injection/infiltration from past discharge activities in this area. Results from post-treatment samples (Figure 6-16, b) show that phosphate concentrations are typically higher than 2,000 mg/kg for C9580 and for deeper samples at C9582, indicating that these resulted from Stage A treatment. Borehole C9580 shows high phosphate concentrations throughout its depth profile, consistent with the ERT data, where faster migration of infiltrated solutions was observed resulting in higher bulk conductance (Figures 6-10 and 6-11). Higher phosphate concentrations observed at a deeper depth at C9582 indicate that injections conducted in the PRZ were instrumental in precipitating phosphate. Higher phosphate concentration is also observed for the deeper sample collected at C9581, which confirms the effect of injection in delivering high concentrations of phosphate.

Sediment samples collected from post-treatment boreholes were also analyzed for phosphate concentration (at the ALS laboratory) by performing water extraction (analyzed using ion chromatography) and total digestion (analyzed using inductively coupled plasma-optical emission spectroscopy [ICP-OES]; SW6010B). Vertical profiles, based on water extraction and total digestion of the sample, are shown in Figure 6-17. Phosphate concentrations derived from total digestion performed in the ALS laboratory are compared to the total phosphate, based on sequential extraction performed by PNNL. They show values of similar magnitude with depth. The concentration shows a marked increase in the PRZ, indicating that injections performed in the PRZ led to formation of phosphate precipitate, and they are considerably greater than the background phosphate concentration of about 3,600 mg/kg, which is inferred for the 300 Area samples (for total digestion) based on evaluation of results. A similar increase in phosphate concentration is also noticeable for the water extracted profiles within the PRZ. Above the PRZ, phosphate concentrations are controlled by the infiltrated solutions. Concentrations above the PRZ vary by location indicating variable depths to which highly concentrated phosphate solutions reached. The infiltrated solutions at C9580 appear to have influenced phosphate precipitation throughout the vadose zone (down to PRZ), while only high concentrations are noticeable in the shallow portion (<4 m depth) above the PRZ at C9581. The sharp increase in phosphate concentration at about 5 m depth at C9580 is due to presence of a silt lens indicating enhanced reaction with phosphate. At C9582, the amount of phosphate precipitation above the PRZ does not appear to be appreciable, and they may be impacted by local heterogeneities in permeability that could have precluded uniform distribution of phosphate in the upper vadose zone.

ECF-300FF5-16-0091, REV. 0





Figure 6-16. Concentration of Phosphate (Total P as Phosphate) Based on 0.5 M Nitric Acid Extraction on (a) Pretreatment Samples and (b) Post-Treatment Samples


Note: Vertical line of background phosphate concentration is inferred for the samples undergoing total digestion.

Figure 6-17. Phosphate Concentrations (total P as Phosphate) in Post-Treatment Samples Analyzed Using Water Extraction (Ion Chromatography [IC]) and Total Digestion (ICP-Atomic Emission Spectroscopy [ICP-AES; same as ICP-OES])

## 6.3.1 Sequential Extraction

Sequential extraction tests were performed on both the pretreatment and post-treatment samples. Aliquots of air dried <2 mm size fraction are used in the analysis. These tests use a sequential chemical extraction technique described in PNNL-14022, *300 Area Uranium Leach and Adsorption Project*, and PNNL-21733. The tests can provide information on the relative amount of uranium (or other elements) present in extractable phases of carbonate coatings, carbonate solid-bearing compounds, amorphous hydrous oxides, crystalline iron oxides, and strong acid leachable compounds. The following extractions were undertaken in sequence:

- 1. Weak Acetic Acid Extraction: This involved contacting the sediment with a weak acetic acid consisting of 1 mol/L sodium acetate with a final pH of ~5. The solid-to-solution ratio is kept at 1 g/2 mL, and the sample is agitated in an orbital shaker for 1 hour. The solution is removed, decanted, and filtered. Target uranium phases for this extraction are the adsorbed (weakly bound) uranium and some of the uranium associated with carbonate minerals.
- 2. Strong Acetic Acid Extraction: The sample from the previous extraction is contacted with a strong acetic acid (concentrated glacial acetic acid) at a pH of 2.3 for 5 days. The sample is centrifuged, and the solution is decanted and filtered. The target phase for the strong acetic acid is the strongly bound uranium associated with carbonate minerals.

## ECF-300FF5-16-0091, REV. 0

- 3. Ammonium Oxalate Extraction: The third extraction used a solution consisting of 0.1 mol/L ammonium oxalate with 0.1 mol/L oxalic acid. After 1 hour of contact time, the samples are centrifuged, decanted, and filtered. Target phases for the oxalate solution are the amorphous Fe, Al, Mn, and Si oxides.
- 4. Nitric Acid Extraction: The final extraction involved contacting the sample from the previous step with 8 mol/L of nitric acid and heating at 95°C for 2 hours on a hot plate. Target phases for the nitric acid extraction included clays and crystalline oxides of Fe, Al, and Mn.

Each extractant solution was collected and analyzed for P, Ca, Al, Fe, Mn via ICP-OES, and uranium content via inductively coupled plasma-mass spectroscopy. Results are presented in Figures 6-18 through 6-22 for each analyzed element by comparing pretreatment borehole samples with post-treatment borehole samples (same colors used for collocated boreholes). The following observations are based on the results presented for uranium (Figure 6-18):

- 1. In the pretreatment samples, uranium is associated primarily with two different mineral phases: the majority of the uranium is associated with crystalline oxides of Fe (including Al and Mn) and with clay minerals (based on extraction using nitric acid), while a significant yet somewhat lower amount is weakly adsorbed on sediment surface or weakly complexed with carbonate minerals (based on extraction using weak acetic acid).
- 2. In the post-treatment samples, uranium is primarily present as strongly bound with carbonate minerals (based on extraction using strong acetic acid) and as weakly complexed with carbonate mineral phases (based on weak acetic acid extraction). According to PNNL-20004, *Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments*, Na-boltwoodite (uranium bearing silicate) is also predominantly dissolved (85 percent) in the acetic acid extraction. Therefore, it is possible that some of the uranium fraction is present as silicate in addition to being associated with carbonates.
- 3. In the post-treatment samples, an appreciable reduction of nitric acid extracted uranium fraction is noticeable, indicating that the uranium present with iron oxides and clay minerals prior to treatment has been remobilized (underwent dissolution), that later complexed with carbonate phases in the solution (along with surface adsorption and reprecipitation). The increased association of uranium with carbonate phases following phosphate treatment of uranium contaminated sediments has also been observed by Shi et al., 2009, "Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments."
- 4. No appreciable change in uranium association with amorphous oxides (Fe, Mn, and Al) occurred based on extraction using ammonium oxalate. This does not mean that amorphous oxides were not impacted, but rather similar concentrations of uranium are associated with these phases prior to and following the treatment. It is possible that dissolution and precipitation also occurred, but the net effect is small.



Note: Collocated boreholes are shown using the same color scheme.

Figure 6-18. Results from Sequential Extraction of Uranium Performed on Pretreatment Boreholes (Left) and Post-Treatment Boreholes (Right)

#### ECF-300FF5-16-0091, REV. 0

Figure 6-19 compares the pretreatment and post-treatment sequential extraction results for calcium. In the post-treatment samples, the nitric acid extracted calcium fraction decreased while fraction associated with weak and strong acetic acid extraction increased (along with the fraction extracted with oxalic acid). This indicates that calcium bearing clay and oxide mineral phases may have dissolved and reprecipitated with other components present in the solution, including phosphate and uranium. Calcium also undergoes ion exchange reactions once sodium (and potassium) contacts the sediments. It is the primary exchanger with sodium and potassium in the injected/infiltrated solution. The remedy depends on calcium being made available in solution via ion exchange, to complex with phosphate, leading to precipitation of amorphous monocalcium phosphate that slowly over several weeks recrystallizes to dicalcium to octacalcium phosphate and eventually forms hydroxyapatite over a period of months to years (PNNL-21733; Sumner, 2000, "Soil Fertility and Plant Nutrition"). The average ion exchange capacity of sediments is reported to be 1.2 to 2 meq/100 g, with 77 percent of ion exchange sites occupied with Ca<sup>2+</sup>, and the total calcium available is 0.9 to 1.5 mmol/100 g (PNNL-18303, Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution). It is expected that some fraction of this calcium would exchange in the high Na-bearing phosphate solutions.

A separate study reported that 300 Area North Process Pond sediments contain 49 mg/L of water extractable calcium (PNNL-14022). Experiments conducted on these sediments (Wellman et al., 2007, "Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium") indicate that aqueous phosphate in the mobile phase tends to increase the dissolution rate of calcite. The reaction of phosphate with calcite involves surface adsorption followed by dissolution of calcite to facilitate precipitation of the more thermodynamically favored calcium-phosphate solid phases. About 30 percent of the uranium was found to be associated initially with carbonate solids within these sediments and, therefore, would undergo some type of mobilization due to dissolution followed by reprecipitation. Brown, 1980, "Calcium Phosphate Precipitation in Aqueous Calcitic Limestone Suspensions," illustrated rapid sorption of phosphorus on calcareous sediments followed by rapid precipitation of hydroxyapatite under pH conditions similar to the ones existing for Stage A treatment.

Results from the sequential extraction of calcium indicate that calcium has been mobilized in the solution as a result of both dissolution of the carbonate bearing mineral phases (primarily calcite) and ion exchange reactions with sodium and potassium ions. The available calcium in solution then reacted with phosphate and carbonate in the pore water (along with available uranium complexes) and formed amorphous precipitates.



Note: Collocated boreholes are shown using the same color scheme.

Figure 6-19. Results from Sequential Extraction of Calcium Performed on Pretreatment Boreholes (Left) and Post-Treatment Boreholes (Right)

6-30

#### ECF-300FF5-16-0091, REV. 0

Figure 6-20 shows the comparison for iron between pretreatment and post-treatment samples. Iron concentrations in the post-treatment sediment samples show a significant decrease in the nitric acid extractable fraction and a significant increase in the strong acetic acid extractable fraction. This reflects that iron initially associated with crystalline oxides and clay minerals has been dissolved and reprecipitated with carbonates. This is consistent with the changes observed for uranium and calcium. Sequential extraction results presented for aluminum (Figure 6-21) and manganese (Figure 6-22) show behavior similar to that observed for iron, indicating that crystalline oxides and clay mineral phases containing Fe, Mn, and Al have undergone dissolution and have reprecipitated with predominantly calcium phosphate and calcium carbonate bearing mineral phases. Uranium is also associated with these mineral phases either as part of the mineral phase (by incorporation) or by surface adsorption (forming both weak and strong surface complexes).

In the strong acetic acid extraction step, the iron concentration of the post-treatment samples is the highest among the elements analyzed. This indicates that iron played an important role in the reactions that occurred from injecting/infiltrating phosphate solutions at high concentrations. Almost half of the total iron in the pretreatment sample (C8936) has been dissolved away, based on results from collocated post-treatment borehole (C9582) sample, with an appreciable amount now co-precipitated with calcium carbonates and calcium phosphate (and some silicates). Surface complexation of phosphate ions with iron oxyhydroxide mineral phases (such as ferrihydrite and goethite) is an important process that occurs due to excess availability of orthophosphate that exceeds the buffering capacity of sediments.

The addition of concentrated sodium-potassium bearing phosphate solutions to the subsurface leads to release of  $Ca^{2+}$  from cation-exchange reactions with the sediment and dissolution of calcite. Based on the pH of the system, the predominant aqueous phosphate species in solution is either dihydrogen phosphate  $(H_2PO_4^{-})$  or hydrogen phosphate  $(HPO_4^{2-})$ ; both species are present in equal amounts around pH of 7.2 (Figure 6-23, part a), which is the second dissociation constant of phosphoric acid. If pH reduces from 7.2, then dihydrogen phosphate  $(H_2PO_4^{-})$  becomes dominant; if it increases, then hydrogen phosphate  $(HPO_4^{2-})$  would become the dominant species. As more  $Ca^{2+}$  becomes available in the solution, the aqueous complexation with phosphate species will likely lead to CaHPO<sub>4</sub> for the range of chemical conditions that are relevant to the subsurface at the 300 Area. The aqueous complex stability field is shown in part b of Figure 6-23.

With continued addition of phosphate and reaction with Ca<sup>2+</sup>, the aqueous concentrations would increase, leading to precipitation of amorphous calcium phosphate that thermodynamically favors formation of mineral phases, such as hydroxyapatite and whitlockite, as conceptualized below. In this process, hydrogen ions, which could get consumed in the surface complexation reactions between existing iron oxyhydroxide minerals (e.g., present as surface coatings) and monohydrogen and dihydrogen phosphate anions, are released.

| Reaction from _<br>Injection/Infiltration | $5 \operatorname{Ca}^{2+} + 3 \operatorname{HPO}_{4}^{2-} + \operatorname{H}_{2}O  \operatorname{Ca}_{5}(\operatorname{PO}_{4})_{3}OH + 4 \operatorname{H}^{+}$ (Hydroxyapatite) $3 \operatorname{Ca}^{2+} + 2 \operatorname{HPO}_{4}^{2-}  \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 2 \operatorname{H}^{+}$ (Whitlockite) |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resulting Surface<br>Complexes            | $\equiv FeOH + H_2PO_4^- + H^+ \leftrightarrow \equiv FeH_2PO_4 + H_2O$ $\equiv FeOH + HPO_4^{2-} + H^+ \leftrightarrow \equiv FeHPO_4^- + H_2O$                                                                                                                                                                                     |
| Aqueous Speciation                        | $HPO_4^{2-} + H^+ \leftrightarrow H_2PO_4^-$                                                                                                                                                                                                                                                                                         |

6-31



Note: Collocated boreholes are shown using the same color scheme.





Notes: Weak acetic acid extractions for pretreatment samples from boreholes C8940 and C9451 were not conducted. Collocated boreholes are shown using the same color scheme.

Figure 6-21. Results from Sequential Extraction of Aluminum Performed on Pretreatment Boreholes (Left) and Post-Treatment Boreholes (Right)



Note: Collocated boreholes are shown using the same color scheme.

Figure 6-22. Results from Sequential Extraction of Manganese Performed on Pretreatment Boreholes (Left) and Post-Treatment Boreholes (Right)

ECF-300FF5-16-0091, REV. 0



Note: Figure is based on activity of HPO $_{4^{2-}}$ , HCO $_{3^{-}}$ , and Ca $^{2+}$  set at 10<sup>-2</sup> in the solution.

Figure 6-23. Eh-pH Diagram Presenting the Orthophosphate Aqueous Complex Stability Field for (a) Infiltrated Water Composition and (b) Hypothetical Water Where Orthophosphate, Bicarbonate, and Calcium Concentrations Are Approximately Equal

#### ECF-300FF5-16-0091, REV. 0

With continued supply of phosphate and reactions leading to formation of calcium phosphate bearing mineral phases, the supply of hydrogen ions released to the solution could exceed the buffering capacity in the pore volume, leading to reduction in pH. The degree of pH reduction will be dependent upon the amount of reactive carbonate minerals (primarily calcite); clay minerals; oxides of Fe, Mn, and Al; and uranium bearing minerals. Small reductions in pH (even by half a pH unit) can lead to large changes in the activity of total dissolved iron and, therefore, favor dissolution of iron containing mineral phases, such as present in clay minerals (e.g., chlorite group) and hydrous ferric oxide bearing cement coatings around the grains. The chlorite group of phyllosilicate (clay) minerals contains Fe, Mg, Al, Mn, which would be released into the solution upon partial or complete dissolution of clay minerals. The released Fe (along with other metal ions such as Al and Mn) could get mobilized and react with dissolved species in the solution (predominantly Ca<sup>2+</sup>, Na<sup>+</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, HPO<sub>4</sub><sup>2-</sup>, and HCO<sub>3</sub><sup>-</sup>) leading to co-precipitation. These and related reactions are conceptualized in Figure 6-24 as phosphate bearing solutions infiltrate through the vadose zone.

The aqueous complexes formed by uranium will depend on the ratio of  $HPO_4^{2-}/HCO_3^{-1}$  in the solution and pH. The stability field for such uranium complexes is presented in Figure 6-25. As long as the activity ratio of  $HPO_4^{2-}/HCO_3^{-1}$  remains greater than  $10^{-5}$  and pH is below 8, the primary aqueous complexes formed will be  $UO_2(H_2PO_4)_2$  (a neutral species). Under these conditions, formation of uranyl orthophosphate mineral phase,  $(UO_2)_3(PO_4)_2(H_2O)_4$ , is favored assuming no other reactants are in the solution. Mehta et al. (2016) determined that when dissolved uranium, calcium, and phosphate are present together, uranium is structurally incorporated into a newly formed amorphous calcium phosphate solid. But when uranium is contacted with preformed amorphous calcium phosphate solids adsorption is the dominant removal mechanism for uranium. Both mechanisms are likely during Stage A treatment.





6-36

#### ECF-300FF5-16-0091, REV. 0



Figure 6-25. Stability Field of Uranium Aqueous Complexes Under Varying Orthophosphate to Bicarbonate Ratio and pH

## 6.3.2 Flow-Through Column Leaching Tests

Flow-through column leach experiments were conducted on three intact (field-textured) samples and four repacked columns containing <2 mm size material from post-treatment boreholes. The sampling depth intervals selected on post-treatment boreholes is shown in Table 6-4. These depth intervals were selected, based on the uranium soil distribution and depth of the pretreatment samples.

The column experiments were performed using 15.2 cm (6 in.) long and 2.5 cm (1 in.) diameter glass columns. The influent water was a synthetic groundwater that is based on the groundwater composition at the 300 Area (average of 42 wells [Ma et al., 2010, "A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions"]). The synthetic groundwater is a calcium-bicarbonate type water that is adjusted to pH of 7.3 and does not include phosphate, as documented in PNNL-25420.

The flow rate through the columns containing <2 mm size sediments was maintained at approximately 0.1 cm<sup>3</sup>/min or 0.25 pore volumes per hour, yielding pore water velocities of about 70 to 90 cm/day. For the columns containing field-textured sediment, the flow rate was approximately 1.5 cm<sup>3</sup>/min or 0.25 pore volumes per hour yielding pore water velocities of about 110 cm to 180 cm/day. The column experiments were run for approximately 10 pore volumes, with two stop flow events: one approximately after 4 pore volumes for about 48 hours, and one at approximately 7 pore volumes for about 72 hours. At the end of the tests, sodium bromide was injected to evaluate the breakthrough times for a conservative tracer. Additional details are provided in PNNL-25420.

| Borehole                                                    | HEIS<br>Sample<br>ID | Sample/Depth<br>Interval<br>(ft)       | Preparation        | Bulk<br>Density<br>(g/cm <sup>3</sup> ) | Porosity | Average<br>Flow Rate<br>(cm <sup>3</sup> /min) | Average Pore<br>Water Velocity<br>(cm/day) <sup>(a)</sup> | Total Pore<br>Volumes <sup>(b)</sup> |
|-------------------------------------------------------------|----------------------|----------------------------------------|--------------------|-----------------------------------------|----------|------------------------------------------------|-----------------------------------------------------------|--------------------------------------|
| C9580                                                       | B347F1<br>F347F3     | I-004 / 29.0-29.5<br>I-004 / 29.5-30.0 | <2-mm<br>composite | 1.66                                    | 0.37     | 0.092                                          | 72.2                                                      | 9.1                                  |
| C9582                                                       | B347P4               | I-002 / 23.5-24.0                      | Field texture      | 2.05                                    | 0.23     | 1.2                                            | 110                                                       | 16.9                                 |
|                                                             | B347P5<br>B347P8     | I-002 / 23.0-23.5<br>I-002 / 23.5-24.0 | <2-mm<br>composite | 1.72                                    | 0.35     | 0.092                                          | 77.1                                                      | 10.7                                 |
|                                                             | B347R0               | I-003 / 26.0-26.5                      | Field texture      | 2.18                                    | 0.18     | 1.2                                            | 141                                                       | 12.5                                 |
|                                                             | B347R1               | I-003 / 25.5-26.0                      | <2 mm              | 1.79                                    | 0.32     | 0.095                                          | 85.7                                                      | 12.4                                 |
|                                                             | B347T6               | I-006 / 33.5-34.0                      | Field texture      | 2.26                                    | 0.15     | 1.2                                            | 167                                                       | 16.2                                 |
|                                                             | B347T7               | I-006 / 33.0-33.5                      | <2 mm              | 1.78                                    | 0.33     | 0.093                                          | 83.7                                                      | 11.9                                 |
| (a) Average linear velocity<br>(b) Prior to bromide elution |                      |                                        |                    |                                         |          |                                                |                                                           |                                      |

Table 6-4. Flow-Through Column Test Parameters for Post-Treatment Samples

HEIS = Hanford Environmental Information System

Uranium concentrations in the effluent as a function of pore volumes flushed are presented for the field-textured (intact) samples in Figure 6-26 and for the <2 mm size sediment samples in Figure 6-27. For the field-textured and <2 mm size sediments taken from adjacent depths same color scheme is used in the two figures for direct comparison. There is one extra sample analyzed for the <2 mm size sediment (from borehole C9580); all of the rest of the samples are taken from borehole C9582.

Results for field-textured sediments (Figure 6-26) show high initial uranium concentrations for two samples (B347P4/P5 and B347R0) of about 3,000 to 4,000 µg/L. The concentrations decline within the first two pore volumes, following which the rate of decline is slower. The intermittent increase in concentrations and gradual decline results from resumption of flow following the stop-flow event. Concentrations remain above 200  $\mu$ g/L throughout the experiment duration for these two samples, indicating that uranium continues to leach out from dissolution of uranium bearing mineral phases. The leaching behavior of the third sample (B347T6), however, shows a remarkable difference, where the concentrations start low ( $\leq 30 \mu g/L$ ) and remain low throughout the duration of the experiment  $(\sim 10 \ \mu g/L)$ . The total uranium soil concentration in all three samples is high (ranging from 33 to  $102 \mu g/g$ ), and the effluent concentrations are sustained, indicating that uranium mass has not been depleted. In fact, for the two samples that show high dissolved uranium concentrations, the total uranium soil concentration is different by a factor of two, which indicates that above a certain threshold soil concentration, there is enough uranium to sustain high concentrations in the effluent. The third sample that shows low dissolved uranium concentration seems to be affected by the phosphate concentrations. This sample is located at depth (10.2 to 10.4 m [33.5 to 34 ft]) and is, therefore, most likely impacted by injection in the PRZ. Figure 6-17 shows higher concentrations of phosphate distribution for borehole C9582 at depth, and it may have sequestered uranium through formation of calcium-uranium-phosphate bearing amorphous or mineral phases. Since all three post-treatment boreholes show similar high phosphate concentrations at depth (Figure 6-17), similar leaching behavior of uranium is expected in all three locations as indicated by B347T6. The higher uranium concentrations observed in the leaching tests for the other two samples indicate that perhaps at these depths (7 to 8 m [23.5 to 26.5 ft] bgs) high concentration of phosphate could not be delivered, since these depths are above the PRZ screened interval and are deep enough for the infiltrated solutions to deliver high concentrations of phosphate. It is possible that most of the phosphate reacted above, within the 4 to 6 m (13.1 to 19.7 ft) depth range during infiltration. The ERT image shown in Figure 6-10 indicates that 0.0004 S/m contour (and higher values) are restricted to a depth of 6 m (19.7 ft), indicating that high concentration phosphate bearing solutions are present at shallow depths.

ECF-300FF5-16-0091, REV. 0



Note: Total uranium soil concentrations based on sequential leach tests are shown next to the column test results.





Note: Total uranium soil concentrations based on sequential leach tests are shown next to the column test results.

### Figure 6-27. Results of Effluent Uranium Concentrations from Column Leach Tests Performed on <2 mm Size Sediments from Post-Treatment Samples

Figure 6-27 compares the results for the <2 mm size sediment samples. High effluent uranium concentrations from two samples (B347P5/P8 and B347R1) correspond to the two samples from field-textured samples. The concentrations from the other two samples are much lower. Sample B347T7 shows leaching behavior that is similar to the paired field-textured sample (B347T6) from deeper depths corresponding to the PRZ. Effluent concentrations remain at or below 10  $\mu$ g/L, indicating that phosphate

#### ECF-300FF5-16-0091, REV. 0

bearing mineral phases have sequestered uranium as per the remedy. Results from sample B347F1 (from borehole C9580), which is also from deeper depth that is representative of the PRZ, also show lower sustained concentrations where high phosphate concentrations are observed (Figure 6-17 for borehole C9580). Both deep samples where observed phosphate concentrations appear to be higher than background show lower leachable concentrations of uranium that are orders of magnitude smaller than other samples.

Results from flow-through column leach tests performed on pretreatment borehole samples are compared to the post-treatment borehole samples for the collocated boreholes. The pretreatment samples were collected from borehole C8936 (399-1-67), and column tests were performed on two samples from the lower vadose zone. Results of the column tests are discussed in SGW-58830. Tests were performed on both field-textured and <2 mm size sediments, but only results from field-textured samples are discussed here because the <2 mm size sediments showed similar results. The pretreatment field-textured sample B30541 was collected from a depth of 8.4 to 8.6 m (27.7-28.2 ft), while B30543 was collected from 8.9 to 9.1 m (29.2 to 29.7 ft). This pretreatment borehole (C8936 [399-1-67]) is collocated with borehole C9582. Flow-through column test results are compared in Figure 6-28, with the open circles indicating results from the two pretreatment samples. The flow-through column leaching behavior of pretreatment samples is similar to the leaching behavior observed for the two post-treatment samples that are located above the PRZ. In the pretreatment samples, initial high concentrations (>1,000 and >500  $\mu$ g/L) of uranium are observed that decline over the first few pore volumes; however, after about five pore volumes, concentrations do not appear to vary much until after the stop flow events and remain high (above 100 µg/L). These results indicate that the leaching behavior of post-treatment samples located above the PRZ (but below 6 m [19.7 ft] depth) is similar to pretreatment samples. Perhaps the high phosphate concentrations from infiltration were not available to sequester the uranium at deeper depths because most of the phosphate may have reacted in the upper vadose zone. As discussed earlier, leaching characteristics of the samples collected from the PRZ show much lower leachability, indicating the effects of sequestration from phosphate injections.



Note: Total uranium soil concentrations based on sequential leach tests are shown next to the column test results.

Figure 6-28. Comparison of Effluent Uranium Concentrations Column Leach Tests Performed on Field-Textured Samples from Post-Treatment and Pretreatment Boreholes

### ECF-300FF5-16-0091, REV. 0

# 6.3.3 Labile Uranium Batch Test

Aliquots of the air-dried <2-mm size fraction from the nine selected sample intervals were subjected to labile uranium leach testing (PNNL-25420). The labile uranium leach test measures the readily leachable uranium to estimate the relative proportion of total uranium that is leachable when contacted with sodium carbonate-bicarbonate solution. In this approach (Kohler et al., 2004, "Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments"), a solution containing 0.0144 mol/L of sodium bicarbonate (NaHCO3) and 0.0028 mol/L of sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) with a pH of approximately 9.45 was added to the sediment at a solid-to solution ratio of 1 g/2 mL and was allowed to agitate on an orbital shaker for 1,000 hours (~42 days).

Results of the labile uranium testing are presented in Figure 6-29 for five different times. The results indicate that even after 66 days, the equilibrium had not been attained, and the uranium concentrations continued to increase. These results further indicate that uranium-containing carbonates are present in sufficient amount and continue to dissolve. This type of nonequilibrium, kinetically controlled leaching in contact with a bicarbonate water solution could be expected to continue under field conditions.

The amount of uranium leached is low for three samples taken at post-treatment borehole C9580, one sample taken at post-treatment borehole C9581, and two samples located at depth for the post-treatment borehole C9582 (B347R7 and B347T7). Based on vertical phosphate profiles shown in Figure 6-17, phosphate appears to have been delivered at high concentration at C9580. This is also supported by the high concentrations observed in the ERT survey resulting from faster migration rates of phosphate solution through the vadose zone (Figures 6-10 and 6-11). The sample taken at C9581 is from PRZ depth (8.5 to 8.7 m [28 to 28.5 ft]) where phosphate was delivered through PRZ injection. Based on these results, it is inferred that the labile uranium concentration remains relatively low in samples where phosphate concentration is observed to be above background due to possible reactions with calcium-phosphate.

# 6.3.4 Identification of Mineral Phases Using Surface Analysis

Selected samples from post-treatment boreholes were evaluated to identify uranium-bearing mineral phases and calcium phosphate precipitates using sequential application of surface analysis techniques, including cryogenic laser fluorescence spectroscopy, electron microprobe, and/or scanning electron microscope/energy dispersive x-ray (SEM/EDX) spectroscopy (PNNL-25420).

Analysis of samples from borehole C9580 with higher uranium concentrations indicated that U(VI) (uranium in hexavalent state) is adsorbed on quartz, and U(VI)-phosphate surface complexes are adsorbed on montmorillonite. Because quartz is the dominant mineral phase in Hanford vadose zone sediments and phyllosilicates often exist as fine surface coatings on soil and mineral grains, surface uranium complexes adsorbed to the mineral hosts are expected.

Analysis of fluorescence spectra from C9582 samples that were located above the PRZ (but deeper than 6 m [19.7 ft]), where soil uranium concentrations were found to be the highest but where appreciable phosphate was not observed, indicated the presence of uranyl-tricarbonate and noticeable levels of calcium carbonate minerals with adsorbed U(VI). None of the samples analyzed showed characteristic features of crystalline uranyl-phosphate precipitates. This was somewhat expected as amorphous monocalcium phosphate phases are predicted to form primarily with uranium incorporated in the solids instead of crystalline uranyl-phosphate under the prevailing chemical conditions (Mehta et al., 2016). Furthermore, uranium is nonuniformly dispersed in the sediment and present at concentrations below the detection limits of instrument. The EDX detection limit is > 500 ppm, which is greater than uranium concentration in all samples analyzed.



Figure 6-29. Composite Uranium Concentrations Recovered During Labile Leach Testing

Results from SEM/EDX spectroscopy and electron microprobe analysis of C9580 samples indicate that calcium and phosphorus are distributed uniformly, while iron is variably distributed. For the C9582 borehole sample (B347R7) collected in the PRZ at a depth of 9 to 9.1 m (29.5 to 30 ft), results indicate the presence of calcium, phosphorus, iron, and manganese (Figure 6-30). Results of the surface elemental analysis indicated about 18 percent of phosphorus and 23 percent of calcium by weight. The total uranium concentration in this sample was  $31 \,\mu g/g$ .





# 6.3.5 Observations of High Moisture Content

All post-treatment borehole samples appeared to be much wetter than pretreatment borehole samples. All sampled intervals in the vadose zone were visibly very wet, even though the sediments were mostly gravel dominated and easily drainable. Post-treatment drilling was conducted about 2 months after completion of injection/infiltration.

Wellman et al. (2007) reported a steady increase in moisture content during the unsaturated column experiments using sodium tripolyphosphate solutions and attributed it to change in water retention characteristics as a result of reactions with phosphorus. Lutz et al., 1966, "Effect of Phosphorus on Some Physical Properties of Soils: II. Water Retention," studied the effect of adding phosphorus on physical properties of soils and concluded that phosphate bearing solutions increased the water holding properties of soils. They found it to be directly related to increase in the negative charge of the soil particles. This surface charge was closely related to the Al-phosphate to Fe-phosphate ratio. In some instances, even 50 parts per million of phosphorus concentrations in solution led to increased water holding capacity. They hypothesized that the negative charge of the particle might be increased by the phosphate ion replacing a hydroxyl ion on the octahedral layer of the clay crystal leading to increased negative charge that may attract polar water molecules.

# 6.4 Determination of Desorption Parameters Using Post-Treatment Flow-Through Column Leach Tests

Uranium sorption-desorption parameters are determined by matching the transport model based results with laboratory leaching test results conducted on post-treatment samples. A single-site kinetic sorption model is developed that evaluates the forward and reverse rates. A single-site sorption model is deemed adequate, based on the level of knowledge on uranium desorption characteristics from sediments following treatment with phosphate. The objective is to develop uranium desorption parameters that can be upscaled for usage in a 3D fate and transport model at the scale of the 300 Area.

Some of the column leaching characteristics and experimental setup details were presented in Section 3.2. Uranium leaching experiments were run with field-textured (intact bulk) sediment and with fine grain soil (<2 mm grain) for which the larger gravel was removed. Water is injected at the top of the column at a measured rate. During the time history of the experiment, effluent samples are collected from the end of the column, and the dissolved concentrations of uranium are measured. The experiments have two stop-flow events in order to demonstrate the impact of nonequilibrium sorption. The first stop flow event has a duration of 48 hours, while the second stop flow event has a duration of 72 hours.

Flow-through experiments also included injection of nonsorbing species (bromide). For the bromide experiments, the initial concentration within the column is zero, and the injection stream contains a known bromide concentration. The transport model without the sorption kinetics is used to match the nonsorbing bromide data, which provides a verification of the transport parameters.

Vadose zone soil samples representative of contamination during remediation activity were collected from multiple borehole locations within the 300 Area. The soil samples of interest for the experimental study (PNNL-25420) are shown in Table 6-5, which provides the borehole location, borehole interval and depth, sample preparation, column geometry, bulk density, water content, and injection rate.

| Borchole<br>Identifica-<br>tion | Sample<br>Number | Sample<br>Interval | Interval<br>Depth (ft) | Sample<br>Prepara-<br>tion | Length<br>(cm) | Diameter<br>(cm) | Bulk<br>Density<br>(gm/cm <sup>3</sup> ) | Water<br>Content | Injection<br>Rate<br>(mL/hr) |
|---------------------------------|------------------|--------------------|------------------------|----------------------------|----------------|------------------|------------------------------------------|------------------|------------------------------|
| C9580                           | B347F1F3         | I-004              | 29.5 to 30             | <2 mm<br>size              | 15             | 2.5              | 1.66                                     | 0.372            | 5.53                         |
| C9582                           | B347P5P8         | I-002              | 23.5 to 24             | <2 mm<br>size              | 15             | 2.5              | 1.72                                     | 0.380            | 5.54                         |
|                                 | B347P4           | I-002              | 23.5 to 24             | Field-<br>Textured         | 13.2           | 9.53             | 2.05                                     | 0.228            | 74.2                         |
|                                 | B347R1           | I-003              | 25.5 to 26             | <2 mm<br>size              | 15             | 2.5              | 1.79                                     | 0.338            | 5.69                         |
|                                 | B347R0           | I-003              | 26 to 26.5             | Field-<br>Textured         | 14.0           | 9.53             | 2.18                                     | 0.177            | 74.5                         |
|                                 | B347T7           | I-006              | 33 to 33.5             | <2 mm<br>size              | 15             | 2.5              | 1.78                                     | 0.347            | 5.61                         |
|                                 | B347T6           | I-006              | 33.5 to 34             | Field-<br>Textured         | 13.7           | 2.93             | 2.26                                     | 0.146            | 72.7                         |

Table 6-5. Selected Samples and Flow-Through Column Test Parameters

6-44

Boundary conditions matching the uranium leach column experimental conditions are applied. For each sample, estimates of the kinetic sorption reaction rates and partition coefficient are obtained by history matching the model results with the existing experimental data. The flow-through column initial uranium concentration is assigned to match the early time experimental results.

The mathematical model used for fitting the uranium leaching results is described in Appendix C. Results of the model fit are presented in Appendix C as estimated well and kinetic sorption-desorption parameter values. An alternative method for determining the kinetic sorption parameters is also discussed that assigns an estimated value of the reverse reaction rate for all samples. The estimated kinetic sorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorption-desorpti-desorpti-desorpt

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

# 7 Three-Dimensional Flow and Transport Modeling Using STOMP

The purpose of this chapter is to simulate the fate and transport of uranium in the vadose zone and unconfined groundwater aquifer to evaluate effectiveness of Stage A remedy. The modeling results will be used to predict possible changes in groundwater uranium concentrations in the near future.

This effort includes the simulation of uranium concentrations in the aquifer prior to the Stage A remedy along with a series of simulations, which will describe the impact of the remedial actions (phosphate injection and infiltration) on the uranium groundwater concentrations.

# 7.1 Background Information

The approach to the uranium fate and transport modeling within the 300-FF-5 OU uses a mathematical hydrogeological construct to represent the physical conditions within the vadose zone and unconfined aquifer. It also involves developing a conceptual model by incorporating some of the following important features, events, and processes that control the uranium transport:

- Seasonal fluctuations of flow in the Columbia River at the 300 Area can result in more than 3 m (9.8 ft) of change in river stage between the high discharge period (May to June) and the low discharge period (December to January) (Figure 7-1). These seasonal fluctuations are the driving mechanism for the rise and fall of the water table beneath the 300 Area for extended periods of time and for creating the dynamic hydraulic and geochemical environment found in the unconfined aquifer of the 300 Area. The seasonal fluctuations in river stage also lead to remobilization of the sorbed uranium mass from the lower part of the vadose zone as shown for 399-1-17A (Figure 7-1) due to rise in water table elevations.
- Seasonal river stage fluctuations lead to changes in the flow direction within the aquifer. Considerable variability in the flow direction also exists spatially as well within the same season. Changing flow directions can cause redistribution of uranium in the aquifer as well as in the PRZ above the water table.
- Effect of variably saturated conditions need to be considered in the modeling. The river stage fluctuations can temporally and spatially increase the water saturation and vary the chemical conditions that can lead to variable transport of uranium. Therefore, a coupled vadose zone and saturated-zone flow and transport need to be considered.
- The change in groundwater chemistry (i.e., alkalinity) within the unconfined aquifer due to mixing of groundwater with river water needs to be considered in the context of adsorption/desorption of uranium.
- Due to variable flow and chemical conditions, the sorption/desorption of uranium may be kinetically limited, and full equilibrium may not be established between dissolved and sorbed mass of uranium. The modeling will evaluate both equilibrium and nonequilibrium (kinetic) sorption.

#### ECF-300FF5-16-0091, REV. 0



Figure 7-1. Columbia River Stage Fluctuations and Effect on Water Levels and Dissolved Uranium Concentration at Well 399-1-17A

# 7.2 Development of Hydrogeologic Model

Leapfrog<sup>®</sup> Geo software (version 3.0.0) was used to create a 3D solid hydrogeologic model within the 300 Area (Figure 7-2). The geologic framework beneath the 300 Area consists of a Hanford formation (Hf) vadose zone made up of unconsolidated sandy gravels containing spatially (horizontally and vertically) variable amounts of silts and clays and a saturated zone of the same material underlain by more consolidated materials of the Ringold formation unit E (ECF-300FF5-16-0087, *Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford, Washington*). Underlying Ringold unit E is the Ringold Lower Mud (RLM) unit consisting of predominantly silts and clays, and underlying the RLM is the Columbia River Basalt Group bedrock. A generalized hydrostratigraphic column for the 300 Area is presented in Figure 7-3.

<sup>&</sup>lt;sup>®</sup> Leapfrog is a registered trademark of ARANZ Geo Limited, Christchurch, New Zealand.

#### ECF-300FF5-16-0091, REV. 0



Note: Geologic units: red = Hf sand unit 1, orange = Hf sandy gravel, yellow = Hf sand unit 2, and green = Hf silty sandy gravel. Pink dots represent detailed vadose zone model well locations. Blue semitransparent shading represents the water table surface.



Figure 7-2. View of the 300 Area Geologic Framework Model

Note: Figure is from DOE/RL-2009-30, 300 Area Decision Unit Remedial Investigation/Feasibility Study Work Plan for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units (Figure 2-17).

Figure 7-3. Generalized Hydrostratigraphy at the 300 Area

## ECF-300FF5-16-0091, REV. 0

The primary geologic unit of concern is the Hf because of the location of uranium contamination within the deep vadose and PRZ. In the existing Hanford South geologic framework model (GFM; ECF-HANFORD-13-0029, *Development of the Hanford South Geologic Framework Model, Hanford Site, Washington*), the Hf is undifferentiated. Because the vertical and lateral distribution of fine materials in the vadose zone could affect the uranium contamination plume extents, it was necessary to construct a GFM specific to the 300 Area complete with detailed, differentiated Hf subunits. The subunits were defined by interpreting borehole geologic and geophysical logs obtained by accessing the Hanford Site Well Information and Document Lookup and from CHPRC for newly drilled boreholes as part of the Stage A EAA (ECF-300FF5-15-0014, *Determination of Vadose Zone Uranium Concentration Distribution Extents and Establishment of the Stage A Enhanced Attenuation Area for 300-FF-5*). The following specific Hf geologic subunits comprise the upper portion of the 300 Area GFM:

- Hf is categorized into five sub-units from land surface downward based on the observed sequence of deposition in the study area:
  - Hf sand unit 1 fine to coarse sand of mixed basaltic and felsic composition
  - Hf sandy gravel unconsolidated mostly pebble to cobble gravels with sand
  - Hf sand unit 2 unconsolidated, fine to coarse sand (mostly basalt) with some silt
  - Hf Silt 100 percent silt unit identified in several wells drilled as part of the Stage A EAA uranium sequestration by polyphosphate remedy
  - Hf silty sandy gravel unconsolidated mostly basalt pebble to cobble gravel with silt and sand
  - Hf gravel unconsolidated predominantly basaltic pebble to cobble gravel with some sand and/or silt

The Hf subunits listed were interpreted, based on the following criteria:

- Hf Sand unit  $1 \ge 90$  percent sand of mostly basaltic composition
- Hf Sandy Gravel between 50 percent and 60 percent gravel with sand fraction ranging 50 percent to 40 percent. Gravels are predominantly basaltic
- Hf Sand Unit 2 80 percent to 90 percent sand with silt, sand, or gravel fraction ranging from 20 percent to 10 percent
- Hf Silt 100 percent silt described in borehole geologic logs as being moderately plastic and grayish-brown in color
- Hf Silty Sandy Gravel 50 percent to 70 percent gravels to cobbles, 20 percent to 10 percent sands, and 20 percent to 10 percent silt (gravel to cobble fraction is mostly basaltic; sand is moderately to poorly sorted)
- Hf Gravel 85 percent to 90 percent gravels with 15 percent to 10 percent sand and/or silt fractions (gravels are at least 50 percent basaltic)

The lower portion of the 300 Area GFM was constructed using interpolated unit-top surfaces for Ringold unit E and RLM. The surfaces were extracted from the Hanford south GFM (ECF-HANFORD-13-0029).

The information gained from the described GFM efforts and Stage A EAA drilling and sampling activities laid the backdrop for the EAA determination. Previous geological and characterization studies

were instrumental in providing information used in the geologic and uranium contamination distribution modeling discussed herein.

# 7.3 Development of 3D STOMP Model Domain

The 3D STOMP model domain has been selected in a way that adequately covers the Stage A EAA, and it has some monitoring wells close to the boundary. Figure 7-4 shows the model domain location in the 300 Area.

The total dimension of the model domain is 600 m (1,968 ft) in the X direction (east-west) and 600 m (1,968 ft) in the Y direction (north-south). Vertically (Z direction), the model extends from ground surface to Ringold unit E. The vertical grid spacing was chosen to be 0.5 m (1.6 ft). Figure 7-5 shows the vertical discretization and the distribution of hydrogeologic units along the model cross-section. In the X and Y directions, grid spacing varies from 50 m to 6.25 m (164 to 20.5 ft). A finer grid spacing of 6.25 m (20.5 ft) was assigned in the EAA. The model has the following hydrogeologic zonations split between unsaturated (or variably saturated) and saturated zones:

# Unsaturated Zone

- Hf silty sandy gravel (Hf SSG)
- Hf sand (Hf S; sand units 1 and 2 given the same hydraulic property)
- Hf sandy gravel (Hf SG)
- Hf gravel (Hf G)
- Hf silt (S)

# Saturated Zone

- Saturated Ringold unit E
- Saturated Hf
- Saturated Hanford 2 zone (a higher hydraulic conductivity zone)
- Saturated Hanford 3 zone (a lower hydraulic conductivity zone)
- Saturated silt
- River alluvium

# 7.4 Development of Flow Model

Development of the flow model involved deriving and applying appropriate flow boundary conditions and calibrating the hydraulic properties to match the field observations. The model grid is presented in Figure 7-6.

# 7.4.1 Recharge

The aerially applied recharge rate was based on the analysis (PNL-10285, *Estimated Recharge Rates at the Hanford Site*) of lysimeter drainage at the south caisson located in the Buried Waste Test Facility of the north 300 Area from July 1985 to June 1993. Over the 8-year period of record, recharge ranged from 2.4 to 11.1 cm/yr with an average of 5.54 cm/yr. Drainage data from the lysimeter reflect a nonvegetated cover and medium to coarse sand. The recharge boundary condition in the model was specified as a Neumann (specified flux) boundary condition with a flux rate of 5.54 cm/yr.

# ECF-300FF5-16-0091, REV. 0



Note: The model grid is shown in orange, while the Stage A EAA is shown in green.



ECF-300FF5-16-0091, REV. 0



Figure 7-5. Distribution of Hydrogeologic Units along a Cross-Section



Note: The outline of Stage A EAA is shown in blue line.

Figure 7-6. Model Domain Showing the Grid Discretization along with Boundary Designations

### ECF-300FF5-16-0091, REV. 0

Columbia River stage is a major driver in the hydrologic system in the 300 Area. Changes in Columbia River stage reflect the release of water upstream at Priest Rapids Dam to meet electric power demand. The seasonal cycle in river stage is related to the timing and volume of snowpack and snowmelt in the watershed with lower river stages typically occurring during fall and winter. The average range of diurnal fluctuations is ~0.5 m. Weekly, daily, and subdaily cycles are also evident from the river stage data.

Hourly Columbia River stage data from the river stage recorder in the 300 Area (river gauge station SWS-1) were used to set a time varying hydrostatic pressure at the river boundary. The SWS-1 river gage is located on the west bank of the Columbia River slightly south of the transect lines and is part of the monitoring network (Figure 7-7). The river stage data was collected manually beginning in 1991 at approximately monthly intervals until collection of automated hourly measurements began in January 2004. The river stage data were implemented in the model by averaging the hourly data over a daily cycle for the period starting from January 1, 2014, through December 31, 2015 (Figure 7-8). Over this period, the minimum and maximum river stages were 104.4 m and 107.1 m (342.5 and 351.3 ft), respectively. The median stage over this time period was 105.3 m (345.4 ft).

The east boundary of the model has been set up from the daily averaged SWS-1 river gage data. The gradient along the river has been interpolated from two stations (319 and 321), based on a computational fluid dynamic model of the Columbia river (PNNL-22886, *System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area – Application to Uranium Reactive Transport*). The interpolated value is 3.19E-04 m/m, which is used in applying flow boundary conditions at the river boundary of the model.



Figure 7-7. Location of the River Gage (SWS-1) in the 300 Area

ECF-300FF5-16-0091, REV. 0



Figure 7-8. Comparison of Hourly and Daily Averaged Columbia River Stage Data at the 300 Area

# 7.4.2 Automated Water Level Network Data Usage

Hourly water level measurements from the automated water level network (AWLN) were used to assign flow boundary conditions on the inland edge of the model grid. A number of wells are part of the AWLN in the 300 Area, as shown in Figure 7-7. Subset of wells used for determining fate and transport model boundary conditions and for model calibration are presented in Figure 7-9.



Figure 7-9. Location of Automated Water Level Network in the Vicinity of Model Domain

## ECF-300FF5-16-0091, REV. 0

The water level data at AWLN gage 399-1-12, the well located closest to the boundary of the model grid (Figure 7-6), were used to set time varying hydrostatic pressures at west and north boundaries. The south boundary was based on the water level data from nearby well 399-2-3. Because this well is slightly inland and upgradient of the south boundary, water levels from well 399-2-3 were modified by a constant -0.05 m (-0.16 ft) for the south boundary. This method resulted in better water level and tracer concentration matches.

The hourly water levels were averaged daily from 2014 through 2015, and daily varying boundary conditions were applied. The hourly and daily averaged water levels for 399-1-12 and 399-2-3 are shown in Figure 7-10 (a and b). Over the 2014 through 2015 simulation time period, the minimum, maximum, and median water levels at 399-1-12 were 104.8 m, 106.8 m, and 105.3 m, respectively; for well 399-2-3, the minimum, maximum, and median water levels were 104.7 m, 106.7 m, and 105.2 m, respectively. The period of sustained high water levels generally occurs during the months of May through August. Figure 7-11 presents the daily averaged hydraulic head of SWS-1 river gage and well 399-1-12 that are used for setting the east and west hydraulic boundaries, respectively.

# 7.5 Model Calibration

Calibration of flow and transport parameters in the 3D STOMP model was undertaken to match the following measurements:

- Water levels in the selected monitoring wells where AWLN data were available
- Extent of river water and groundwater mixing, based on EC measurements from selected monitoring wells where AWLN data were available (EC of end-member waters [upgradient groundwater and river water] were estimated, and simple mixing was performed)
- Uranium concentrations and trends at selected monitoring wells over the past 20 years

In order to match the observed water levels and extent of river-groundwater mixing, adjustments were made to the spatial distribution of hydraulic conductivity in the saturated Hanford unit. Minor adjustments were also made to the boundary conditions. For matching uranium concentrations, the initial uranium soil concentrations were adjusted based on the gravel fraction. Details regarding specific choice of parameters is provided in the following sections.

The calibrations were performed manually. Since the focus of the work is on evaluating uranium concentrations prior to and following remedy treatment in Stage A, particular focus was placed on matching the uranium concentrations in nearby wells that have long-term monitoring records.





Figure 7-10. Daily and Hourly Averaged Water Levels at (a) 399-1-12 and (b) 399-3-3

ECF-300FF5-16-0091, REV. 0



Figure 7-11. Comparison of Daily Averaged Hydraulic Heads for SWS-1 River Gage (East Boundary) and 399-1-12 (West Boundary)

# 7.6 Determination of Fate and Transport Parameters

The following fate and transport parameters were used in the model:

- Saturated zone hydraulic conductivity
- Macrodispersivity
- Porosity
- Particle density and bulk density
- Saturation pressure and relative permeability relationships
- Molecular diffusion coefficient
- Specific storativity
- Uranium sorption

# 7.6.1 Saturated Zone Hydraulic Conductivity

The saturated hydraulic conductivity of the Hanford formation has reportedly been difficult to determine from aquifer testing due to its highly transmissive nature. Constant rate aquifer tests conducted at wells screened in the saturated Hanford formation within the 300 Area resulted in values of horizontal hydraulic conductivity ranging from approximately 980 m/d to 15,000 m/d (PNL-6716, *Interim Characterization Report for the 300 Area Process Trenches*). Re-evaluation of these tests (PNNL-17708,

*Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State*) identified recharge boundary effects in some cases leading to unreliable results. Aquifer test results with hydraulic conductivities >5,000 m/d were considered uncertain due to the low drawdown obtained during the tests (<0.1 m), making accurate analysis difficult. Horizontal hydraulic conductivity of the Hf is reported for previous two-dimensional (2D) and 3D numerical modeling studies: 2,000 to 10,000 m/d

## ECF-300FF5-16-0091, REV. 0

(PNNL-17708), 1,500 m/d (Yabusaki et al., 2008, "Building conceptual models of field-scale uranium reactive transport in a dynamic vadose zone-aquifer-river system"), and 7,000 m/d (Ma et al., 2010). Average value of hydraulic conductivity determined from short-duration constant rate injection tests performed at the Integrated Field Research Challenge project site located within the 300 Area was about 7000 m/d with a range of ~4,600 to 11,000 m/d (PNNL-22886).

A spatially variable depth-averaged hydraulic conductivity field was determined for the Hanford formation in PNNL-22886 using a parameter estimation methodology. It resulted in a spatially variable permeability field that varied over an order of magnitude for the Hanford formation. Lower values of depth averaged permeability  $(1 \times 10^{-10} \text{ m}^2)$  were estimated close to the river that typically increased inland  $(4 \times 10^{-9} \text{ m}^2)$  when moving westwards. This information was used qualitatively during the model calibration exercise. The model calibration was primarily based on evaluation of (1) spatial and temporal trends in uranium concentrations, (2) changes in specific conductance due to river and groundwater mixing at monitoring wells, and (3) geologic information on preferential pathways within the surficial aquifer (e.g., a paleochannel). Based on this information, the saturated zone of the Hanford formation (Hf unit) was divided into the following three different hydraulic conductivity zones (Figure 7-12):

- Saturated Hanford 1 zone covers most of the model domain and was assigned a saturated hydraulic conductivity of 4,000 m/d, based on evaluation of past modeling studies.
- Saturated Hanford 2 zone covers an area of higher hydraulic conductivity (paleochannel) where preferential movement of uranium (and phosphate) has been observed. The saturated hydraulic conductivity of 6,000 m/d was assigned to this zone that resulted in a better match to uranium concentrations.
- Saturated Hanford 3 zone, a lower hydraulic conductivity zone of 1,000 m/d near the river, was assigned to dampen the effect of river stage fluctuations at the river-aquifer interface due to the presence of lower permeability lithologic unit near the base of the river channel. Hydraulic conductivities were shown to be smaller near the water-sediment interface and increasing exponentially with depth (Fritz and Arntzen, 2007, "Effect of Rapidly Changing River Stage on Uranium Flux through the Hyporheic Zone"). This lowering is also consistent with parameter estimation in other modeling studies (PNNL-22886; PNNL-17708).

Hydraulic testing of the Ringold formation gave reliable horizontal hydraulic conductivity estimates between 2 and 51 m/d (PNNL-17708). Of these estimates, horizontal hydraulic conductivity of 42 m/d was reported in PNL-6716 for pumping tests conducted at well 399-1-16A, while an averaged result of 43.25 m/d was reported in WHC-SD-EN-TI-052, *Phase I Hydrogeologic Summary of the 300-FF-5 Operable Unit, 300 Area*, for pumping tests conducted further from the current study but within the 300 Area (PNNL-17708). In previous 2D and 3D numerical modeling studies, the assigned Ringold unit E hydraulic conductivity value ranges from 15 m/d (Yabusaki et al., 2008) to 40 m/d (PNNL-17708; Ma et al., 2010). A horizontal hydraulic conductivity of 40 m/d was assigned to Ringold unit E and was not adjusted during model calibration since most of the flow occurs through the saturated Hanford formation.



Note: Saturated Hanford 1 is the portion that is not colored

### Figure 7-12. Zones of Variable Hydraulic Conductivity for the Hanford Unit in the Unconfined Aquifer

The hydraulic conductivity of alluvium in the hyporheic zone of the Columbia River adjacent to the 300 Area has been estimated between 0.63 and 103.68 m/d (Fritz and Arntzen, 2007), based on slug tests conducted in nine piezometers with depths to top of screen ranging from 19 to 180 cm. Hydraulic conductivities were shown to be smaller near the water-sediment interface and increasing exponentially with depth. An effective vertical hydraulic conductivity was determined for three of the piezometers and ranged from 0.37 to 7.0 m/d. Hydraulic conductivity of the river alluvium was adjusted as part of model calibration.

The vertical hydraulic conductivity of the Hanford and Ringold units were set to 0.1 times the horizontal conductivity which is consistent with previous groundwater modeling studies that assume the vertical hydraulic conductivity of the Hanford and Ringold units range from 0.01 to 0.1 times the horizontal conductivity (NUREG/CR-6940, *Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area;* PNNL-17708; Yabusaki et al., 2008). The river alluvium was simulated as isotropic. The previous study (PNNL-17708) that explicitly simulated river sediments also used an isotropic hydraulic conductivity.

The calibration involved running the model for the 2014-2015 2-year period and evaluating the fit between the simulated and observed heads at wells 399-1-12 and 399-2-2. At the location of each monitoring well, the model nodes that fell within the top and bottom screen elevation for each well were flagged for output of saturation, hydraulic head, and concentration. For each time step, the well nodes that registered a water saturation of 1.0 were used in the calculation of the average concentration at each well.

## ECF-300FF5-16-0091, REV. 0

The arithmetic mean was used for the average where concentrations for all nodes were weighted equally. Determination of goodness of fit was done by visual inspection. Adjustments to parameters governing flow and transport were made and the simulation run again. This process was repeated until a suitable match was obtained between measured and simulated water levels.

Figure 7-13 shows the quarterly changes in the magnitude of Darcy flux and flow direction in the aquifer for selected times in Year 2014 due to the changes in the river stage. In the first quarter of the year, from January to April, the flow direction is from river to groundwater due to the high river stage. During the month of August, the flow direction reversal occurs because of the higher water level in the upgradient location than the river stage. The flow direction changes again during the month of December due to the high river stage. The calculated horizontal linear velocity in the saturated Hanford unit near the Stage A area is approximately 10 m/d and the Darcy flux is ~1.3 m/d and the hydraulic gradient is ~3.25E-4 m/m. The hydraulic gradient value is consistent with the observed gradient (3.0E-4 m/m) value in the field and the velocity estimates are consistent with the average tracer drift velocity of about 11 m/day reported by PNNL-22048, *Updated Conceptual Model for the 300 Area Uranium Groundwater Plume*.

# 7.6.2 Macrodispersivity

The initial longitudinal macrodispersivity used in the models was 8.75 m for the saturated Hanford unit and Ringold unit E. A macrodispersivity of 8.75 m reflects the value derived using the weighted least squares method of Xu and Eckstein, 1995, "Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Field Scale," based on the approximate plume length. The longitudinal macrodispersivity was set to 1.0 m for the river alluvium units. These values are comparable to previous modeling studies that assigned values of 1 m to 3 m for the Hanford unit and values of 0.5 to 3.0 m for Ringold unit E (PNNL-17708; Ma et al., 2010; NUREG/CR-6940).

For all material property zones, except the Hanford vadose zone, the vertical transverse-to-longitudinal dispersivity ratio was set to 0.01 during calibration of the model. Previous modeling studies at Hanford have set the transverse-to-longitudinal dispersivity ratio from 0.01 to 1.0 (NUREG/CR-6940; PNNL-17708; Ma et al., 2010). Longitudinal macrodispersivity for the Hanford vadose zone (above the PRZ) was set at one-tenth of Hf longitudinal macrodispersivity, while the transverse dispersivity remained unchanged, because macrodispersivity in the unsaturated media is typically less than that in the saturated zone.

# 7.6.3 Porosity

Total porosity refers to both isolated and connected pore space. Diffusive porosity refers to the connected pore space and is the porosity through which flow and transport occurs in the model. For purposes of assigning values of diffusive porosity in the model, the diffusive porosity was assumed equal to values of total porosity listed in the literature. Total and diffusive porosity was specified as 0.177 cm<sup>3</sup>/cm<sup>3</sup> for the Ringold Formation and river alluvium (PNNL-14702, *Vadose Zone Hydrogeology Data Package for Hanford Assessment* [Table 4.5]). Porosity for the Hf was specified as 0.167 cm<sup>3</sup>/cm<sup>3</sup> (PNNL-14702, Table 4.5, Soil Class Hg). For all other units, the values are taken from PNNL-18564, *Selection and Traceability of Parameters to Support Hanford-Specific RESRAD Analyses: Fiscal Year 2008 Status Report*. For the silt unit, the value is 0.419 cm<sup>3</sup>/cm<sup>3</sup>; for all of the Hanford sand units, the value is 0.379 cm<sup>3</sup>/cm<sup>3</sup>.
## ECF-300FF5-16-0091, REV. 0



The line of the cross-section passes in an east-west direction through Stage A EAA as shown in previous figure.

Figure 7-13. Darcy Flux Distribution Along a 2D Cross-Section for Selected Times within a Year

7-16

# 7.6.4 Particle Density and Bulk Density

Bulk density for the Hf, taken as 2.23 g/cm<sup>3</sup>, reflects the modal value of measurements for sandy gravel at the 300 Area (PNNL-17708, Table A.3). A bulk density of 2.23 g/cm<sup>3</sup> is also reasonable, given the range of bulk densities for Hanford coarse gravel of 1.56 to 2.42 g/cm<sup>3</sup> for a gravel content ranging from 50 to 85 percent, respectively (PNNL-14702, Table B-21). The particle density for the Hf was 2.68 g/cm<sup>3</sup>, based on porosity of 0.167 cm<sup>3</sup>/cm<sup>3</sup> and bulk density of 2.23 g/cm<sup>3</sup>.

A particle density of 2.63 g/cm<sup>3</sup> and 2.66 g/cm<sup>3</sup> was reported (PNNL-17708, Appendix A) for Ringold unit E for the 300 Area with an average value of 2.65 g/cm<sup>3</sup> assigned in the model. Using a porosity of 0.177 for the Ringold unit gives a bulk density of 2.18 g/cm<sup>3</sup> and is nearly identical to the value of 2.17 g/cm<sup>3</sup> for Ringold sandy gravel for 82 percent gravel (PNNL-14702, Table B-27). Particle density of 2.76 g/cm<sup>3</sup> was used to represent the river alluvium (PNNL-17708). Using a diffusive porosity of 0.177 gives a bulk density of 2.27 g/cm<sup>3</sup>.

The particle density value of 2.89 g/cm<sup>3</sup> was used to represent the silt unit (PNNL-18564); using a diffusive porosity of 0.419 gives a bulk density of 1.67 g/cm<sup>3</sup>.

For all of the sand units, the particle density value of 2.57 g/cm<sup>3</sup> (PNNL-18564) was used; using a diffusive porosity of 0.379 gives a bulk density of 1.6 g/cm<sup>3</sup>. For Hanford silty sandy gravel and sand gravel units, 2.31 g/cm<sup>3</sup> (PNNL-18564) was used; using a diffusive porosity of 0.167 gives a bulk density of 1.92 g/cm<sup>3</sup>. For the Hanford gravel unit, the particle density value of 2.19 g/cm<sup>3</sup> (PNNL-18564) was used; using a diffusive porosity of 0.102 gives a bulk density of 1.97 g/cm<sup>3</sup>.

# 7.6.5 Saturation-Pressure and Relative Permeability Relationships

The relationship between capillary pressure and saturation was characterized using the van Genuchten function (van Genuchten, 1980, "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils") and the Mualem pore distribution model (Mualem, 1976, "A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media"). In the models developed for the 300 Area, only Hf has the potential to be variably saturated. The parameters needed to describe the van Genuchten moisture retention constitutive relation and the Mualem relative permeability constitutive relation include the parameters such as  $\alpha$  (proportional to the inverse of the air-entry matric potential), saturated and residual volumetric water contents,  $\theta_s$  and  $\theta_r$ , dimensionless fitting parameters *n*, and *m*, and saturated hydraulic conductivity, K<sub>sat</sub>. The horizontal K<sub>sat</sub> for the vadose zone units is taken to be 10 times the vertical K<sub>sat</sub>. These parameters are presented in Table 7-1 and are based on statistical average of laboratory measurements summarized in PNNL-14702 (Table 4.5). The default option was used for the *m* parameter where m = 1 - 1/n.

Same hydraulic property set is used for the silty sandy gravel and sandy gravel unit due to lack of information. For the silt unit the hydraulic properties listed in PNNL-14702 (Table 4-5) for the Cold Creek Silt dominated unit were chosen. The  $\alpha$  parameter of 0.017 1/cm for sandy gravel listed in PNNL-14702 (Table 4-5) was thought to represent too large of an air entry potential near the capillary fringe. As a result,  $\alpha$  was assigned a value of 0.1 1/cm.

# 7.6.6 Molecular Diffusion Coefficient

The molecular diffusion option used in the model was conventional with a molecular diffusion coefficient of  $2.5 \times 10^{-9}$  m<sup>2</sup>/s and solute partition option of continuous. The molecular diffusion coefficient, held constant during all simulations, was not included as a calibration parameter in the model. The uranium aqueous species effective molecular diffusion coefficient is set at  $1 \times 10^{-9}$  m<sup>2</sup>/s.

# 7.6.7 Specific Storativity

Specific storativity, used in the model, was taken as the default value where it is equal to  $1 \times 10^{-7} \times$  diffusive porosity. Specific storativity was held constant during all simulations and not included as a calibration parameter in the model.

# 7.6.8 Uranium Sorption

Uranium sorption-desorption parameters for simulating the pretreatment conditions are taken from ECF-300FF5-11-0151, *Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS*. These were developed based on the desorption experiments conducted by PNNL-SA-58541, *Uranium(VI) Release from Contaminated Vadose Zone Sediments: Estimation of Potential Contributions from Dissolution and Desorption*, and Liu et al., 2008, "Scale-dependent desorption of uranium from contaminated subsurface sediments." The results presented in these papers are internally consistent and comprehensive and, therefore, are used exclusively for developing the sorption parameters before phosphate treatment. The sorption/desorption parameters presented here apply specifically to uranyl ion, which has the chemical formula of  $(UO_2)^{2+}$ , resulting in an oxidation state of +6. For simplicity, it is referred to in this report as U(VI). The uranyl ion forms from hydrolysis of uranium mineral during water-mineral interaction.

Based on information presented in ECF-300FF5-11-0151, the uranium  $K_d$  value of 3.17 mL/g was chosen for the aquifer (based on groundwater alkalinity), while a  $K_d$  value of 2.18 mL/g was chosen for the vadose zone. Both an equilibrium sorption and a kinetic sorption model was developed to cover the range of uncertainty expected in the uranium leaching characteristics. For the equilibrium sorption model the above mentioned  $K_d$  values are used. For the kinetic sorption-desorption model, the forward reaction rate constant was calculated to be  $9.31 \times 10^{-3}$  hr<sup>-1</sup> based on a representative backward (desorption) rate constant of  $5 \times 10^{-4}$  hr<sup>-1</sup> derived for field-textured samples (ECF-300FF5-11-0151). The kinetic model is implemented using the *Valocchi Sorption* option within the Kinetic Reactions card of STOMP input file.

# 7.7 Development of Initial Conditions

Simulations were initially conducted over a 2-year period (January 1, 2014 through December 31, 2015). This period coincides with complete water level data sets available for the inland and river model boundaries from well 399-1-12, and well 399-2-3 and the river gage, respectively. Additional wells within the model domain also had complete or nearly complete data sets for the same 2-year period that were useful in the calibration process. For the 2014 to 2015 period, 2014 exhibits the highest river stage and corresponding aquifer water levels, while the maximum river stage and aquifer water levels measured in 2015 are lower. High water levels are thought to be largely responsible for rewetting of the PRZ and increased influx of labile uranium from the top of the PRZ. This, in turn, is surmised to be responsible for generating periodic pulses to the uranium groundwater plumes with concentrations exceeding 60 to 90  $\mu$ g/L. The high river stage during the summer of 2015 is lower than that observed in 2014 such that groundwater does not intersect sediments near the top of the PRZ that potentially contain higher soil uranium concentrations. Thus, the use of data from the 2014 to 2015 period provides a sampling of different flow behaviors and resulting uranium transport in the aquifer.

Boundary conditions are established by setting boundary pressures from observed data, as discussed earlier, and were based on a hydrostatic head distribution. The 3D flow and transport model was initially run for 15 cycles (30 years), starting from Year 1992, to establish the uranium concentrations in the aquifer under a "No Action" scenario. The hydraulic heads in the model rapidly equilibrated to the boundary conditions, and initial conditions were seen to diminish within the first 2-year cycle. The 3D transport modeling of phosphate injection/infiltration, along with uranium transport, was

## ECF-300FF5-16-0091, REV. 0

performed by exercising the model starting from Year 2015 and running it over the 2-year period (Year 2015 and 2016). Initial heads for the start of the model cycle were taken from the restart file, which was accessed by STOMP using the Restart option in the Solution Control Card of the STOMP input file.

Details of the data compilation and development of 3D uranium soil distribution can be found in ECF-300FF5-15-0087. Since the uranium soil concentrations were determined on <2 mm size sediment, soil concentrations were corrected for gravel content for the purpose of applying uranium mass on the bulk volume basis. This correction is necessary because almost all of the uranium mass is associated with the <2 mm size fraction, and a negligibly small amount is associated with the gravel fraction.

The gravel correction factor was derived by determining the fraction of <2 mm grain size in the 300 Area soils. The gravel content varies within the Stage A area due to varying lithologies. However, because most of the vadose zone and upper part of the unconfined aquifer is dominated by sandy gravel unit, a 60 percent gravel fraction was deemed reasonable. Uranium soil concentrations determined from the <2 mm size fraction were adjusted (multiplied by 0.4 for bulk volume), which is indicative of 40 percent of the sediment being <2 mm size that contains majority of uranium mass.

Prior to setting initial concentrations, the data were further adjusted for the component of uranium that would be exchangeable or labile (Figure 7-14). This was considered to be 60 percent based on evaluations presented in ECF-300FF5-11-0151. The gravel corrected bulk soil concentrations were multiplied by 0.6 to adjust for the labile fraction and the soil uranium plumes were reinterpolated.

Table 7-1 summarizes the model parameters following calibration. Figure 7-15 presents the hydraulic head comparisons among the observed and simulated heads for wells 399-1-12 and 399-2-2 that are located far from each other (Figure 7-16). Simulated hydraulic heads for all other wells within the model domain also show excellent matches with observations.



Figure 7-14. Distribution of Initial Soil Labile Uranium Concentration Along an East-West-Trending Cross-Section Through the Stage A EAA

|                                                     |                                           |                                   |                          |                                                           |                                                  |                                                 |                               |                       |                                                         |                                                          |                                                      | ו                          |
|-----------------------------------------------------|-------------------------------------------|-----------------------------------|--------------------------|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------|-----------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------|
| Table 7-1. Model Parameters Used in the Simulations | muivullA 19viA                            | 10*                               | 1.0                      | 0.177                                                     | 1                                                | 0.01                                            | 0.008                         | 1.66                  | 0.147                                                   | 2.76                                                     | 2.27                                                 | on.                        |
|                                                     | Ringold Unit E<br>(Saturated)             | 40                                | 0.1                      | 0.177                                                     | 8.75                                             | 0.01                                            | 0.008                         | 1.66                  | 0.147                                                   | 2.68                                                     | 2.21                                                 |                            |
|                                                     | Hanford 3<br>(Saturated)                  | 1,000*                            | 0.1                      | 0.167                                                     | 8.75                                             | 0.01                                            | 0.082                         | 2.093                 | 0.152                                                   | 2.63                                                     | 2.19                                                 |                            |
|                                                     | Hanford2<br>(Saturafed)                   | e,000*                            | 0.1                      | 0.167                                                     | 8.75                                             | 0.01                                            | 0.082                         | 2.093                 | 0.152                                                   | 2.63                                                     | 2.19                                                 |                            |
|                                                     | Hanford<br>(Saturated)                    | 4,000*                            | 0.1                      | 0.167                                                     | 8.75                                             | 0.01                                            | 0.082                         | 2.093                 | 0.152                                                   | 2.63                                                     | 2.19                                                 |                            |
|                                                     | Saturated Silt<br>(Saturated S)           | 0.5                               | 0.1                      | 0.419                                                     | 8.75                                             | 0.01                                            | 0.005                         | 2.249                 | 0.0954                                                  | 2.89                                                     | 1.68                                                 |                            |
|                                                     | (8) filt (8)                              | 0.5                               | 0.1                      | 0.419                                                     | 0.875                                            | 0.1                                             | 0.005                         | 2.249                 | 0.0954                                                  | 2.89                                                     | 1.68                                                 |                            |
|                                                     | Hanford Silty<br>Sandy Gravel<br>(Hf SSG) | 2.85                              | 0.1                      | 0.167                                                     | 0.875                                            | 0.1                                             | 0.017                         | 1.725                 | 0.132                                                   | 2.31                                                     | 1.92                                                 |                            |
|                                                     | Hanford Sandy<br>Gravel (Hf SG)           | 2.85                              | 0.1                      | 0.167                                                     | 0.875                                            | 0.1                                             | 0.017                         | 1.725                 | 0.132                                                   | 2.31                                                     | 1.92                                                 |                            |
|                                                     | Hanford Sand<br>(Hf S)                    | 3.2                               | 0.1                      | 0.379                                                     | 0.875                                            | 0.1                                             | 0.027                         | 2.168                 | 0.0844                                                  | 2.57                                                     | 1.6                                                  |                            |
|                                                     | Hanford Gravel<br>(Hf G)                  | 12.6                              | 0.1                      | 0.102                                                     | 0.875                                            | 0.1                                             | 0.007                         | 1.831                 | 0.196                                                   | 2.19                                                     | 1.97                                                 |                            |
|                                                     |                                           | Horizontal K <sub>sat</sub> (m/d) | K Anisotropy $(K_z/K_x)$ | Diffusive Porosity<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Longitudinal<br>Dispersivity, α <sub>L</sub> (m) | Dispersivity<br>Anisotropy, $\alpha_T/\alpha_L$ | van Genuchten $\alpha$ (1/cm) | van Genuchten $n$ (-) | Residual Saturation (cm <sup>3</sup> /cm <sup>3</sup> ) | Particle Density, p <sub>P</sub><br>(g/cm <sup>3</sup> ) | Bulk Density, p <sub>B</sub><br>(g/cm <sup>3</sup> ) | * Based on model calibrati |

7-21

G-201

ECF-300FF5-16-0091, REV. 0





Figure 7-15. Comparison of Model Simulated Hydraulic Heads and Observed Heads at (a) 399-1-12 and (b) 399-2-2



Notes: The cross-section line (red line) is used for presenting Darcy flux distribution.

Well 399-1-12 is located in the northwest portion of the model domain, while 399-2-2 is located in the southeast portion of the model domain.

# Figure 7-16. Location Map of Monitoring Wells within the Model Domain

# 7.8 Modeling Uranium and Phosphate Transport

This section provides details on uranium and phosphate transport modeling conducted using STOMP. 3D fate and transport modeling using STOMP was performed in three stages:

- 1. Modeling uranium transport prior to Stage A treatment
- 2. Modeling phosphate transport during treatment and post-treatment time periods
- 3. Modeling uranium transport during post-treatment times

## 7.8.1 Modeling Uranium Transport Prior to Treatment (No Action Case)

A fate and transport model was developed to estimate the uranium soil and groundwater concentrations prior to Stage A treatment. The emphasis of this model was to match the uranium concentrations in the aquifer observed over the past 20 years (approximately). Since some simplifications are inherent in modeling complex uranium leaching and transport characteristics within a dynamic aquifer, the focus was on matching the trend in uranium concentrations in selected wells where long-term monitoring records exist and to be reasonably close to the magnitude of uranium concentrations observed in the aquifer. The exact reconstruction of the past was not the objective of the model due to limited information on the uranium soil distribution and various past remediation activities. The hydraulic properties and boundary conditions developed for this model were used in the later models with minor changes where necessary.

Calibration of the uranium model included adjusting the maximum initial uranium concentrations (labile fraction) to better match with measured uranium concentrations from 1997 through 2015. Initial concentrations were adjusted by setting all saturated zone Hanford and Ringold unit soil concentrations to zero and all concentrations below background value to background, based on the understanding that the labile fraction would have been removed over many decades of pore volume flushing prior to start of the model.

The simulated uranium groundwater concentrations are compared to the observed concentration for selected monitoring wells in Figure 7-17 using both an equilibrium and kinetic sorption model. These simulations are performed assuming no remedial action has occurred (no action scenario) using hydraulic boundary conditions based on 2-year data from 2014-2015. These plots show how the transport model mimics the observed increases in the uranium groundwater concentrations during the typically high water month of June. Well 399-1-17A has the best long-term monitoring record of uranium concentrations. The simulation results (Figure 7-17) show that the kinetic model mimics the observed uranium groundwater concentrations more accurately than the equilibrium model. The model results show that during the typical high water month of June, uranium groundwater concentrations increase at the inland wells (Figure 7-17 a, b, c, and d), and decrease at the wells near the river (Figure 7-17 e and f). This behavior in the inland wells is a result of the rising water levels coming in contact with uranium mass within the upper portions of the PRZ, and capillary fringe, near the southern end of the 300 Area Process Trench, thereby increasing desorption from the soil to the aqueous phase and increasing concentrations in the groundwater. As water levels decline, uranium groundwater concentrations decrease due to reduced leaching from the PRZ. The decrease in uranium groundwater concentrations for the wells near the river is due to a combination of dilution and mixing from the influx of river water. Figure 7-18 shows the simulated uranium plume maps for equilibrium and kinetic sorption models for Years 2015, 2022, and 2040. The results presented herein demonstrate adequacy of the modeling methodology and choice of parameters at the scale of the model domain.



Figure 7-17. Measured and Simulated Groundwater Uranium Concentrations During the Calibration Period at Wells (a) 399-1-12, (b) 399-1-23, (c) 399-1-17A, (d) 399-1-2, (e) 399-1-7, and (f) 399-2-2 [page 1 of 2)



Figure 7-17. Measured and Simulated Groundwater Uranium Concentrations During the Calibration Period at Wells (a) 399-1-12, (b) 399-1-23, (c) 399-1-17A, (d) 399-1-2, (e) 399-1-7, and (f) 399-2-2 (page 2 of 2)





Figure 7-18. Simulated Uranium Plumes in Years 2015, 2022, and 2040 under No Action Scenario

# ECF-300FF5-16-0091, REV. 0

7-27

This page intentionally left blank.

## 7.8.2 Phosphate Transport Modeling During and Post-Treatment Time Periods

Based on information derived from experimental data on phosphate migration and retardation and from observations of phosphate concentrations made during the treatment and post-treatment time periods, modeling of phosphate transport was undertaken. Phosphate injections and infiltration operations were simulated, and phosphate concentrations were compared to the observations made in the PRZ and aquifer wells. The results were used to demonstrate adequacy of parameters for modeling phosphate transport in the vadose zone and aquifer and for projecting concentrations in the aquifer.

Phosphate injection and infiltration were simulated, based on the operational records for Stage A. The rate of injection and infiltration along with timings and locations were consistent with the Stage A operation schedule (Table 6-1). To simulate the infiltration, as a modeling simplification, a constant rate of 212 L/min (56 gal/min) was applied over the first four days of infiltration and 303 L/min (80 gal/min) for the remaining 5 days.

For modeling transport of phosphate, the K<sub>d</sub> value within the vadose zone was chosen to be 0.02 mL/g, based on experimental evaluations reported in PNNL-17818, Table 4.2. A 10 times higher value of 0.2 mL/g is applied to the saturated zone based on evaluation of monitoring data on phosphate migration in the aquifer. All other transport parameters (e.g., dispersivity and molecular diffusion) were left unchanged. The simulated phosphate concentrations are compared with the observed data for selected groundwater monitoring wells (Figure 7-19). The simulated plume maps of phosphate in the aquifer are presented in Figure 7-20 for times during the treatment and for the post-treatment time period. For comparison, spatial plume maps are drawn based on available information from monitoring wells at selected times (Figure 7-21), which indicate that high phosphate concentrations persisted in the aquifer even after three weeks following injection. The simulated plume map for November 20, 2015 is compared with the interpolated map, based on the observed data from monitoring wells (Figure 7-22). The black contours in the figure show the simulated results, while other color contours are drawn from the measured phosphate concentration data. The simulated concentration contour of 250 mg/L is spatially located approximately where such concentrations are interpolated based on observations.

An assessment of any changes in aquifer hydraulic properties from phosphate injection/infiltration is provided in Appendix E. Evaluation of observed changes in water levels before and after treatment indicates that no or negligible changes have occurred in the aquifer properties within the Stage A EAA.

ECF-300FF5-16-0091, REV. 0



Figure 7-19. Simulated Phosphate Concentration in Aquifers (a) 399-1-23, (b) 399-1-17A, and (c) 399-1-7

7-30



Figure 7-20. Simulated Phosphate Concentration Distribution in the Aquifer for (a) November 20, 2015; (b) November 30, 2015; (c) December 14, 2015; (d) December 20, 2015; (e) December 30, 2015; (f) January 15, 2016; and (g) December 31, 2016¶page 1 of 2)



Figure 7-20. Simulated Phosphate Concentration Distribution in the Aquifer for (a) November 20, 2015; (b) November 30, 2015; (c) December 14, 2015; (d) December 20, 2015; (e) December 30, 2015; (f) January 15, 2016; and (g) December 31, 2016 (page 2 of 2)

SGW-59614, REV. 0

7-32



Figure 7-21. Post-Injection Phosphate Concentrations (mg/L) Contours based on Observations on (a) November 20, 2015; (b) December 3, 2015; (c) December 10, 2015¶page 1 of 2)



Figure 7-21. Post-Injection Phosphate Concentrations (mg/L) Contours based on Observations on (a) November 20, 2015; (b) December 3, 2015; (c) December 10, 2015 (page 2 of 2)



Figure 7-22. Phosphate Concentration (mg/L) Comparison between Model Simulated and Interpolated Data Based on Observations

## 7.8.3 Uranium Transport Modeling During and Post-Treatment Period

Fate and transport modeling of uranium during and following the phosphate treatment is conducted by simulating the effects of injection and infiltration during the operation period. For this purpose, the kinetic sorption-desorption model was used. Prior to that time, the uranium distribution within the vadose zone and aquifer was based on the pretreatment model results using the kinetic sorption model. During and following the treatment, the backward (desorption) rate constant<sup>2</sup> for kinetic sorption is reduced by factors of 5 and 10 within the Stage A EAA. The choice of reduction factor was based on the following considerations:

- Flow-through column tests conducted on sediment samples collected from the PRZ, where higher phosphate concentrations were observed, indicated much lower uranium concentrations in the effluent compared to other samples that did not have high phosphate concentrations (see Section 6.3.1.2). A concentration reduction factor of 10 to 100 is noticeable during the leaching tests presented in Figures 6-26 and 6-27.
- 2. Based on fitting kinetic rate model to the flow-through column experiments (Appendix C) it was observed that the desorption rates are appreciably lower for the samples where phosphate concentrations are higher. In Appendix C.1.3, it is noted that <2 mm size sediment samples B347F1F3 and B347T7 have K<sub>d</sub> values that are about factor of 5 to 10 greater than B347P5P8 and B247R1. For the field-textured (bulk) sediment samples, the K<sub>d</sub> value for B347T6 is twice that of other two bulk sediment samples (B347R0 and B347P4). The samples showing higher K<sub>d</sub> values are located at PRZ depths (Table 6-5) and have higher phosphate concentrations resulting from PRZ injections (and infiltration) as shown in Figure 6-17.
- 3. PNNL-17818 provides an estimate of the dissolution rate of uranium-rich calcite in the presence and absence of polyphosphate amended solution. Under varying phosphate concentration, the rate of uranium release is maintained at, or below, the minimum rate observed in the absence of aqueous phosphate, regardless of pH. The release rate within the pH range of 6 to 8 for solutions where phosphate is not present is about 10<sup>-8</sup> mol/m<sup>2</sup>/sec but under low to moderate phosphate concentrations (PO<sub>4</sub><sup>3-</sup> of 10<sup>-2</sup> mol/L) is typically a factor of 3 to 5 smaller.
- 4. Concentrations of uranium in the groundwater monitoring wells (e.g., 399-1-23 and 399-1-17A) in the vicinity of Stage A EAA have shown a sharp drop following the treatment (Figure 6-13) and have stayed low for the 6-month monitoring period for which the record currently exists.

The modeling results related to uranium concentrations prior to and following the treatment are shown in the Figure 7-23 and compared to the observed concentrations at wells 399-1-23 and 399-1-17A. The results are presented for model cases where the backward (desorption) kinetic rate constant has been reduced by a factor of 5 and 10 to cover the probable range of uncertainty. The observed concentrations show a sharp decline in uranium concentration immediately following the Stage A treatment but then increase over time. The last three monthly observations indicate establishment of newly equilibrated concentrations that vary within a narrow range. The focus of the modeling is to match these concentrations as they are expected to persist in the aquifer over the near future.

<sup>&</sup>lt;sup>2</sup> The forward reaction rate constant for kinetic sorption is calculated as the product of  $K_d$ , the backward (desorption) rate constant, and the ratio of bulk density to porosity. Increasing the value of  $K_d$  by a factor of 5 (or 10), while holding all other parameters constant, has the effect of reducing the backward (desorption) rate constant by a factor of 5 (or 10) compared to the pretreatment value.

ECF-300FF5-16-0091, REV. 0



Figure 7-23. Simulated Uranium Concentrations for (a) 399-1-23 and (b) 399-1-17A Compared to Observed Data Before and Following Treatment

#### ECF-300FF5-16-0091, REV. 0

The model predicted results match reasonably well with observed post-treatment uranium concentration trends in the field indicating that the desorption rates have indeed declined within the Stage A area as a result of phosphate injection and infiltration. A factor of 4 to 6 reduction in uranium concentrations is observed between the pretreatment and the post-treatment concentrations at well 399-1-23. This indicates that the remedy implemented for Stage A has been successful. The simulated concentrations in well 399-1-17A following treatment decline less steeply than at wells 399-1-23 because 399-1-17A is located further downgradient of Stage A EAA and, therefore, is influenced by uranium mass from areas outside the Stage A EAA. Nevertheless, some lowering of concentration (up to a factor of 2) along with the change in long-term trend is noticeable.

Figure 7-24 presents the footprint of predicted uranium plume at the end of Year 2016. The model predicts that due to the treatment, the extent of the high concentration uranium plume area in the aquifer has reduced considerably in the Stage A EAA area and remains reduced. This can be seen by comparing and contrasting the plume map under the no action scenario shown in part c of Figure 7-24.

The model setup used for short-term predictions (Figure 7-23) is extended to evaluate long-term uranium concentrations. For this purpose, the post-treatment model parameters are kept unchanged, and the model is exercised to run up to Year 2040. The results are presented in Figure 7-25 for the cases where the backward (desorption) kinetic rate constants are reduced by factors of 5 and 10. These results are compared to the no action case in order to compare the change predicted from phosphate treatment in Stage A EAA. The predictive cases are presented assuming that desorption rates are not going to change over the simulated time period. Due to these assumptions, the uncertainty in these estimates is high and need to be considered when making any decisions based on the model predictions. The long-term simulated concentrations for 399-1-23 show a gradual rise but remain below the no action case. The gradual rise reflects the combined effect of slow continued desorption of uranium into the aquifer from Stage A EAA and contribution to the aquifer from areas outside Stage A. The long-term simulated concentrations for 399-1-77A also continue to remain below the no action case.

ECF-300FF5-16-0091, REV. 0



Figure 7-24. Post-Treatment Simulated Uranium Concentrations at End of December 2016 (a) 10 Times Reduction in Desorption Rate, (b) 5 Times Reduction in Desorption Rates, and (c) No Action Case¶page 1 of 2)

## ECF-300FF5-16-0091, REV. 0



Figure 7-24. Post-Treatment Simulated Uranium Concentrations at End of December 2016 (a) 10 Times Reduction in Desorption Rate, (b) 5 Times Reduction in Desorption Rates, and (c) No Action Case (page 2 of 2)

7-40

ECF-300FF5-16-0091, REV. 0



Figure 7-25. Long-Term Simulated Uranium Concentrations for (a) 399-1-23 and (b) 399-1-17A Comparing the Predicted Post-Treatment Results to the No Action Case

7-41

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

#### ECF-300FF5-16-0091, REV. 0

## 8 Conclusions

The desired goal of injection and infiltration in Stage A EAA is to deliver phosphate at high concentrations to the vadose zone and top of the aquifer where uranium is present in the sediments in order to precipitate phosphate bearing mineral phases that can bind labile uranium and sequester it. This report summarizes the information gathered before, during, and post-treatment time periods and synthesizes all of the relevant information for developing a conceptual understanding of the phosphate solution-sediment interactions during and following the treatment.

Reactive-transport modeling was conducted to develop an understanding of the various reactions in the subsurface that lead to sequestration of uranium. For development of predictive fate and transport model, an understanding of the processes governing uranium sequestration is needed, so the proof-of-principle can be sufficiently justified. Geochemical and reactive transport modeling was performed to match the experiments and observations to justify the proof-of-principle. Information gathered from geochemical evaluations of pretreatment and post-treatment soil samples, sequential extraction tests, batch desorption and flow-through column tests, mineral phase analysis, and observations made in the field regarding uranium and phosphate concentrations in groundwater, are all used in developing parameters and conceptual models for conducting fate and transport calculations. A factor of 4 to 6 reduction in uranium concentrations is observed between the pretreatment concentrations and the post-treatment concentrations in the groundwater monitoring wells. This indicates that the remedy implemented for Stage A was successful in sequestering uranium in situ. The longer term predictive calculations indicate that the uranium concentrations will continue to remain below the pre-treatment levels; however, some small gradual increase in concentration over time may occur. However, due to a variety of modeling assumptions (e.g., in situ uranium mass distribution and sorption-desorption characteristics), the longer term predictive uncertainty is high and needs to be considered when making any decisions for Stage B design and implementation.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

## 9 References

- Brown, James L., 1980, "Calcium Phosphate Precipitation in Aqueous Calcitic Limestone Suspensions," Journal of Environmental Quality 9(4):641-644.
- CHPRC-00176, 2016, *STOMP Software Management Plan*, Rev. 4, CH2M HILL Plateau Remediation Company, Richland, Washington.
- CHPRC-00211, 2016, *STOMP Software Test Plan*, Rev. 3, CH2M HILL Plateau Remediation Company, Richland, Washington.
- CHPRC-00222, 2016, *STOMP Functional Requirements Document*, Rev. 2, CH2M HILL Plateau Remediation Company, Richland, Washington.
- CHPRC-00269, 2016, *STOMP Requirements Traceability Matrix*, CHPRC Build 5, Rev. 4, CH2M HILL Plateau Remediation Company, Richland, Washington.
- CHPRC-00515, 2016, *STOMP Acceptance Test Report*, CHPRC Build 5, Rev. 4, CH2M HILL Plateau Remediation Company, Richland, Washington.
- CHPRC-01874, 2016, *The Geochemist's Workbench Integrated Software Management Plan Version 11.0.3*, Rev. 2, CH2M HILL Plateau Remediation Company, Richland, Washington.
- DOE/RL-2009-30, 2010, 300 Area Decision Unit Remedial Investigation/Feasibility Study Work Plan for the 300-FF-1, 300-FF-2, and 300-FF-5 Operable Units, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084376</u>.
- DOE/RL-2011-50, 2012, Regulatory Basis and Implementation of a Graded Approach to Evaluation of Groundwater Protection, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0093361.
- DOE/RL-2014-13, 2015, Integrated Remedial Design Report/Remedial Action Work Plan for the 300 Area (300-FF-1, 300-FF-2 & 300-FF-5 Operable Units), Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081153H.
- DOE/RL-2014-13-ADD2, 2015, *Remedial Design Report/Remedial Action Work Plan Addendum for the* 300 Area Groundwater, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081151H.
- DOE/RL-2014-42, 2015, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H</u>.
- ECF-300FF5-11-0151, 2012, Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS, Rev. 3, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078650H</u>.

- ECF-300FF5-15-0014, 2015, Determination of Vadose Zone Uranium Concentration Distribution Extents and Establishment of the Stage A Enhanced Attenuation Area for 300-FF-5, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- ECF-300FF5-16-0087, 2016, Determination of Vadose Zone Uranium Concentration Distribution Extents and Development of a Three-Dimensional Geologic Framework Model for the 300-FF-5 Operable Unit, Hanford, Washington, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington.
- ECF-HANFORD-13-0029, 2015, Development of the Hanford South Geologic Framework Model, Hanford Site Washington, Rev. 2, CH2M HILL Plateau Remediation Company, Richland, Washington.
- EPA and DOE, 2013, *Hanford Site 300 Area Record of Decision for 300-FF-2 and 300-FF-5, and Record of Decision Amendment for 300-FF-1*, U.S. Environmental Protection Agency and U.S. Department of Energy, Richland, Washington, Richland, Washington. Available at: <a href="http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180">http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087180</a>.
- Fritz, Brad G. and Evan V. Arntzen, 2007, "Effect of Rapidly Changing River Stage on Uranium Flux through the Hyporheic Zone," *Ground Water* 45(6):753-760. Available at: http://info.ngwa.org/GWOL/pdf/072682493.pdf.
- Kohler, M., G.P. Curtis, D.E. Meece, and J.A. Davis, 2004, "Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments," *Environ. Sci. Technol.* 38(1):240-247. Available at: <u>http://pubs.acs.org/doi/pdf/10.1021/es0341236</u>.
- Liu, Chongxuan, John M. Zachara, Nikolla P. Qafoku, and Zheming Wang, 2008, "Scale-dependent desorption of uranium from contaminated subsurface sediments," *Water Resources Research* 44:13 pp. Available at: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1304&context=usdoepub.
- Lutz, J.F., R.A. Pinto, R. Garcia-Lagos, and H.G. Hilton, 1966, "Effect of Phosphorus on Some Physical Properties of Soils: II. Water Retention," *Soil Sci. Soc. Amer. Proc.* 30(4):433-437.
- Ma, R., C. Zheng, H. Prommer, J. Greskowiak, C. Liu, J. Zachara, and M. Rockhold, 2010, "A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions," *Water Resources Research* 46(5):1-17
- Mehta, V. S., F. Maillot, Z. Wang, J.G. Catalano, and D.E. Giammar, 2016, "Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate," *Environmental Science & Technology* 50:3128-3136.
- Mualem, Yechezkel, 1976, "A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media," *Water Resources Research* 12(3):513-522. Available at: <u>https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11570.p</u> <u>df</u>.
- NUREG/CR-6940, 2007, Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area, PNNL-16396, U.S. Nuclear Regulatory Commission, Washington, D.C. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-16396.pdf</u>.

- PNL-6716, 1988, Interim Characterization Report for the 300 Area Process Trenches, Pacific Northwest Laboratory, Richland, Washington. Available at: <u>http://www.osti.gov/energycitations/servlets/purl/6676561-CQApoo/</u>.
- PNL-10285, 1995, *Estimated Recharge Rates at the Hanford Site*, Pacific Northwest Laboratory, Richland, Washington. Available at: <u>http://www.osti.gov/scitech/servlets/purl/10122247</u>.
- PNNL-11216, 1997, STOMP Subsurface Transport Over Multiple Phases Application Guide, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://stomp.pnl.gov/documentation/application.pdf</u>.
- PNNL-12030, 2000, STOMP Subsurface Transport Over Multiple Phases Version 2.0 Theory Guide, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://stomp.pnl.gov/documentation/theory.pdf</u>.
- PNNL-14022, 2002, *300 Area Uranium Leach and Absorption Project*, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-14022.pdf</u>.
- PNNL-14702, 2006, Vadose Zone Hydrogeology Data Package for Hanford Assessments, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-14702rev1.pdf</u>
- PNNL-15782, 2006, STOMP Subsurface Transport Over Multiple Phases Version 4.0 User's Guide, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://stomp.pnl.gov/documentation/userguide.pdf</u>.
- PNNL-17708, 2008, *Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State*, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17708.pdf</u>.
- PNNL-17818, 2008, 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17818.pdf.
- PNNL-18303, 2009, Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-18303.pdf.
- PNNL-18564, 2009, Selection and Traceability of Parameters to Support Hanford-Specific RESRAD Analyses: Fiscal Year 2008 Status Report, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-18564.pdf.
- PNNL-20004, 2010, Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-20004.pdf</u>.

- PNNL-21733, 2012, Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-21733.pdf.
- PNNL-22048, 2012, Updated Conceptual Model for the 300 Area Uranium Groundwater Plume, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22048.pdf.
- PNNL-22886, 2013, System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area – Application to Uranium Reactive Transport, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22886.pdf.
- PNNL-24911, 2015, Analytical Data Report for Sediment Samples Collected From 300-FF-5 OU, Wells C8940 and C9451, Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-25420, 2016, Analytical Data Report for Sediment Samples Collected from 300-FF-5: Boreholes C9580, C9581, and C9582, Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-SA-25232, 2016, Stage A Uranium Sequestration Amendment Delivery Monitoring Using Time-Lapse Electrical Resistivity Tomography, Pacific Northwest National Laboratory, Richland, Washington.
- PNNL-SA-58541, 2007, Uranium(VI) Release from Contaminated Vadose Zone Sediments: Estimation of Potential Contributions from Dissolution and Desorption, U.S. Geological Survey, Menlo Park, California and Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://ifchanford.pnnl.gov/pdfs/bond\_zachara\_58541.pdf</u>.
- SGW-58830, 2015, 300-FF-5 Supplemental Post-ROD Field Investigation Summary, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079681H.
- SGW-58976, 2015, *Field Instructions for Uranium Sequestration in the 300 Area*, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078185H.
- SGW-59455, 2016, 300-FF-5 Operable Unit Stage A Uranium Sequestration System Installation Report, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0077730H</u>.
- Shi, Z., C. Liu, J. M. Zachara, Z. Wang, and B. Deng, 2009, "Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments," *Environmental Science & Technology* 43:8344-8349.
- Sumner, M.E., 2000, "Soil Fertility and Plant Nutrition," *Handbook of Soil Science*, CRC Press, Boca Raton, Florida.
- van Genuchten, M.Th., 1980, "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils," *Soil Sci. Soc. Am. J.* 44(5):892-898. Available at: <u>http://people.ucalgary.ca/~hayashi/glgy607/reading/van\_Genuchten1980.pdf</u>.
- Wellman, Dawn M., Eric M. Pierce, and Michelle M. Valenta, 2007, "Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium," *Environ. Chem.* 4(5):293-300.

ECF-300FF5-16-0091, REV. 0

- WHC-SD-EN-TI-052, 1992, Phase I Hydrogeologic Summary of the 300-FF-5 Operable Unit, 300 Area, Rev. 0, Westinghouse Hanford Company, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D196121502</u>.
- Xu, Moujin and Yoram Eckstein, 1995, "Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Field Scale," *Ground Water* 33(6):905-908. Available at: <u>http://info.ngwa.org/gwol/pdf/952964066.PDF</u>.
- Yabusaki, Steven B., Yilin Fang, and Scott R. Waichler, 2008, "Building conceptual models of field-scale uranium reactive transport in a dynamic vadose zone-aquifer-river system," *Water Resources Research* 44(12):24 pp. Available at: <u>http://onlinelibrary.wiley.com/doi/10.1029/2007WR006617/pdf</u>.

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

ECF-300FF5-16-0091, REV. 0

# Appendix A

# Presentation of Sampling Data for Selected Wells

A-i
#### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

A-ii

#### ECF-300FF5-16-0091, REV. 0

## Terms

| EAA | Enhanced Attenuation Area  |
|-----|----------------------------|
| PRZ | periodically rewetted zone |

A-iii

#### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

A-iv

ECF-300FF5-16-0091, REV. 0

# A1 Presentation of Sampling Data for Selected Wells

In this appendix, several indicators are examined to provide information about how dissolved uranium concentrations have been affected by phosphate injection and infiltration. The following results are presented for selected well pairs:

- Phosphate to bicarbonate molar ratio compared to pH
- Concentration of uranium compared to the concentration of calcium
- Concentration of uranium compared to the concentration of phosphate
- Concentration of calcium compared to the concentration of phosphate
- Calcium/sodium ratio in milliequivalents per liter compared to pH

These comparisons are examined at three pairs of wells (399-1-65 and 399-1-67; 399-1-74 and 399-1-75; and 399-1-80 and 399-1-81); each pair consists of a well screened in the periodically rewetted zone (PRZ) and a well screened in the aquifer (Figure A-1). Two wells that are not part of a vadose zone/aquifer pairing but are just in the aquifer are also considered. The unpaired wells (399-1-23 and 399-1-17A) are located outside the Stage A Enhanced Attenuation Area (EAA) (see Chapter 6 [Figure 6-12a] in the main text of this calculation for location).

Most wells were measured once, at the beginning of September, but these samples have been omitted for ease of viewing. However, they do offer some insight into the background values. The data from these wells show that for all the sites, the background ratio of  $PO_4$ :HCO<sub>3</sub> is fairly low—typically on the order of ~0.001. At the time sampling of these wells ceased (after treatment), all of the wells had much higher  $PO_4$ :HCO<sub>3</sub> values, even if the values were declining.

# A1.1 Phosphate to Bicarbonate Ratio Compared to pH

Figures A-2 through A-5 show a comparison of the phosphate to bicarbonate ratio to pH. The higher the ratio, the more phosphate there is relative to bicarbonate in the PRZ and groundwater. The greater the ratio of phosphate to bicarbonate, conditions for uranium bonding to phosphate are more favorable.

# A1.2 Uranium Concentration Compared to Calcium Concentration

Figures A-6 through A-8 show a comparison of the uranium concentrations against the calcium concentrations for selected wells. The calcium concentrations in the PRZ wells show an increase as the uranium is being released indicating simultaneous ion exchange reactions. This indicates that favorable conditions are being created for reaction of calcium with incoming phosphate.

# A1.3 Uranium Concentration Compared to Phosphate Concentration

Figures A-10 through A-13 show the concentrations of uranium and phosphate for the selected wells. Uranium breakthrough resulting from infiltration occurs earlier while phosphate concentrations remain low throughout that period. Phosphate concentrations increase following injections in the PRZ and aquifer. In the aquifer wells located outside the Stage A EAA (Figure A-13), the uranium concentrations show a steep drop, followed by a slow rebound which ends at a lower concentration than it began. The decline in uranium concentrations correspond with the increasing phosphate concentrations. Well 1-23 is missing the preinjection baseline data, but Well 1-17A starts out with a fairly high baseline uranium value before the rapid dropoff and gradual rebound. The phosphate data show a definite peak during uranium's lowest point.

ECF-300FF5-16-0091, REV. 0



Figure A-1. Locations of Paired Vadose Zone Wells (PRZ Monitoring Wells) and Aquifer Monitoring Wells

ECF-300FF5-16-0091, REV. 0



Figure A-2. Comparison of Phosphate to Bicarbonate Ratios to pH for Wells 399-1-65 and 399-1-67

ECF-300FF5-16-0091, REV. 0



Figure A-3. Comparison of Phosphate to Bicarbonate Ratios to pH for Wells 399-1-74 and 399-1-75

ECF-300FF5-16-0091, REV. 0



Figure A-4. Comparison of Phosphate to Bicarbonate Ratios to pH for Wells 399-1-80 and 399-1-81

ECF-300FF5-16-0091, REV. 0



Figure A-5. Comparison of Phosphate to Bicarbonate Ratios to pH for Wells 399-1-23 and 399-1-17A

ECF-300FF5-16-0091, REV. 0



Wells 399-1-65 and 399-1-67

A-7

ECF-300FF5-16-0091, REV. 0



Figure A-7. Comparison of Uranium to Calcium Concentrations for Wells 399-1-74 and 399-1-75

ECF-300FF5-16-0091, REV. 0



Wells 399-1-80 and 399-1-81

A-9

ECF-300FF5-16-0091, REV. 0





ECF-300FF5-16-0091, REV. 0



Wells 399-1-65 and 399-1-67

ECF-300FF5-16-0091, REV. 0



Figure A-11. Comparison of Uranium to Phosphate Concentrations for Wells 399-1-74 and 399-1-75

ECF-300FF5-16-0091, REV. 0



Figure A-12. Comparison of Uranium to Phosphate Concentrations for Wells 399-1-80 and 399-1-81

ECF-300FF5-16-0091, REV. 0



Figure A-13. Comparison of Uranium to Phosphate Concentrations for Wells 399-1-23 and 399-1-17A

ECF-300FF5-16-0091, REV. 0

## A1.4 Calcium Concentration Compared to Phosphate Concentration

Figures A-14 through A-17 show the observed concentrations of calcium and phosphate for the selected wells. Since the goal of the injections/infiltration is to form calcium-uranium-phosphate complex, these results show that calcium was being made available in situ while phosphate was being infiltrated or injected.





A-15

ECF-300FF5-16-0091, REV. 0



Figure A-15. Comparison of Calcium to Phosphate Concentrations for Wells 399-1-74 and 399-1-75

ECF-300FF5-16-0091, REV. 0



igure A-16. Comparison of Calcium to Phosphate Concentrations fo Wells 399-1-80 and 399-1-81

ECF-300FF5-16-0091, REV. 0



Figure A-17. Comparison of Calcium to Phosphate Concentrations for Wells 399-1-23 and 399-1-17A

## A1.5 Calcium to Sodium Ratio Compared to pH

Figures A-18 through A-21 illustrate the Ca:Na ratio (in milliequivalents per liter) along with pH. The Ca:Na ratio changes as the Na rich solutions are infiltrated or injected. Because of concurrent geochemical reactions, pH declines first then gradually increases to pretreatment levels.



Figure A-18. Comparison of Calcium to Sodium Ratios and pH for Wells 399-1-65 and 399-1-67

A-19

ECF-300FF5-16-0091, REV. 0





ECF-300FF5-16-0091, REV. 0





ECF-300FF5-16-0091, REV. 0



Figure A-21. Comparison of Calcium to Sodium Ratios and pH for Wells 399-1-23 and 399-1-17A

ECF-300FF5-16-0091, REV. 0

# Appendix B

# **Geochemical Evaluations and Reactive Transport Modeling**

B-i

#### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

B-ii

#### ECF-300FF5-16-0091, REV. 0

## Terms

| 1D  | one-dimensional                   |
|-----|-----------------------------------|
| ERT | electrical resistivity tomography |
| GWB | Geochemist's Workbench            |
| ppm | parts per million                 |
| PRZ | periodically rewetted zone        |
|     |                                   |

B-iii

#### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

B-iv

ECF-300FF5-16-0091, REV. 0

# B1 Geochemical Evaluations and Reactive Transport Modeling

Complex geochemical reactions occur within the host rock as a result of injecting or infiltrating high concentration of sodium phosphate bearing solutions. Although the ultimate goal is to sequester uranium from leaching to the groundwater, it is important to understand the geochemical processes from a mechanistic point of view that lead to sequestration of uranium. This information gained from this understanding will be used in developing lumped sorption-desorption parameters for predictive modeling using a fate and transport model.

A conceptual model of possible reactions resulting from infiltration of phosphate bearing solutions in the vadose zone is presented in Figure 6-24. The total thickness of the vadose zone (from base of infiltration lines to the water table) is approximately 8 m (26.2 ft). The average vertical velocity of the infiltrated solutions is about 1 m/day based on migration velocities estimated from electrical resistivity tomography (ERT) data (Figure 6-11). In order to gain an understanding of the geochemical reactions from phosphate-sediment interaction, a one-dimensional (1D) reactive transport model is developed using The Geochemist's Workbench (GWB) Version 11.

### B1.1 Update of Existing Databases

For the purpose of evaluating geochemical reactions specific to the phosphate interactions, the following updates were made to the underlying databases based on information derived from published literature:

- 1. Added information about uranyl carbonate and phosphate bearing mineral phases to the thermodynamic database
- 2. Added reactions to the ion exchange database
- 3. Added surface species to the surface complexation database

In the default thermodynamic database called thermo.tdat, information regarding 624 minerals is included. However, based on the review of the database, some of the uranium carbonate and uranium phosphate minerals that could form (or dissolve) from reactions with injected/infiltrated solutions were not found. These were added based on review of literature. The following mineral phases were added based on information presented in Gorman-Lewis et al., 2008, "Review of Uranyl Mineral Solubility Measurements," and Gorman-Lewis et al., 2009, "Thermodynamic Properties of Autunite, Uranyl Hydrogen Phosphate, and Uranyl Orthophosphate from Solubility and Calorimetric Measurements":

| Mineral Phase                | Dissolution Reaction                                                          | Log K <sub>sp</sub><br>(25°C) |
|------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| Autunite                     | $Ca(UO_2)_2(PO_4)_2 \cdot 3H_2O = Ca^{2+} + 2UO_2^{2+} + 2PO_4^{3-} + 3H_2O$  | -48.36                        |
| Uranyl Hydrogen<br>Phosphate | $UO_2HPO_4 \cdot 3H_2O = UO_2^{2+} + HPO_4^{2-} + 3H_2O$                      | -13.17                        |
| Uranyl<br>Orthophosphate     | $(UO_2)_3(PO_4)_2 \cdot 4H_2O = 3UO_2^{2+} + 2PO_4^{3-} + 4H_2O$              | -49.36                        |
| Andersonite                  | $Na_2CaUO_2(CO_3)_3(H_2O)_6 = 2Na^+ + Ca2^+ + UO_2^{2+} + 3CO_3^{2-} + 6H_2O$ | -37.5                         |
| Liebigite                    | $Ca_2UO_2(CO_3)_3(H_2O)_{10} = 2Ca^{2+} + UO_2^{2+} + 3CO_3^{2-} + 10H_2O$    | -36.9                         |
| Chernikovite                 | $(UO_2)HPO_4(H_2O)_4 = UO_2^{2+} + HPO_4^{2-} + 4H_2O$                        | -22.73                        |

#### ECF-300FF5-16-0091, REV. 0

The following ion exchange reactions were added to the database called IonEx.sdat in order to model the cation exchange reactions with calcium once sodium and potassium bearing phosphate solutions are added. The ion exchange coefficients relative to Na<sup>+</sup> are presented following the Gaines-Thomas convention (Gaines and Thomas, 1953, "Adsorption Studies on Clay Minerals. II. A Formulation of the Thermodynamics of Exchange Adsorption"). The dataset is taken from Appelo and Postma, 2005, *Geochemistry, Groundwater and Pollution*, based on a compilation by Bruggenwert and Kamphorst, 1982, "Chapter 5: Survey of Experimental Information on Cation Exchange in Soil Systems":

## Equation: $Na^+ + 1/i \cdot I - X_i \iff Na - X + 1/i \cdot I^+$

| Ion Type ( <i>I</i> ) | Ion Exchange Coefficient (K <sub>Nall</sub> ) |
|-----------------------|-----------------------------------------------|
| Ca <sup>2+</sup>      | 0.40                                          |
| ${ m Mg}^{2+}$        | 0.50                                          |
| Fe <sup>2+</sup>      | 0.60                                          |
| $\mathbf{K}^+$        | 0.20                                          |

Two calcium-phosphate surface species were added to the existing database called FeOH+.sdat for modeling surface complexation with hydrous ferric oxide. This dataset contains the Dzombak and Morel, 1990, *Surface Complexation Modeling: Hydrous Ferric Oxide*, compilation, expanded to include surface complexation reactions for which binding constants have only been estimated (Dzombak and Morel, 1990 [Chapter 10, p. 299]). The surface complexation with calcium-phosphate species were missing in the database and was added based on information presented by Spiteri et al., 2008, "Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers" (as modified from Gao and Mucci, 2001, "Acid Base Reactions, Phosphate and Arsenate Complexation, and their Competitive Adsorption at the Surface of Goethite in 0.7 M NaCl Solution"). The stability constants are given as intrinsic constants that are added to the weak surface sorption sites:

| $\equiv FeOH(w) + Ca^{2+} + H_2PO_4^{-} \iff$                           | $\equiv$ FeOCaHPO <sub>4</sub> <sup>-</sup> + 2H <sup>+</sup> | $Log K (25^{\circ}C) = -6.44$ |
|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|
| $\equiv \text{FeOH}(w) + \text{Ca}^{2+} + \text{H}_2\text{PO}_4^- \iff$ | $\equiv FeOCaH_2PO_4 + 2H^+$                                  | $Log K (25^{\circ}C) = 0.19$  |

#### B1.2 Reactive Transport Modeling of Controlled Laboratory Experiment Performed on Contaminated Sediment from 300 Area

Before evaluating the geochemical reactions in the vadose zone, validation of the existing database and adequacy of the current understanding of the possible reactions occurring from mixing of phosphate rich solutions with host sediments was undertaken. This was achieved by comparing the modeling results to the experimental results. Wellman et al., 2007, "Efficacy of soluble sodium tripolyphosphate Amendments for the in-situ immobilisation of uranium," report results of a carefully controlled laboratory experiment where uranium contaminated sediment sample that was taken from the North Process Pond in the 300 Area was flushed with sodium tripolyphosphate solution under both saturated and unsaturated conditions. The experiment conducted under unsaturated conditions is discussed here since it is more relevant to the geochemical reactions in the vadose zone from infiltrated and injected solutions.

As reported by Wellman et al. (2007), the sediment is coarsely textured with ~48 percent gravel, ~40 percent sand, and remaining fraction as silt and clay (~12 percent). The total uranium content within the sediment is 540 mg/kg (or  $\mu$ g/g) and the majority of the uranium is present as carbonates

#### ECF-300FF5-16-0091, REV. 0

(~30 percent) and/or associated with amorphous iron and aluminum oxyhydroxides (~55 percent). Unsaturated column experiments were conducted using a pressurized unsaturated flow system where the water content was set to ~20 percent. The experiments were performed on <2 mm size sediments (sand, silt, and clay size) in a cylindrical column of length = 7.62 cm and radius = 0.96 cm. The influent solution containing 1,000 parts per million (ppm) sodium tripolyphosphate (Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>) was prepared by mixing with the artificial groundwater (Table 1 of Wellman et al., 2007 shows groundwater composition). The 1,000 mg/L sodium tripolyphosphate (Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>) has molecular weight of about 368 g/mole and results in a molar concentration of approximately  $2.7 \times 10^{-3}$  M. The resulting total P in the sodium tripolyphosphate solution is not mentioned in the report but is probably around 10. The pH of the initial groundwater solution was 8.2.

The flow rate was maintained at 0.08 mL/h. During the experiment, volumetric moisture content was monitored and found to be steady for the first 100 days (~41 pore volumes) at about 20 percent; subsequently, it increased steadily to ~40 percent until the test was terminated.

Considering a steady volumetric flow rate of 0.08 mL/h (or  $cm^3/h$ ) through the cross-sectional area of 2.9 cm<sup>2</sup> results in a specific discharge of about 0.66 cm/day, and considering a volumetric moisture content of 0.2, the average linear pore water velocity is calculated to be 3.3 cm/day. This corresponds to about 2.4 days of residence time per pore volume.

Results of the experiment are shown in Figure B-1 in terms of effluent concentrations of uranium, phosphorus (P), and calcium as a function of pore volumes. The results are presented for experiments conducted with and without the 1,000 ppm sodium tripolyphosphate amendments. Note that concentration of total P is shown in mg/L while others are presented in  $\mu$ g/L. The results with the phosphate amendment are shown in solid lines and are of interest. The uranium concentrations fluctuate for first 20 pore volumes but remain near the initial concentration of about 5,000  $\mu$ g/L and then drop rapidly over next 10 pore volumes to about 10  $\mu$ g/L (similar to background groundwater concentration). This drop coincides with increasing concentration of P, which until then was being consumed in the reactions and/or being retarded due to sorption on the sediments. The P concentrations increase rapidly from 20 to 25 pore volumes but then continue to increase marginally for the remainder of the experiment. Calcium concentrations also show fluctuations between 10 and 20 pore volumes but then decline sharply after 15 pore volumes, reaching a local minimum after 20 pore volumes have passed. The concentrations do not change much past 25 pore volumes.

A 1D reactive transport model was developed using GWB based on the details of the experiment presented in Wellman et al. (2007). The modeling results are then compared to the experimental data. Updated databases (discussed earlier) were used to simulate precipitation and dissolution of phosphate bearing mineral phases, ion exchange reactions, and surface complexation reactions with iron oxyhydroxides. In the model, the ion exchange capacity is set at 0.2 meq/g (20 meq/100 g). This value is deemed reasonable given that the experiments are conducted on <2 mm size sediments with considerable silt and clay fraction (about 23 percent, when considering only <2 mm size). In addition, some minerals were added as reactants with kinetic reactions. These are presented in Table B-1. To match the results, the newly added uranyl carbonate minerals (Andersonite and Liebegite) had to be suppressed.

ECF-300FF5-16-0091, REV. 0



Reference: Wellman et al., 2007, "Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium."

Figure B-1. Release of Uranium, Phosphorus, and Calcium from Unsaturated Column Experiments with and without Sodium Tripolyphosphate Amendments at 1,000 ppm Concentration

#### ECF-300FF5-16-0091, REV. 0

| Mineral      | Amount                                           | Specific<br>Surface<br>Area<br>(cm²/g) | Dissolution<br>Rate<br>Constant<br>(mol/cm²/s) | Basis for Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quartz       | 0.45<br>(volume<br>fraction in bulk<br>volume)   | 1,000                                  | 4.2 × 10 <sup>-18</sup>                        | Volume fraction calculated by assuming 60% quartz<br>content in the solid fraction and 25% porosity; any<br>remaining solid fraction is considered inert.<br>Dissolution rate constant is based on Rimstidt and<br>Barnes, 1980, "The Kinetics of Silica-Water<br>Reactions." Specific surface area is based on typical<br>sand grains from Leamnson et al., 1969, <i>A Study of</i><br><i>the Surface Areas of Particulate Microcrystalline</i><br><i>Silica and Silica Sand</i> .                                                                                                                                                                                                                                                                                 |
| Calcite      | 0.0005<br>(volume<br>fraction in bulk<br>volume) | 1,000                                  | 7.8 × 10 <sup>-13</sup>                        | <ul> <li>Volume fraction is estimated based on calcium extracted by weak and strong acetic acid on pretreatment samples.</li> <li>Dissolution rate constant is derived from 1.55 × 10<sup>-6</sup> mol/m<sup>3</sup>/s rate from Palandri and Kharaka, 2004, <i>A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling</i>.</li> <li>Specific surface area adjusted down based on uranium-calcite value of 3,000 cm<sup>2</sup>/g in PNNL-17818, 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe (Table 3.3).</li> </ul>                                                  |
| Ferrihydrite | 0.001<br>(volume<br>fraction in bulk<br>volume)  |                                        |                                                | The volume fraction is based on estimated<br>amorphous iron oxide content using oxalate<br>extraction on pretreatment samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Uranophane   | 30 mg/kg                                         | 10,000                                 | 7.8 × 10 <sup>-13</sup>                        | Surrogate for uranium bearing mineral phases is<br>composed of carbonates and silicates and for<br>uranium associated with calcite.<br>Solid concentration is derived using 2,000 µg/L<br>observed uranium concentration in water at start of<br>the experiment (without any sodium<br>tripolyphosphate) and considering K <sub>d</sub> value of<br>15 mL/g based on Equation 2 of ECF-300FF5-11-<br>0151, <i>Groundwater Flow and Uranium Transport</i><br><i>Modeling in Support of the 300 Area FF-5 RI/FS</i> .<br>Dissolution rate constant set is same as that for<br>calcite.<br>Specific surface area is selected from range of<br>3,000 cm <sup>2</sup> /g for uranium calcite and 748,800 cm <sup>2</sup> /g<br>for uranophane (Table 3.3 of PNNL-17818). |

## Table B-1. Mineral Reactants and Associated Parameters Considered for the Column Experiment

#### ECF-300FF5-16-0091, REV. 0

Results from the 1D reactive transport model using GWB are shown in Figure B-2 based on simulating the experimental conditions. The results match those observed in the experiment. High uranium<sup>3</sup> concentrations are maintained initially at around 1,000  $\mu$ g/L with fluctuations up to 5,000  $\mu$ g/L for the first 20 pore volumes and then decline over next 10 pore volumes to a value of 10  $\mu$ g/L. Higher uranium concentrations can be achieved by introducing minerals with higher specific surface area and kinetic rate constants but due to lack of detailed characterization information have not been modeled. The phosphate concentration (represented in terms of HPO42-) remains low for the first 20 pore volumes and then increases sharply from 20 to 25 pore volumes and then continues to increase gradually as in the experiment (Figure B-1). Calcium concentrations also behave in a manner similar to those observed in the experiment. They start in the range of 30,000 to 40,000 µg/L, then show a steady decline, but remain around 10,000 µg/L. The lower figure (in Figure B-2) shows the model predicted concentration time histories for Na<sup>+</sup>, HCO<sub>3</sub><sup>-</sup>, and pH. The Na<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> concentrations do not change much, but pH starts to show a decline with increasing pore volumes. The decline is steeper in first few pore volumes, and pH is about 6.2 after around 10 pore volumes. The pH declines slowly over next 50 pore volumes with a minimum value of about 5.7, indicating that reactions with minerals lead to excess H<sup>+</sup> ions in the solution. The simulated change in pH has not been reported in the experiments but likely occurs given that all other observations are consistent with the simulated results. Effluent uranium concentrations remain much higher over first 10 to 15 pore volumes when treated with sodium polyphosphate solutions, compared to solutions containing no sodium polyphosphate (Figure B-1). This probably results from dissolution of uranium bearing mineral phases due to change in pH.



Note: U is reported as  $UO_2(H_2PO_4)_2$ , the primary species;  $HPO_4^{2^-}$  is the total concentration of phosphate presented in terms of  $HPO_4^{2^-}$ .



 $<sup>^{3}</sup>$  Uranium concentration is reported as UO<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, which is the primary uranium bearing aqueous species. In order to convert this to the U elemental concentration, multiply with 0.51 value.

#### ECF-300FF5-16-0091, REV. 0

The calculated saturation indices of selected mineral phases as a function of pore volumes are presented in Figure B-3 to evaluate which mineral phases are thermodynamically favored for dissolution or precipitation. Increasing saturation index (increasing to one or greater) with increasing pore volume indicates conditions favorable for saturation and precipitation of minerals while declining values of saturation index (less than 1) indicates conditions leading to dissolution. Until about 15 pore volumes, the uranium bearing mineral phases were at or above saturation (saturation index >1) and continued to provide uranium to the solution at steady concentrations. However, the saturation index shows a steep decline after 15 pore volumes due to continued dissolution. This also coincides with the decline in uranium concentrations indicating that the mineral phase underwent dissolution due to inflow of phosphate solutions. The saturation indices of calcite (and to some extent quartz) also show steady decline. This results in response to pH buffering primarily by dissolution of uranium bearing mineral phases and carbonates. Uranophane<sup>4</sup> is considered in the model as a surrogate for uranium bearing mineral phases composed of carbonates and silicates and for uranium associated with calcite. Once the uranium bearing mineral phases are exhausted, pH buffering occurs primarily by dissolution of calcite (and perhaps by other carbonate mineral phases). In this process, the dissolution of clay minerals and existing iron oxyhydroxide mineral phases occurring as coatings around the quartz grains is also expected to occur. Following the dissolution of uranium bearing minerals and with increasing availability of Ca<sup>2+</sup> ions in the solution (due to ion exchange reactions with Na<sup>+</sup> and from dissolution of calcite), the formation of calcium-phosphate mineral phases such as hydroxyapatite ( $Ca_5(PO_4)_3OH$ ) and whitlockite ( $Ca_3(PO_4)_2$ ) are favored. These show increasing saturation indices after about 20 pore volumes. These results are consistent with the experimental observations where the P concentrations increase from about 15 to 25 pore volumes and then reach a constant concentration indicating continued precipitation of calcium-phosphate bearing mineral phases.

Since phosphate is the primary reactant of interest, an evaluation is undertaken regarding the predominant speciation of HPO<sub>4</sub><sup>2-</sup> based on the modeling results. The simulated distribution of phosphate species within the column experiment is presented in Figure B-4 at four different pore volumes. The x-axis shows the relative distance along the length of the column (0 is the start of the column and 1 is at the end of the column). After 5 pore volumes had passed through the column, the phosphate concentration distribution within the column is dominated by surface complexation reactions with iron oxyhydroxide (e.g., >(w)FeHPO4- and >(w)FeH2PO4). The concentration front has only moved to the relative distance of 0.6 at this stage. Other species, such as HPO<sub>4</sub><sup>2-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> are further retarded. Only minor concentrations of phosphate species have reached the end of the column (relative distance of 1). After 15 pore volumes, the distribution of phosphate is still dominated by surface complexation, but by now the concentration front has moved through and is near the end of the column indicating that all of the surface sorption sites associated with iron oxyhydroxide are in equilibrium with the solution and almost all sorption sites are filled. These surface reactions occur due to changes in surface charge from introduction of sodium tripolyphosphate solutions that leads to deprotonation and protonation reactions. After 22 pore volumes, concentrations associated with the surface species (e.g., >(w)FeHPO4- and >(w)FeH2PO4) are near maximum throughout the column, indicating that all of the buffering and reactions with available sorption sites have taken place. At this stage, the phosphate concentrations in the effluent show a steep rise, indicating breakthrough (Figure B-2). While >(w)FeHPO4- and >(w)FeH2PO4 concentrations are high within most of the column, they are much lower near the start of the column (relative distance of 0.1). This probably results from competition for surface sorption sites by species, such as >(w)FePO4--, which now occupy most of the sorption sites. Aqueous species HPO<sub>4</sub><sup>2-</sup> is also

<sup>&</sup>lt;sup>4</sup> According to PNNL-20004, *Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments*, uranium bearing silicate (e.g., Na-boltwoodite) is predominantly dissolved (85 percent) in the acetic acid extraction. Therefore, some of the uranium fraction is present as silicate in addition to being associated with carbonates.
#### ECF-300FF5-16-0091, REV. 0

dominant up to relative distance of 0.2 but then its concentration drops. After 30 pore volumes have been flushed, the distribution of phosphate species reaches near steady state. The surface complexation of phosphate that results in formation of surface species >(w)FeHPO4-and >(w)FeH2PO4 is a dominant reaction.



Note: U reported as UO2(H2PO4)2, the primary species.









Figure B-4. Simulated Distribution of HPO4<sup>2-</sup> Species within the Column at Selected Pore Volumes

Based on modeling and evaluation of a carefully controlled laboratory experiment, where a uranium contaminated sediment sample from the North Process Pond in the 300 Area was flushed with sodium tripolyphosphate solution, the following inferred sequence of primary reactions are summarized:

- 1. As phosphate amendments are prepared in the pH range of 7 to 10, the predominant phosphate species in the solution will be HPO<sub>4</sub><sup>2-</sup>.
- 2. As and when the sodium phosphate bearing solution contacts the sediment, the following reactions get initiated:
  - a. Ion exchange reaction with  $Na^+$  ion leads to release of  $Ca^{2+}$  in the solution:

$$Na^+ + 0.5 Ca - X_i \leftrightarrow Na - X + 0.5 Ca^2$$

b.  $Ca^{2+}$  and  $HPO_4^{2-}$  react in the solution to form calcium-phosphate bearing mineral phases and result in deprotonation (release of  $H^+$ ):

$$5 \operatorname{Ca}^{2+} + 3 \operatorname{HPO}_4^{2-} + \operatorname{H}_2O \rightarrow \operatorname{Ca}_5(\operatorname{PO}_4)_3OH + 4 \operatorname{H}^+$$

Hydroxyapatite

$$3 \operatorname{Ca}^{2+} + 2 \operatorname{HPO}_4^{2-} \rightarrow \operatorname{Ca}_3(\operatorname{PO}_4)_2 + 2 \operatorname{H}^+$$

Whitlockite

## ECF-300FF5-16-0091, REV. 0

- 3. As the pH starts to decline due to continued supply of H<sup>+</sup>, buffering reactions start to occur where protons are consumed and pH is buffered. The following reactions consume protons:
  - a. Surface complexation based reactions that are sensitive to changes in pH occur on both weak sites (>(w)FeOH) and strong binding sites (>(s)FeOH) that are collectively represented as ( $\equiv$ FeOH):

$$\equiv FeOH + H_2PO_4^- + H^+ \leftrightarrow \Rightarrow \equiv FeH_2PO_4 + H_2O$$
$$\equiv FeOH + HPO_4^{2-} + H^+ \leftrightarrow \Rightarrow \equiv FeHPO_4^- + H_2O$$

It should be noted that surface complexation reactions with phosphate will occur just from supply of phosphate ions in the solutions even if the calcium and phosphate reactions were not occurring. The pH of the initial solution is around 8, which is near the point of zero net proton charge on the surface of iron oxyhydroxides. As the  $HPO_4^{2-}$  ions are introduced, and since the pH of the influent solution is different (~10) than the resident pore water pH, the charge balance in the solution changes and leads to surface complexation reactions due to amphoteric nature of iron oxyhydroxide surfaces.

b. Mineral reactions that lead to consumption of protons can cause mineral phase dissolution. For uranium bearing mineral phases that are associated with carbonates and silicates (represented by uranophane mineral as shown below) such reactions would lead to dissolution of mineral and release of uranyl ion that could result in increased dissolved concentration of uranium:

$$Ca(H_3O)_2(UO_2)_2(SiO_4)_2(H_2O)_3 + 6 H^+ \leftrightarrow Ca^{2+} + 2UO_2^{2+} + 2SiO_2 + 9H_2O_2^{2+}$$

c. Other carbonate bearing mineral phases, predominantly calcite, that are present in the sediments will undergo dissolution in order to consume protons:

$$CaCO_3 + H^+ \rightarrow Ca^{2+} + HCO_3^-$$

- 4. While there is continued supply of phosphate, the released Ca<sup>2+</sup> made available from the above two reactions will continue to bind with HPO4<sup>2-</sup> to form calcium-phosphate bearing mineral phases and in turn lead to deprotonation (as shown in Step 2). This cycle of deprotonation followed by consumption of protons will continue as long as supply of both phosphate and reacting iron oxyhydroxide surfaces and minerals (primarily uranium bearing carbonates and silicates and calcite) is maintained. If and when the surface capacity is reached (i.e., all surface sorption sites are at equilibrium with the influent solution) and if the buffering mineral phases (primary buffers) completely dissolve away, then the phosphate concentrations will rise in the effluent. Due to excess supply, the phosphate will start to react with the available calcium (that is still made available from ion exchange reactions) and start forming calcium phosphate bearing mineral phases. In this process any uranium in the solution will adsorb or get bound (forming uranyl orthophosphate or uranyl hydrogen phosphate) and be sequestered.
- 5. While surface reactions occur quickly and buffer the pH initially, the primary buffering reactions are expected to be controlled by the mineral phase dissolution. As a result, the kinetics of the mineral dissolution along with initial available amount of reactants plays an important role in describing the behavior of the system.

# B.1.3 Reactive Transport Modeling to Simulate Stage A Infiltration and Injection

Based on the information learned from the controlled laboratory experiment performed under unsaturated conditions, reactive transport modeling was undertaken to simulate the infiltration of phosphate bearing solutions in Stage A and predict the probable reactions occurring in the subsurface.

B-10

## ECF-300FF5-16-0091, REV. 0

A 1D column through the vadose zone was conceptualized, as shown in Figure 6-24. The vertical thickness of the column is set at 8 m (26.24 ft), which is the approximate distance from the point of infiltration to the water table within the Stage A area. The specific discharge through the column is calculated to maintain an average linear pore water velocity of 1 m/day, consistent with the ERT data. The moisture content was set at 0.2 for the duration of the infiltration. The infiltration was simulated for 9 days consistent with the infiltration period (November 7 through 15). The model simulation was run for an additional 6 days under no infiltration conditions to evaluate the effects during and post-infiltration for the total simulated duration of 15 days.

The model domain was discretized into 16 grid blocks of 0.5 m (1.6 ft) length each. Under constant flow conditions simulated, this discretization is deemed adequate. The initial pore water composition was based on the water composition of well 399-1-87 (a periodically rewetted zone [PRZ] well) from November 6, 2015 (prior to start of infiltration). Where major ion data were not available, the concentrations were based on sampling from well 399-1-17A on September 30, 2015. The infiltrated solution composition was based on sampling the mixing skid on Day 3 of infiltration, when influent concentrations were stable. The compositions of the solutions are presented in Table B-2. In addition, mineral reactants were added with kinetic reactions as presented in Table B-3. The cation-exchange capacity was set at 0.01 meq/g (1 meq/100 g), which is a typical value for the 300 Area sediments. PNNL-21733, *Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment*, reports average cation exchange capacity of 1 to 2 meq/100 g with 77 percent ion exchange sites occupied with calcium and total surface calcium available for exchange is 0.9 to 1.5 mmol/100 g.

| Analyte            | Pore Water Composition <sup>a</sup><br>(Concentrations in mg/L) | Infiltrated Water Composition <sup>b</sup><br>(Concentrations in mg/L) |
|--------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| Ca <sup>2+</sup>   | 49.7                                                            | 15.2                                                                   |
| Na <sup>+</sup>    | 33                                                              | 1,440                                                                  |
| Mg <sup>2+</sup>   | 12                                                              | 4                                                                      |
| K <sup>+</sup>     | 5.3                                                             | 1,110                                                                  |
| Fe (Total)         | 0.01                                                            | 0.01                                                                   |
| U (Total)          | 0.060                                                           | 10-6                                                                   |
| HCO3-              | 128                                                             | 1,780                                                                  |
| NO3 <sup>-</sup>   | 25                                                              | 2                                                                      |
| Cl-                | 20.6                                                            | 50                                                                     |
| SO4 <sup>2-</sup>  | 60.9                                                            | 63                                                                     |
| HPO4 <sup>2-</sup> | 0.01                                                            | 1,600 (Total Phosphorus)                                               |
| DO                 | 9                                                               | 8                                                                      |
| рН                 | 7.25                                                            | 7.01                                                                   |

| Tuble D 2. Composition of million of million and million and million of the field of the field of the field of the | Table B-2. | Composition | of Initial Pore | Water and | I Infiltrated | Water for th | e Reactive | Transport Simulation | าร |
|--------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------|-----------|---------------|--------------|------------|----------------------|----|
|--------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------|-----------|---------------|--------------|------------|----------------------|----|

a. Based on water composition from PRZ well 399-1-87 and groundwater well 399-1-17A.

b. Based on composition from mixing skid on Day 3.

# ECF-300FF5-16-0091, REV. 0

| Mineral                      | Amount                                        | Specific<br>Surface<br>Area (cm <sup>2</sup> /g) | Dissolution<br>Rate Constant<br>(mol/cm <sup>2</sup> /s) | Basis for Parameters                                                                                                                                                                                                                                                                                 |
|------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quartz                       | 0.45<br>(volume fraction<br>in bulk volume)   | 1,000                                            | 4.2 × 10 <sup>-18</sup>                                  | Volume fraction is calculated by assuming 60% quartz content in the solid fraction and 25% porosity.                                                                                                                                                                                                 |
|                              |                                               |                                                  |                                                          | Dissolution rate is constant based on Rimstidt<br>and Barnes, 1980, "The Kinetics of Silica-<br>Water Reactions." Specific surface area is<br>based on typical sand grains from<br>Leamnson et al., 1969, A Study of the Surface<br>Areas of Particulate Microcrystalline Silica<br>and Silica Sand. |
| K-Feldspar                   | 0.26<br>(volume fraction<br>in bulk volume)   | 1,000                                            | 3 × 10 <sup>-17</sup>                                    | Volume fraction is calculated by assuming 35% feldspar content in the solid fraction and 25% porosity.                                                                                                                                                                                               |
|                              |                                               |                                                  |                                                          | Dissolution rate constant is based on Blum<br>and Stillings, 1995, "Feldspar Dissolution<br>Kinetics." Specific surface area is the same as<br>quartz.                                                                                                                                               |
| Calcite                      | 0.0015<br>(volume fraction<br>in bulk volume) | 1,000                                            | 7.8 × 10 <sup>-13</sup>                                  | Volume fraction is estimated based on<br>calcium extracted by weak and strong acetic<br>acid on pretreatment samples.                                                                                                                                                                                |
|                              |                                               |                                                  |                                                          | Dissolution rate constant is derived from $1.55 \times 10^{-6}$ mol/m <sup>3</sup> /s rate from Palandri and Kharaka, 2004, <i>A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling.</i>                                                   |
|                              |                                               |                                                  |                                                          | Specific surface area is adjusted down, based on uranium-calcite value of 3,000 cm <sup>2</sup> /g in PNNL-17818 (Table 3.3).                                                                                                                                                                        |
| Kaolinite and<br>Illite Clay | 0.022                                         | 100,000                                          | 1 × 10 <sup>-17</sup>                                    | Volume fraction is based on 3-6% clay content in the sediments.                                                                                                                                                                                                                                      |
| Minerals                     |                                               |                                                  |                                                          | Dissolution rate constant is taken from Nagy,<br>1995, "Dissolution and Precipitation Kinetics<br>of Sheet Silicates," and specific surface area is<br>from Carrol and Walther, 1990, "Kaolinite<br>Dissolution at 25°, 60°, and 80°C."                                                              |
| Ferrihydrite                 | 0.002<br>(volume fraction<br>in bulk volume)  |                                                  |                                                          | The volume fraction is based on estimate of<br>amorphous iron oxide content using oxalate<br>extraction on pretreatment samples.                                                                                                                                                                     |

# Table B-3. Mineral Reactants and Associated Parameters Considered for Modeling Stage A Infiltration

## ECF-300FF5-16-0091, REV. 0

| Mineral    | Amount   | Specific<br>Surface<br>Area (cm²/g) | Dissolution<br>Rate Constant<br>(mol/cm <sup>2</sup> /s) | <b>Basis for Parameters</b>                                                                                                                                                                                                                                                                                                                             |
|------------|----------|-------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uranophane | 10 mg/kg | 10,000                              | 1 × 10 <sup>-14</sup>                                    | Surrogate for uranium bearing mineral phases<br>is composed of carbonates and silicates and<br>for uranium associated with calcite.                                                                                                                                                                                                                     |
|            |          |                                     |                                                          | Solid concentration is derived using $1,500 \ \mu g/L$ observed uranium concentration in water at start of the column tests and considering K <sub>d</sub> value of 15 mL/g based on Equation 2 of ECF-300FF5-11-0151, <i>Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS</i> , and assuming 40% gravel fraction. |
|            |          |                                     |                                                          | Dissolution rate constant is rounded up from the value used for calcite.                                                                                                                                                                                                                                                                                |
|            |          |                                     |                                                          | Specific surface area is selected from range of 3,000 cm <sup>2</sup> /g for uranium calcite and 748,800 cm <sup>2</sup> /g for uranophane (Table 3.3 of PNNL-17818).                                                                                                                                                                                   |

## Table B-3. Mineral Reactants and Associated Parameters Considered for Modeling Stage A Infiltration

Results of the simulation are presented in terms of distribution of selected components in the fluid for selected times across the length of the column (Figure B-5). For each time point, a pair of results are presented with the left side showing the concentration of selected cations and anions of interest. The HPO42- concentration shown on the left figure is the total concentration of phosphate represented as HPO42- while the right hand figure shows the speciation of HPO42- along with the pH of the solution. The selected time points for display are concentrations at 0, 3.3, 6.3, 7.8, and 10.2 days after start of infiltration. Concentration distribution prior to infiltration is shown in figures related to 0 days. For purpose of tracking simulated transport of a conservative (nonreactive) species, Br- is added to the infiltrated water at a concentration of 1 mg/L. This is done strictly for the purpose of simulation in order to compare the retardation of species compared to a conservative species (Br-).

After 3.3 days of infiltration of phosphate-rich solutions, the concentration of HPO42- shows a steep decline between 2.5 m and 4 m (8.2 and 13.1 ft) depth. This is indicative of a developing reaction front that leads to retardation of HPO42-. Behind this zone (between 0 and 2 m [0 to 6.5 ft] depth) the Ca2+ concentrations have declined to much lower values while in front of this zone (>4 m [>13.1 ft] depth), the concentrations are near the pre-infiltration levels. The U (elemental uranium) concentration also shows a steep decline at the reaction front just like HPO42- while Fe2+ shows elevated concentration behind the reaction front and slight increase ahead of the front from advective transport. The pH shows a steep decline between 2.5 and 3 m (8.2 and 9.8 ft) depth, with a low value of 5.75 that increases before and after this depth. The primary HPO42- species are surface complexed species >(w)FeH2PO4 and >(w)FeHPO4- and aqueous species HPO42- and H2PO4-. The concentration of these species follow the pH decline. The HPO42- reaction front is a net result of several reactions – as HPO42- is added to the sediments, the resulting deprotonation reactions lead to excess H+ ions (and pH reduction) that in turn leads to buffering reactions through ion exchange, surface complexation, and mineral phase dissolution. The elevated concentration of Fe2+ behind the reaction front indicates reactions between iron oxyhydroxide (and clay minerals) with incoming HPO42-.



Figure B-5. Simulated Concentrations of Selected Constituents from Infiltration of Phosphate Bearing Solutions for Stage A (page 1 of 3)



Figure B-5. Simulated Concentrations of Selected Constituents from Infiltration of Phosphate Bearing Solutions for Stage A (page 2 of 3)

B-15



Notes: Uranium concentrations presented here are the uranium elemental concentrations. Left hand side figures show concentrations of selected constituents, while right hand side figures show speciation of  $HPO_4^{2-}$  and pH variations.

# Figure B-5. Simulated Concentrations of Selected Constituents from Infiltration of Phosphate Bearing Solutions for Stage A (page 3 of 3)

B-16

#### ECF-300FF5-16-0091, REV. 0

After 6.3 days, the reaction front has moved to about 4 to 5 m (13.1 to 16.4 ft) depth (below infiltration lines). Uranium concentrations shows a steep decline at the reaction front. Other ions, such as  $Ca^{2+}$  and  $Fe^{2+}$  show a similar behavior as seen for previous time. The dominant HPO<sub>4</sub><sup>2-</sup> species also remain the same; however, the pH decline is no longer that steep and the lowest pH value is around 6.4 that occurs at depth of about 5 m (16.4 ft). By the end of 7.8 days, the front has moved only a little distance (~0.5 m [1.6 ft]) compared to its location at 6.3 days but the pH profile shows some recovery from ongoing buffering reactions, however, the pH remains lower in the region of 6 to 7 m (19.7 to 22.9 ft) depth. Behind the reaction front the pH shows a gradual increase indicating that the deprotonation reactions have slowed compared to proton consuming reactions, such as formation of surface species of phosphate and mineral dissolution of carbonates. After 10.2 days, the reaction front profile does not show much of a change compared to 7.8 days. This is because the infiltration stopped on the 9<sup>th</sup> day and, therefore, there is no advective transport in the model. The pH continues to climb gradually behind the reaction front and the surface complexed species of phosphate are the dominant species. The pH at a depth of 8 m (26.2 ft), which is also the end of the vadose zone, is around 6.5, indicating some reaction with leading edge of phosphate ions.

The majority of the phosphate remains within the depth of 0 to 6 m (0 to 19.7 ft) and does not show any breakthrough at the end of the vadose zone. At and beyond the reaction front, the uranium concentration remained low. By end of  $8^{th}$  day, about one pore volume has been flushed. This can be seen by the concentration profile of Br<sup>-</sup> that is simulated as a conservative tracer. The breakthrough profile shows that more than half the initial concentration of Br<sup>-</sup> reaches the end of the vadose zone by about 8 days.

The simulated results help explain the observations of the post-treatment sequential leach test samples taken at various depths. Dissolution of U, Ca, Fe, and Mn from oxides and clay mineral phases was inferred due to observed reduction in fraction extractable by the strong nitric acid with corresponding increase in the fraction associated with the carbonates (weak and strong acetic acid extraction) indicating re-precipitation. In addition, the simulated results are consistent with the reduction in pH observed during daily monitoring of the PRZ wells. Figure B-6 presents the observations from the two PRZ wells (399-1-81 and 399-1-75) located within the Stage A area. The pH declines during the infiltration period (November 7 through 15) while the Ca/Na concentration ratio (in terms of meq/L concentration) show a continued decline as Na bearing fluids move through the vadose zone. Similar qualitative behavior is seen in the simulated results where the Na concentrations continue to rise. Figure B-7 presents the observations in terms of uranium and phosphate concentrations for the same two PRZ wells. During the infiltration time period (November 7 through 15), the uranium concentrations show an initial increase followed by sharp decline while the phosphate concentrations remain negligibly small. The initial increase in uranium could be partially due to dissolution of mineral phases in order to buffer the pH change. The increase in phosphate observed after November 15 is due to start of PRZ and aquifer injections. Small increase prior to November 15 may be due to either phosphate arriving from prior aquifer injection (November 9) or due to breakthrough of phosphate from infiltration at this time. The initial increase in uranium followed by decline and negligible phosphate in the PRZ along with declining pH and Ca/Na ratio all are consistent with the simulated results.

While the simulated results are qualitatively similar and provide useful understanding of the system behavior, they are not directly comparable to the observations due to various simplifications made for conducting the simulations: the concentration of the infiltrated solution was fixed over the 9-day time period even though considerable variability was observed as shown in Figure 6-3 in terms of phosphate concentrations. In addition, the linear pore water velocity was held constant at 1 m/day even though variability exists due to variable rates of infiltration (Table 6-1) and from field-scale heterogeneities observed from ERT images.

ECF-300FF5-16-0091, REV. 0



Note: The ratio of Ca/Na concentrations (in terms of meq/L) is shown on the left, while pH is shown on the right side. Figure B-6. Observations from Daily Monitoring of PRZ Wells 399-1-81 and 399-1-75

B-18

ECF-300FF5-16-0091, REV. 0



Figure B-7. Observations from Daily Monitoring of PRZ Wells 399-1-81 and 399-1-75 for Uranium and Phosphate Concentrations

ECF-300FF5-16-0091, REV. 0



Figure B-8. Simulated Results of Conducting Injection

To simulate the effects of injection, a simplified calculation was made where the model setup for the infiltration (as discussed earlier) was used, but the flow rate was increased by a factor of 10. Results are presented in Figure B-8 for a distance located about 5 m (16.4 ft) from the injection point. The results are shown in terms of pore volumes at that location. HPO<sub>4</sub><sup>2-</sup> concentrations increase quickly, while uranium concentrations go down and reach the background levels (~10  $\mu$ g/L). The pH also reduces due to phosphate injection and resulting reactions but quickly recovers and reaches the value of injected solution.

# B2 References

- Appelo, C.A.J. and D. Postma, 2005, *Geochemistry, Groundwater and Pollution*, 2<sup>nd</sup> Edition, A.A. Balkema Publishers, Leiden, The Netherlands.
- Blum, Alex E. and Lisa L. Stillings, 1995, "Feldspar Dissolution Kinetics," Chapter 7 in Chemical Weathering Rates of Silicate Minerals, A.F. White and S.L Brantley (Eds.), Mineralogical Society of America, Reviews in Mineralogy 31(1):291-352.
- Bruggenwert, M.G.M. and A. Kamphorst, 1982, "Chapter 5: Survey of Experimental Information on Cation Exchange in Soil Systems," in *Soil Chemistry: B. Physico-Chemical Models*, *Developments in Soil Science* 5(B):141-203.
- Carrol, Susan A. and John V. Walther, 1990, "Kaolinite Dissolution at 25°, 60°, and 80°C," *American Journal of Science* 290:797-810. Available at: <u>http://earth.geology.yale.edu/~ajs/1990/07.1990.02Carroll.pdf</u>.
- Dzombak, David A. and François M.M. Morel, 1990, *Surface Complexation Modeling: Hydrous Ferric Oxide*, John Wiley & Sons, Inc., New York.

B-20

#### ECF-300FF5-16-0091, REV. 0

- ECF-300FF5-11-0151, 2012, Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS, Rev. 3, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0078650H
- Gaines, George L. and Henry C. Thomas, 1953, "Adsorption Studies on Clay Minerals. II. A Formulation of the Thermodynamics of Exchange Adsorption," *J. Chem. Phys.* 21:714-718.
- Gao, Yan and Alfonso Mucci, 2001, "Acid Base Reactions, Phosphate and Arsenate Complexation, and their Competitive Adsorption at the Surface of Goethite in 0.7 M NaCl Solution," *Geochimica et Cosmochimica Acta* 65(14):2361-2378.
- Gorman-Lewis, Drew, Peter C. Burns, and Jeremy B. Fein, 2008, "Review of uranyl mineral solubility measurements," *J. Chem. Thermodynamics* 40:335-352. Available at: <u>http://www3.nd.edu/~fein/Publications/Gorman-Lewis%20JThermo%20(40)335.pdf</u>.
- Gorman-Lewis, D., T. Shvareva, K. Kubatko, P.C. Burns, D.M. Wellman, B. McNamara, J.E. Szymanowski, A. Navrotsky, and J.B. Fein, 2009, "Thermodynamic Properties of Autunite, Uranyl Hydrogen Phosphate, and Uranyl Orthophosphate from Solubility and Calorimetric Measurements," *Environ. Sci. Technol.* 43:7416-7422. Available at: http://www3.nd.edu/~fein/Publications/Gorman-Lewis%20EST%20(43)7416.pdf.
- Leamnson, R.N., Josephus Thomas, Jr., and H.P. Ehrlinger III, 1969, *A Study of the Surface Areas of Particulate Microcrystalline Silica and Silica Sand*, Circular 444, Illinois State Geological Survey, Urbana, Illinois. Available at: <u>https://www.ideals.illinois.edu/bitstream/handle/2142/44623/studyofsurfacear444leam.pdf?se</u> <u>quence=2</u>.
- Nagy, Kathryn L., 1995, "Dissolution and Precipitation Kinetics of Sheet Silicates," Chapter 5 in Chemical Weathering Rates of Silicate Minerals, A.F. White and S.L Brantley (Eds.), Mineralogical Society of America, Reviews in Mineralogy 31(1):173-234.
- Palandri, James L. and Yousif K. Kharaka, 2004, A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling, U.S. Geological Survey Open File Report 2004-1068, U.S. Geological Survey, Menlo Park, California. Available at: <u>https://pubs.usgs.gov/of/2004/1068/pdf/OFR\_2004\_1068.pdf</u>.
- PNNL-17818, 2008, 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-17818.pdf.
- PNNL-20004, 2010, Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical reports/PNNL-20004.pdf.
- PNNL-21733, 2012, Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediment, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnnl.gov/main/publications/external/technical reports/PNNL-21733.pdf.
- Rimstidt, J.D. and H.L. Barnes, 1980, "The Kinetics of Silica-Water Reactions," *Geochimica et Cosmochimica Acta* 44(11):1683-1699.

B-21

ECF-300FF5-16-0091, REV. 0

- Spiteri, Claudette, Philippe Van Cappellen, and Pierre Regnier, 2008, "Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers," *Geochimica et Cosmochimica Acta* 72(14):3431-3445. Available at: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.9074&rep=rep1&type=pdf">http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.9074&rep=rep1&type=pdf</a>.
- Wellman, Dawn M., Eric M. Pierce, and Michelle M. Valenta, 2007, "Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium," *Environ. Chem.* 4(5):293-300.

B-22

ECF-300FF5-16-0091, REV. 0

# Appendix C

# Mathematical Model for Estimating Kinetic Sorption-Desorption Parameters

C-i

# ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

C-ii

ECF-300FF5-16-0091, REV. 0

# C1 Introduction

The flow-through column tests performed to evaluate the leaching behavior of uranium provide useful information for quantifying the desorption rates. A single-site kinetic sorption-desorption model is developed to estimate the kinetic rates. The mathematical model (ECF-300FF5-11-0151, *Groundwater Flow and Uranium Transport Modeling in Support of the 300 Area FF-5 RI/FS*) describes the transport of a solute by dispersion and advection with kinetic sorption between the liquid and solid phases. The kinetic sorption is modeled by both a forward reaction rate from the liquid phase to the solid phase and a reverse reaction rate from solid to liquid. The geometry is represented by a one-dimensional column with length (L). The mathematical model consists of mass balance equations for both the dissolved and solid concentrations. The dissolved mass balance equation is as follows:

$$\theta \frac{\partial C}{\partial t} = \theta D \frac{\partial^2 C}{\partial z^2} - v \frac{\partial C}{\partial z} - \rho_b \frac{\partial q}{\partial t}, \quad 0 < z < L$$
 Eq. 1

where the z-axis is oriented along the length of the column. The solid mass balance or sorption kinetic equation is as follows:

$$\rho_b \frac{\partial q}{\partial t} = \alpha_f \theta C - \alpha_r \rho_b q \qquad \text{Eq. 2}$$

The forward/reverse reaction rates satisfy the relation:

$$\alpha_f = \alpha_r K_d \left( \frac{\rho_b}{\theta} \right)$$
 Eq. 3

where:

- C: dissolved concentration [ $\mu gm \ of \ U \ / \ cm^3 \ of \ water$ ]
- q: sorbed concentration, [ $\mu gm of U / gm of solid$ ]
- $\theta$ : water content, water volume/bulk volume [dimensionless]
- v: Darcy velocity, water volume/area/time [cm/hr]
- D: dispersion coefficient [ $cm^2/hr$ ]
- $\rho_b$ : bulk density, matrix mass/bulk volume [ $gm/cm^3$ ]
- $\alpha_f$ : forward reaction rate (sorption) [ $hr^{-1}$ ]
- $\alpha_r$ : reverse reaction rate (desorption) [ $hr^{-1}$ ]
- $K_d$ : equilibrium constant, volume water/matrix mass [ $cm^3/gm$ ]

#### ECF-300FF5-16-0091, REV. 0

The sorption kinetic equation (Eq. 2) can be expressed in terms of only the reverse reaction rate by the reaction rate relation (Eq. 3). The sorption kinetic equation is written as follows:

$$\frac{\partial q}{\partial t} = \alpha_r K_d C - \alpha_r q$$
 Eq. 4

If  $Q_{inj}$  denotes the water injection rate, then the discharge or Darcy velocity is equal to the water injection rate per unit area normal to flow direction.

The model assumes that there is no dispersion across the upper and lower boundary of the column. The bromide experiments have an initial concentration of zero within the column. At the top boundary, an influent with known bromide concentration is maintained over time. The effluent concentration exiting the bottom of the column represents the experimental measured concentration.

The uranium experiments have zero concentration of influent, while initially the column contains uranium in both dissolved and solid states. The transport and kinetic sorption are in equilibrium initially. This implies that the dissolved and solid concentrations are constant throughout the column. At initial time, the solid concentration in equilibrium with the dissolved concentration requires the following:

$$\frac{\partial q}{\partial t}(z,0) = 0$$

which from Eqs. 2 and 3 implies the initial condition for the solid concentration:  $q(z,0) = K_d C(z,0)$ 

The experimental results are presented as dissolved concentration a function of cumulative water pore volumes. The relation between time and pore volumes during flow periods is as follows:

$$PVs = \frac{Q_{inj}t}{\theta V_{bulk}}$$

where:

$$Q_{inj} = water injection rate [cm3 / hr]$$
  
 $t = time [hr]$   
 $V_{bulk} = columnbulk volume [cm3]$ 

#### ECF-300FF5-16-0091, REV. 0

# C1.1 Numerical Model for Kinetic Sorption-Desorption Parameter Derivation

The mathematical model is approximated by a finite difference scheme. Consider a finite difference discretization of space and time. Let the index I denote the spatial cell index,  $i = 1, 2, ..., N_z$ , where  $N_z$  is the number of grid cells. Let the time discretization be denoted  $0 = t_0 < t_1 < t_2 < ... < t_{N_t}$ , where  $N_t$  is the number of time steps. The discretization is fully implicit and uses approximations, which are first order for time derivatives, first order upstream weighting for advective transport, and second order for dispersive transport. The discretization for the i<sup>th</sup> cell and time step from  $t_n$  to  $t_{n+1}$  for the sorption kinetics, Eq. 4, is as follows:

$$\rho_{b} \frac{q_{i}^{n+1} - q_{i}^{n}}{\Delta t} = \alpha_{r} \rho_{b} K_{d} C_{i}^{n+1} - \alpha_{r} \rho_{b} q_{i}^{n+1}$$
 Eq. 5

Solve Eq. 5 for the sorbed concentration yields as follows:

$$q_i^{n+1} = \frac{\alpha_r \Delta t K_d}{1 + \alpha_r \Delta t} C_i^{n+1} + \frac{1}{1 + \alpha_r \Delta t} q_i^n$$
 Eq. 6

Now discretize the transport equation (Eq. 1), and substitute for  $q_i^{n+1}$  the expression in Eq. 6. Expressing the resulting difference equation in tridiagonal form yields the following:

$$-\left(\frac{\partial D}{\Delta z^{2}} + \frac{v}{\Delta z}\right)C_{i-1}^{n+1} + \left(\frac{2\partial D}{\Delta z^{2}} + \frac{v}{\Delta z} + \frac{\theta}{\Delta t} + \frac{\alpha_{r}\rho_{b}K_{d}}{1 + \alpha_{r}\Delta t}\right)C_{i}^{n+1} - \frac{\partial D}{\Delta z^{2}}C_{i+1}^{n+1}$$

$$= \frac{\theta}{\Delta t}C_{i}^{n} + \frac{\alpha_{r}\rho_{b}}{1 + \alpha_{r}\Delta t}q_{i}^{n}$$
Eq. 7

This system of equations uses known information at the beginning of the time step,  $C_i^n$  and  $q_i^n$ , to calculate the water concentrations  $C_i^{n+1}$ . Once the dissolved concentrations are computed, Eq. 6 provides the sorbed concentrations  $q_i^{n+1}$ . Appropriate boundary conditions are applied at the upper and lower boundary cells. The initial data are as follows:

$$C(z,0) = C_{initial}$$
 and  $q(z,0) = K_d C(z,0) = q_{initial}$ 

For the uranium leach experiments, a no flow condition at the upper cell (influent) is imposed for both dispersive and advective transport. At the lower boundary, there is no dispersive transport out of the column. The advective mass transport at the lower boundary of the column ( $i = N_z$ ) is computed as follows:

$$Q_{inj}\Delta t C_{Nz}^{n+1}$$

C-3

# ECF-300FF5-16-0091, REV. 0

# C1.2 Determination of Kinetic Sorption-Desorption Parameters

A MATLAB computer model representing the numerical model was implemented (an example presented in Appendix B). The following information was obtained from the experimental test setup:

- Column length
- Column diameter
- Water content
- Injection rate
- Soil bulk density

These parameters are provided for all samples in Table 6-5. Dispersion coefficient was estimated as  $D = 10^{-3} cm^2 / hr$  for all cases.

For the uranium tests, the initial water concentration is estimated from the early time experimental results. The fitting parameters include the partition coefficient,  $K_d$ , and the reverse reaction rate,  $f_r$ . The forward sorption rate is computed from Eq. 3. At initial time it is assumed that the liquid/solid

concentrations are in equilibrium; consequently, the initial solid concentration is  $q(z,0) = K_d C(z,0)$ .

The history match of the experimental data is obtained by manually adjusting the partition coefficient and the reverse reaction rate until a best fit of the experimental data is obtained.

The nonsorbing bromide simulations assume that the initial column concentration is zero, and the influent has a specified dissolved concentration. Since bromide is nonsorbing, the partition coefficient is zero; consequently, both the forward and reverse reaction rates are zero. The bromide transport properties are all known, and the bromide simulations require no history matching process.

# C1.3 Simulation Results

Four column experiments were run with a fine grain soil (<2 mm soil) for which the coarse grains were removed. These four fine grain (<2 mm size) soil sample tests were denoted as B347F1F3, B347P5P8, B247R1, and B347T7 (Table 6-5). Three field-textured (bulk) soil tests were denoted as B347P4, B347R0, and B347T6 (Table 6-5). Results for these seven sample cases were obtained for both bromide (nonsorbing) and uranium (sorbing).

A summary for all samples of the history match results for the kinetic reaction parameters is provided in Table C-1. The parameters include the initial dissolved concentration, partition coefficient, and reverse reaction rate determined from the history match of the sample data. The forward reaction rate is computed from Eq. 3.

| Sample Number | Soil Type             | Initial Dissolved<br>Concentration<br>(µg/cm <sup>3</sup> ) | K <sub>d</sub> (cm <sup>3</sup> /g) | Reverse Rate<br>(1/hr) | Forward Rate<br>(1/hr) |  |
|---------------|-----------------------|-------------------------------------------------------------|-------------------------------------|------------------------|------------------------|--|
| B347F1F3      | Fine Grain (<2 mm)    | 0.02                                                        | 9                                   | 0.009                  | 0.361                  |  |
| B347P5P8      | Fine Grain (<2 mm)    | 25                                                          | 0.30                                | 0.07                   | 0.095                  |  |
| B347P4        | Field-Textured (Bulk) | 2.7                                                         | 0.40                                | 0.03                   | 0.108                  |  |

Table C-1. Kinetic Reaction Parameters Used to History Match Post-Treatment Uranium Leach Experiments

## ECF-300FF5-16-0091, REV. 0

| Sample Number | Soil Type             | Initial Dissolved<br>Concentration<br>(µg/cm <sup>3</sup> ) | K <sub>d</sub> (cm <sup>3</sup> /g) | Reverse Rate<br>(1/hr) | Forward Rate<br>(1/hr) |
|---------------|-----------------------|-------------------------------------------------------------|-------------------------------------|------------------------|------------------------|
| B247R1        | Fine Grain (<2 mm)    | 4.6                                                         | 1.2                                 | 0.06                   | 0.381                  |
| B347R0        | Field-Textured (Bulk) | 4.0                                                         | 0.3                                 | 0.06                   | 0.222                  |
| B347T7        | Fine Grain (<2 mm)    | 0.007                                                       | 5                                   | 0.017                  | 0.436                  |
| B347T6        | Field-Textured (Bulk) | 0.016                                                       | 0.98                                | 0.019                  | 0.288                  |

## Table C-1. Kinetic Reaction Parameters Used to History Match Post-Treatment Uranium Leach Experiments

# C1.3.1 Sample B347F1F3 Fine Grain (<2 mm Size) Soil

Input and simulation results for sample B347F1F3 fine grain (<2 mm size) soil with bromide transport are shown in Table C-2 and Figure C-1, respectively. The numerical model results are in good agreement with the experimental results. The dissolved concentration on input have units of  $\mu$ g/cm<sup>3</sup> but are reported in Figure C-1 with  $\mu$ g/L units. This is the case for all subsequent results.

| Column Length (cm)                                   | 15    |
|------------------------------------------------------|-------|
| Column Diameter (cm)                                 | 2.5   |
| Number of Spatial Grid Cells                         | 50    |
| Time Step Size (hr)                                  | 0.1   |
| Water Content (Dimensionless)                        | 0.37  |
| Dispersion (cm <sup>2</sup> /hr)                     | 0.001 |
| Water Injection Rate (cm <sup>3</sup> /hr)           | 5.53  |
| Injection Stream Concentration (µg/cm <sup>3</sup> ) | 0.05  |
| Initial Concentration (µg/cm <sup>3</sup> )          | 0     |

# Table C-2. Input Parameters for Sample B347F1F3 Fine Grain (<2 mm Size) Soil with Bromide Transport

ECF-300FF5-16-0091, REV. 0



Figure C-1. Sample B347F1F3 Fine Grain (<2 mm Size) Soil with Bromide Transport

Input and simulation results for sample B347F1F3 fine grain (<2 mm size) soil with uranium transport are shown in Table C-3 and Figure C-2, respectively. Table C-3 provides the input data, together with the partition coefficient and reverse sorption rate, which yields the best fit of experimental data. The simulation results in Figure C-2 show some disparity with the experimental results. The concentration responses for the first 4 to 5 pore volumes are completely different. The experimental results start at a low concentration and increase, while the numerical simulation concentration decays from the initial concentration.

| Column Length (cm)                                | 15     |
|---------------------------------------------------|--------|
| Column Diameter (cm)                              | 2.5    |
| Number of Spatial Cells                           | 50     |
| Time Step (hr)                                    | 0.825  |
| Water Content                                     | 0.372  |
| Injection Rate (cm <sup>3</sup> /hr)              | 5.53   |
| Diffusion Coefficient (cm <sup>2</sup> /hr)       | 0.001  |
| Soil Bulk Density (g/cm <sup>3</sup> )            | 1.66   |
| $K_d (cm^3/g)$                                    | 9      |
| Initial Water Concentration (µg/cm <sup>3</sup> ) | 0.02   |
| Initial Solid Concentration (µg/g)                | 0.18   |
| Reverse Sorption Rate (1/hr)                      | 0.0090 |
| Forward Sorption Rate (1/hr)                      | 0.361  |

# Table C-3. Input Parameters, Partition Coefficient, and Reverse Sorption Rate for Sample B347F1F3 Fine Grain (<2 mm Size) Soil with Uranium Transport

ECF-300FF5-16-0091, REV. 0



Figure C-2. Sample B347F1F3 Fine Grain (<2 mm size) Soil with Uranium Transport

# C1.3.2 Sample B347P5P8 Fine Grain (<2 mm Size) Soil

Input and simulation results for sample B347P5P8 fine grain (<2 mm size) soil with bromide transport are shown in Table C-4 and Figure C-3, respectively. The simulation results are in good agreement with the experimental results.

| Column Length (cm)                                   | 15    |  |  |  |
|------------------------------------------------------|-------|--|--|--|
| Column Diameter (cm)                                 | 2.5   |  |  |  |
| Number of Spatial Grid Cells                         | 50    |  |  |  |
| Time Step Size (hr)                                  | 0.06  |  |  |  |
| Water Content (Dimensionless)                        | 0.22  |  |  |  |
| Dispersion (cm <sup>2</sup> /hr)                     | 0.001 |  |  |  |
| Water Injection Rate (cm <sup>3</sup> /hr)           | 5.53  |  |  |  |
| Injection Stream Concentration (µg/cm <sup>3</sup> ) | 0.05  |  |  |  |
| Initial Concentration (µg/cm <sup>3</sup> )          | 0     |  |  |  |

| Table C-4. | Input Param  | eters for Sa | ample B3 | 47P5P8  | Fine |
|------------|--------------|--------------|----------|---------|------|
| Grain      | (<2 mm Size) | Soil with B  | romide T | ranspor | t    |

ECF-300FF5-16-0091, REV. 0



Figure C-3. Sample B347P5P8 Fine Grain (<2 mm Size) Soil with Bromide Transport

Input and simulation results for sample B347P5P8 fine grain (<2 mm size) soil and uranium transport are shown in Table C-5 and Figure C-4, respectively. Table C-4 provides the input data, together with the partition coefficient and reverse sorption rate, which yields the best fit of experimental data. The simulation is in good agreement with the experimental data.

| orallium transport                                |       |  |  |  |
|---------------------------------------------------|-------|--|--|--|
| Column Length (cm)                                | 15    |  |  |  |
| Column Diameter (cm)                              | 2.5   |  |  |  |
| Number of Spatial Cells                           | 50    |  |  |  |
| Time Step (hr)                                    | 0.85  |  |  |  |
| Water Content                                     | 0.380 |  |  |  |
| Injection Rate (cm <sup>3</sup> /hr)              | 5.54  |  |  |  |
| Diffusion Coefficient (cm <sup>2</sup> /hr)       | 0.001 |  |  |  |
| Soil Bulk Density (g/cm <sup>3</sup> )            | 1.72  |  |  |  |
| K <sub>d</sub> (cm <sup>3</sup> /g)               | 0.3   |  |  |  |
| Initial Water Concentration (µg/cm <sup>3</sup> ) | 25    |  |  |  |
| Initial Solid Concentration (µg/g)                | 7.5   |  |  |  |
| Reverse Sorption Rate (1/hr)                      | 0.07  |  |  |  |
| Forward Sorption Rate (1/hr)                      | 0.095 |  |  |  |

## Table C-5. Input Parameters and Reverse Sorption Rate for Sample B347P5P8 Fine Grain (<2 mm Size) Soil with Uranium Transport

ECF-300FF5-16-0091, REV. 0



Figure C-4. Sample B345P5P8 Fine Grain (<2 mm Size) Soil with Uranium Transport

# C1.3.3 Sample B347P4 Field-Textured (Bulk) Soil

Input and simulation results for sample B347P4 field-textured (bulk) soil with bromide transport are shown in Table C-6 and Figure C-5, respectively. The simulation results and experimental results both approach the injection concentration of 50  $\mu$ g/L. The simulation concentration results match the observations.

| Column Length (cm)                                   | 13.2  |
|------------------------------------------------------|-------|
| Column Diameter (cm)                                 | 9.53  |
| Number of Spatial Grid Cells                         | 50    |
| Time Step Size (hr)                                  | 0.14  |
| Water Content (Dimensionless)                        | 0.22  |
| Dispersion (cm <sup>2</sup> /hr)                     | 0.001 |
| Water Injection Rate (cm <sup>3</sup> /hr)           | 74.4  |
| Injection Stream Concentration (µg/cm <sup>3</sup> ) | 0.05  |
| Initial Concentration (µg/cm <sup>3</sup> )          | 0     |

| Table C-6. Inpu | ut Param | neters f | or Sample | e B347 | P4   |
|-----------------|----------|----------|-----------|--------|------|
| Field-Textured  | Bulk) Se | oil with | Bromide   | Trans  | port |

ECF-300FF5-16-0091, REV. 0



Figure C-5. Sample B347P4 Field-Textured (Bulk) Soil with Bromide Transport

Input and simulation results for sample B347P4 field-textured (bulk) soil with uranium transport are shown in Table C-7 and Figure C-6, respectively. Table C-6 provides the input data, together with the partition coefficient and the reverse sorption rate, which yields the best fit of experimental data. The simulation is in good agreement with the experimental data.

| Column Length (cm)                                | 13.2  |
|---------------------------------------------------|-------|
| Column Diameter (cm)                              | 9.53  |
| Number of Spatial Cells                           | 50    |
| Time Step (hr)                                    | 0.835 |
| Water Content                                     | 0.228 |
| Injection Rate (cm <sup>3</sup> /hr)              | 74.2  |
| Diffusion Coefficient (cm <sup>2</sup> /hr)       | 0.001 |
| Soil Bulk Density (g/cm <sup>3</sup> )            | 2.05  |
| $K_d (cm^{3/g})$                                  | 0.40  |
| Initial Water Concentration (µg/cm <sup>3</sup> ) | 2.7   |
| Initial Solid Concentration (µg/g)                | 1.08  |
| Reverse Sorption Rate (1/hr)                      | 0.030 |
| Forward Sorption Rate (1/hr)                      | 0.108 |

## Table C-7. Input Parameters and Reverse Sorption Rate for Sample B347P4 Field-Textured (Bulk) Soil with Uranium Transport

ECF-300FF5-16-0091, REV. 0



Figure C-6. B347P4 Field-Textured (Bulk) Soil with Uranium Transport

# C1.3.4 Sample B347R1 Fine Grain (<2 mm Size) Soil

Input and simulation results for sample B347R1 fine grain (<2 mm size) soil and bromide transport are shown in Table C-8 and Figure C-7, respectively. The simulation results and experimental results both approach the injection concentration of 50  $\mu$ g/L with very good agreement between the simulation model and the experimental data.

| Column Length (cm)                       | 15    |
|------------------------------------------|-------|
| Column Diameter (cm)                     | 2.5   |
| Number of Spatial Grid Cells             | 50    |
| Time Step Size (hr)                      | 0.1   |
| Water Content                            | 0.34  |
| Dispersion (cm^2/hr)                     | 0.001 |
| Water Injection Rate (cm^3/hr)           | 5.7   |
| Injection Stream Concentration (µg/cm^3) | 0.05  |
| Initial Concentration (µg/cm^3)          | 0     |

Table C-8. Input Parameters for Sample B347R1 Fine Grain (<2 mm Size) Soil with Bromide Transport

C-11

ECF-300FF5-16-0091, REV. 0



Figure C-7. Sample B347R1 Field-Textured (Bulk) Soil with Bromide Transport

Input and simulation results for sample B347R1 field-textured (bulk) soil and uranium transport are shown in Table C-9 and Figure C-8, respectively. Table C-9 provides the input data, together with the partition coefficient and reverse sorption rate, which yields the best fit of experimental data. The results in Figure C-8 are in good agreement with the observations.

| oraniani iranoport                                |       |
|---------------------------------------------------|-------|
| Column Length (cm)                                | 15    |
| Column Diameter (cm)                              | 2.5   |
| Number of Spatial Cells                           | 50    |
| Time Step (hr)                                    | 0.825 |
| Water Content                                     | 0.338 |
| Injection Rate (cm <sup>3</sup> /hr)              | 5.69  |
| Diffusion Coefficient (cm <sup>2</sup> /hr)       | 0.001 |
| Soil Bulk Density (g/cm <sup>3</sup> )            | 1.79  |
| $K_d (cm^3/g)$                                    | 1.2   |
| Initial Water Concentration (µg/cm <sup>3</sup> ) | 4.6   |
| Initial Solid Concentration (µg/g)                | 5.52  |
| Reverse Sorption Rate (1/hr)                      | 0.06  |
| Forward Sorption Rate (1/hr)                      | 0.381 |

| Table C-9. Input Parameters and Reverse Sorption Rate for |
|-----------------------------------------------------------|
| Sample B347R1 Fine Grain (<2 mm Size) Soil with           |
| Uranium Transport                                         |

ECF-300FF5-16-0091, REV. 0



Figure C-8. Input Parameters and Reverse Sorption Rate for Sample B347R1 Fine Grain (<2 mm Size) Soil with Uranium Transport

# C1.3.5 Sample B347R0 Field-Textured (Bulk) Soil

Input and simulation results for sample B347R0 are shown in Table C-10 and Figure C-9. The agreement is good between the simulated model results and experimental data.

| Column Length (cm)                       | 14    |
|------------------------------------------|-------|
| Column Diameter (cm)                     | 9.53  |
| Number of Spatial Grid Cells             | 50    |
| Time Step Size (hr)                      | 0.115 |
| Water Content                            | 0.17  |
| Dispersion (cm <sup>2</sup> /hr)         | 0.001 |
| Water Injection Rate (cm^3/hr)           | 74.5  |
| Injection Stream Concentration (µg/cm^3) | 0.05  |
| Initial Concentration (µg/cm^3)          | 0     |

# Table C-10. Input Parameters for B347R0 Field-Textured (Bulk) Soil with Bromide Transport



Figure C-9. Sample B347R0 Field-Textured (Bulk) Soil with Bromide Transport

Input and simulation results for sample B347R0 field-textured (bulk) soil with uranium transport are shown in Table C-11 and Figure C-10, respectively. Table C-11 provides the input data, together with the partition coefficient and the reverse sorption rate, which yields the best fit of experimental data. The results in Figure C-10 are in good agreement over the first 10 pore volumes.

| •                                           |       |
|---------------------------------------------|-------|
| Column Length (cm)                          | 14    |
| Column Diameter (cm)                        | 9.53  |
| Number of Spatial Cells                     | 50    |
| Time Step (hr)                              | 0.75  |
| Water Content                               | 0.177 |
| Injection Rate (cm^3/hr)                    | 74.5  |
| Diffusion Coefficient (cm <sup>2</sup> /hr) | 0.001 |
| Soil Bulk Density (g/cm^3)                  | 2.18  |
| $K_d (cm^3/g)$                              | 0.3   |
| Initial Water Concentration (µg/cm^3)       | 4.0   |
| Initial Solid concentration (µg/g)          | 1.2   |
| Reverse Rate (1/hr)                         | 0.06  |
| Forward Rate (1/hr)                         | 0.222 |

## Table C-11. Input Parameters and Reverse Sorption Rate for Sample B347R0 Field-Textured (Bulk) Soil with Uranium Transport

C-14

ECF-300FF5-16-0091, REV. 0



Figure C-10. Sample B347R0 Field-Textured (Bulk) Soil with Uranium Transport

# C1.3.6 Sample B347T7 Fine Grain (<2 mm Size) Soil

Input and simulation results for sample B347T7 are shown in Table C-12 and Figure C-11, respectively. The agreement is excellent between the simulation model results and experimental data.

| Column Length (cm)                       | 15    |
|------------------------------------------|-------|
| Column Diameter (cm)                     | 2.5   |
| Number of Spatial Grid Cells             | 50    |
| Time Step Size (hr)                      | 0.1   |
| Water Content                            | 0.35  |
| Dispersion (cm <sup>2</sup> /hr)         | 0.001 |
| Water Injection Rate (cm^3/hr)           | 5.58  |
| Injection Stream Concentration (µg/cm^3) | 0.05  |
| Initial Concentration (µg/cm^3)          | 0     |

| Table C-12. Input Parameters for Sample B347T7 Fine Grain |
|-----------------------------------------------------------|
| (<2 mm Size) Soil with Bromide Transport                  |

ECF-300FF5-16-0091, REV. 0



Figure C-11. Sample B347T7 Fine Grain (<2 mm Size) Soil with Bromide Transport

Input and simulation results for sample B347T7 field-textured (bulk) soil with uranium transport are shown in Table C-13 and Figure C-12, respectively. Table C-13 provides the input data, together with the partition coefficient and reverse sorption rate, which yields the best fit of experimental data. The results in Figure C-12 are in good agreement during most of the simulation. Concentrations remain low and vary within a narrow range over multiple pore volumes.

| Column Length (cm)                          | 15    |
|---------------------------------------------|-------|
| Column Diameter (cm)                        | 2.5   |
| Number of Spatial Cells                     | 50    |
| Time Step (hr)                              | 0.875 |
| Water Content                               | 0.347 |
| Injection Rate (cm <sup>3</sup> /hr)        | 5.61  |
| Diffusion Coefficient (cm <sup>2</sup> /hr) | 0.001 |
| Soil Bulk Density (g/cm^3)                  | 1.78  |
| $K_d (cm^3/g)$                              | 5     |
| Initial Water Concentration (µg/cm^3)       | 0.007 |
| Initial Solid Concentration (µg/g)          | 0.035 |
| Reverse Rate (1/hr)                         | 0.017 |
| Forward Rate (1/hr)                         | 0.2   |

#### Table C-13. Input Parameters and Sorption Rates for Sample B347T7 Fine Grain (<2 mm Size) Soil with Uranium Transport

C-16

ECF-300FF5-16-0091, REV. 0



Figure C-12. Sample B347T7 Fine Grain (<2 mm Size) Soil with Uranium Transport

# C1.3.7 Sample B347T6 Field-Textured (Bulk) Soil

Input and simulation results for sample B347T6 field-textured (bulk) soil with bromide transport are shown in Table C-14 and Figure C-13, respectively. The results in Figure C-13 show some disparity between the simulation results and experimental data, but qualitatively the behavior is in agreement.

| Bromide Transport                          |       |
|--------------------------------------------|-------|
| Column Length (cm)                         | 13.7  |
| Column Diameter (cm)                       | 9.53  |
| Number of Spatial Grid Cells               | 50    |
| Time Step Size (hr)                        | 0.065 |
| Water Content                              | 0.14  |
| Dispersion (cm <sup>2</sup> /hr)           | 0.001 |
| Water Injection Rate (cm <sup>3</sup> /hr) | 72.7  |
| Injection Stream Concentration (µg/cm^3)   | 0.05  |
| Initial Concentration (µg/cm^3)            | 0     |

| Table C-14. Input Parameters and Sorption Rates for |
|-----------------------------------------------------|
| Sample B347T6 Field-Textured (Bulk) Soil with       |
| Bromide Transport                                   |

C-17

ECF-300FF5-16-0091, REV. 0



Figure C-13. Sample B347T6 Field-Textured (Bulk) Soil with Bromide Transport

Input and simulation results for sample B347T6 field-textured (bulk) soil with uranium transport are shown in Table C-15 and Figure C-14, respectively. Table C-15 provides the input data, together with the partition coefficient and the reverse sorption rate, which yields the best fit of experimental data. The results in Figure C-14 are in good agreement over first 10 pore volumes. The increase in concentration observed after 10 pore volumes may be related to dissolution of additional uranium bearing mineral phases.

| Column Length (cm)                    | 13.7    |
|---------------------------------------|---------|
| Column Diameter (cm)                  | 9.53    |
| Number of Spatial Cells               | 50      |
| Time Step (hr)                        | 0.76    |
| Water Content                         | 0.146   |
| Injection Rate (cm^3/hr)              | 72.7    |
| Diffusion Coefficient (cm^2/hr)       | 0.001   |
| Soil Bulk Density (g/cm^3)            | 2.26    |
| K <sub>d</sub> (cm^3/g)               | 0.98    |
| Initial Water Concentration (µg/cm^3) | 0.016   |
| Initial Solid Concentration (µg/g)    | 0.01568 |
| Reverse Rate (1/hr)                   | 0.019   |
| Forward Rate (1/hr)                   | 0.288   |

| Table C-15. Input Parame | eters and | Sorption    | Rates for | or Sample |
|--------------------------|-----------|-------------|-----------|-----------|
| B347T6 Field-Textured    | (Bulk) Se | oil and Ura | anium Tr  | ransport  |



Figure C-14. Sample B347T6 Field-Textured (Bulk) Soil with Uranium Transport

# C.2 Alternative Parameter Matching of Experimental Data

An alternative method for determination of kinetic sorption parameters assumes a value for the reverse reaction rate. The experimental data are matched by adjusting the partition coefficient ( $K_d$ ) to provide the best fit to the data by the numerical model results. The value selected is taken to be representative of the reverse rates provided by Table C-1. An arithmetic average of the reverse rates for the seven samples in Table C-1 yields a value of 0.038/hr. A rounded up value of 0.03/hr is assigned as the reverse reaction rate for all samples. The partition coefficients, together with the reverse and forward reaction rates for the seven samples, are shown in Table C-16. Figures C-15 through C-21 show the model fits to the observed results, indicating reasonable matches. For some samples, the initial dissolved concentration was varied slightly from the Table C-1 values.

In this approach, since the reverse rate is fixed and fit is made by changing the  $K_d$  value that also affect the forward rate, comparing the  $K_d$  value among different samples provides insight into the variable leaching characteristics. By comparing the fine grain (<2 mm size) sediment results, B347F1F3 and B347T7 have  $K_d$  values that are about a factor of 5 to 10 greater than B347P5P8 and B247R1. For the field-textured (bulk) sediment samples, the  $K_d$  value for B347T6 is twice that of the other two bulk sediment samples (B347R0 and B347P4). The samples showing higher  $K_d$  values are located at periodically rewetted zone (PRZ) depths (Table 6-5) and have higher phosphate concentrations resulting from PRZ injections (and infiltration), as shown in Figure 6-17.
#### ECF-300FF5-16-0091, REV. 0

| Sample<br>Number | Soil Type                  | Initial<br>Dissolved<br>Concentration<br>(μg/cm <sup>3</sup> ) | K <sub>d</sub> (cm <sup>3</sup> /G) | Reverse Rate<br>(1/Hr) | Forward Rate<br>(1/Hr) |
|------------------|----------------------------|----------------------------------------------------------------|-------------------------------------|------------------------|------------------------|
| B347F1F3         | Fine Grain<br>(<2 mm size) | 0.018                                                          | 5.0                                 | 0.03                   | 0.67                   |
| B347P5P8         | Fine Grain<br>(<2 mm Size) | 27                                                             | 0.30                                | 0.03                   | 0.041                  |
| B347P4           | Field-Textured<br>(Bulk)   | 2.7                                                            | 0.40                                | 0.03                   | 0.11                   |
| B247R1           | Fine Grain<br>(<2 mm Size) | 4.6                                                            | 1.4                                 | 0.03                   | 0.22                   |
| B347R0           | Field-Textured<br>(Bulk)   | 4.0                                                            | 0.4                                 | 0.03                   | 0.15                   |
| B347T7           | Fine Grain<br>(<2 mm Size) | 0.0065                                                         | 4.0                                 | 0.03                   | 0.62                   |
| B347T6           | Field-Textured<br>(Bulk)   | 0.016                                                          | 0.70                                | 0.03                   | 0.33                   |

#### Table C-16. History Match Parameters for the Final Post-Treatment Uranium Leach Results with Reverse Reaction Rate of 0.03/Hr



Figure C-15. Sample B347F1F3 Fine Grain (<2 mm Size) Soil with Uranium Transport; Reverse Rate = 0.03/Hr

C-20

ECF-300FF5-16-0091, REV. 0









C-21

G-305

ECF-300FF5-16-0091, REV. 0







Figure C-19. Sample B347R0 Field-Textured (Bulk) Soil with Uranium Transport; Reverse Rate = 0.03/Hr

C-22

ECF-300FF5-16-0091, REV. 0



Figure C-20. Sample B347T7 Fine Grain (<2 mm Size) Soil with Uranium Transport; Reverse Rate = 0.03/Hr





C-23

### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

C-24

G-308

ECF-300FF5-16-0091, REV. 0

## Appendix D

## MATLAB Files for Sample B347P4 Bulk Soil Kinetic Sorption Model Calculation

D-i

### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

D-ii

ECF-300FF5-16-0091, REV. 0

## D1 Introduction

The kinetic sorption model calculations were implemented as MATLAB<sup>®</sup> script using two files. The file "fd\_transport.m" (finite difference transport) initially runs the input file "transport\_data.m". The input file initiates the necessary model input in MATLAB Workspace (i.e., memory). Inputs include the geometry of the column, soil properties, uranium sorption parameters, initial conditions, one-dimensional spatial discretization, and time step schedule. After execution of the input file, "fd\_transport.m" calculates the concentration time history of uranium transport within the column and effluent exiting the column. Each script block is explained further in the comment lines (preceded by the percent [%] sign).

All experimental samples were conducted with two stop flow or shut-in events. The elapsed time during flow is computed by the volume per unit pore volume multiplied by the pore volumes and divided by the injection rate. During a stop flow event, the pore volumes are constant.

Concentrations are known at the beginning of a time step, and the numerical model calculation provides the concentrations at the end of the time step. The time step calculation uses matrix inversion and matrix/vector multiplication utilizing MATLAB built-in matrix functions. The resulting solution for the concentrations satisfies the finite difference equations for the uranium transport within the column subject to the initial concentrations and the boundary conditions at the upper and lower column boundaries. The time iteration continues to update these concentration profiles at all time steps. Within each time step, the evaluated concentrations and designed flows (injected pore volumes) are used to evaluate mass fluxes and check the mass balance. After each time step, the column effluent (exiting) concentration is stored, and a mass balance is calculated. Output is exported to a Microsoft Excel<sup>®</sup> file (e.g., "B347P4\_insitu\_U\_Kinetic.xlsx"), which includes mass balance results, input parameters, and time history of the effluent concentration.

The Excel output file is designed with a preset graph to compare the simulated result with experimental data. Values for the relevant parameters are set, and the model is run. Model results are compared to experimental results, and model parameters are manually adjusted until a best fit of the experimental data is obtained. This history matching procedure is carried out for all relevant samples.

<sup>&</sup>lt;sup>®</sup> MATLAB is a registered trademark of The MathLab, Inc., Natick, Massachusetts.

<sup>®</sup> Microsoft and Excel are registered trademarks of Microsoft Corporation, Redmond, Washington.

## D2 MATLAB Input File Used to Match Uranium Leaching Sample B347P4 Experimental Results Using Single-Site Kinetic Sorption Model

#### File Name: Transport\_Data.m

%Input data for Uranium kinetic sorption leaching model %Reference Data: Rashid, H, Groundwater Flow and Uranium Transport Modeling in %Support of the 300 Area FF-5 RI/FS Document, CHPRC/EP&SP, Oct. 2012. %units internal to code: %length[cm] %time[hr] %concentration[mmol/cm^3] %mass[q] 00 %Input data for Uranium sample B347P4 bulk soil %Reference Data: Rashid, H, Groundwater Flow and Uranium Transport Modeling %in Support of the 300 Area FF-5 RI/FS Document, CHPRC/EP&SP, Oct. 2012. %Reference data includes column geometry, water content, soil bulk density, %injection rate, and dispersion coefficient. %The Uranium input data is pre-processed from the reference data. %units internal to code: %length[cm] %time[hr] %concentration[micro-mol/cm^3] %mass[g] %column length [cm] L = 13.2;%discretization of column Nz = 50;delz = L/Nz;z = zeros(Nz, 1);z(1) = 0.5 \* delz;for i = 2:Nzz(i) = z(i-1) + delz;end %diameter of column [cm] and area normal to tranport [cm^2] diameter column = 9.53; $Az = pi() * (diameter column/2)^2;$ %cell bulk volume[cm^3] Vol total = Az\*L;%saturated water content (saturated porosity) wtr content = 0.228;%volume water per pore volume Vwtr per PV = wtr content\*Vol total; 00 %Water injection rate [cm^3/hr] inj\_rate = 74.2; %Darch velocity [cm/hr] v = inj rate/Az; %Dispersion coefficient [cm^2/hr] Dispersion = 1.E-3;%bulk density [g/cm^3] bulk density = 2.05;

D-2

#### ECF-300FF5-16-0091, REV. 0

```
%sorption coefficient [cm^3-water/g-solid]
%if Kd flag = 0, no sorption (bromide); otherwise sorption (U-238)
Kd flag = 1;
if Kd flag == 1;
 analyte = {'U-238'};
%Kd [ml/g = cm^3/g]
K d = 0.4;
else
analyte = {'bromide'};
K d = 0;
end
%reverse reaction rate [1/hr]
rate r = 3.E-2;
%forward reaction rate
rate f = rate r*K d*bulk density/wtr content;
%conc water initial [micro-g-U/Vwtr]
conc water initial = 2.7;
%initial conditions [conc solid: micro-g-U/g-solid]
conc solid initial = K d*conc water initial;
initial mass solid = bulk density*Vol total*conc solid initial;
initial mass water = wtr content*Vol total*conc water initial;
%the * old are the beginning of time step values. For 1st time step this is
%the initial values
conc old = zeros(Nz,1);
conc old solid = zeros(Nz,1);
conc_old = conc_water_initial*ones(Nz,1);
conc old solid = conc solid initial*ones(Nz,1);
%initial mass in place
initial massinplace = initial mass water + initial mass solid;
%time array [hr] and number of time steps
end time = 167;
NT = 200;
delt = end time/NT;
t = zeros(NT, 1);
t(1) = delt;
88
for it = 2:NT
t(it) = t(it-1) + delt;
end
input = zeros(13,1);
%input includes transport parameters, numerical discretization, partition
%coefficient, initial concentrations, reverse and forward kinetic rates.
%input is written to output file B347P4 insitu U Kinetic
input = [L,diameter column,Nz,delt,wtr content,inj rate,Dispersion,...
bulk density, K d, conc water initial, conc solid initial, rate r, rate f];
'fini transport initial data'
```

## D3 MATLAB Transport File Used To Match Sample B347P4 Results Using Single-Site Kinetic Sorption Model File name: fd\_transport.m

```
%Uranium transport calculation for Sample B347P4
%finite difference solution of advective/dispersive transport with
%kinetic sorption
clc
%clf
clear
format long
%read input data
transport data
8
2
%initialize pore volumes
pore volumes = zeros(NT,1);
vial conc = zeros(NT,1);
balance ke = zeros(NT,1);
balance te = zeros(NT,1);
mass wtr = zeros(NT, 1);
mass solid = zeros(NT,1);
mass out = zeros(NT,1);
mass wtr2 = zeros(NT,1);
mass solid2 = zeros(NT,1);
%start time step loop
time = 0;
sol mass = wtr content*Az*delz*conc water initial;
for it = 1:NT
conc = zeros(Nz, 1);
conc solid = zeros(Nz,1);
time = time + delt;
%1st shut-in period
if 17.84 < time && time < 65.84
 v = 0;
else
v = inj rate/Az;
end
%2nd shut-in period
if time > 70
 if 80.33 < time && time < 152.33
v = 0;
 else
v = inj rate/Az;
end
end
9
%generate coefficient matrix.
coef = zeros(Nz,Nz);
A = -(wtr content*Dispersion/delz/delz + v/delz);
B = 2*wtr content*Dispersion/delz/delz + v/delz + wtr_content/delt ...
 + rate r*bulk density*K d/(1+rate r*delt);
 C = - wtr content*Dispersion/delz/delz;
 for i = 1:Nz
```

#### ECF-300FF5-16-0091, REV. 0

```
if i == 1
coef(i,i) = wtr content*Dispersion/delz/delz + v/delz ...
+ wtr content/delt + rate r*bulk density*K d/(1+rate r*delt);
coef(i, i+1) = C;
elseif i == Nz
coef(i, i-1) = A;
coef(i,i) = wtr content*Dispersion/delz/delz + v/delz ...
+ wtr content/delt + rate r*bulk density*K d/(1+rate r*delt);
else
coef(i, i-1) = A;
coef(i,i) = B;
coef(i,i+1) = C;
end
end
%compute inverse of coefficient matrix
A inv = zeros(Nz,Nz);
A inv = inv(coef);
%assign rhs vector
rhs = zeros(Nz, 1);
for i = 1:Nz
rhs(i) = wtr content*conc old(i)/delt ...
+ bulk density*rate r*conc old solid(i)/(1+rate r*delt);
end
%solution for water concentration
conc = A inv*rhs;
%solution for solid concentration
for i = 1:Nz
conc solid(i) = (rate r*delt*K d*conc(i)/(1+rate r*delt))...
+ conc old solid(i)/(1 + rate r*delt);
end
%mass balance kinectic equation and transport equation
balance ke(it) = 0;
balance te(it) = 0;
mass wtr(it) = 0;
mass_solid(it) = 0;
for i = 1:Nz;
mass ke = bulk density*(conc solid(i)-conc old solid(i))/delt...
-rate r*bulk density*K d*conc(i)...
+ rate r*bulk density*conc solid(i);
if i == 1
mass te = (wtr content/delt)*(conc(i)-conc old(i))...
+ (wtr content*Dispersion/delz/delz)*(conc(i)-conc(i+1))...
+ (v/delz)*conc(i)...
+ (rate r*bulk density/(1+rate r*delt))*(K d*conc(i)-conc old solid(i));
elseif i == Nz
mass te = (wtr content/delt)*(conc(i)-conc old(i))...
+ (wtr content*Dispersion/delz/delz)*(conc(i)-conc(i-1))...
 + (v/delz) * (conc(i) - conc(i-1)) ...
+ (rate r*bulk density/(1+rate r*delt))*(K d*conc(i)-conc old solid(i));
else
mass_te = (wtr_content/delt)*(conc(i)-conc_old(i))...
+ (wtr_content*Dispersion/delz/delz)*(-conc(i-1)+2*conc(i)-conc(i+1))...
+ (v/delz) * (conc(i) - conc(i-1))...
+ (rate r*bulk density/(1+rate r*delt))*(K d*conc(i)-conc old solid(i));
end
 if abs(mass ke) > balance ke(it)
balance ke(it) = abs(mass ke);
```

#### ECF-300FF5-16-0091, REV. 0

```
end
 if abs(mass te) > balance te(it);
 balance te(it) = abs(mass te);
 end
%mass in place
mass wtr(it) = mass wtr(it) + delz*Az*wtr content*conc(i);
mass solid(it) = mass solid(it)...
+ delz*Az*bulk density*conc solid(i);
0
%end loop over grid cells
end
%cumulative mass out
if it == 1
mass out(it) = v*delt*Az*conc(Nz);
else
mass out(it) = mass out(it-1) + v*delt*Az*conc(Nz);
end
%update conc old
conc old = conc;
conc old solid = conc solid;
%number of cumulative pore volumes at time t(it)
%pore volumes(it) = inj rate*delt/Vwtr per PV;
if (it) == 1
pore volumes(it) = v*Az*delt/Vwtr per PV;
else
pore volumes(it) = pore volumes(it-1) + v*Az*delt/Vwtr per PV;
end
%vial concentration mg/L
if v == 0
vial conc(it) = vial conc(it-1);
else
vial conc(it) = 1000*conc(Nz);
end
90
%end of time step loop
end
%write input
xlswrite('B347P4 insitu U Kinetic.xlsx',transpose(input),'Input','B2')
%write time history of pore volumes and concentration
xlswrite('B347P4 insitu U Kinetic.xlsx',t,'B347P4 U Kinetic','C5:C204')
xlswrite('B347P4 insitu U Kinetic.xlsx',pore volumes,'B347P4 U Kinetic','D5:D
204')
xlswrite('B347P4 insitu U Kinetic.xlsx',vial conc,'B347P4 U Kinetic','E5:E204
')
%write balance equation results
xlswrite('B347P4 insitu U Kinetic.xlsx',t,'balance','B4:B203')
xlswrite('B347P4 insitu U Kinetic.xlsx',balance ke,'balance','C4:C203')
xlswrite('B347P4 insitu U Kinetic.xlsx',balance te,'balance','D4:D203')
xlswrite('B347P4 insitu U Kinetic.xlsx',initial mass water,'balance','F3')
xlswrite('B347P4 insitu U Kinetic.xlsx',initial mass solid,'balance','G3')
xlswrite('B347P4 insitu U Kinetic.xlsx', mass wtr, 'balance', 'F4:F203')
xlswrite('B347P4 insitu U Kinetic.xlsx',mass solid,'balance','G4:G203')
xlswrite('B347P4 insitu U Kinetic.xlsx', mass out, 'balance', 'H4:H203')
delete('*.tmp')
'fini fd transport'
```

ECF-300FF5-16-0091, REV. 0

## Appendix E

# Assessment of Effect of Polyphosphate Injection/Infiltration on Aquifer Properties

E-i

### ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

E-ii

ECF-300FF5-16-0091, REV. 0

## E1 Assessment of Effect of Polyphosphate Injection/Infiltration on Aquifer Properties

This appendix assesses the effect of polyphosphate injections/infiltration on hydraulic properties of the aquifer (such as porosity or permeability) in the vicinity of the treatment zone. Stage A Enhanced Attenuation Area (EAA) and surrounding wells are shown in Figure E-1.



Figure E-1. Stage A EAA and Monitoring Wells

ECF-300FF5-16-0091, REV. 0

## E2 Water Table Elevations

For this analysis, the water level elevations from two monitoring wells were examined: 399-1-23, which is located just outside the Stage A treatment area, and 399-1-12, which is located northwest and upgradient of the study area. Both wells are continuously monitored as part of the automated water level network in 15 to 30 minute intervals and the data records are available for water level elevation in m (above mean sea level).

The assumption for this analysis is that well 399-1-23 water levels could be influenced by injections due to proximity to the injection sites, but well 399-1-12 should not be affected by changes caused by injection due to its up-gradient location and distance from the Stage A treatment area. The water level elevations for both wells are shown in Figure E-2. The plot depicts changes in water levels prior to treatment (injection/infiltration), during treatment (marked as time of interest), and for some time period after treatment.



Figure E-2. Water Level Elevation Difference for 399-1-23 and 399-1-12

Throughout the observation time period, both wells showed a similar trend with minor differences resulting from differences in their respective locations. In the pretreatment and during treatment (time of interest), water level fluctuations in both wells remained similar (and virtually overlapping) indicating negligible or no impact of changes in the aquifer properties during treatment. Following the treatment, water levels between the two wells also remained very similar, indicating negligible or no impact on aquifer properties following treatment. During the treatment, the frequency of water level perturbations appeared to be enhanced, but they are likely induced by river stage fluctuations since both wells showed similar changes.

Water levels and specific conductance measurements for well 399-1-23 are 399-1-12 are presented in Figure E-3 and Figure E-4, respectively. Specific conductance for 399-1-23 shows step increases during the time of treatment (November 6 through November 17, 2015), indicating that it was receiving

#### ECF-300FF5-16-0091, REV. 0

polyphosphate solutions when they were injected/infiltrated in the Stage A EAA. Specific conductance increased from 0.5 mS/cm to over 1.5 mS/cm. On the other hand, specific conductance in well 399-1-12 remained at background levels, indicating no or negligible influence of polyphosphate solutions during treatment. Given that 399-1-23 showed large increases in specific conductance during injection of polyphosphate solution, it continued to have similar water level trends as 399-1-12, which indicates that no appreciable changes in aquifer properties (porosity or permeability) have occurred.



Figure E-3. Specific Conductance and Water Level Elevation Correlation Graph for 399-1-23

Absolute difference in heads between the two wells is presented in Figure E-5 to evaluate any significant changes. Due to location differences, some head differences are expected, and the trend typically varies from a 0.01 to 0.015 m difference. However, some rise in water levels was noticeable in well 399-1-23 during the time of injection (marked as time of interest between November 6 and 18, 2015), indicating influence of the nearby injection well. The larger difference after December 1, 2015 is correlated to the general rise in water level reflecting increasing river stage. This perhaps results in slight increase in vertical gradients within the aquifer; therefore, head differences between the two wells are slightly larger, and part of natural variation is expected with the rise and fall of river stage. Based on these observations, it is concluded that no or negligible change in aquifer properties occurred due to polyphosphate injections.





Figure E-4. Specific Conductance and Water Level Elevation for 399-1-12



Figure E-5. Absolute Head Difference for 399-1-23 Versus 399-1-12

E-4

ECF-300FF5-16-0091, REV. 0

## E3 Time Travel Calculations

This section estimates travel time by calculating how long polyphosphate took to reach downstream monitoring wells. For this analysis, three wells were used: 399-1-23, 399-1-7, and 399-2-2 (Figure E-1). These wells are located along an inferred flow path within the aquifer. Normalized specific conductance values were calculated for all three wells to find the first peak value for each well as shown in Figure E-6.

To calculate the travel time, well 399-1-23 was used as a base point to find the distance between each well using X and Y coordinates, then the date and time of the first peak were determined from the plot. Finally, travel velocity from well 399-1-23 to other wells was calculated for each well, and results are presented in Table E-1. The travel times shown in the table are with respect to well 399-1-23. The peak concentration took approximately 20 days to reach well 399-1-7, leading to an estimated average linear velocity of 9.2 m/day. The peak concentration in well 399-2-2 was observed approximately after 28 days, indicating an average linear velocity of 11.5 m/day. These average linear velocity estimates following injection are similar to the velocity estimated in previous studies (prior to injection) (PNNL-18529, *300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report*; PNNL-22048) indicating that the aquifer properties have not been altered.

| Well    | Travel Time from<br>Max (Days) | Velocity (m/d) |
|---------|--------------------------------|----------------|
| 399-1-7 | 20.49                          | 9.2            |
| 399-2-2 | 28                             | 11.5           |
|         | Average Velocity               | 10.3           |

**Table E-1. Travel Time Calculation Results** 



Figure E-6. Observed Specific Conductance as a Function of Time for Groundwater Monitoring Wells 399-1-23, 399-1-7, and 399-2-2

ECF-300FF5-16-0091, REV. 0

## E4 References

- PNNL-18529, 2009, 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnl.gov/main/publications/external/technical\_reports/PNNL-18529.pdf</u>.
- PNNL-22048, 2012, Updated Conceptual Model for the 300 Area Uranium Groundwater Plume, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-22048.pdf</u>.

ECF-300FF5-16-0091, REV. 0

# Appendix F

# Software Installation and Checkout Forms

F-i

ECF-300FF5-16-0091, REV. 0

This page intentionally left blank.

F-ii

Г

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM                                                                                                                                                                                                     |                                           |                                       |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|--|--|--|
| Software Owner Instructions:                                                                                                                                                                                                                      |                                           |                                       |  |  |  |
| Complete Fields 1-13, then run test cases in Field 14. Compare test case results listed in Field 15 to corresponding Test Report outputs.<br>If results are the same, sign and date Field 19. If not, resolve differences and repeat above steps. |                                           |                                       |  |  |  |
| Software Subject Matter Expert Instructions:                                                                                                                                                                                                      |                                           |                                       |  |  |  |
| Assign test personnel. Approve the installation of the<br>support documentation.                                                                                                                                                                  | code by signing and dating Field 21, then | maintain form as part of the software |  |  |  |
| GENERAL INFORMATION:                                                                                                                                                                                                                              |                                           |                                       |  |  |  |
| 1. Software Name: STOMP (Subsurface Tran                                                                                                                                                                                                          | sport Over Multiple Phases)               | Software Version No.: Bld 4           |  |  |  |
| EXECUTABLE INFORMATION:                                                                                                                                                                                                                           |                                           |                                       |  |  |  |
| <ol><li>Executable Name (include path):</li></ol>                                                                                                                                                                                                 |                                           |                                       |  |  |  |
| All executable files installed in                                                                                                                                                                                                                 | directory                                 | /bin                                  |  |  |  |
| MD5 File Signature                                                                                                                                                                                                                                | Executable File Name                      |                                       |  |  |  |
| 6536b8e12d8c5b83dca76f2c947b6153                                                                                                                                                                                                                  | stomp-wae-bog-cbprcD4i.x                  |                                       |  |  |  |
| e0cdf04bc1a2f6c55c5a1b499939f663                                                                                                                                                                                                                  | stomp-wae-bcg-chprc041.x                  |                                       |  |  |  |
| 6e72340bb39f6056e232fe5ff241c4d4                                                                                                                                                                                                                  | stomp-wae-bd-chprc04i.x                   |                                       |  |  |  |
| 3f837a0fb8d9f47dbcada686f542d7fc                                                                                                                                                                                                                  | stomp-wae-bd-chprc041.x                   |                                       |  |  |  |
| 7e5b4cc36a8991b3d5a8ea2ed155ce47                                                                                                                                                                                                                  | stomp-wae-cgsq-chprc04i.x                 |                                       |  |  |  |
| 00a898c0c3ec06817485781ad1c9ec46                                                                                                                                                                                                                  | stomp-wae-cgsq-chprc041.x                 |                                       |  |  |  |
| f18ff5ab5667065d8ab12657344fb6a0                                                                                                                                                                                                                  | stomp-wae-cgst-chprc04i.x                 |                                       |  |  |  |
| 061af86cf21ad8435b046d0efabe971b                                                                                                                                                                                                                  | stomp-wae-cgst-chprc041.x                 |                                       |  |  |  |
| 3c8111a9855dc0e430bf3c8a7abcf37e                                                                                                                                                                                                                  | stomp-w-bcg-chprc04i.x                    |                                       |  |  |  |
| 20436d615a94955a2ce8eecdb8cba546                                                                                                                                                                                                                  | stomp-w-bcg-chprc041.x                    |                                       |  |  |  |
| 8b3df29df21d040189c3e2a50ef823bb                                                                                                                                                                                                                  | stomp-w-bd-chprc04i.x                     |                                       |  |  |  |
| 066a289a75aedb933eb2536da5d7d1ff                                                                                                                                                                                                                  | stomp-w-bd-chprc041.x                     |                                       |  |  |  |
| C866Zad/aUd9D6ICa39d8a895ZeI5d8e                                                                                                                                                                                                                  | stomp-w-cgsq-cnprc041.x                   |                                       |  |  |  |
| 28ad16806e130/aca311d/b189/93e/3                                                                                                                                                                                                                  | stomp-w-cgsq-chprc041.x                   |                                       |  |  |  |
| ff9ff6f29b3469419ffaece87d7e772b                                                                                                                                                                                                                  | stomp-w-cgst-chprc041.x                   |                                       |  |  |  |
| 0c3e3fba40f5b93e71bcf9586432fd27                                                                                                                                                                                                                  | stomp-w-cgst-chprc04i.x                   |                                       |  |  |  |
| 78492aee80a8c2d0a4e82aabf4a9c213                                                                                                                                                                                                                  | stomp-w-r-bcg-chprc041.x                  |                                       |  |  |  |
| 84b129786aba9c4be884e15e45a67389                                                                                                                                                                                                                  | stomp-w-r-bd-chprc04i.x                   |                                       |  |  |  |
| e990f1566c8099a8d54508de3da9cd88                                                                                                                                                                                                                  | stomp-w-r-bd-chprc041.x                   |                                       |  |  |  |
| 18a589a2b55aab2db290efea19b39351                                                                                                                                                                                                                  | stomp-w-r-cgsq-chprc04i.x                 |                                       |  |  |  |
| 6569959476772a137df35ce874821889                                                                                                                                                                                                                  | stomp-w-r-cgsq-chprc041.x                 |                                       |  |  |  |
| 3. Executable Size (bytes): MD5 signatures al                                                                                                                                                                                                     | cove uniquely identify each               | executable file                       |  |  |  |
| COMPILATION INFORMATION:                                                                                                                                                                                                                          |                                           |                                       |  |  |  |
| 4. Hardware System (i.e., property number or ID):                                                                                                                                                                                                 |                                           |                                       |  |  |  |
| Tellus Subsurface Modeling Platfo                                                                                                                                                                                                                 | cm                                        |                                       |  |  |  |
| <ol><li>Operating System (include version number):</li></ol>                                                                                                                                                                                      |                                           |                                       |  |  |  |
| Linux tellusmgmt.rl.gov 2.6.18-30<br>x86 64 x86 64 GNU/Linux                                                                                                                                                                                      | 3.4.1.el5 #1 SMP Tue Apr 17               | 17:08:00 EDT 2012 x86_64              |  |  |  |
| INSTALLATION AND CHECKOUT INFORMATION:<br>6. Hardware System (i.e., property number or ID):                                                                                                                                                       |                                           |                                       |  |  |  |
| Green Linux Cluster                                                                                                                                                                                                                               |                                           |                                       |  |  |  |
| 7. Operating System (include version number):                                                                                                                                                                                                     |                                           |                                       |  |  |  |
| Linux green 3.2.0-35-generic #55-<br>x86 64 GNU/Linux                                                                                                                                                                                             | Ubuntu SMP Wed Dec 5 17:42:1              | 6 UTC 2012 x86_64 x86_64              |  |  |  |

Page 1 of 2

A-6005-149 (REV 0)

#### ECF-300FF5-16-0091, REV. 0

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM (continued)                                                            |                                                                  |                             |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|--|--|
| 1. Software Name: STOMP (Subsurface Transpo                                                                          | ort Over Multiple Phases)                                        | Software Version No.: Bld 4 |  |  |
| 8. Open Problem Report?  No O Yes PR/C                                                                               | R No.                                                            |                             |  |  |
| TEST CASE INFORMATION:                                                                                               |                                                                  |                             |  |  |
| 9. Directory/Path:                                                                                                   |                                                                  |                             |  |  |
|                                                                                                                      | /itc                                                             |                             |  |  |
| 10. Procedure(s):                                                                                                    |                                                                  |                             |  |  |
| CHPRC-00211 Rev 1, STOMP Software Te                                                                                 | st Plan                                                          |                             |  |  |
| 11. Libraries:                                                                                                       |                                                                  |                             |  |  |
| N/A (static linking)                                                                                                 |                                                                  |                             |  |  |
| 12. Input Files:                                                                                                     |                                                                  |                             |  |  |
| Input files for ITC-STOMP-1, ITC-STO<br>(Baseline for comparison are results<br>prepared on Tellus during acceptance | MP-2, and ITC-STOMP-2<br>files from ATC-STOMP-1, ATC<br>testing) | -STOMP-2, and ATC-STOMP-3   |  |  |
| 13. Output Files:                                                                                                    |                                                                  |                             |  |  |
| plot.* files produced by STOMP in te                                                                                 | sting                                                            |                             |  |  |
| 14. Test Cases:                                                                                                      |                                                                  |                             |  |  |
| ITC-STOMP-1, ITC-STOMP-2, and ITC-ST                                                                                 | YOMP-3                                                           |                             |  |  |
| 15. Test Case Results:                                                                                               |                                                                  |                             |  |  |
| Pass for all executable files listed                                                                                 | i above.                                                         |                             |  |  |
| 16. Test Performed By: WE Nichols                                                                                    |                                                                  |                             |  |  |
| 17. Test Results: () Satisfactory, Accepted for Use                                                                  | O Unsatisfactory                                                 |                             |  |  |
| 18. Disposition (include HISI update):                                                                               |                                                                  |                             |  |  |
| Accepted; Installation noted in HISI<br>WE Nichols, S Mehta, H Rashid.                                               | for users TJ Budge, N Hasan                                      | , A Mayenna, WJ McMahon,    |  |  |
| Prepared By:                                                                                                         |                                                                  |                             |  |  |
| 19. tal illim 3 Maile                                                                                                | WE Nichols                                                       | 25 APRIL ZOI3               |  |  |
| Software Owner (Signature)                                                                                           | Print                                                            | Date                        |  |  |
| 20. Test Personnek                                                                                                   | WE Nichols                                                       | 75 AMUL ZEIZ                |  |  |
| - Sign                                                                                                               | Print                                                            | Date                        |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
| Sign                                                                                                                 | Print                                                            | Date                        |  |  |
| Sign                                                                                                                 | Print                                                            | Date                        |  |  |
| Approved By:                                                                                                         |                                                                  |                             |  |  |
| 21.                                                                                                                  | N/R (per CHPRC-00211 Rev 1)                                      |                             |  |  |
| Software SME (Signature)                                                                                             | Print                                                            | Date                        |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |
|                                                                                                                      |                                                                  |                             |  |  |

Page 2 of 2

A-6005-149 (REV 0)

### ECF-300FF5-16-0091, REV. 0

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM                                                                                                                                                                                                            |                            |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
| Software Owner Instructions:<br>Complete Fields 1-13, then run test cases in Field 14. Compare test case results listed in Field 15 to correspon<br>If results are the same, sign and date Field 19. If not, resolve differences and repeat above steps. | nding Test Report outputs. |  |  |  |  |
| Software Subject Matter Expert Instructions:<br>Assign test personnel. Approve the installation of the code by signing and dating Field 21, then maintain form a<br>support documentation.                                                               | as part of the software    |  |  |  |  |
| GENERAL INFORMATION:                                                                                                                                                                                                                                     |                            |  |  |  |  |
| 1. Software Name: The Geochemists Workbench Software                                                                                                                                                                                                     | are Version No.: 11.0.3    |  |  |  |  |
| EXECUTABLE INFORMATION:                                                                                                                                                                                                                                  | 1110,5                     |  |  |  |  |
| <ol><li>Executable Name (include path):</li></ol>                                                                                                                                                                                                        |                            |  |  |  |  |
| \Workbench.exe                                                                                                                                                                                                                                           |                            |  |  |  |  |
| 3. Executable Size (bytes): 9,236,104                                                                                                                                                                                                                    |                            |  |  |  |  |
| COMPILATION INFORMATION:                                                                                                                                                                                                                                 |                            |  |  |  |  |
| <ol><li>Hardware System (i.e., property number or ID):</li></ol>                                                                                                                                                                                         |                            |  |  |  |  |
| Vendor compiled                                                                                                                                                                                                                                          |                            |  |  |  |  |
| <ol><li>Operating System (include version number):</li></ol>                                                                                                                                                                                             |                            |  |  |  |  |
| Windows (vendor compiled)                                                                                                                                                                                                                                |                            |  |  |  |  |
| INSTALLATION AND CHECKOUT INFORMATION:                                                                                                                                                                                                                   |                            |  |  |  |  |
| 6. Hardware System (i.e., property number or ID):                                                                                                                                                                                                        |                            |  |  |  |  |
| INTERA-Blue                                                                                                                                                                                                                                              |                            |  |  |  |  |
| 7. Operating System (include version number):                                                                                                                                                                                                            |                            |  |  |  |  |
| Window Server 2008 SP2 (32-bit)                                                                                                                                                                                                                          |                            |  |  |  |  |
| 8. Open Problem Report?  No O Yes PR/CR No                                                                                                                                                                                                               |                            |  |  |  |  |
| TEST CASE INFORMATION:                                                                                                                                                                                                                                   |                            |  |  |  |  |
| 9. Directory/Path:                                                                                                                                                                                                                                       |                            |  |  |  |  |
| \rdockter\                                                                                                                                                                                                                                               |                            |  |  |  |  |
| 10. Procedure(s):                                                                                                                                                                                                                                        |                            |  |  |  |  |
| CHPRC-01874 Rev. 2, Geochemists Workbench Integrated Software Management                                                                                                                                                                                 | t Plan                     |  |  |  |  |
| 11. Libraries:                                                                                                                                                                                                                                           |                            |  |  |  |  |
| 12. Input Files:                                                                                                                                                                                                                                         |                            |  |  |  |  |
| Casel_seawater.rea, Case2_Amazon_table 6_7.sp8                                                                                                                                                                                                           |                            |  |  |  |  |
| 13. Output Files:                                                                                                                                                                                                                                        |                            |  |  |  |  |
| ATC-1 React output 20July2016.txt. ATC-2 SpecES output 20July2016 tet                                                                                                                                                                                    |                            |  |  |  |  |
| 14. Test Cases:                                                                                                                                                                                                                                          |                            |  |  |  |  |
| GWB=ITC=1: GWB=ITC=2                                                                                                                                                                                                                                     |                            |  |  |  |  |
| 15 Tael Cose Regular                                                                                                                                                                                                                                     |                            |  |  |  |  |
|                                                                                                                                                                                                                                                          |                            |  |  |  |  |
| nii tests passed.                                                                                                                                                                                                                                        |                            |  |  |  |  |
| 16. Test Performed By: Randy Dockter                                                                                                                                                                                                                     |                            |  |  |  |  |
| 17. Test Results:  Satisfactory, Accepted for Use Unsatisfactory Unsatisfactory                                                                                                                                                                          |                            |  |  |  |  |
| 18. Disposition (include HISI update);                                                                                                                                                                                                                   |                            |  |  |  |  |
| Installation added to HISI Entry                                                                                                                                                                                                                         |                            |  |  |  |  |
| Page 1 of 2                                                                                                                                                                                                                                              | A-6005-149 (REV 0)         |  |  |  |  |

F-3

### ECF-300FF5-16-0091, REV. 0

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM (continued)                |               |           |  |  |  |  |
|--------------------------------------------------------------------------|---------------|-----------|--|--|--|--|
| 1. Software Name: The Geochemists Workbench Software Version No.: 11.0.3 |               |           |  |  |  |  |
| Prepared By: William F. Nichols and an and a state                       |               |           |  |  |  |  |
| 19. calk break transaction and                                           | WE Nichols    |           |  |  |  |  |
| Software Owner (Signature)                                               | Print         | Date      |  |  |  |  |
| 20. Test Rersonnel:                                                      | 8             |           |  |  |  |  |
| Sandy Docker                                                             | KANDY DOCKTER | 7-20-2016 |  |  |  |  |
| () Sign                                                                  | Print         | Date      |  |  |  |  |
| V                                                                        | Drint         | Data      |  |  |  |  |
| agn                                                                      | run.          | Date      |  |  |  |  |
| Sian                                                                     | Print         | Date      |  |  |  |  |
| Approved By:                                                             |               |           |  |  |  |  |
| 21                                                                       |               |           |  |  |  |  |
| Software SME (Signature)                                                 | Print         | Date      |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |
|                                                                          |               |           |  |  |  |  |

Page 2 of 2

A-6005-149 (REV 0)

# Appendix H

# Long-Term Groundwater Monitoring Data

This page intentionally left blank.

## H1 Long-Term Groundwater Monitoring Data

Four wells (399-1-17A, 399-1-7, 399-2-1, and 399-2-2) downgradient of the enhanced attenuation area will be monitored for uranium and gross alpha twice a year for 5 years in June (high river stage) and December (low river stage) in accordance with DOE/RL-2014-42, *300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan.* The locations of the monitoring wells are shown on Figure 3-3. The contaminant data will be compared to historical data trends to evaluate whether leachable uranium in the periodically rewetted zone was reduced. The samples were also analyzed for the groundwater characteristics of specific conductance, pH, temperature, and water level. Analytical results for samples collected in December 2015 (low river stage) and June 2016 (high river stage) are provided in Table H-1. The data are stored in the Hanford Environmental Information System database, and users also may retrieve the data via the internet through the U.S. Department of Energy Environmental Dashboard Application available at: <a href="https://ehs.hanford.gov/eda/.https://ehs.hanford.gov/eda/.">https://ehs.hanford.gov/eda/.</a>

## H2 References

- DOE/RL-2014-42, 2015, 300-FF-5 Operable Unit Remedy Implementation Sampling and Analysis Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0079669H</u>.
- NAVD88, 1988, as revised, National Geodetic Survey, Federal Geodetic Control Committee, Silver Spring, Maryland. Available at: http://www.ngs.noaa.gov/.

| Sample Date | Sample Number | Gross Alpha <sup>a</sup><br>(pCi/L) | Uranium <sup>b</sup><br>(µg/L) | Specific<br>Conductance <sup>c</sup><br>(µS/cm) | pH<br>Measurement <sup>d</sup><br>(pH Units) | Temperature <sup>e</sup><br>(°C) | Water Level<br>Elevation <sup>f</sup><br>(m NAVD88) |
|-------------|---------------|-------------------------------------|--------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------|
|             |               |                                     | Well 399-1                     | -17A                                            |                                              |                                  |                                                     |
| 12/06/2015  |               |                                     |                                |                                                 |                                              |                                  | 105.15                                              |
|             | B33D84        |                                     |                                | 665                                             | 7                                            | 16.7                             |                                                     |
|             | B33D85        |                                     | 1.56                           |                                                 |                                              |                                  |                                                     |
|             | B33J38        | 0.52 U                              |                                |                                                 |                                              |                                  |                                                     |
| 06/08/2016  |               |                                     |                                |                                                 |                                              |                                  | 105.85                                              |
|             | B35856        |                                     |                                | 498                                             | 7.38                                         | 18.4                             |                                                     |
|             | B35857        |                                     | 27.6                           |                                                 |                                              |                                  |                                                     |
|             | B35858        |                                     | 25.4                           |                                                 |                                              |                                  |                                                     |
|             | B35KW3        | 29.3                                |                                |                                                 |                                              |                                  |                                                     |
|             |               |                                     | Well 399-                      | 1-7                                             |                                              |                                  |                                                     |
| 12/06/2015  |               |                                     |                                |                                                 |                                              |                                  | 105.14                                              |
|             | B33J40        |                                     |                                | 512                                             | 7.51                                         | 16.8                             |                                                     |
|             | B33J41        | 27.0                                |                                |                                                 |                                              |                                  |                                                     |
|             | B33J42        |                                     | 56.7                           |                                                 |                                              |                                  |                                                     |
| 06/14/2016  |               |                                     |                                |                                                 |                                              |                                  | 105.69                                              |
|             | B35D62        |                                     |                                | 524                                             | 7.45                                         | 17.6                             |                                                     |
|             | B35D61        |                                     | 15.0                           |                                                 |                                              |                                  |                                                     |
|             | B35D63        | 7.57                                |                                |                                                 |                                              |                                  |                                                     |
|             |               |                                     | Well 399-                      | 2-1                                             |                                              |                                  |                                                     |
| 12/06/2015  |               |                                     |                                |                                                 |                                              |                                  | 105.13                                              |
|             | B33J43        |                                     |                                | 443                                             | 7.43                                         | 16.4                             |                                                     |
|             | B33J45        | 107.0                               | 121.0                          |                                                 |                                              |                                  |                                                     |

# Table H-1. Groundwater Analytical Results for 300-FF-5 Operable Unit Long-Term Monitoring Wells Downgradient of the Enhanced Attenuation Area

| Sample Date | Sample Number | Gross Alpha <sup>a</sup><br>(pCi/L) | Uranium <sup>b</sup><br>(µg/L) | Specific<br>Conductance <sup>c</sup><br>(µS/cm) | pH<br>Measurement <sup>d</sup><br>(pH Units) | Temperature <sup>e</sup><br>(°C) | Water Level<br>Elevation <sup>f</sup><br>(m NAVD88) |
|-------------|---------------|-------------------------------------|--------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------|
| 06/07/2016  |               |                                     |                                |                                                 |                                              |                                  | 106.01                                              |
|             | B35D64        |                                     |                                | 287                                             | 7.46                                         | 15.7                             |                                                     |
|             | B35D65        | 41.3                                | 69.7                           |                                                 |                                              |                                  |                                                     |
|             |               |                                     | Well 399-                      | 2-2                                             |                                              |                                  |                                                     |
| 12/04/2015  |               |                                     |                                |                                                 |                                              |                                  | 105.19                                              |
|             | B33J46        |                                     |                                | 449                                             | 7.47                                         | 16                               |                                                     |
|             | B33J47        | 47.2                                |                                |                                                 |                                              |                                  |                                                     |
|             | B33J48        |                                     | 96.0                           |                                                 |                                              |                                  |                                                     |
| 06/30/2016  |               |                                     |                                |                                                 |                                              |                                  | 105.67                                              |
|             | B35D68        |                                     |                                | 326                                             | 7.45                                         | 16.1                             |                                                     |
|             | B35D66        |                                     | 34.0                           |                                                 |                                              |                                  |                                                     |
|             | B35D67        |                                     | 34.0                           |                                                 |                                              |                                  |                                                     |
|             | B35D69        | 11.9                                |                                |                                                 |                                              |                                  |                                                     |
|             | B35D70        | 16.1                                |                                |                                                 |                                              |                                  |                                                     |

# Table H-1. Groundwater Analytical Results for 300-FF-5 Operable Unit Long-Term Monitoring Wells Downgradient of the Enhanced Attenuation Area

Reference: NAVD88, 1988, National Geodetic Survey.

a. EPA Method 9310.

H-3

b. EPA Method 6020.

c. EPA Method 120.1. Specific conductivity using field probe.

d. EPA Method 150.1. pH using field probe.

e. EPA Method 170.1. Temperature using field probe.

f. Water level measured using water level measurement tape.

EPA = U.S. Environmental Protection Agency

NAVD88 = North American Vertical Datum of 1988

This page intentionally left blank.

# Appendix I

# **Technical Memorandum**

This page intentionally left blank.

## I Technical Memorandum

This appendix provides the technical memorandum that documents completion of the Stage A enhanced attenuation remedy: CHPRC-02799, Rev. 1, *Performance Measure PM-30-5-16: Complete Stage A 300-FF-5 Uranium Sequestration Injections*. The injection skid monitoring data sheets, the infiltration skid monitoring data sheets, and the sequestration operations logbook are included as appendices to the memorandum.
### SGW-59614, REV. 0

This page intentionally left blank.

## Performance Measure PM-30-5-16: Complete Stage A 300-FF-5 Uranium Sequestration Injections

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



Approved for Public Release; Further Dissemination Unlimited

### SGW-59614, REV. 0

## Performance Measure PM-30-5-16: Complete Stage A 300-FF-5 Uranium Sequestration Injections

Date Published May 2016

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788



APPROVED By Julia Raymer at 2:13 pm, May 26, 2016

Release Approval

Date

Approved for Public Release; Further Dissemination Unlimited

### CHPRC-02799 Revision 1

#### TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America



CHPRC-02799, Rev. 1

## TECHNICAL MEMORANDUM

## Performance Measure PM-30-5-16: Complete Stage A 300-FF-5 Uranium Sequestration Injections

| Prepared for: | 300-FF-5 Operable Unit              |
|---------------|-------------------------------------|
| Prepared by:  | Randy Hermann                       |
| CC:           | Marty Doornbos                      |
|               | Patrick Baynes                      |
|               | Randy Hermann                       |
|               | Virginia Rohay                      |
|               | Sunil Mehta                         |
|               | Gene Ng                             |
|               | Correspondence Control (MSIN G3-39) |
| Date:         | January 20, 2016                    |
| Doc Number    | CHPRC-02799, REV. 0                 |

## 1 Introduction

The purpose of this technical memorandum is to document that Performance Measure PM-30-5-16 has been met through successful completion of the following objective and completion criteria:

- Objective: "Complete Stage A 300-FF-5 uranium sequestration injections by March 31, 2016."
- Completion Criteria: "By March 31, 2016, complete the Stage A 300-FF-5 uranium sequestration injections. Provide technical memo documenting completion of injections with supporting documentation from log books and field data sheets."

### 2 Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) Design Parameters

The enhanced attenuation using the uranium sequestration component of the groundwater remedy involves infiltrating and injecting phosphate solutions to the vadose zone and periodically rewetted zone (PRZ) to sequester, or bind, residual mobile uranium to form insoluble minerals. The target area for application of the phosphate solutions is a 1 ha (3 ac) area containing a persistent source of uranium contamination to groundwater. Phosphate will be injected into the top of the aquifer to mitigate potential impacts to the aquifer from uranium that may be carried downward during phosphate application in the vadose zone.

Uranium sequestration will be implemented using a staged approach. Stage A will consist of performing infiltration/injection in one quadrant of the Enhanced Attenuation Area (EAA), covering approximately 0.3 ha (0.75 ac).

Phosphate will be introduced into the vadose zone using buried irrigation drip line or perforated piping. Injection wells will be used for injecting phosphate into a zone spanning the PRZ and top of the aquifer. The top of aquifer treatment zone will be in place during phosphate infiltration and maintained for a short period afterwards to possibly react with uranium that leaches into groundwater as a result of the phosphate solution applied to the vadose zone.

Phosphate injections will be performed when groundwater conditions are favorable (e.g., during lower river stages). The application in the PRZ will be scheduled to maximize phosphate contact with the PRZ when the PRZ is unsaturated. A detailed description of the approach is provided in DOE/RL-2014-13-ADD2, *Remedial Design Report/Remedial Action Work Plan Addendum for the 300 Area Groundwater* (hereinafter called the remedial design report/remedial action work plan [RDR/RAWP]). Specific details are provided in Section 4.1.2.1 of the RDR/RAWP, and phosphate design elements are described in the following subsections.

### 2.1 Phosphate Infiltration Design Elements

- Conduct continuous (24 hours per day) operation over the 0.3 ha (0.75 ac) Stage A treatment area for the estimated 5 day infiltration period.
- Monitor the advancement of the infiltration wetting front real time using electrical resistivity tomography (ERT).
- Adjust infiltration rates to maximize the contact time of phosphate solution in the vadose zone during the estimated 5 day infiltration period while minimizing the potential for flushing phosphate solution too quickly through the vadose zone and PRZ.

### 2.2 Phosphate Aquifer Injection Design Elements

- Conduct phosphate injections into the nine Stage A aquifer injection well screens intermittently over approximately 7 days.
- Initiate injections the day before beginning phosphate infiltration, resume during infiltration, and conclude the day after finishing phosphate infiltration to establish a layer of phosphate in groundwater below the infiltration area to remediate uranium that may be flushed to groundwater during infiltration operations.
- Conduct phosphate injections into the nine Stage A aquifer well screens. Injections into at least six wells at a time, during daytime hours, while varying the locations of the six wells being injected over the 7 days to maximize the distribution of phosphate in groundwater below the infiltration area.

### 2.3 Phosphate PRZ Injection Design Elements

- Conduct phosphate injections into the nine Stage A PRZ injection well screens over approximately 3 days after completing infiltration, when moisture content in the PRZ will be maximized from infiltration activities.
- Conduct PRZ injections into at least six wells at a time during daytime hours.

### 2.4 Phosphate Concentrate Design Element

Built into each treatment method (infiltration and injection) are the phosphate concentration and phosphate mass design elements. Monosodium phosphate and pyrophosphate solutions are mixed with river water at target ratios and delivered for infiltration and injection. RDR/RAWP (DOE/RL-2014-13-ADD2) Tables 3-2 and 3-4, respectively, provide the phosphate reagent formulation parameters. Table 1 shows the target treatment concentrations along with target total volumes for each treatment method based on the assumed flow rates and schedule presented in Table 4-3 of the RDR/RAWP. Multiplying the chemical concentration by the target total volume gives the chemical mass to be delivered to the treatment area. This is the key design parameter of the Stage A enhanced attenuation.

| Dosign Paramotor              | Infiltration | <b>PD7</b> Injection | Aquifor Injection |
|-------------------------------|--------------|----------------------|-------------------|
| Design 1 arameter             | Inintiation  | I KZ Injection       | Aquiter Injection |
| Chemical Concentration (mg/L) |              |                      |                   |
| Monosodium Phosphate          | 5,699        | 9,409                | 9,409             |
| Pyrophosphate                 | 665          | 1,097                | 1,097             |
| Towns to Takal Walnung (I)    | 2 (70 420    | 1 (25 209            | 1 (25 209         |
| Target Total Volume (L)       | 5,079,420    | 1,035,298            | 1,035,298         |
| Chemical Mass (kg)            |              |                      |                   |
| Monosodium Phosphate          | 20,969       | 15,387               | 15,387            |
| Pyrophosphate                 | 2,447        | 1,794                | 1,794             |

#### Table 1. Uranium Sequestration Stage A Design Summary

## 3 Operational Completion Summary

Installation of the treatment system occurred between June 2015 and October 2015. Installation commenced with drilling 9 injection wells and 30 monitoring wells from June through mid-August. Well drilling was followed by installation of the infiltration system during the last half of August. The infiltration system consists of a network of high-density polyethylene drip lines installed approximately 1.8 m (6 ft) below ground. Emitters rated at 8 L (2 gal) per hour were welded to the inside of the tubing. The drip lines were spaced 2 m (6.5 ft) apart, resulting in a total of 44 lines aligned southeast to northwest. During September and October, the mixing skids, chemical tanks, river pumps, power supplies, aboveground hoses, and all other required infrastructure were assembled and tested prior to initiating treatment. Figure 1 shows the layout of the infiltration system, injection wells, and monitoring wells in the 0.3 ha (0.75 ac) Stage A EAA.

CHPRC-02799, Rev. 1



Figure 1. Installation of the Stage A EAA Wells and Infiltration System

4

### SGW-59614, REV. 0

### CHPRC-02799, Rev. 1

The operational period for uranium sequestration Stage A infiltration and injections was November 6, 2015, through November 18, 2015. The daily operational activities are summarized in Table 2.

| Operational Day<br>(Date) | Aquifer Injection<br>(Wells)*         | PRZ Injection<br>(Wells)*             | Infiltration Rate<br>Achieved (gal/min) | Injection Rate<br>Achieved (gal/min) |  |
|---------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|--|
| 1 (Nov. 6)                | 1-89, 1-90, 1-91, 1-92,<br>1-93, 1-94 |                                       |                                         | 300                                  |  |
| 2 (Nov. 7)                |                                       |                                       | 56                                      |                                      |  |
| 3 (Nov. 8)                |                                       |                                       | 56                                      |                                      |  |
| 4 (Nov. 9)                | 1-92, 1-93, 1-94, 1-95,<br>1-96, 1-97 |                                       | 56                                      | 300                                  |  |
| 5 (Nov. 10)               |                                       |                                       | 56                                      |                                      |  |
| 6 (Nov. 11)               |                                       |                                       | 83                                      |                                      |  |
| 7 (Nov. 12)               |                                       |                                       | 80                                      |                                      |  |
| 8 (Nov. 13)               |                                       |                                       | 80                                      |                                      |  |
| 9 (Nov. 14)               |                                       |                                       | 80                                      |                                      |  |
| 10 (Nov. 15)              |                                       |                                       | 80                                      |                                      |  |
| 11 (Nov. 16)              | 1-95, 1-96, 1-97, 1-89,<br>1-90, 1-91 | 1-89, 1-90, 1-91, 1-92,<br>1-93, 1-94 |                                         | 300                                  |  |
| 12 (Nov. 17)              |                                       | 1-92, 1-93, 1-94, 1-95,<br>1-96, 1-97 |                                         | 300                                  |  |
| 13 (Nov. 18)              |                                       | 1-95, 1-96, 1-97, 1-89,<br>1-90, 1-91 |                                         | 300                                  |  |

Table 2. Uranium Sequestration Stage A Operational Summary

\* All wells begin with "399-".

The following subsections compare operational performance to the design parameters of the RDR/RAWP (DOE/RL-2014-13-ADD2). All flow rates, flow volumes, and mixing rates were monitored and recorded by operations personnel. The injection and infiltration data sheets can be found in Appendix A and Appendix B, respectively. The operating logbook, found in Appendix C, contains information related to the operational schedule, shift changes, and maintenance activities.

### 3.1 Infiltration Completion Evaluation

Based on groundwater conductivity data and ERT imaging collected during Stage A operations, the infiltration design elements were achieved. Infiltration commenced on November 7, 2015, and concluded on November 15, 2015.

Because actual infiltration network flow rates were lower than originally planned, the period for infiltration was extended from 5 days to 9 days of 24 hour operations to deliver the target mass of polyphosphate chemicals. Groundwater conductivity data collected from PRZ and aquifer

5

#### CHPRC-02799, Rev. 1

piezometers and ERT imaging showed that chemical concentration and distribution goals were met with lateral spread of phosphate solution throughout the treatment area and complete vertical migration of the solution through the vadose zone to groundwater.

Groundwater conductivity data collected during infiltration and initial aquifer injections from PRZ and aquifer piezometers, presented in Figure 2, show a sustained increase in conductivity over most of the Stage A area after approximately 4 days. Aquifer injections conducted on operational days 1 and 4 make it difficult to conclude that the phosphate solution wetting front had reached the PRZ, based on evaluation of conductivity alone. However, due to the sustained increase in conductivity in most wells after day 5, along with ERT imaging shown in Figure 3, the wetting front was observed to reach the PRZ at this time. Groundwater samples were collected daily during operations from 7 monitoring wells with the exception of on operational day 8, due to resource availability constraints. Figure 2 shows no data for this day.



Figure 2. Conductivity Measured in Monitoring Wells during Operations

Figure 3 provides ERT imaging for infiltration days (1, 4, 5, and 9). The color scale represents the change in electrical conductivity (EC) of the subsurface compared to pretreatment conditions (Infiltration Day 1). The phosphate amendment is highly electrically conductive and causes a large increase in EC upon application. Color progression from blue to red in the ERT images represent an increase in EC caused by the presence of phosphate solution. Though difficult to distinguish in Figure 3, the groundwater is fairly static at 105 m (344.5 ft) above mean sea level. Images show phosphate solution intruding on the water table on day 4. This is represented where light blue and green colors approach a sharp horizontal line where the colors changes seem to stop. The phosphate solution infiltration progressed for an additional 5 days to increase the moisture content of PRZ sediments. No change in EC was expected to be measured with ERT below the top of the water table due to decreasing resolution with depth and the high dilution rate as treatment solutions disperses into the aquifer however, as observed on the left side of the image (western treatment area) noticeable changes in EC were detected into the aquifer. Further discussion and analysis of the ERT monitoring will be provided in the Stage A Performance Report.

CHPRC-02799, Rev. 1



Figure 3. ERT Imaging of Phosphate Solution Migration through the Vadose Zone to Groundwater

Table 3 summarizes the Stage A infiltration chemical solution design parameters along with concentrations, volumes, and chemical mass delivered during operations. Calculations for chemical concentrations observed during operations (shown in Table 3) were based on starting concentration of each treatment solution as reported by the chemical vendor, multiplied by a dilution factor from mixing with river water.

| <b>Treatment Solution</b>                                    | Stage A Operations             | Design Parameter       |
|--------------------------------------------------------------|--------------------------------|------------------------|
| Monosodium<br>Phosphate Infiltration<br>Concentration (mg/L) | 6,454                          | 5,699ª                 |
| Pyrophosphate<br>Infiltration<br>Concentration (mg/L)        | 757                            | 665ª                   |
| Total Volume (L)                                             | 3,338,555                      | 3,679,420 <sup>b</sup> |
| Monosodium<br>Phosphate Mass<br>Infiltrated (kg)             | 21,547                         | 20,969                 |
| Pyrophosphate Mass<br>Infiltrated (kg)                       | 2,527                          | 2,447                  |
| a. DOE/RL-2014-13-ADD<br>b. DOE/RL-2014-13-ADD               | 2, Table 3-2.<br>2, Table 4-3. |                        |

| Table 3. S | Stage A | Infiltration | Solution and | Treatment | Summary |
|------------|---------|--------------|--------------|-----------|---------|
|------------|---------|--------------|--------------|-----------|---------|

As shown in Table 3, the amount of phosphate that was delivered to the subsurface through infiltration exceeded the design parameters. This information, along with the supporting conductivity data and ERT imaging, demonstrates that the Stage A infiltration objectives have been met.

### 3.2 Aquifer Injection Completion Evaluation

The sequencing of the Stage A aquifer injections specified in the RDR/RAWP (DOE/RL-2014-13-ADD2) was to inject phosphate solution into the aquifer at least 1 day before, during, and after the phosphate infiltration period to establish a layer of phosphate in groundwater below the infiltration area to attempt to capture uranium that may be flushed to groundwater during infiltration operations.

Based on the operational schedule summarized in Table 2, the Stage A aquifer injection objective was achieved. As shown in Table 2, aquifer injections were conducted on operational day 1, the day prior to the start of infiltration; on operational day 4, the third day of infiltration; and on operational day 11, the day after infiltration was completed.

Table 4 summarizes the Stage A aquifer injection chemical solution concentrations and volumes achieved during operations and the design specification concentration and volumes. Calculations of chemical concentrations observed during operations (shown in Table 4) were based on starting concentration of each treatment solution as reported by the chemical vendor, multiplied by a dilution factor from mixing with river water. Chemical mass injection goals were exceeded.

| Treatment<br>Compound                                                | Stage A Operations             | Design Parameter       |
|----------------------------------------------------------------------|--------------------------------|------------------------|
| Monosodium<br>Phosphate Aquifer<br>Injection<br>Concentration (mg/L) | 9,747                          | 9,409ª                 |
| Pyrophosphate<br>Aquifer Injection<br>Concentration (mg/L)           | 1,109                          | 1,097ª                 |
| Total Volume (L)                                                     | 1,681,650                      | 1,635,298 <sup>b</sup> |
| Monosodium<br>Phosphate Mass<br>Infiltrated (kg)                     | 16,391                         | 15,387                 |
| Pyrophosphate Mass<br>Infiltrated (kg)                               | 1,865                          | 1,794                  |
| a. DOE/RL-2014-13-ADD<br>b. DOE/RL-2014-13-ADD                       | 2, Table 3-4.<br>2, Table 4-3. |                        |

#### Table 4. Stage A Aquifer Injection Solution and Treatment Summary

### 3.3 PRZ Injection Completion Evaluation

Based on the operational schedule summarized in Table 2, the Stage A PRZ injection objectives were achieved. PRZ injections were conducted over a 3 day period after infiltrations were completed.

### CHPRC-02799, Rev. 1

The infiltrated phosphate solution had penetrated the PRZ sediments for approximately 5 days prior to the initiation of PRZ injections, so moisture content was maximized during injections.

Table 5 summarizes the Stage A PRZ injection chemical solution concentrations and volumes achieved during operations and the design specification concentrations and volumes. Calculations of chemical concentrations observed during operations (shown in Table 5) were based on starting concentration of each treatment solution as reported by the chemical vendor, multiplied by a dilution factor from mixing with river water. Chemical mass injection goals were exceeded.

| Treatment Compound                                            | Stage A Operations | Design Parameter       |
|---------------------------------------------------------------|--------------------|------------------------|
| Monosodium Phosphate<br>PRZ Injection<br>Concentration (mg/L) | 9,742              | 9,409ª                 |
| Pyrophosphate PRZ<br>Injection Concentration<br>(mg/L)        | 1,085              | 1,097ª                 |
| Total Volume (gallons)                                        | 1,792,638          | 1,635,298 <sup>b</sup> |
| Monosodium Phosphate<br>Mass Infiltrated (kg)                 | 17,464             | 15,387                 |
| Pyrophosphate Mass<br>Infiltrated (kg)                        | 1,945              | 1,794                  |
| a. DOE/RL-2014-13-ADD2, Ta                                    | ble 3-4.           |                        |
| b. DOE/RL-2014-13-ADD2, Ta                                    | ble 4-3.           |                        |

### 4 Conclusions

Stage A EAA treatment occurred over 13 days of operations from November 6, 2015, through November 18, 2015. Operations were initiated by injection into the aquifer on day 1, followed by 10 days of continuous infiltration during which a second aquifer injection was accomplished. ERT imaging and sustained increases to groundwater conductivity confirmed that infiltration solution had reached the PRZ and aquifer by the fifth day of infiltration. Infiltration was continued for 5 additional days to deliver the required amount of chemical to the vadose zone and to ensure that PRZ moisture content was maximized prior to injection into the PRZ. Directly following the conclusion of infiltration, the final aquifer injection commenced and was followed by 3 days of injections into the PRZ.

Target treatment mass of phosphate compounds of 20,969 kg for infiltration, 15,387 kg for PRZ injection, and 15,387 kg, prescribed in the RDR/RAWP (DOE/RL-2014-13-ADD2) for aquifer injection, was met during Stage A operations. This memorandum documents the completion of Stage A 300-FF-5 Operable Unit uranium sequestration injections. The effectiveness of Stage A uranium sequestration will be summarized in the Stage A Performance Report.

### SGW-59614, REV. 0

CHPRC-02799, Rev. 1

## 5 Reference

DOE/RL-2014-13-ADD2, 2015, *Remedial Design Report/Remedial Action Work Plan Addendum for the 300 Area Groundwater*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0081151H</u>. SGW-59614, REV. 0

CHPRC-02799, Rev. 1

# Appendix A

## Injection Skid Monitoring Data Sheets

This page intentionally left blank.

## SGRP-PRO-OP-53038

Page 37 of 46

## Phosphate Solution Infiltration/Injection Operations

Published Date: 11/05/15

Effective Date: 11/05/15

| 38°)       |                                                                                                                                                                                   |                                     | Tota                   | lizer Rea              | adings                 | 1.000 635             | . K. K.               | 75.          | Start of Inje | ctions       | a End of                            | Injections                                                                                              | Comments                                                        |    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------|---------------|--------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----|
|            | River W                                                                                                                                                                           | Vater                               | A <sup>N</sup>         | \$7                    | FQI-N1-                | -1A or -1E            |                       |              | 0             |              | 2                                   |                                                                                                         |                                                                 |    |
|            | Chem I<br>Phosph                                                                                                                                                                  | njection#<br>ate)                   | 1 (Monos               | odium                  | FQI-N1-                | 2A or 2E              |                       |              | 0             | ·            | 1409                                | \$                                                                                                      | 50                                                              |    |
| Write well | Chem I<br>(Pyroph                                                                                                                                                                 | Chem Injection#2<br>(Pyrophosphate) |                        |                        | FQI-N1-3A or 3         |                       |                       |              | 0             |              | 828                                 | 58                                                                                                      |                                                                 |    |
| in         | Overall                                                                                                                                                                           | Mixture                             | - We                   | 4                      | FQI-N1-                | 4A or 4B              | NERSE -               |              | 0             |              | 1130                                | 17                                                                                                      | observations, irregularities, and/or                            |    |
| spaces     | (399-1-                                                                                                                                                                           | 87                                  | )                      |                        | FQI-N1-                | 4 10000000            | ×                     |              | 0             |              | 250                                 | 212                                                                                                     | · problems such as system downtime,                             |    |
| provided   | (399-1-                                                                                                                                                                           | 90                                  | )                      |                        | FQI-N1-                | 5                     | 1.9(299               |              | 0             |              | 234                                 | 42                                                                                                      | log book                                                        |    |
|            | (399-1-                                                                                                                                                                           | 91                                  | )                      |                        | FQI-N1-                | 6 6466 1548           | 1.2.2                 |              | 0             |              | 276                                 | 87                                                                                                      |                                                                 |    |
|            | (399-1-                                                                                                                                                                           | 92                                  | )                      |                        | FQI-N1-                | 7 202 35              | ar in                 |              | 0             |              | 263                                 | 10                                                                                                      |                                                                 |    |
|            | (399-1-                                                                                                                                                                           | - 23,                               | )                      |                        | FQI-N1-                | 8 🖏                   | 1011                  |              | 0,            |              | 2839                                | 55                                                                                                      |                                                                 |    |
| 4.4        | (399-1-                                                                                                                                                                           | . 94                                | )                      |                        | FQI-N1-                | 9 385 63              | A Real                |              | 6             |              | 2547                                | .)                                                                                                      |                                                                 |    |
|            | Skid and filter parameters will be measured<br>and recorded hourly<br>Field Parameters - Inject<br>Field Parameters - Inject<br>Field parameters will be measured<br>every 4 hour |                                     |                        |                        |                        |                       |                       |              |               | ed and reco  | rded once                           | After flow rate is stable take 1 <sup>st</sup> skid<br>sample, take 2 <sup>nd</sup> at 4-hour mark, and |                                                                 |    |
|            | 20                                                                                                                                                                                |                                     | 2A or<br>-2B<br>Chem 1 | 3A or<br>-3B<br>Chem 2 | 1A or<br>-189<br>River | 4A or<br>-4B<br>Total | Filter<br>dPs<br>< 45 |              | Temperature   | Conductivity | Oxidation<br>Reduction<br>Potential | Dissolved<br>Oxygen                                                                                     | (8 hr). Where a sample is required, it is noted in this column. |    |
| Date       | Hour                                                                                                                                                                              | Time                                | (gpm)                  | (gpm)                  | (gpm)                  | (gpm)                 | ··· (*)               | pH           | (°C)          | (µS/cm)      | (± mV)                              | (#g/L) m                                                                                                | g/L RH 2-4-16                                                   |    |
| 1/4/2013   | Start                                                                                                                                                                             | DHI                                 | 1                      | ?                      | 2                      | ?                     | ?                     | 6.79         | 12:1          | 136          | 234                                 | 10,19                                                                                                   | Columbia River Water Sample                                     |    |
| VIZOS      | 0                                                                                                                                                                                 | 0954                                | 28.7                   | 16,4                   | 263                    | 253()                 |                       | 6.68         | 123           | 9200         | 238                                 | 10.16                                                                                                   | Flow Rate Stable - Take first skid sample                       | 83 |
| 0/6/15     | 1                                                                                                                                                                                 | 0941                                | 287                    | 16.3                   | 262                    | × n                   | 1                     | $\times$     | 14            | $\leq$       | $\sim$                              | $\times$                                                                                                |                                                                 |    |
| alul15     | 2                                                                                                                                                                                 | 1041                                | 285                    | 110.3                  | 261                    | 300                   | ~                     | $\mathbf{X}$ |               |              | $\sim$                              |                                                                                                         |                                                                 | 1  |
| Comment    | s: Ul                                                                                                                                                                             | FRA M                               | 1efer                  | т <u>з</u>             | N62                    | 1277                  | 27 ctt                | ,            | Conductiv     | 1+1 (445)    | 070                                 | 90001                                                                                                   | 213366                                                          | ļ  |
|            | Tota                                                                                                                                                                              | i flo                               | n] M                   | etu                    | read                   | ng og                 | calle (               | ting         | added         | well fl      | aus =                               | 309.2                                                                                                   | 0947 11/2/2/5                                                   | -  |

### Appendix A - Injection Skid Monitoring Data Sheet

**₽**-1

### **SGRP-PRO-OP-53038**

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15

#### Skid ID: #/ Injection Round: **Operator(s):** Wells: 399-1-89 90,91,92,93 :94 DMIVEZ ANDAN Field Parameters - Injection Solution Comments 1.1 Flowrates - Skid Parameters THE REPORT OF THE PARTY OF After flow rate is stable take 1st skid Skid and filter parameters will be measured and Field parameters will be measured and recorded once every sample, take 2nd at Alexand A. recorded hourly An and a second se 24 hr mark, and third/final at end of 1. injections Where a sample is a FQI-N1-FQI-N1-FQI-N1-FQI-N1required, it is noted in this column Filter Oxidation 2A or 3A or A or 4A or 🐁 Note any other observations, 🛞 1000 -4B dPs Reduction Dissolved -2B 🗟 -3B a -1B irregularities, problems in Comments Potential Chem 1 Chem 2 River Total < 45 Temperature Conductivity Oxygen area sections including system (√) ≈ (µS/cm) Date Hour Time (gpm) pH 🖏 🔅 (°C) 🔊 3 (± mV) # 🕅 (µg/L) interruptions, filter change outs, etc. (gpm) (gpm) (gpm) mg/L 4 2-4-16 3 . Ad 28.4 163 1154 1 2102 305 A-2 15.8c 201 9,95 10,550 1254 6,91 225 241 16.3 305 V 1 5 1354 28.5 ľŚ 16 242 306 16,4 V 26 1454 28.5 16.4 282 6 16/15 16.3 260 28.4 155-305 7 13,9c 696 8 10,400 Take final skid sample, at time of 180 D.D 1646 304 20 FINAL shutdown **Comments:**

#### Appendix A - (Cont.) Injection Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

SGW-59614, REV. 0

CHPRC-02799, Rev.

B32120

B32221

## SGRP-PRO-OP-53038

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid #1               | Roy               | nd Z                   |                                           | Oper                                       | rator(s):-                                | Rami                                      | rez,                         | 1FO      | with 1                              | PLAYTE                                           | sk.                                           |                                                                             |                                           |                                                                                                          |                                               |
|-----------------------|-------------------|------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|----------|-------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                       |                   |                        | Tota                                      | alizer Rea                                 | adings                                    | 7                                         |                              | S.       | Start of Inje                       | ctions                                           | End of                                        | njections                                                                   | S. V. 73                                  | Comments                                                                                                 | \$ 11.5<br>3 11.7                             |
|                       | <b>River</b> V    | Vater                  |                                           |                                            | FQI-N1-                                   | 1A or (1                                  | ) ×                          | 13       | 2912                                |                                                  | 250                                           | 069                                                                         | 1 X 1 4                                   |                                                                                                          |                                               |
|                       | Chem I<br>Phosph  | Injection#<br>nate)    | 1 (Monos                                  | odium                                      | FQI-N1-                                   | 2A or -2E                                 | * *                          | 14       | 1093                                |                                                  | 279-                                          | 14                                                                          | 1                                         |                                                                                                          |                                               |
| Write<br>well         | Chem I<br>(Pyropl | Injection#<br>hosphate | 12 ×                                      | 2.2.<br>5.2.                               | FQI-N1-                                   | 3A or 3B                                  | i an                         | 8        | 288                                 |                                                  | 1610                                          | >                                                                           |                                           |                                                                                                          |                                               |
| numbers               | Overall           | Mixture                | Sherry                                    |                                            | FQI-N1-                                   | 4A or 4B                                  | -                            | 1)       | 3071                                |                                                  | 2108                                          | 19                                                                          | <ul> <li>During h<br/>observat</li> </ul> | ourly recording,                                                                                         | note any                                      |
| In                    | (399-1            | - 95                   | )                                         |                                            | FQI-N1-                                   | 4                                         | \$                           | 2        | 5212                                |                                                  | 42109                                         | 36                                                                          | problems                                  | such as system                                                                                           | downtime,                                     |
| provided (399-1-9(6)) |                   |                        |                                           |                                            | FQI-N1-5                                  |                                           |                              |          | 3442                                |                                                  | 530                                           | 30                                                                          | totalizer m                               | aintenance/outa                                                                                          | ge/re-set in                                  |
|                       | (399-1            | -97                    | )'                                        |                                            | FQI-N1-                                   | 6                                         |                              | 6        | 1487                                | Y.                                               | 424                                           | 39                                                                          |                                           | log soon                                                                                                 | 5.4<br>8.4                                    |
|                       | (399-1            | - 92                   | )                                         |                                            | FQI-N1-7                                  |                                           |                              | 26310    |                                     |                                                  | 531                                           | 53144                                                                       |                                           |                                                                                                          | 94 - 1                                        |
|                       | (399-1            | -94                    | )                                         |                                            | FQI-N1-                                   | <b>3</b>                                  |                              | ~        | 5471 2                              | 8355 0                                           | v 5058                                        | 3 0                                                                         | . Comment                                 |                                                                                                          | Service .                                     |
|                       | (399-1            | - 93                   | )                                         |                                            | FQI-N1-                                   | 9 🚳                                       |                              | -2       | 8355 2                              | 5471                                             | 539                                           | 40                                                                          |                                           |                                                                                                          |                                               |
|                       |                   |                        | F<br>Skid an                              | d filter pa<br>and r                       | s - Skid P<br>rameters<br>recorded h      | arameter<br>will be m<br>nourly           | <b>s</b><br>easured          | Fiel     | <b>Field Para</b><br>d parameters v | neters - Injec<br>ill be measure<br>every 4 hour | ction Soluti<br>ed and reco                   | on<br>rded once                                                             | After flow                                | rate is stable ta                                                                                        | ke 1 <sup>st</sup> skid                       |
| Date                  | t<br>Hour         | ۲<br>Time              | FQI-N1-<br>2A or<br>2B<br>Chem 1<br>(gpm) | FQI-N1-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N1-<br>1A or<br>-1B<br>River<br>(gpm) | FQI-N1-<br>4A or<br>-4B<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(√) | pH       | Temperature<br>(°C) = u/            | Conductivity                                     | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>( <del>ug/L)</del> m                                 | (8 hr). Whe<br>no                         | the 2 <sup>-4</sup> at 4-nour<br>nal at end of injer<br>re a sample is re<br>ted in this colum<br>2-4-16 | mark, and<br>actions<br>equired, it is<br>in. |
| 1/9/15                | Pre<br>Start      | 634                    | 0                                         | 0                                          | 6                                         | 544H                                      | 5 V                          | 5.95     | 14.6                                | 4716                                             | 276                                           | 9.04                                                                        | Colum                                     | bia River Water S                                                                                        | ample -                                       |
| 1/1/15                | 0                 | 0935                   | 28.3                                      | 16.1                                       | 260                                       | 304.4                                     | 1.1                          | 6.99     | 14.7                                | 10,350                                           | 260                                           | 8,28                                                                        | Flow Rate Sta                             | ble – Take first sl                                                                                      | id sample                                     |
| v/9/15                | 1                 | 1026                   | 29.1                                      | 16.2                                       | 254                                       | 3003                                      | V                            | $\times$ | $\geq$                              | $\geq$                                           | >                                             | $>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                           |                                                                                                          |                                               |
| 1/9/15                | 2                 | 1120                   | 27.9                                      | 16.0                                       | 254                                       | 299.9                                     | $\checkmark$                 | $\times$ |                                     | >                                                | $\geq$                                        | >                                                                           |                                           |                                                                                                          |                                               |
| Comments              | 8:                |                        |                                           |                                            |                                           |                                           |                              |          |                                     |                                                  |                                               |                                                                             |                                           |                                                                                                          |                                               |

### Appendix A - Injection Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

A-3

**SGRP-PRO-OP-53038** 

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



### Appendix A - (Cont.) Injection Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

SGW-59614, REV. 0

A-4

|         |                   |                    |                        | - Data           | 44/44/           | 45               | iuuoi       |        | in a community of the second sec |                         | Effect                 | ive Date:                                                                   | 11/11/15                                                                                             |  |  |
|---------|-------------------|--------------------|------------------------|------------------|------------------|------------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
|         |                   | -                  | ublish                 | ed Date          | : 11/11/         | 15               | -           | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Lifect                 | TVC Date.                                                                   | THIN IS                                                                                              |  |  |
|         |                   |                    |                        |                  |                  |                  |             |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | Charl                  |                                                                             |                                                                                                      |  |  |
|         |                   | -                  | _                      |                  | Ар               | pendix           | A - Inj     | ection | Skid Moni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | toring Data             | Sneet                  |                                                                             |                                                                                                      |  |  |
| Skid #1 |                   | Kou                | W#3                    | Opera            | stor(s):         | FAITH,           | FAMI        | REZ    | , ANDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                        |                                                                             |                                                                                                      |  |  |
|         | 1                 |                    | Tota                   | lizer Rea        | dings            |                  |             |        | Start of Injec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tions                   | End of In              | njections                                                                   | Comments                                                                                             |  |  |
|         | River W           | /ater              |                        |                  | FOLNI            | A or -18         |             | 2      | 50448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 3776                   | 54                                                                          |                                                                                                      |  |  |
|         | Chem In<br>Phosph | njection#1<br>ate) | (Monos                 | odium            | FOI-N1-          | 2A or -2B        |             | 2      | 7999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 41950                  | ø                                                                           |                                                                                                      |  |  |
| Write   | Chem II           | njection#2         | 2                      |                  | FQI-N1-3A or -38 |                  |             |        | 4743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 244                    | 35                                                                          | During hourly recording, note any                                                                    |  |  |
| rumbeha | Overall           | Mixture            |                        |                  | FQI-N1-          | 4A or -4B        |             | 1      | 218034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | -3140                  | 134 *                                                                       | observations, megulatibes, and/or                                                                    |  |  |
| in      | (399-1            | 95                 | )                      |                  | FOI-NT-4         | 4                |             |        | 12686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 644                    | 48                                                                          | totalizer maintenance/outage/re-set in                                                               |  |  |
| spaces  | (399-1-           | 96                 | )                      | _                | FOI-NI-8         | 5                |             | -      | 53030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 8450                   | 00                                                                          | log book                                                                                             |  |  |
|         | (399-1            | 97                 | )                      |                  | FOI-N1-8         | 5                |             | 4      | 12 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 536                    | 29                                                                          |                                                                                                      |  |  |
|         | (399-1-           | 84                 | 2                      |                  | FOI-N1-          | 7                | -           |        | 53147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 813                    | 90                                                                          |                                                                                                      |  |  |
| 1       | (399-1-           | 90                 | )                      | -                | FOI-N1-8         | 8                |             | 1      | 50584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 7751                   | 8                                                                           |                                                                                                      |  |  |
|         | (399-1-           | 91                 | )                      |                  | FQI-N1-9         |                  |             |        | 55940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 86 0                   | 57                                                                          |                                                                                                      |  |  |
|         |                   |                    | F                      | lowrates         | - Skid P         | arameter         | \$          | -      | Field Paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | neters - Injec          | pon Soluti             | uted oppo                                                                   | Alles Baux satu in chable Page 17 skill                                                              |  |  |
|         |                   |                    | Skid an                | d filter pa      | rameters         | will be m        | easured     | Field  | t parameters w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | every 4 hour            | and reco               | ndea once                                                                   | After flow rate is stable toke 1" sod<br>sample, take 2" at 4-hour mark, and                         |  |  |
|         |                   |                    | FQI-N1-<br>2A or<br>2B | FQI-N1-<br>3A or | FQI-N1-<br>1A ol |                  | Filter      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Oxidation<br>Reduction | Disastved                                                                   | third/final stend of injections<br>(6 hr) Where a sample is required, it is<br>noted in this column. |  |  |
| Date    | Hour              | Time               | Chem 1<br>(gpm)        | Ghem 2<br>(gpm)  | River<br>(gpm)   | * Total<br>(gpm) | < 45<br>(*) | pH     | Temperature<br>("C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conductivity<br>(µS/cm) | Potential<br>(± mV)    | Oxygen<br>(mg/L)                                                            |                                                                                                      |  |  |
| 1/1/15  | Pre<br>Start      | 0920               | D                      | 0                | 0                | 0                | V,          | 7.95   | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.01                   | 188                    | 10.23                                                                       | Columbia River Water Sample                                                                          |  |  |
| 1/14/15 | 0                 | 930                | 27,9                   | 15.8             | 2.55.7           | 302.7            | 1           | 7.0%   | P14.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,1500                 | 0198                   | 09.03.                                                                      | Flow Rate Stable - Take first skid sample                                                            |  |  |
| y w/s   | 1                 | 1000               | 29.1                   | 15.8             | 256.3            | 303.D            | V           | X      | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\times$                | $\times$               | >                                                                           | Jate (at 12100)                                                                                      |  |  |
| Vivi    | 2                 | lung               | 29.3                   | 110.1            | 257.6            | 3027             | V           | X      | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\geq$                  | $\geq$                 | $>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                                                                      |  |  |
| 119/15  | in the            | 1100               |                        | - Pro            | and h            | To               | tol V       | EAN    | 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 448. 44                 | 2 callo                | . Su                                                                        | on of well FQI-NIY                                                                                   |  |  |
| * Sum   | of FOL            | N1-4.5 E           | 7.8.9                  | < 1.64           | 0140             | 18               | AT A        | - TIVI | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1.1.1.1               | 7                      |                                                                             | D                                                                                                    |  |  |

I-23

SGW-59614, REV. 0 CHPRC-02799, Rev. 1



I-24

|                            |                   |                        |                                            | Ph                                         | ospha                                     | ate So            | lution                       | n Infi | iltration/l         | njection                | Operat                                        | ions                          | 44/44/ME                                                                                            |  |
|----------------------------|-------------------|------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------|------------------------------|--------|---------------------|-------------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|--|
|                            |                   | _P                     | ublishe                                    | ed Date                                    | : 11/11/                                  | 15                |                              | -      |                     | -                       | Effect                                        | ive Date:                     | 11/10/15                                                                                            |  |
|                            |                   |                        |                                            | -                                          | Ap                                        | pendix            | A - Inj                      | ection | n Skid Moni         | itoring Data            | a Sheet                                       |                               |                                                                                                     |  |
| Skid #1                    | #4                |                        |                                            | Open                                       | ator(s):                                  | AND               | ne,                          | DAN    | 115                 |                         |                                               |                               |                                                                                                     |  |
|                            |                   | 1                      | Tota                                       | lizer Rea                                  | dings                                     | _                 |                              |        | Start of Injec      | tions                   | End of In                                     | ijections                     | Comments                                                                                            |  |
|                            | River V           | later                  |                                            | -                                          | FQI-N1-1                                  | IA or-18          | -                            | 37     | 7654                |                         | 51151                                         | 1                             |                                                                                                     |  |
| 2.3                        | Chem in<br>Phosph | njection#<br>ate}      | 1 (Monos                                   | nuibe                                      | FQI-N1-3                                  | 2A or -2B         |                              | 41     | 1954                |                         | 5641                                          | 15                            |                                                                                                     |  |
| Write                      | Chem II           | njection#              | 2                                          |                                            | EQI-N1-S                                  | A or -38          |                              | 24     | 635                 |                         | 32.90                                         | 7                             | During hourty recording, note any                                                                   |  |
| numbers ()<br>in<br>spaces | Overall           | Moture                 |                                            |                                            | FQI-N1-4A or -4B                          |                   |                              |        | 314036              | 1                       | * 1448                                        | 49                            | observations, inegularities, and/or                                                                 |  |
|                            | (399-1            | - 1                    | 1 92                                       | 2                                          | FQI-N1-4                                  |                   |                              |        | 4448                |                         | 9190                                          | 9                             | totulizer maintenance/outage/re-set in                                                              |  |
| provided                   | (399-1            | <                      | ) 93                                       | 3                                          | FOI-N1-5                                  | 5                 | -                            | 84     | 1560                |                         | nau                                           | 8                             | tog book.                                                                                           |  |
|                            | (399-1            | -                      | 1 91                                       | 1                                          | FOI-N1-8                                  |                   |                              | 5      | 3629                |                         | 1073                                          | 27                            |                                                                                                     |  |
|                            | (399-1-           |                        | 1 8.                                       | 2                                          | FOI-N1-8                                  |                   |                              |        | 570                 |                         | 1621                                          | 13                            |                                                                                                     |  |
|                            | (399-1-           | -                      | 1 9                                        | 1                                          | FQI-N1-9                                  |                   |                              |        | 887                 |                         | 11493                                         | 54                            |                                                                                                     |  |
|                            | (mm-r             |                        | F                                          | lowrates                                   | es - Skid Parameters                      |                   |                              |        | Field Para          | meters - Injec          | tion Solution                                 | n                             |                                                                                                     |  |
| -                          |                   |                        | Skid an                                    | d litter pa<br>and e                       | rameters<br>recorded t                    | will be m         | easured                      | Fiek   | s parameters v      | every 4 hour            | ed and reco<br>s                              | rded once                     | After flow rate is stable take 1" skid sample, take 2" at 4-hour mark, and                          |  |
| Date                       | Hour              | Time                   | FQI-N1-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | EQI-N1-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FOI-N1-<br>1A or<br>-1B<br>River<br>(gpm) | * Totali<br>(gpm) | Filter<br>dPs<br>< 45<br>(*) | pН     | Temperature<br>(*C) | Conductivity<br>(µS/cm) | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L) | thirdfinal at end of injections<br>(8 iv) Where a sample is required, it is<br>noted in this column |  |
| 1/10/5                     | Pre               | 1\$50                  | 6                                          | 0                                          | 0                                         | 0                 | 1                            | 7.88   | 13.6                | 1700                    | 198                                           | 9.49                          | Columbia River Water Sample                                                                         |  |
| H6 IS                      | 0                 | 1855                   | 27.8                                       | 16.0                                       | 2554                                      | 300.1             | 1                            | 7.01   | 14.3"               | 11,540                  | 182                                           | 9.12                          | Flow Rate Stable - Take first skid sample                                                           |  |
| HAIS                       | 1                 | 7000                   | 292                                        | 162                                        | 2590                                      | 306.5             | -                            | X      | ><                  | >                       | $\times$                                      | $\times$                      | 1                                                                                                   |  |
| 11-16 15                   | 2                 | 8100                   | 282                                        | 16.1                                       | 260.1                                     | 305.4             | V                            | X      | $\geq$              | $\supset <$             | $\times$                                      | $\geq$                        |                                                                                                     |  |
| Comment<br>* Sum           | at FOI-           | Q1- 101-<br>N1-4, 5, 6 | -4A/5                                      | Sus                                        | ABOT K                                    | EA DIA            | 6 -                          | KEAI   | DIAKS OF            | OUDRALL                 | MIXTHRE                                       | 15 54                         | MOF FOUNI-4948 4,5                                                                                  |  |

I-25



I-26

SGW-59614, REV. 0 CHPRC-02799, Rev. 1

|          |              |                   | Publist                                   | Planed Dat                                 | hosph                                      | ate Se               | olutic                       | n In   | filtration                   | Injection                     | n Opera                                       | tions                         |                                                                                                                                          |   |  |
|----------|--------------|-------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------|------------------------------|--------|------------------------------|-------------------------------|-----------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|          |              |                   |                                           |                                            | A                                          | ppendix              | A - In                       | jectio | n Skid Mor                   | itoring Da                    | ta Sheet                                      | ave Date                      | <u></u>                                                                                                                                  |   |  |
| Skid #1  | R            | nund +            | ÷ .                                       | Oper                                       | rator(s):                                  | FAIT                 | H, F                         | Rus    | T                            |                               |                                               |                               |                                                                                                                                          | 1 |  |
|          | -            |                   | Tot                                       | alizer Re                                  | adings                                     |                      |                              |        | Start of Inje                | ctions                        | End of                                        | Injections                    | Comments                                                                                                                                 |   |  |
|          | River I      | Vater             | in interne                                | a set in the                               | FOI-NI                                     | -1A or -18           |                              | 5      | 11514                        |                               | 6391                                          | 14                            |                                                                                                                                          | 1 |  |
|          | Phosp        | njecuoni<br>hate) | Mono!                                     | sodium                                     | FQI-N1-                                    | ZA or -28            | 5                            | 1 .    | 54 475                       |                               | 7030                                          | 51                            |                                                                                                                                          |   |  |
| Write    | Chem         | Injection         | 12                                        |                                            | FOLNI                                      | 34 or 38             | 0                            | -      |                              |                               | 100                                           | 31                            |                                                                                                                                          |   |  |
| Nell New | (Pyrop       | hosphate          | )                                         |                                            | E COL MA                                   | 48                   | -                            | 1      | 22967                        |                               | 40860                                         |                               | During hourly recording, note any                                                                                                        |   |  |
| In       | (399-1       | + /2 3            | 1                                         |                                            | FOLNIA                                     |                      |                              |        | 947869                       | -                             | 5584                                          | 20                            | problems such as system downtime.                                                                                                        |   |  |
| provided | (399-1       | - 93              | 1                                         |                                            | FQI-N1-5                                   |                      |                              |        | 110818                       |                               | 11/22                                         |                               | totalizer malolenance/outage/re-set in                                                                                                   |   |  |
|          | (399-1       | - 94              | )                                         | -                                          | FOI-N1-                                    | 6                    |                              |        | 79.48                        | 2                             | 10.26                                         | .76                           | and over                                                                                                                                 |   |  |
|          | (399-1       | - 95              | 1                                         |                                            | FQI-N1-                                    | 7                    |                              |        | 1073:                        | 27                            | 1317                                          | 11                            |                                                                                                                                          | E |  |
|          | (399-1       | - 96              | 1                                         |                                            | FQI-N1-                                    | 8                    |                              | 1      | 10219                        | 3                             | 127799                                        |                               |                                                                                                                                          |   |  |
|          | (399-1       | - 41              | 1 .                                       | THE LOUIS AND AND AND                      | FQI-N1-                                    | 9                    |                              | -      | 11493                        | 4                             | 1428                                          | 88                            |                                                                                                                                          |   |  |
|          |              |                   | Skid an                                   | d filter pa<br>and i                       | rameters<br>recorded                       | will be m<br>hourly. | s<br>easured                 | Field  | Field Para<br>d parameters v | vill be measur<br>every 4 hou | ed and reco                                   | nded once                     | After flow rate is stable take 1" skid                                                                                                   |   |  |
| Date     | Hour         | Time              | FQI-N1-<br>QAor<br>-2B<br>Chem 1<br>(gpm) | FQI-N1-<br>84/or<br>-38<br>Chem 2<br>(gpm) | FQI-N1-<br>(1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm)     | Filter<br>dPs<br>< 45<br>(V) | pH     | Temperature<br>(°C)          | Conductivity<br>(µS/cm)       | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L) | Bimple, take 2" at 4-hour man, and<br>bidfinal at end of injections<br>(8 hr) Where a sample is required, it is<br>noted in this column. |   |  |
| 1/1/5    | Pre<br>Start | 6330              | 0                                         | 0                                          | 0                                          | 0                    | 1                            | 138    | 13.1                         | 1439                          | 174                                           | 1037                          | Columbia River Water Sample                                                                                                              | B |  |
| 1/15     | 0            | 0104              | 28.4                                      | 140                                        | 2603                                       | 307.9                | V                            | 7.14   | 12.6                         | 10580                         | 178                                           | 10.18                         | Flive Rate Stable - Take first skid sample                                                                                               | C |  |
| 11-17-15 | 1            | 0500              | 2934                                      | 16.0                                       | 262                                        | 308-1                | 1                            | X      | $\times$                     | $\geq$                        | $\geq$                                        | ×                             |                                                                                                                                          | 1 |  |
| Malis    | 2            | 0600              | 28.3                                      | 160                                        | 212                                        | 3012                 | V                            | X      | $\sim$                       | X                             | $\sim$                                        | $\bigtriangledown$            |                                                                                                                                          | - |  |
| Comment  | of F6        | 1-NI-             | HA/B                                      | онзра                                      | t read                                     | ungs,                | Reade                        | ing of | OVERALL                      | martine 1                     | s Sum Fl                                      | 21.11-4                       | 10, 4, 5, 4, 7, 8, 9                                                                                                                     | - |  |
| Sum      | or equa      | 41-4, 0, 6        | 1119.9                                    | 1                                          |                                            |                      |                              |        |                              |                               |                                               | 1                             |                                                                                                                                          |   |  |

I-27



I-28

| Instrument                   | S/N             |                                           | CIEFE AND AND AND AND | a galactica de la constitución d | 1                        |                |  |
|------------------------------|-----------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|--|
| Myron L pH                   | 6221191         | Cal Due Date                              | Check :               | Std (Pre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standard                 |                |  |
| Myron L Cond                 |                 |                                           | 6.98                  | @ 20. 2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Std. 7.00                | @ 25C<br>@ 25C |  |
| Myron L ORP                  |                 |                                           | 446.4                 | @ 20.0°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Std. 10.01<br>Std. 442uS | @ 25C          |  |
| pH 4.00 Hach<br>pH 7.00 Hach | Lot#: A5243     | Exp Date: Aug 2019                        | <u> </u>              | nV@ <i>20.2</i> °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Std. 231 mV              | @ 25C          |  |
| pH 10.0 Hach                 | Lot#: A5260     | Exp Date: Aug 2017<br>Exp Date: Sept 2016 | Date:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |  |
| ORP YSI ZOBELL               | Lot#: 121741 AS | Exp Date:                                 | Procedure:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |  |
|                              |                 | Exp Date:                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |  |

SGW-59614, REV. 0

.

A-11

|                     |                |                        |                        | Pł                     | nosph                 | ate So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olutio             | n Inf  | filtration/         | Injection               | Opera                            | tions                         |                                                                                                                                                                                                                      |  |  |
|---------------------|----------------|------------------------|------------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------------|-------------------------|----------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     |                | - 1                    | Publish                | ed Date                | : 11/11               | /15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | -      |                     |                         | Effec                            | tive Date                     | : 11/11/15                                                                                                                                                                                                           |  |  |
|                     |                | _                      |                        |                        | A                     | pendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A - In             | jectio | n Skid Mon          | itoring Dat             | a Sheet                          |                               |                                                                                                                                                                                                                      |  |  |
| Skid #1 -           | Rd             | 6                      |                        | Open                   | ator(s):              | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e, A               | RAN    | LIPEZ               |                         |                                  |                               |                                                                                                                                                                                                                      |  |  |
|                     |                |                        | Tota                   | lizer Rea              | dings                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | Start of Inje       | ctions                  | End of I                         | njections                     | Comments                                                                                                                                                                                                             |  |  |
|                     | River V        | Vator                  |                        |                        | FOI-NT-               | tA or -1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  | 1      | 639194              |                         | 1901                             | 24                            |                                                                                                                                                                                                                      |  |  |
|                     | Chem<br>Phospl | Injection#<br>hate)    | 1 (Monos               | odium                  | FOI-N1-               | 2A or -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                  | -      | 10351               |                         | 8645                             | g                             |                                                                                                                                                                                                                      |  |  |
| Write<br>well       | (Pyrop)        | Injection#<br>hosphate | 2                      |                        | FOLNI-                | 3A or -3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                  |        | 40860               |                         | 503.                             | 28                            | During hourly recording, note any<br>observations, irregularities, and/or<br>problems such as system downline,<br>totalizer maintenance/butage/ne-set in<br>totalizer maintenance/butage/ne-set in<br>totalizer book |  |  |
| in                  | (390.1         | . 20                   | 1                      |                        | FOLNI                 | 44.01-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                  |        | 558420              |                         | 1003 22                          | 7.6                           |                                                                                                                                                                                                                      |  |  |
| spaces -            | (399-1         | - 90                   | 1                      | -                      | FOLN1-                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1      | RUCED               |                         | 199 6                            | 3                             |                                                                                                                                                                                                                      |  |  |
| Provided            | (399-1         | - 91                   | 1                      |                        | FQI-N1-               | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 1      | 02676               |                         | 14013                            | 35                            | soli pook                                                                                                                                                                                                            |  |  |
|                     | (399-1         | - 95                   | )                      |                        | FQI-N1-               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                  | 1      | 31711               |                         | 1588                             | 21                            |                                                                                                                                                                                                                      |  |  |
|                     | (399-1         | - 96                   | )                      |                        | FOI-N1-               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1      | 27799               |                         | 157717                           |                               |                                                                                                                                                                                                                      |  |  |
|                     | (399-1         | - 91                   | )                      |                        | FQI-N1-               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1      | 42888               |                         | 1744                             | 1840                          |                                                                                                                                                                                                                      |  |  |
| -                   |                |                        | F                      | lowrates               | - Skid P              | arameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                  |        | Field Para          | meters - Injec          | tion Soluti                      | n                             |                                                                                                                                                                                                                      |  |  |
|                     |                |                        | Skid an                | d filter pa            | rameters              | will be m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | easured            | Field  | d parameters v      | vill be measur          | ed and reco                      | ded once                      | After flow rate is stable take 1" skid                                                                                                                                                                               |  |  |
|                     |                |                        | FQI-N1-<br>2A or       | FOI-N1-<br>3A or       | FQI-N1-<br>1A or      | in the second se | Filtor             |        |                     | every 4 000             | Oxidation                        |                               | (8 hr) Where a sample is required, it is                                                                                                                                                                             |  |  |
| Date                | Hour           | Time                   | -28<br>Chem 1<br>(gpm) | -38<br>Chem 2<br>(gpm) | -1B<br>River<br>(gpm) | * Total<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dPs<br>< 45<br>(*) | pH     | Temperature<br>(°C) | Conductivity<br>(µS/cm) | Reduction<br>Potential<br>(± mV) | Disselved<br>Oxygen<br>(mg/L) | noted in this column.                                                                                                                                                                                                |  |  |
| "/11/15             | Pre<br>Start   | 1210                   | 0                      | 0                      | 0                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | 7.62   | 13.3                | 13,960                  | 182                              | 10,38                         | Columbia River Water Sample                                                                                                                                                                                          |  |  |
| 41745               | 0              | 1225                   | 289                    | 17.8                   | 261                   | 308.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                  | 7.14   | 14.3                | 10,860                  | 109                              | 9.99                          | Flow Rate Stable - Take first skid sample                                                                                                                                                                            |  |  |
| 1/18/15             | 1              | 0800                   | 28.9                   | 18.3                   | 263.                  | 311.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | X      | X                   | $\times$                | $\geq$                           | $\times$                      |                                                                                                                                                                                                                      |  |  |
| 118/15              | 2              | 6900                   | 28.9                   | 16.8                   | 261                   | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | X      | >                   | >                       | $\geq$                           | ×                             | at with                                                                                                                                                                                                              |  |  |
| Commente<br>* Sum o | PR &           | N1-4, 5, 6             | 17,8,9                 | to                     | TOO                   | lom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sh                 | ut d   | nd the              | eto pu                  | gh win                           | NELS DE                       | durphy arrive                                                                                                                                                                                                        |  |  |

I-30

|           |                                                                        |          |                                            | Pho                                        | osphat                                    | e Solu                      | tion l                       | filtration/Injection Operations |                     |                                                          |                                              |                                |                                                                                                                                                                                                                                           |  |
|-----------|------------------------------------------------------------------------|----------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------|------------------------------|---------------------------------|---------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           |                                                                        |          | Publish                                    | ed Date:                                   | 11/11/1                                   | 5                           | _                            | Effective Date: 11/11/15        |                     |                                                          |                                              |                                |                                                                                                                                                                                                                                           |  |
|           |                                                                        |          |                                            |                                            | Append                                    | ix A - (C                   | ont.) Inj                    | ection S                        | kid Monito          | ring Data S                                              | heet                                         |                                |                                                                                                                                                                                                                                           |  |
| Injection | Round:                                                                 | Ø        |                                            |                                            | -                                         | skid ID:                    | -                            | Operato                         | r(s):               |                                                          |                                              |                                |                                                                                                                                                                                                                                           |  |
| Wells:    | 399-                                                                   | 1-59,    | 90,91,                                     | 95,96                                      | ,97                                       |                             |                              | -                               | fact                | n Ma                                                     | Mure C                                       |                                | Community                                                                                                                                                                                                                                 |  |
|           | Flowrates - Skid Pa<br>Skid and filter parameters will<br>recorded box |          |                                            |                                            |                                           | ameters<br>be measuri<br>ly | ed and                       | Field par                       | ameters will b      | After flow rate is stable take 1" i<br>sample take 2" is |                                              |                                |                                                                                                                                                                                                                                           |  |
| Date      | Hour                                                                   | Time     | FOI-N1-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N1-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FOI-N1-<br>1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm)            | Filter<br>dPs<br>< 45<br>(*) | рH                              | Temperature<br>(*C) | Conductivity<br>(µS/cm)                                  | Oxidation<br>Reduction<br>Potential<br>(±mV) | Dissolved<br>Oxygen<br>(ong/L) | merginien Where a sample or<br>merginien Where a sample or<br>tennered, it senowed in this color<br>Norman and date observations,<br>(regularities, problems in Commi-<br>science, metading system<br>interruptions, filter, champ carts, |  |
| 1/13/15   | 3                                                                      | 1000     | 28.9                                       | 16.9                                       | 263                                       | 310.1                       | 1                            | ×                               | $\bowtie$           | $\geq$                                                   | $\times$                                     | $\times$                       |                                                                                                                                                                                                                                           |  |
| Minu      | 4                                                                      | 1100     | 332                                        | 199                                        | 300                                       | 356.1                       | 1                            | 7,09                            | 13.2                | 10680                                                    | 218                                          | 9,98                           | B32L35                                                                                                                                                                                                                                    |  |
| Malis     | 5                                                                      | 1200     | 33,2                                       | 19,8                                       | 300                                       | 355                         | 1                            | ×                               | >                   | $\ge$                                                    | $\times$                                     | $\times$                       |                                                                                                                                                                                                                                           |  |
| 4/18/1    | 6                                                                      | 1300     | 33,2                                       | 196                                        | 300                                       | 356.4                       | V                            | $\times$                        | $\geq$              | $\geq$                                                   | $\times$                                     | $\times$                       |                                                                                                                                                                                                                                           |  |
| 1/e/s     | 7                                                                      | Ò        | 0                                          | 0                                          | 0                                         | 0                           | 0                            | $\times$                        | $\mathbb{D}$        | $\searrow$                                               | $\times$                                     | $\times$                       |                                                                                                                                                                                                                                           |  |
| 18/15     | 8<br>FINAL                                                             | 0        | D                                          | 0                                          | 0                                         | 0                           | 0                            | 7.22                            | 12.9                | 11280                                                    | 171                                          | 971                            | Take final shid sample_at time shutdown 632L36                                                                                                                                                                                            |  |
| Comment   | * m                                                                    | ethe     | Karg                                       | ct pa                                      | name                                      | ters                        | duri                         | mh                              | hour                | +601                                                     | 242.                                         | Touk                           | reading at 130                                                                                                                                                                                                                            |  |
|           |                                                                        |          |                                            |                                            |                                           |                             |                              |                                 |                     | -                                                        |                                              | _                              | 3                                                                                                                                                                                                                                         |  |
| *5        | um of F                                                                | QI-N1-4. | 5, 6, 7, 8, 9                              | -                                          |                                           |                             |                              |                                 |                     |                                                          |                                              |                                |                                                                                                                                                                                                                                           |  |
|           |                                                                        |          |                                            |                                            |                                           |                             |                              |                                 |                     |                                                          |                                              |                                |                                                                                                                                                                                                                                           |  |

-⊔ -3 A-13

This page intentionally left blank.

A-14

## Appendix B

## Infiltration Skid Monitoring Data Sheets

This page intentionally left blank.

-35

Ψ

## SGRP-PRO-OP-53038

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid 1     | 2                |                       |                                           | Oper                                        | ator(s):                                   | ANDO                               | R/                             | PLA                   | TER                                 |                                                   |                                     |                     |                                                                                                   |  |  |
|------------|------------------|-----------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|--------------------------------|-----------------------|-------------------------------------|---------------------------------------------------|-------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|--|--|
| 以现故        | S. P. Mr. 4      | ANK LETLER            | Tota                                      | lizer Rea                                   | ndings 🐲                                   | a Pade anner                       | BR. H.S. F.W.                  | 2817.98°9             | Start of Inje                       | ctions and                                        | End of                              | Injections @        | Commente                                                                                          |  |  |
|            | River V          | Vater 🖘               |                                           | AMER D. D. P.                               | FQI-N2-1A or (1B)                          |                                    |                                |                       | 0                                   |                                                   | 795                                 | 611                 |                                                                                                   |  |  |
|            | Phosp            | nate)                 | 1 (Monos                                  | odium                                       | FQI-N2-                                    | 2A or 22                           | All all                        |                       | 0                                   |                                                   | 5.30                                | 04                  |                                                                                                   |  |  |
|            | Chem (<br>Pyropi | njection#<br>nosphate | 2<br>)                                    |                                             | FQI-N2-                                    | BA or 38                           |                                |                       | 0                                   |                                                   | 33338                               |                     | During hourly recording, note a observations, irregularities, and                                 |  |  |
| A REAL     | Overall          | Mixture               | URT IN MILLIE                             | The Constant                                | FQI-N2-4A or -4B Dasses                    |                                    |                                |                       | 0                                   |                                                   | 951                                 | OILO                | <ul> <li>problems such as system downtin<br/>totalizer maintenance/outage/re-sy</li> </ul>        |  |  |
|            |                  |                       |                                           |                                             | FQI-N2-4                                   | AEAC LOD                           | a misi                         |                       | 0                                   |                                                   | 293                                 | 981                 | Comments sections                                                                                 |  |  |
|            |                  |                       |                                           |                                             | FQI-N2-5                                   |                                    |                                |                       | 0                                   |                                                   | 298                                 | 244                 |                                                                                                   |  |  |
| 1.2990 A.C |                  |                       |                                           |                                             | FQI-N2-6                                   | S SANCARS                          | Latan a                        |                       | Õ                                   |                                                   | 290                                 | 969                 | ALC: NO.                                                                                          |  |  |
|            |                  |                       | Skid and                                  | d filter pa                                 | - Skid Pa<br>rameters<br>ecorded h         | will be me<br>ourly                | asured                         | Fiel                  | <b>Field Para</b><br>d parameters w | meters - Injec<br>vill be measure<br>every 4 hour | tion Solut<br>d and reco<br>s       | lon<br>orded once   | After flow rate is stable take 1 <sup>st</sup> s<br>i sample, take 2 <sup>nd</sup> at 4-hour mark |  |  |
| Date       | Hour             | Time                  | FQI-N2-<br>2A or<br>2B<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>(3B)<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>(1B)<br>River<br>(gpm) | FQI-N2-<br>4A or<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(√) 1 | pH                    | Temperature<br>(°C)                 | Conductivity<br>(uS/cm)                           | Oxidation<br>Reduction<br>Potential | Dissolved<br>Oxygen | third/final at end of injections (8 i<br>Where a sample is required, it is no<br>this column.     |  |  |
| 1/1/15     | Pre<br>Start     | 6710                  | 3.3                                       | 2.1                                         | 56                                         | 76                                 | 1                              | 7.08                  | 13.3                                | 154.6                                             | 275                                 | 11.78               | Columbia River Water Samp                                                                         |  |  |
| 1/15       | 0                | 6716                  | 3.3                                       | 2.8                                         | 56                                         | 85                                 | 1                              | 6.94                  | 12.8                                | 13,940                                            | 210                                 | 13.11               | Flow Rate Stable – Take first sk<br>sample                                                        |  |  |
| 1/2/15     | 1                | 0800                  | 3.1                                       | 2.5                                         | 52                                         | 65                                 | /                              | $\times$              | A A                                 | 7                                                 | $\sim$                              |                     |                                                                                                   |  |  |
| 4/7/10     | 2                | 0900                  | 29                                        | 2.0                                         | 49                                         | 59                                 | 1                              | $\mathbf{\mathbf{X}}$ | Ma Street                           |                                                   | >                                   | $\triangleleft$     |                                                                                                   |  |  |

Before each use, ensure this copy is the most current version.

THE SUM OF METERS FOIL-NZ-4,5 \$ 6 TO-5

FOR TOTAL FLOW.

CHPRC-02799, Rev. 1

22.1M2 \$32131

## SGRP-PRO-OP-53038

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid ID: |      | SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | io #Z                                       |                                            |                                            |                           |                       | Operato      | or(s): ANC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on/P/A                         | yter                                                                                        |                     |                                                                                                                                                                                                                                                         | ]             |
|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Flowrate                                   | s - Skid Pa                                | rameters                  |                       | North States | Field Paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neters - Infiltr               | Comments Comments                                                                           |                     |                                                                                                                                                                                                                                                         |               |
|          |      | and the second s | parame                                      | ters will be                               | measured                                   | and recorde               | d hourly              | Field        | parameters w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ill be measure<br>every 4 hour | After flow rate is stable take 1 <sup>st</sup> skid sample, take 2 <sup>nd</sup> at 24-hour | -<br>우              |                                                                                                                                                                                                                                                         |               |
| Date     | Hour | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FQI-N2-<br>2A or<br>-290<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>-36<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-160<br>River<br>(gpm) | FQI-N2-<br>4A or<br>(gpm) | Filter<br>dPs<br>< 45 | рН           | Temperature<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conductivity<br>(uS/cm)        | Oxidation<br>Reduction<br>Potential<br>(± mV) a                                             | Dissolved<br>Oxygen | a mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column.<br>Note any other observations,<br>irregularities, problems in the<br>Comments sections including<br>system interruptions, filter change | 1PRC-02799, F |
| 4/15     | 3    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                                         | 2.0                                        | 47                                         | 57.1                      | ~                     | $\times$     | A state of the sta |                                |                                                                                             | mg/L                | H 2-4-16                                                                                                                                                                                                                                                | Rev. 1        |
| "17/5    | 4    | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                                         | 2.0                                        | 48                                         | 57.3                      | V                     | 6.97         | 15.8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13,830                         | 203                                                                                         | 8.50                |                                                                                                                                                                                                                                                         | B32139        |
| 1/2/15   | 5    | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                                         | 2.1                                        | 47                                         | 56.2                      | /                     | $\mathbf{X}$ | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                     |                                                                                                                                                                                                                                                         |               |
| 17/15    | 6    | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                                         | 1.7                                        | 48                                         | 57                        | V                     |              | and the second s |                                | X                                                                                           |                     |                                                                                                                                                                                                                                                         |               |
| 1/1/15   | 7    | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                                         | 2,0                                        | 49                                         | 58.3                      | $\checkmark$          |              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | X                                                                                           | $\mathbf{X}$        |                                                                                                                                                                                                                                                         |               |
| 171.0    | 8    | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                                         | 2.0                                        | 48                                         | 581                       | /                     | 6.9          | 15,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13,620                         | 216                                                                                         | 965                 |                                                                                                                                                                                                                                                         | 3321.3        |

## Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Comments:

Before each use, ensure this copy is the most current version.

Reference Use

SGW-59614, REV. 0

I-36

B-2

## **SGRP-PRO-OP-53038**

Page 37 of 46

SGW-59614, REV. 0

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

Reference Use

μ ω
## **SGRP-PRO-OP-53038**

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15





Before each use, ensure this copy is the most current version.

Reference Use

SGW-59614, REV. 0

В-4

### **SGRP-PRO-OP-53038**

Page 37 of 46

CHPRC-02799, Rev. 1 332L44

B32245

SGW-59614, REV. 0

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



08

15,2

Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Comments:

6900

2.8

2.

I-39

ъ В -

Oper

Before each use, ensure this copy is the most current version.

50.5

9.25

6830

11/8/15

23

I-40

В-6

SGRP-PRO-OP-53038

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid ID:  |      |       |                                            |                                            |                                                                        |                                           |                                  | Operate      | or(s):                      |                           |                                               |                                            |                                                                                                                                                                                                                                                                  | 7            |
|-----------|------|-------|--------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------|-----------------------------|---------------------------|-----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|           |      |       | parame                                     | Flowrates<br>S<br>ters will be             | ates - Skid Parameters Skid and filter be measured and recorded hourly |                                           |                                  | Field        | Field Param<br>parameters w | rill be measure           | ation Soluti                                  | on<br>ded once                             | After flow rate is stable take 1 <sup>st</sup>                                                                                                                                                                                                                   |              |
| Date      | Hour | Time  | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm)                              | FQI-N2-<br>4A or<br>-4B<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(*)<br> | рн           | Temperature<br>(°C)         | Conductivity<br>(µS/cm) = | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>( <del>H9</del> /L) | mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column<br>Note any other observations, a<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter change<br>outs, etc. | CHPRC-02799, |
| 1/9/15    | 27   | 1000  | 3.0                                        | 2.8                                        | 47,9                                                                   | 0011 + 15                                 | 52,7                             | $\mathbf{X}$ | and the second              | 1000                      |                                               | Mg/L I                                     | UP UL HZ                                                                                                                                                                                                                                                         | Rev.         |
| 118/5     | 28   | 1.600 | 2.9                                        | 2.3                                        | 47.3                                                                   | 22.5                                      |                                  | 7.07         | 13.0                        | 69950                     | 192                                           | 2,60                                       | N/A                                                                                                                                                                                                                                                              | B3ZUG        |
| 11/8/15   | 29   | 1200  | 2.9                                        | 2,2                                        | 47,2                                                                   | 52,5                                      | /                                |              |                             | ul sli                    |                                               |                                            | t                                                                                                                                                                                                                                                                |              |
| 81/8/5    | 30   | 1300  | 2.9                                        | 1.9                                        | 47.3                                                                   | 52.4                                      |                                  | X            |                             |                           |                                               |                                            |                                                                                                                                                                                                                                                                  |              |
| 11/6/15   | 31   | 1400  | 219                                        | 2,0                                        | 46.9                                                                   | 52.0                                      | ~                                |              |                             |                           |                                               |                                            |                                                                                                                                                                                                                                                                  |              |
| 11/8/15   | 32   | 1500  | 2,8                                        | 2.3                                        | 46.7                                                                   | 52.0                                      | /                                | 7.2          | 15.7                        | 71990                     | 147                                           | 4,24                                       | NIA                                                                                                                                                                                                                                                              | B32LY        |
| Comments: |      | 2     |                                            |                                            |                                                                        | 5                                         |                                  |              |                             | 7199                      |                                               |                                            | /                                                                                                                                                                                                                                                                | l            |

Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

Rev. 0, Chg. 2 SGRP-PRO-OP-53038 **Phosphate Solution Infiltration/Injection Operations** Published Date: 11/05/15

Effective Date: 11/05/15

| Skid ID: |      |      |                                                                                                   |         |                                           |                                        |                                 | Operato                                                                                                                                            | or(s):                      | Selling &                      | YAN                                                                                                        | Operator(s): Billion & ANDOR   |                                                                                                                                                                                                                                                                 |                       |  |  |  |
|----------|------|------|---------------------------------------------------------------------------------------------------|---------|-------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
|          | ě    |      | Flowrates - Skid Parameters<br>Skid and filter<br>parameters will be measured and recorded hourly |         |                                           |                                        |                                 | Field                                                                                                                                              | Field Param<br>parameters w | ill be measure<br>every 4 hour | Comments<br>After flow rate is stable take 1 <sup>st</sup><br>skid sample, take 2 <sup>nd</sup> at 24-hour |                                |                                                                                                                                                                                                                                                                 |                       |  |  |  |
| Date     | Hour | Time | FQI-N2-<br>2A) or<br>-2B<br>Chem 1<br>(gpm)                                                       | FOI-N2- | FQI-N2-<br>10 or<br>-1B<br>River<br>(gpm) | FQI-N2-<br>4∨<br>-4B<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(✓) \$ | pH                                                                                                                                                 | Temperature<br>(°C)         | Conductivity<br>(µS/cm)        | Oxidation<br>Reduction<br>Potential                                                                        | Dissolved<br>Oxygen<br>(µg/L), | mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column.<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter change<br>outs, etc. | CHPRC-02799,          |  |  |  |
| 11/2/15  | 33   | 1600 | 3,0                                                                                               | 1.9     | 48.6                                      | 53.7                                   |                                 |                                                                                                                                                    |                             |                                | $\mathbf{\mathbf{X}}$                                                                                      | mg/L                           | RH 2-4-16                                                                                                                                                                                                                                                       | Rev. 1                |  |  |  |
| 11/8/15  | 34   | 1700 | 3.0                                                                                               | 2.0     | 48.4                                      | 53.4                                   |                                 | 7,10                                                                                                                                               | 14.7                        | 6906                           | 130                                                                                                        | 5.84                           |                                                                                                                                                                                                                                                                 | B32L48                |  |  |  |
| 11/5/15  | 35   | 1800 | 2.9                                                                                               | 21      | 48,3                                      | 52.7                                   | ~                               | $\times$                                                                                                                                           |                             |                                |                                                                                                            | $\mathbf{\mathbf{X}}$          |                                                                                                                                                                                                                                                                 |                       |  |  |  |
| 11/8/15  | 36   | 1900 | 3.0                                                                                               | 2.3     | 47.7                                      | 52.9                                   | $\checkmark$                    | $\ge$                                                                                                                                              |                             |                                |                                                                                                            |                                |                                                                                                                                                                                                                                                                 |                       |  |  |  |
| 11/8/5   | 37   | 2000 | 2.9                                                                                               | 2.0     | 47.8                                      | 53.1                                   | V                               | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ | $\searrow$                  |                                | $\searrow$                                                                                                 | $\succ$                        |                                                                                                                                                                                                                                                                 | <i>#/<sub>7</sub></i> |  |  |  |
| 11/8/5   | 38   | 2100 | 2.9                                                                                               | 2.0     | 47.9                                      | 52.9                                   |                                 | 7.11                                                                                                                                               | 14.2°                       | 6898                           | 21 Tilly                                                                                                   | 9.17                           |                                                                                                                                                                                                                                                                 | B322499               |  |  |  |
| Comment  | \$:  |      |                                                                                                   |         |                                           |                                        |                                 |                                                                                                                                                    |                             |                                | 209                                                                                                        |                                |                                                                                                                                                                                                                                                                 | 1                     |  |  |  |

Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

B-7

SGW-59614, REV. 0

Page 37 of 46

## SGRP-PRO-OP-53038

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

Ъ-8

## **SGRP-PRO-OP-53038**

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15



a color a color and a s

#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

Reference Use

B-9

## SGRP-PRO-OP-53038

Page 37 of 46

## **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid ID.  | 2    |                                            |                                                                    |                                           |                                           |                              |              | Operato                                         | r(s): Faul                                    | n/Roen                                     | INPZ                                                                                                                                                                                                                         |               |                                       | 7              |
|-----------|------|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|--------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|----------------|
|           |      |                                            |                                                                    | Flowrates                                 | s - Skid Pa                               | rameters                     |              |                                                 | <b>Field Param</b>                            | eters - Infiltra                           | Comments                                                                                                                                                                                                                     |               |                                       |                |
|           |      |                                            | Skid and filter<br>parameters will be measured and recorded hourly |                                           |                                           |                              |              |                                                 | parameters w                                  | ill be measure<br>every 4 hour             | After flow rate is stable take 1 <sup>st</sup><br>skid sample, take 2 <sup>nd</sup> at 24-hour                                                                                                                               |               |                                       |                |
| Date Hour | Time | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N2-<br>38 or<br>-38<br>Chem 2<br>(gpm)                         | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | FQI-N2-<br>4A or<br>-4B<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(✓) | ,<br>pH      | Temperature Conductivity Pot<br>(°C) (µS/cm) (± | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>( <del>µg/L</del> ) | infiltrations. Where a sample is<br>required, it is noted in this column.<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter change<br>outs. etc. | גC-UZ/99, הפע |                                       |                |
| 1/9/15    | 51   | 1010                                       | 2.0                                                                | 2.1                                       | 47                                        | 51.1                         | $\checkmark$ |                                                 | $\mathbf{\mathbf{X}}$                         |                                            | X                                                                                                                                                                                                                            | mg/L          | RH 2-4-16                             | SEC 1/1        |
| 1/9/15    | 52   | 1110                                       | 2.6                                                                | 1.9                                       | 47                                        | 51.5                         | /            | 7.03                                            | 15.5                                          | 7728                                       | 255                                                                                                                                                                                                                          | 8.87          |                                       | 83347<br>83497 |
| 1/9/15    | 53   | 1210                                       | 2.4                                                                | 1.4                                       | 46                                        | 50.2                         |              |                                                 | $\geq$                                        | $\mathbf{\mathbf{X}}$                      | $\times$                                                                                                                                                                                                                     | $\times$      |                                       |                |
| 1/a/15    | 54   | 1306                                       | 2.6                                                                | 1.7                                       | 46                                        | 50.3                         |              | $\mathbf{X}$                                    | $\ge$                                         |                                            | $\mathbf{X}$                                                                                                                                                                                                                 | $\mathbf{X}$  |                                       |                |
| 1/2/15    | 55   | 148D                                       | 2.4                                                                | 1.6                                       | 47                                        | 51.2                         |              |                                                 | $\searrow$                                    | $\mathbf{X}$                               | $\mathbf{X}$                                                                                                                                                                                                                 | $\mathbf{X}$  |                                       | SEC 1/13       |
| 11/9/10   | 56   | 1500                                       | 2.4                                                                | tile                                      | 47                                        | 51,2                         | V            | 7,01                                            | 14.9                                          | 6265                                       | 240                                                                                                                                                                                                                          | 8,54          |                                       | 6349T          |
| omments   | :    |                                            |                                                                    |                                           |                                           |                              |              |                                                 |                                               |                                            |                                                                                                                                                                                                                              | <u></u>       | · · · · · · · · · · · · · · · · · · · | 1-             |

### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

÷

I-44

B-10

## SGRP-PRO-OP-53038

Page 37 of 46

### **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

SGW-59614, REV. 0

В-11

### SGRP-PRO-OP-53038

Page 37 of 46

### **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

B-12

### SGRP-PRO-OP-53038

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15



-47

SGW-59614, REV. 0

Before each use, ensure this copy is the most current version.

Reference Use

### SGRP-PRO-OP-53038

Page 37 of 46

TH

### **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

I-48

B-14

# SGRP-PRO-OP-53038

Page 37 of 46

# **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15

| Skid ID: | Ħ    | 2    |                                                                    |                                            |                                           |                                           |                              | Operat   | or(s): Aa             | IDOR                            |                                                                                             |                     |                                                                                                                                                                                                                | 7            |
|----------|------|------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|----------|-----------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          |      |      | Flowrates - Skid Parameters                                        |                                            |                                           |                                           |                              | 1.<br>   | Field Param           | neters - Infiltr                | Comments                                                                                    |                     |                                                                                                                                                                                                                |              |
|          |      |      | Skid and filter<br>parameters will be measured and recorded hourly |                                            |                                           |                                           |                              |          | parameters w          | vill be measure<br>every 4 hour | After flow rate is stable take 1 <sup>st</sup> skid sample, take 2 <sup>nd</sup> at 24-hour | 1                   |                                                                                                                                                                                                                |              |
| Date     | Ryr  | Time | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm)                         | FQI-N2-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | FQI-N2-<br>4A or<br>-4B<br>Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(√) | pН       | Temperature<br>(°C)   | Conductivity<br>(µS/cm)         | Oxidation<br>Reduction<br>Potential<br>(± mV)                                               | Dissolved<br>Oxygen | Infiltrations. Where a sample is<br>required, it is noted in this column.<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter change |              |
| 111015   | +700 | 1600 | 3.0                                                                | 2.3                                        | 48.5                                      | 53.8                                      | /                            | $\times$ | $\mathbf{\mathbf{X}}$ |                                 | X                                                                                           | mg/L                | RH 2-4-16                                                                                                                                                                                                      | B34          |
| 111015   | 17.  | 1700 | 3.0                                                                | 1.9                                        | 49.1                                      | 54                                        | /                            | 7.17     | 14.6°                 | 7422                            | 159                                                                                         | 10.01               |                                                                                                                                                                                                                | 4            |
| 11/10/15 | 83   | 1800 | 2.9                                                                | 2.0                                        | 48.8                                      | 53.6                                      | ~                            | X        | $\mathbf{\mathbf{X}}$ | $\times$                        | X                                                                                           | $\times$            |                                                                                                                                                                                                                |              |
| 11/10/15 | 84   | 1900 | 3.0                                                                | 2.1                                        | 48.6                                      | 53.6                                      | V                            | X        | $\mathbf{X}$          | $\mathbf{X}$                    | $\mathbf{X}$                                                                                | $\mathbf{i}$        |                                                                                                                                                                                                                |              |
| 11/10/10 | 85   | 2000 | 2.9                                                                | 2.1                                        | 48.7                                      | 54.3                                      | V                            | X        | $\mathbf{X}$          | $\searrow$                      | $\mathbf{X}$                                                                                | $\mathbf{X}$        |                                                                                                                                                                                                                |              |
| ulide    | 86   | 2100 | 2.9                                                                | 1.8                                        | 489                                       | 48,8                                      | V                            | 7.18     | 14.4                  | 7279                            | 150                                                                                         | 9.70                |                                                                                                                                                                                                                | B34<br>(333) |
| omments  | s:   |      |                                                                    |                                            |                                           |                                           |                              | I        | I                     |                                 |                                                                                             |                     |                                                                                                                                                                                                                | SEC          |

### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

B-15

I-49

Before each use, ensure this copy is the most current version.

Reference Use

## **SGRP-PRO-OP-53038**

Page 37 of 46

### **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

1-50

B-16

SGW-59614, REV. 0

Before each use, ensure this copy is the most current version.

Reference Use

## SGRP-PRO-OP-53038

Page 37 of 46

### **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/05/15

Effective Date: 11/05/15



#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

Before each use, ensure this copy is the most current version.

Reference Use

# SGRP-PRO-OP-53038

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15



# Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum OF FRI-NZ-4,5,6

Before each use, ensure this copy is the most current version.

**Reference Use** 

pgil of 2

SGW-59614, REV. 0

| Instrument       | S/N              | Cal Due Date          | Check Std (Pr | ro)   | Star       | dard . |
|------------------|------------------|-----------------------|---------------|-------|------------|--------|
| Myron L pH       | 6212777          | 1-21-16               | 4.07 @ 15     | 1.9°C | Std. 4.01  | @ 25C  |
|                  |                  | and the second second | 7.04@19       | .1°C  | Std. 7.00  | @ 25C  |
| Manage I. Canada |                  |                       | 10.07 @18     | 1,7°C | Std. 10.01 | @ 25C  |
| IVIYION L CONd   |                  |                       | 453 @11       | 1.1°C | Std. 442uS | @ 25C  |
| Myron L ORP      |                  |                       | 231 mV@1      | 7 °C  | Std. 231 m | /@250  |
| pH 4.00 Hach     | Lot#: A5243      | Exp Date: Aug 2019    | Name:         |       |            | 6 200  |
| pH 7.00 Hach     | Lot#: A5237      | Exp Date: Aug 2017    | Date:         |       |            |        |
| pH 10.0 Hach     | Lot#: A5260      | Exp Date: Sept 2016   | Procedure:    |       |            |        |
| Cond Myron L 442 | Lot#: 121741 AS  | Exp Date: 12-19-15    |               |       |            |        |
| ORP YSI ZOBELL   | Lot#: 15B 100453 | Exp Date: 11-10-15    |               |       |            |        |

B-19

CHPRC-02799, Rev. 1

# SGRP-PRO-UP-53038

Page 37 of 46

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/05/15

Effective Date: 11/05/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

00111 01 · 41 - W2-4,

Before each use, ensure this copy is the most current version.

**Reference Use** 

-54

SGW-59614, REV. 0

CHPRC-02799, Rev.

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

-55

Reference Use

# **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

SGW-59614, REV.

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

Phosphate Solution Infiltration/Injection Operations

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

I-59

| Instrument            | S/N              | Cal Due Date        | Check Std (Pre)                       | Standard                               |
|-----------------------|------------------|---------------------|---------------------------------------|----------------------------------------|
| Myron L pH            | 622 1191         | 2-3-14              | A.01 @ 19.4°C                         | Std. 4.01 @ 25C                        |
| and the share of      |                  |                     | 7.02 @ 19 °C                          | Std. 7.00 @ 25C                        |
| and the second second |                  |                     | 10,01 @ 19.4°C                        | Std. 10.01 @ 25C                       |
| Myron L Cond          |                  |                     | 447 @ 19 °C                           | Std. 442uS @ 25C                       |
| Myron L ORP           |                  |                     | 231 mV@180C                           | Std. 231 mV @ 25C                      |
| pH 4.00 Hach          | Lot#: A5243      | Exp Date: Aug 2019  | Name:                                 |                                        |
| pH 7.00 Hach          | Lot#: A5237      | Exp Date: Aug 2017  | Date:                                 |                                        |
| pH 10.0 Hach          | Lot#: A5260      | Exp Date: Sept 2016 | Procedure:                            |                                        |
| Cond Myron L 442      | Lot#: 121741 AS  | Exp Date:           | · · · · · · · · · · · · · · · · · · · |                                        |
| ORP YSI ZOBELL        | Lot#: 15B 100453 | Exp Date:           |                                       | ······································ |

B-26

I-60

CHPRC-02799, Rev. 1

.

# **SGRP-PRO-OP-53038**

Page 43 of 47

# **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

<u>م</u>

Before each use, ensure this copy is the most current version.

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

I-62

Before each use, ensure this copy is the most current version.

Reference Use

Rev. 0, Chg. 3 SGRP-PRO-OP-53038

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

Rev. 0, Chg. 3 **SGRP-PRO-OP-53038** Page 43 of 47 **Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

SGW-59614, REV. 0

\_

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

lof2

Before each use, ensure this copy is the most current version.

SGW-59614, REV. 0

CHPRC-02799, Rev.

| Instrument       | 5/N<br>6212777   | <u>Cal Due Date</u><br>/-2/-16 | Check Std (<br>4,08 @<br>(0.98 @<br>10,02 @ | (Pre)<br>20°C<br>20°C<br>20°C | Standard           Std. 4.01         @ 25C           Std. 7.00         @ 25C           Std. 10.01         @ 25C           Std. 442uS         @ 25C |         |  |
|------------------|------------------|--------------------------------|---------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Myron L Cond     |                  |                                | 230 mV                                      | @,20°C                        | Std. 231 m                                                                                                                                         | V @ 25C |  |
| Myron L ORP      | Lot#: A5243      | Exp Date: Aug 2019             | Name:                                       |                               |                                                                                                                                                    |         |  |
| pH 4.00 Hach     | Lot#: A5237      | Exp Date: Aug 2017             | Date:                                       |                               |                                                                                                                                                    |         |  |
| pH 7.00 Hach     | Lot#: A5260      | Exp Date: Sept 2016            | Procedure:                                  |                               |                                                                                                                                                    |         |  |
| Cond Myron L 442 | Lot#: 121741 AS  | Exp Date: 12-12-15             |                                             |                               |                                                                                                                                                    |         |  |
| ORP YSI ZOBELL   | Lot#: 15B 100453 | Exp Date: 12-10-15             |                                             |                               |                                                                                                                                                    |         |  |
|                  | 18.              |                                |                                             |                               |                                                                                                                                                    |         |  |

CHPRC-02799, Rev. 1

B-32

# **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

-9-1

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

**-**68

Reference Use

CHPRC-02799, Rev.

## **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

B-35

SGW-59614, REV. 0

CHPRC-02799, Rev.

# SGRP-PRO-OP-53038

Page 43 of 47

# **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/11/15

Effective Date: 11/11/15



### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

## **SGRP-PRO-OP-53038**

Page 43 of 47

SGW-59614, REV. 0

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

**SGRP-PRO-OP-53038** 

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

SGW-59614, REV. 0 CHPRC-02799, Rev. 1

# **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

B-39
Rev. 0, Chg. 3

# **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

B-40

I-74

Reference Use

Rev. 0, Chg. 3

# **SGRP-PRO-OP-53038**

Page 43 of 47

**Phosphate Solution Infiltration/Injection Operations** 

Published Date: 11/11/15

| Skid ID: | :    | FZ      |                                            |                                            |                                           |                  |                              | Operato | or(s):                |                         |                                               | -                                            |                                                                                                                                                                                                                                                 |
|----------|------|---------|--------------------------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------------------|---------|-----------------------|-------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |         |                                            | Flowrates                                  | s - Skid Pa<br>kid and filte              | rameters<br>er   |                              | Field   | Field Param           | ill be measure          | ation Solution                                | on ange                                      | Comments                                                                                                                                                                                                                                        |
|          |      | paramet | ters will be r                             | measured a                                 | and recorde                               | d hourly         |                              |         | every 4 hour          | S                       |                                               | skid sample, take 2 <sup>nd</sup> at 24-hour |                                                                                                                                                                                                                                                 |
| Date     | Hour | Time    | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(✓) | pH ce   | Temperature           | Conductivity<br>(µS/cm) | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L)                | mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter chang |
| 1/14/15  | 179  | 1800    | 4.7                                        | 3.1                                        | 71.3                                      | 79,1             | ~                            | X       | $\mathbf{\mathbf{X}}$ |                         | X                                             |                                              |                                                                                                                                                                                                                                                 |
| 1/14/15  | 180  | 1900    | 4.7                                        | 3.1                                        | 71.3                                      | 79.1             | 1                            | X       | X                     |                         | $\mathbf{X}$                                  | $\mathbf{X}$                                 |                                                                                                                                                                                                                                                 |
| "/14/15  | 181  | 2000    | 4.7                                        | 2.9                                        | 74.5                                      | 0,03             | /                            | X       | $\mathbf{X}$          |                         | X                                             | $\mathbf{X}$                                 |                                                                                                                                                                                                                                                 |
| Viulis   | (87  | 2100    | 4.7                                        | 3.0                                        | 73.2                                      | 80.9             | /                            | 7.07    | 14.1                  | 7389                    | 225                                           | 9.60                                         | 633                                                                                                                                                                                                                                             |

Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

Effective Date: 11/11/15





# Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

I-76

Reference Use

Rev. 0, Chg. 3 SGRP-PRO-OP-53038 Page 43 of 47 Phosphate Solution Infiltration/Injection Operations Published Date: 11/11/15 Effective Date: 11/11/15

| SKIG ID: | 42   |      | 1                                          |                                            |                                           |                  |                              | Operato  | or(s): Play           | ter                     |                                               |                               |                                                                                                                                                                                                                                                  |
|----------|------|------|--------------------------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------------------|----------|-----------------------|-------------------------|-----------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |      |                                            | Flowrates                                  | s - Skid Pa                               | rameters         |                              |          | Field Param           | ieters - Infiltra       | ation Soluti                                  | on                            | Comments                                                                                                                                                                                                                                         |
|          |      |      | paramet                                    | ters will be                               | measured                                  | and recorde      | d hourly                     | Field    | parameters w          | every 4 hour            | ed and recon<br>s                             | ded once                      | After flow rate is stable take 1 <sup>st</sup><br>skid sample, take 2 <sup>nd</sup> at 24-hour                                                                                                                                                   |
| Date     | Hour | Time | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm) | Filter<br>dPs<br>< 45<br>(✓) | рН       | Temperature<br>(°C)   | Conductivity<br>(µS/cm) | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L) | mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter change |
| 11/15/15 | 187  | 020  | 4.6                                        | 2,9                                        | 73.9                                      | 80.7             | 1                            | $\times$ | $\mathbf{\mathbf{X}}$ | $\mathbf{\mathbf{x}}$   |                                               |                               | 0013, 610.                                                                                                                                                                                                                                       |
| "/15/15  | 188  | 0300 | 4.8                                        | 3.1                                        | 73,4                                      | 80.6             | /                            | X        | $\mathbf{X}$          | $\mathbf{X}$            | $\mathbf{i}$                                  | $\overline{\mathbf{X}}$       |                                                                                                                                                                                                                                                  |
| 1/5/15   | 189  | 0400 | 4.6                                        | 2.9                                        | 72.9                                      | 80,7             | 1                            | X        | $\mathbf{X}$          | $\mathbf{X}$            | $\boxtimes$                                   | $\overline{\mathbf{X}}$       |                                                                                                                                                                                                                                                  |
| 1/15/15  | 190  | 0500 | 4.3                                        | 2.2                                        | 73.4                                      | 80.4             | $\checkmark$                 | 7.17     | 12.1                  | 6724                    | 206                                           | 9,29                          | BBBMXG                                                                                                                                                                                                                                           |

Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Reference Use

SGW-59614, REV. 0

CHPRC-02799, Rev. 1

-77

 Rev. 0, Chg. 3
 SGRP-PRO-OP-53038
 Page 43 of 47

 Phosphate Solution Infiltration/Injection Operations
 Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

I-78

**Reference Use** 

12

 Rev. 0, Chg. 3
 SGRP-PRO-OP-53038
 Page 43 of 47

 Phosphate Solution Infiltration/Injection Operations
 Published Date: 11/11/15
 Effective Date: 11/11/15



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

I-79

Reference Use

Rev. 0, Chg. 3 SGRP-PRO-OP-53038 Page 43 of 47 **Phosphate Solution Infiltration/Injection Operations** Published Date: 11/11/15 Effective Date: 11/11/15

| Skid ID: | 2    |      |                                            |                                             |                                           |                   |                              | Operato | or(s): +A(1         | TH AND                         | OR.                                           |                               |                                                                                                                                                                                                                                                               |
|----------|------|------|--------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------|------------------------------|---------|---------------------|--------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1    |      |                                            | Flowrates                                   | s - Skid Pa                               | rameters          |                              |         | Field Param         | eters - Infiltra               | ation Solution                                | on                            | Comments                                                                                                                                                                                                                                                      |
|          |      |      | paramet                                    | Si<br>ters will be r                        | kid and filte                             | er<br>and recorde | d hourly                     | Field   | parameters w        | ill be measure<br>every 4 hour | d and record                                  | ded once                      | After flow rate is stable take 1 <sup>st</sup> skid sample, take 2 <sup>nd</sup> at 24-hou                                                                                                                                                                    |
| Date     | Hour | Time | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FOL-N2-<br>(3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm)  | Filter<br>dPs<br>< 45<br>(✓) | рH      | Temperature<br>(°C) | Conductivity<br>(µS/cm)        | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L) | mark, and third/final at end of<br>infiltrations. Where a sample is<br>required, it is noted in this column<br>Note any other observations,<br>irregularities, problems in<br>Comments sections including<br>system interruptions, filter chang<br>outs, etc. |
| 1/15/15  | 199  | 1400 | 4.2                                        | 2.8                                         | 69.6                                      | 17.1              | V                            | X       | $\times$            | $\mathbf{X}$                   | $\mathbf{i}$                                  | $\mathbf{\mathbf{X}}$         |                                                                                                                                                                                                                                                               |
| "/15/15  | 200  | 1500 | 4.2                                        | 2.7                                         | 69.6                                      | 76.9              | V                            | X       | $\mathbf{X}$        | $\mathbf{X}$                   | $\mathbb{X}$                                  | $\mathbf{i}$                  |                                                                                                                                                                                                                                                               |
| 1/15/15  | 201  | 1600 | 4.4                                        | 2.8                                         | 69.1                                      | 77.1              | $\checkmark$                 | X       | $\times$            | $\mathbf{X}$                   | $\times$                                      | $\mathbf{X}$                  |                                                                                                                                                                                                                                                               |
| 15/15    | 202  | 1700 | 4.3                                        | 2.7                                         | 70.2                                      | 77.3              | V                            | 1.22    | 15.2                | 7583                           | 201                                           | 9.73                          | B33MX9                                                                                                                                                                                                                                                        |

\_

\* Sum of FQI-N2-4, 5, 6

I-80

Reference Use





#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

CHPRC-02799, Rev.

-8





#### Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet

\* Sum of FQI-N2-4, 5, 6

I-82

Reference Use

 Rev. 0, Chg. 3
 SGRP-PRO-OP-53038
 Page 43 of 47

 Phosphate Solution Infiltration/Injection Operations
 Page 43 of 47

 Published Date: 11/11/15
 Effective Date: 11/11/15



\* Sum of FQI-N2-4, 5, 6

Before each use, ensure this copy is the most current version.

Reference Use

SGW-59614, REV. 0

**-**83



Appendix C - (Cont.) Infiltration Skid Monitoring Data Sheet Skid ID: #2 Operator(s): RAmine Planten. ANDOR I FAHL Flowrates - Skid Parameters Field Parameters - Infiltration Solution Comments Skid and filter Field parameters will be measured and recorded once After flow rate is stable take 1st parameters will be measured and recorded hourly every 4 hours skid sample, take 2<sup>nd</sup> at 24-hour mark, and third/final at end of infiltrations. Where a sample is FQI-N2-FQI-N2-FQI-N2required, it is noted in this column. 2A or 3A or 1A or Filter Note any other observations, Oxidation -2B -3B -1B irregularities, problems in dPs Dissolved Reduction Comments sections including Chem 1 Chem 2 River \* Total < 45 Temperature Conductivity Potential Oxygen Date Hour system interruptions, filter change Time (gpm) (gpm) (gpm) (gpm)  $(\checkmark)$ DH (°C) (uS/cm)  $(\pm mV)$ (mg/L)outs, etc. 11/16/15 215 4.4 2.7 73.2 80.6 0600 B-50 0112 6760 11/14/15 216 4 2.9 73.0 80.4 0800 80,0 2.6 729 217 Ø  $(\mathcal{V}$ 1810 Ø () 16 17 D V V 15  $\mathcal{O}$ B33M/3 totals met. SKID#2 Shutdown Comments: ann per procedure.

\* Sum of FQI-N2-4, 5, 6

**-**84

Before each use, ensure this copy is the most current version.

Reference Use

Rev. 0, Chg. 3

SGRP-PRO-OP-53038

Page 41 of 47

# **Phosphate Solution Infiltration/Injection Operations**

Published Date: 11/11/15

Effective Date: 11/11/15

|          |                                                                                   |         | Tota                                       | lizer Rea                                  | dings                                     |                         |                              |                                                                             | Start of Inje       | ctions                  | Comments                                      |                                                                             |                                                                                                                 |                                                                                                      |
|----------|-----------------------------------------------------------------------------------|---------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------|------------------------------|-----------------------------------------------------------------------------|---------------------|-------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|          | River V                                                                           | Vater   |                                            | FQI-N2-1                                   | A or B                                    | )                       |                              |                                                                             |                     |                         |                                               |                                                                             |                                                                                                                 |                                                                                                      |
|          | Chem Injection#1 (Monosodium<br>Phosphate)<br>Chem Injection#2<br>(Pyrophosphate) |         |                                            | FQI-N2 Q or -2B                            |                                           |                         |                              | FQI-N2 (A) or -2B         5 30 0 4           FQI-N2-3A or -6B         33338 |                     |                         |                                               |                                                                             |                                                                                                                 |                                                                                                      |
|          |                                                                                   |         |                                            |                                            |                                           |                         | 333                          |                                                                             |                     |                         |                                               | 38                                                                          | During hourly recording, note any<br>observations, irregularities, and/or<br>problems such as evident downtime. |                                                                                                      |
|          | Overall                                                                           | Mixture | 0                                          |                                            | FQI-N2-4A or -4B                          |                         |                              |                                                                             |                     |                         | Q 92                                          | 14011                                                                       | totalizer maintenance/outage/re-set in                                                                          |                                                                                                      |
|          |                                                                                   |         |                                            |                                            | FQI-N2-4                                  |                         | 122. 3. 144                  |                                                                             |                     |                         | 2930                                          | 181                                                                         | Comments sections                                                                                               |                                                                                                      |
|          |                                                                                   |         |                                            |                                            | FQI-N2-5                                  | k e ant                 |                              |                                                                             |                     |                         | 298                                           | 244                                                                         |                                                                                                                 |                                                                                                      |
|          |                                                                                   |         |                                            |                                            | FQ1-N2-6                                  |                         |                              |                                                                             |                     |                         | 290                                           | 169                                                                         |                                                                                                                 |                                                                                                      |
|          | Flowrates - Skid Parameters                                                       |         |                                            |                                            |                                           |                         |                              |                                                                             | Field Para          | neters - Injec          |                                               |                                                                             |                                                                                                                 |                                                                                                      |
|          |                                                                                   |         | S                                          | Skid and                                   | d filter pa<br>and n                      | rameters v<br>ecorded h | will be me<br>ourly          | asured                                                                      | Fiel                | d parameters w          | ill be measure<br>every 4 hour                | ed and reco<br>'s                                                           | rded once                                                                                                       | After flow rate is stable take 1 <sup>st</sup> skid sample, take 2 <sup>nd</sup> at 4-hour mark, and |
| Date     | Hour                                                                              | Time    | FQI-N2-<br>2A or<br>-2B<br>Chem 1<br>(gpm) | FQI-N2-<br>3A or<br>-3B<br>Chem 2<br>(gpm) | FQI-N2-<br>1A or<br>-1B<br>River<br>(gpm) | * Total<br>(gpm)        | Filter<br>dPs<br>< 45<br>(√) | pН                                                                          | Temperature<br>(°C) | Conductivity<br>(µS/cm) | Oxidation<br>Reduction<br>Potential<br>(± mV) | Dissolved<br>Oxygen<br>(mg/L)                                               | third/final at end of injections (8 hr).<br>Where a sample is required, it is noted in<br>this column.          |                                                                                                      |
| 11/16/15 | Pre<br>Start                                                                      |         | X                                          |                                            |                                           |                         |                              |                                                                             |                     |                         |                                               |                                                                             | Columbia River Water Sample                                                                                     |                                                                                                      |
|          | 0                                                                                 |         |                                            |                                            |                                           |                         |                              |                                                                             |                     |                         |                                               |                                                                             | Flow Rate Stable – Take first skid sample                                                                       |                                                                                                      |
|          | 1                                                                                 |         |                                            |                                            |                                           |                         |                              | $\ge$                                                                       | $\searrow$          | $\geq$                  | $\geq$                                        | $>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                                                                                 |                                                                                                      |
|          | 2                                                                                 |         |                                            |                                            |                                           |                         |                              |                                                                             | $\sim$              | $\bigtriangledown$      | $\bigtriangledown$                            |                                                                             | 1                                                                                                               |                                                                                                      |

Appendix C - Infiltration Skid Monitoring Data Sheet

Comments: DOVERALL Wixter - note: Rosemont was inconsistant in its reading - ENd Rosemont Reading = 956011. FGI-NZ-18, ZA = 3 E reading = 881953. Sum of FQI-NZ-4, 56 = 883194. Totals listed pn R. Herman per DA. 11/16/15- ODFart

\* Sum of FQI-N2-4, 5, 6

B-51

-85

Before each use, ensure this copy is the most current version.

Reference Use

This page intentionally left blank.

Appendix C

HNF-N-737

This page intentionally left blank.

CHPRC-02799, Rev. 1



CHPRC-02799, Rev. 1

|                                                                                                                                                                                                                                     | K/LOGBOOK COVERSHE                                                                                                                                      | EET                                                                   |                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| SECTION I                                                                                                                                                                                                                           | Notebook/Logbook No.<br>HNF-N-737 1                                                                                                                     |                                                                       |                                                                                 |  |  |  |
| RECORD COPY<br>Not for Circulation                                                                                                                                                                                                  | Date of Issue Copy<br>08/27/2015 1<br>Title<br>300 AREA SEQUESTRATION                                                                                   |                                                                       |                                                                                 |  |  |  |
| Author                                                                                                                                                                                                                              | If continued from another no                                                                                                                            | otebook/                                                              |                                                                                 |  |  |  |
| This is a controlled notebook/logbook. The as<br>Notebooks and Logbooks, for instructions abo<br>logbook, When the book is completed or no k<br>Retention Schedule. Complete Section II of th<br>Management, G3-39. DO NOT DESTROY. | signed custodian is responsible fo<br>ut controlling, placing input, preser<br>onger needed, contact your Record<br>his form and return the notebook/lo | r this book. Se<br>ving, and retiri<br>is Managemen<br>gbook to Contr | ee MSC-PRO-10863<br>ing the notebook/<br>at Specialist for a<br>rolled Document |  |  |  |
| Responsible Custodian                                                                                                                                                                                                               | Hanford ID No.                                                                                                                                          | MSIN                                                                  | Date Assigned                                                                   |  |  |  |
| PRIC D BERTRAND                                                                                                                                                                                                                     | 3464477                                                                                                                                                 | R3-20                                                                 | 08/27/2015                                                                      |  |  |  |
| SECTION II Complete this<br>Document Ma                                                                                                                                                                                             | section before returning noteb<br>magement, G3-39                                                                                                       | ook/logbook                                                           | to Controlled                                                                   |  |  |  |
| SECTION II Complete this<br>Document Ma<br>Abstract (Give brief de                                                                                                                                                                  | section before returning noteb<br>nagement, G3-39<br>scription of contents)                                                                             | ook/logbook                                                           | to Controlled                                                                   |  |  |  |
| SECTION II Complete this<br>Document Ma<br>Abstract (Give brief de                                                                                                                                                                  | section before returning noteb<br>anagement, G3-39<br>scription of contents)                                                                            | ook/logbook                                                           | to Controlled                                                                   |  |  |  |
| SECTION II Complete this<br>Document Ma<br>Abstract (Give brief de<br>Period Covered: (Inclusive dat<br>Custodian's Name                                                                                                            | section before returning noteb<br>anagement, G3-39<br>scription of contents)<br>tes - Month/Day/Year)                                                   | ook/logbook                                                           | to Controlled                                                                   |  |  |  |
| SECTION II Complete this<br>Document Ma<br>Abstract (Give brief de<br>Period Covered: (Inclusive dat<br>Custodian's Name<br>CDD Name:                                                                                               | es - Month/Day/Year)                                                                                                                                    | an's Signature ar                                                     | to Controlled                                                                   |  |  |  |

10/27/2015 RARAZZ 0907 - Ortarted transfer of Monosedium Phosphate, to ANDE. Storage tunks Betrud 0937 - Complete & Transfer of Mono Solim Phosphete. Dup. 1117 - Started Arthro Sachum phosphete. to Storage tend 1140 - Completed Transfer & Million Sachum phosphete. 0955 - Started Transfer & Million phosphete to Churn tanks. - late andre-1515 filters OK on Skids, and also. Six puckers Ready to go. 1525 REVIEWED LOG BOOK. ERIC BERTRAND LAS 10/27/15 10/28/15 onsite at 0715. FNDUE 9005 0740 Started Monopodiuis Phosphate chansfer to Recurring RANNER tanks S/D down at 0825 due to nothing crystalog in site tukas Sature What down transfer. Call Superining, will remined on what happens Meret, Druies Pump was also prose up. Resturned to Two Rivers. 0841 Ryroghospate Dransfer Stanted to Receiving Cank. 0910 To Journ, Pyrighosphote transfers Completice tanks are full. 1120 Disimured a learfor TK # Monophoate. Contacted Supervision Rope off are and Hung Signs abound area. Regraphing on recovery 1430 Started dumping TP-4 tank to tanher, (Two Rivers)-Sent buch. isolated all values an tanks. 1520 acus to ann shas a barrier at the speedbump area needs to be clear by OPS superior - for entry - Plune # is on Sign at Doriek. Completed figure Represent flow Controller; 1530 official for the Durg. 1535 Procedure SGRP-PRO-OP-52729 "Spill or leak response for pump and treat activities" was used to hodde spill/leak on the #Y monosponen physphere Tomac. All proper notifications were made. Log book revoied. ERIC BERTRAND Recht 10/08/15 10/29/15 0800- ON SITE AND FUELER ON SHE TO REFUEL RAMMER LIGHT PLANTS AND GENERATORS BOTTOND 0932- ELECTRICIAN ON SITE TO INSPECT SAMPLE VAN 1047 STARTED TRANSFER OF MONDSUDIUM PHOSPHATE TO 2 RUCHS TANKER. Lit Enc BERTHANS teny-1118 TRANSPER COMPLETED (TATURE FULL). APPEND. 4,000 guillens or MONOSODIUM PHOSPHATE REMAINING IN TANKS. Con BERTRAND 1520 ALL MONOSOD. UN PHOSPHATE FROM TANKS 1-6 AND ASSOCATED HISE HAVE BEEN DEANING BACK TO 2 LIVERS TANTER AND REMOVED FROM SITE, AREA BARRICADED AROUND TANKS (MENOSODIAN IHOSPHATE 2, Y 16) TO PREVENT ACCESS TO SILL AREA AT THE BOTTOM OF TANK Y. CLEAN UP of ALLA WILL OCCUR AT A CATER DATE. ERT POWER SUPPLY REPLACED AND BACK IN OPERATION. LOC DOOK HEVIEWED ERIC BERTRAD

CHPRC-02799, Rev. 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cont                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/3/                        |
| 11/2/15<br>Camerey 0800 - On Setu-<br>Gwood 0830 - Rope, Sugars Cones blown down, Resetup area- all<br>Buttand is good.<br>1310-Removed Rope - Signs from Tank farm area.<br>1310-Removed Rope - Signs from Tank farm area.<br>1310-Removed Rope - Signs from Tank farm area.<br>1310-Removed Rope - Signs from Tank farm area.                                                                                                                                           | II/4/<br>Ram<br>PLAM<br>Bert |
| Der Work package Gw-15-06882/w.<br>1349 Dustelling aut-g Service tag on TK# 4 inlet Vielere<br>1349 Unstelling aut-g Service tag on TK# 4 inlet Vielere<br>1349 Unstelling aut-g Service tag on TK# 4 inlet Vielere<br>1349 Unstelling aut-g Service tag on TK# 4 inlet Vielere<br>1349 Unstelling aut-g Service tag on TK# 4 inlet Vielere<br>1520 Completell fills + ORS Prain piping + Skid #1 + SKID =<br>1520 Completell fills + ORS Prain piping + Skid #1 + SKID = | IIISI<br>KAR<br>Muer<br>Guti |
| 1/3/2015 OFFICE<br>Budrand Odds ON site to receive shipments of Monosoddivin phospete<br>Budrand Odds ON site to receive shipments of Monosoddivin phospete<br>Remnez OTSO Completed receipt of Monosodium phosphote battely #<br>Ander 050 Completed receipt of Monosodium phosphote battely #<br>Ander 050 Completed receipt of Monosodium phosphote battely #                                                                                                          | 11-1<br>RA                   |
| (rund 95761 per Gis-15-010940, Temperent caundations, do<br>upp relaight boot, Noted precipitets caundations, do<br>the two stists sight hobes whiled for fevel nontooling,<br>tanks 1 a. 2 6. Operches merages intomed of<br>precipited as issue<br>(100 operchas, insurearing, BTR discussed precipited at<br>100 operchas, insurearing, BTR discussed precipited at<br>issue while weight give the determination fiss been                                             | Best                         |
| Male remove the delicited chemicas fund the used<br>with a wardy made back. (12-13-070940 will be used<br>115 MNN pelessed to regachish and companyica ba) with<br>115 MNN pelessed to regachish and complete (NNL of ste.<br>GYIGUX per GU-C GYMW, Work Complete (NNL of ste.<br>GYIGUX per GU-C GYMW, Work Complete (NNL of ste.<br>1300 AN MOMOSODIUM PHOSPHATE TANKS ARE EMPRED AND CHEMICAL<br>1300 AN MOMOSODIUM PHOSPHATE TANKS ARE EMPRED                         |                              |
| 15 BENG TRANSPORTED WILL TO DISCHARENT HEADER HANS LEPTIMERE<br>FROM MONTOSODING TRANSES TO DISCHARENT HEADER HANS LEPTIMERE<br>IN THUM. CALLED RICK ONDHAM (GEO) AND RECENED APPANAR<br>TO DISCHARESE TO WHILTERTION FIGLD, WILL MALLAGE GW-15.06882/AU<br>HOWNE A PEN AD INK EMANGE PLATAMED TO PERFORM ORDINING<br>HOWNE A PEN AD INK EMANGE PLATAMED TO PERFORM ORDINING                                                                                              |                              |
| 1320 PLANNER, FWS PIPE FITTER AND ELECTRICAR FRANKING DEADDRACH.<br>FOR GW-15-06878/W 300 APCA, WS SELOS P.P.WS, AMB ELECTRICAL DEADDRACH.<br>1500 E: HERS are drawing Chemical lines to Skids from the tank form<br>Ner 15-068821 Winterzation Puchage. Was Competed.                                                                                                                                                                                                    | a.                           |

CHPRC-02799, Rev. 1

| 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
| 11/3/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1630 Offsite.                                                                  |
| 11/4/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0708 ON SHE TO WALK DOWN PROCEDURE FOR THISECTION                              |
| RAMIRZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 DD.E WALK DOWN AND INSPECTION                                             |
| PLAtter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1230 - SAMPLEYS ON SITE WALKING DOWAL TALLETAIL                                |
| BERTHAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SYSTEM AND HAFT SURVEYED SAMPLE TRUCK                                          |
| 1 and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1630- off site                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1635 - REVIEWED WIG DOOK . ERIC BEETLAND                                       |
| 11/5/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Christer 552                                                                   |
| KAMINEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0530 - Onute                                                                   |
| Amoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1030 - WRupping Cheminal Hoses in Blankets across electric Read to             |
| Butrand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17551 Recured First Earlies Mandat # 95799 June 110°-115°                      |
| and the second s | 1818 Transer Completies monophosotet                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1909 and Funter Started Marley + 95794 June 110° Mondester                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1939 Transfer Completed                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1950 Drain Kevel tube into bucket, and ear appreciat.                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are in infellection filet Juli                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 OFF Site A. C. ANDR / Alin & andr                                          |
| 11-6-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0530 prisite to pertom sistem standy of inection in 18-53038                   |
| RAMIREZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A.E. Avace / aluin & ander                                                     |
| ANDUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0704 Late Endry 1939 11/6/2015, Received monosodium phoseducte                 |
| Berland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIRST stylment transfer conflete @ 6818 delience transproper                   |
| sheely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~1100F to 1150F, second delivery drawsler complete as 1933                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chemical temperature 110°F. Manufast Humbers and 95739                         |
| The second secon | ad 95794                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OBIS Started skiel un SGRP-Pro-ol-53038                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0700 Skill is now popercome, in order to get river nume to operate             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at a stable flow rate on river pump had to dade over                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pump 12 hand per 4.8.13, chemical Nmes are preserves in                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avis Total flow insomment Eq. NI-4B flow inducador attens.                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to be unreliable but river and individual wells indications operation          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Normally                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0940 Total well flow rate as read on individual wells = 369,1, chemical prince |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plus river water figu rate = 306.8                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1006 Took an information set of chamical readings ph = 6.97                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | terry = 14.76C, Conduct 10,77 NG, ORP 270, DO 100                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/10 Jook Information Samples PH- 695, Junp 15.6 C, Conducty 10.43             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORP-126, DO. 10.09 A.E ANDOR, Min & ander                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1228 Received Monophophite Shippennt Start OFF loading Manfest 95804           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Demperture 105°.                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1057 Completed Transfer of Monophophate to tank farm from Jankez.              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1442 Started Newsfer on moonphosphete to tank form - Manyest #95808            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                                                            |
| No. of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |

| Ant '    |                                                                       |
|----------|-----------------------------------------------------------------------|
| 111015   | 1442- June 105°                                                       |
| Remercia | 1519 - Completed Transfer of Mos sphere shat. Ja 1. to Low and        |
| ANDOR #  | TSRE SERP-PRO-OR- 55038                                               |
| Bertrand | 1615 Electricano Setus alistrichlaulite or version and                |
|          | of Chewlines Serviting Setus Proble Miner Tox in                      |
| 1        | electric Blankets Free Iruch nothing to De fiel probale Herenter.     |
| 1        | 1615 Completed all Sumpling for shy action well our process           |
|          | Samplie Aluse Samplira were here dain Sampling                        |
|          | 1620 HEIS Sample #'s used for Round 1 of anection                     |
|          | B32L20, B32L19, Samples were PH, Semp, Conductive ORD,                |
|          | Do.                                                                   |
|          | 1630 Generator left running to Support heat blandet on Skiel#1        |
|          | 1644 Skid # 1° S/D 8 hrs Run Time                                     |
|          | 1703 Ausking, Hose Change, and Skid Valving Complete                  |
|          | 1704 Hoses to Wills 95, 96, 97 Hooked up.                             |
|          | 1720 S/D Compressor, for Papers                                       |
|          | 1725 Officite, - A.E. ANDOR/ Ulun G. Mude                             |
|          | 1730 REVIEWED LOG BOOK. ERIC BERTRAND IN 11/6/15                      |
| 11-2-15  | 0530 Moste Ute Under A.E. Avor                                        |
| 11-7-13  | Oto Harted Intultoration on Skid #2. System running                   |
| Flayter  | realler thessaile at Slogpon, Discharge thessure 34 PS1               |
| FARD-    | Completed Intial Sampling of Rever Water + Steel per                  |
| 10-0     | Man n. Pin Part" A Man Hale D : 11 H.                                 |
| 1        | and with the turner Those Discharge Value Drawn Value #1              |
|          | and Supplies here drive them Supplies to accurat                      |
|          | 1200 Require Ruppopulate 85- Mai left 95812 Anuche Shall              |
|          | to purpotante 1+2 per BBRP-PRO- OP- 53038                             |
|          | 1245 Trunker Completed of Purpoposonate.                              |
|          | 1300 Received Monorhysoluter, 104" Munlest 95,93 Janusles Storded     |
|          | 1330 Transfer of 11 month sharper Completed PUSERP PRAJE 53038        |
|          | 1535 Discontrad amate hin hale leak in Red Deschape Hose hom          |
|          | Skill to Inplitution full, I this requiring with Work package         |
|          | GW-14-29 / Y. Litter newis package. Shilldurg. Skid #2 to             |
| -        | make repairs                                                          |
|          | 1610 Hose repused Section Deplaced + Restorted Plant Shid # X2        |
|          | 1020 Ricend Danker of Monophosphate Manjest 95815, Jonep 100          |
|          | transferrated to tank factor.                                         |
|          | 1700 Transfer of MonorWeephate (Implited. #3 Shipment for fixing.     |
|          | Pri SGRP- PRO-OP-53038                                                |
| -        | 133 Levine Condro Englook oner to Roy Karwory + Cindy hilk /But lands |
| -        |                                                                       |

#### CHPRC-02799, Rev. 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
| 11-7-15 193<br>A.Fain 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Assumed Logbook duties from B. Ander and Kevin Playter,                    |
| REPUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NEST and stopped at 1737 Man 45 95821 Two purture 110                      |
| Pertraid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thansfer of monosodium Phosphate completed per 56RP-PRD-0P-53038.          |
| 11-8-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,200. At this tind readings will now be taken at FQI-NZ-2A, due to a FIOW |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rate issue between the Flow Meter on SKID and the Control panel display.   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0H15 Walkdown of System and Arta, chard auter from Blanket Heaters. no     |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | issues found.                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0532 Murned Ligbook over to Kevin Player, C. faoth. K Kanceroz             |
| 18/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0532 ASSUMED LOGBOOK DUTIES FROM C.FAITH K. PLAITER 1 BUT                  |
| FORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0750 SAMPERS ON SITE FOR ROUT, NE PROSECT SAMPLES                          |
| PLAYTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OB34 FUEL TRUCKS ON SITE TO FILL UP GENERATORS                             |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1014 FUEL TRUCK ON SITE TO FILL MY GENERATORS                              |
| HOBLIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1730 TURNED LOCISCOR OVER TO DANDER RITERVER FOR PEARS TOTIS               |
| ANITOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 219 UPN ENIED OF PEDUDUS AMULTINEVITY READINGS IT WAS DRAWLERED            |
| BILLINASLEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THAT AN ERROR WAS MADE EPODICING MIDROSIEMENS AS                           |
| GRUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MULISTEMENSON THE ROUNDS DATA SHEETS THE ERRORS WHE                        |
| and the second s | COFFEETED AND EMPHASIS WILL BE PLACED ON RECORDING READINGS                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IN CAPPET UNITS                                                            |
| · ulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2330 Jurn Contral Room " Logbook oner takgy Ramary / Cindy Faith -         |
| 11/0/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2332 Assumed Logbook duties, Fath Kranchiz                                 |
| Danie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10000 Attempted to Start up SKIDET, AFD-NI-3 SHOWPA FAULT.                 |
| -K-ramine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTO THOUGH STROTT OF FLAT ON F-NI-S ATURTED.                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manually PAUL-1 14 hand P-NI-2 3 in futo                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0845 Samples appined to Gample for project.                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 095 Recieved Purophosphate, 91°F Manchest 95822.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1145 Received monosodium phosphate 114°F manifest 95829.                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400 Received monosodium phosphate 114° F smanifest 95831.                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1622 Turned Logbook wer to J. Billingsley. Onfaction 1/9/15                |
| "/9/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1622 Assured Loopook duties Apillingsley                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1627 completed injections to walls 399-17-92 the 97                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Injected 13,883 gallors mono sodium phosphate,                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8, 1/2 gallons pyro phasphate.                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | skid I tushed, shutdown, isolated and                                      |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1113 Turned loopant area to 10,11 Wie. 03,000 's a                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/9/15 March about to white white y istances                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25/4 recieved shiftfurnover and accepted duties of FF.5 Us sequestration   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEO. Whe Wire Walliese Continued on Page le Upull) 7                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |

CHPRC-02799, Rev. 1

11

| And Come 85 |                                                                        |
|-------------|------------------------------------------------------------------------|
| 11-10-15    | DOID Performed hour 65 rounds Wall                                     |
| 1. 7.50     | 0105 Performed hour 66 rounds aluces                                   |
| But ad      | phos Performed hour 67 Gunds While in att 022440 11 /1                 |
| Verman      | 0300 Performed hour 68 rounds and feild readings, HED # DSS ATS alment |
|             | 2400 Performed hour 69 rounds apple                                    |
|             | 0500 Reported hour TO rounds Plus field readings Warley                |
|             | OSSS REVIEWED LAG TOOK. ERIC BERTHAND DIA 40/P P                       |
| Illalis     | 15 Lite Entry becaused & Reven Logbook Belt Order / Kaybarry           |
| EARD        | 0800 S/D Skid #2 to Repair outlet Red house put w/o                    |
| RAMEREZ     | Gw-15-02951/ Julis/ GW/14-0029/4 60-11 11114                           |
| ANDOR       | 0800 - Walking down job for fixing typo hump on shed for               |
| 1 10000     | Qu w/n/-0029/4.                                                        |
|             | 0830 Started Shiel 2, after repairs mood a red alachage                |
| 1           | heres to inputration lince                                             |
|             | 1225 Received Monophyphote Shappoint                                   |
|             | 1230 Stueled Monophusphite Supment to Case farm. Manged                |
|             | # 95837. Jenp- 108°                                                    |
|             | 1300 monophosphate Shipment Completed.                                 |
|             | 1000 Entrance Barriende has been Resured per management request        |
|             | 1930 Late Entry Started pycophosphate + Canster to Jane furn manyou    |
|             | 95843 Jump. 77°                                                        |
|             | 1600 - Trunder Complital Pyrophosphate,                                |
|             | 1755 Keepa Sys on 6 Pachers Dr's 20                                    |
|             | \$305 Jurn Logbook over to Kenn Fatterson / Julin O. under -           |
|             | 2304 Accepted logbook & Duties of EF-5 Unminum sequerman               |
|             | Project. A. Patterson . Ale Olice and                                  |
| lilulis     | 0100 made adjustment to FQ1-N2-30 INCREMENT TO THE piece               |
| Pattersm    | a operational supervisor.                                              |
|             | ADDE During FIELD walk down a clear liquin was identified              |
|             | Running power the side of pypo-phosphal Tome 1, 013                    |
|             | Notifued. Due do high winds.                                           |
| -           | 0325 Attempted to capture some flowing liquid to perturn in ask        |
| 4           | test. No For they liquid coming from top of the and                    |
|             | to Preturn Ph Jest.                                                    |
|             | 0512 PATTERSON Relieved by RIRAMEREE PROVINCE / WIGH AUTO              |
| ululis      | 0517 ASSUMEN CONTROL Of LOG BOOK REPAIRED                              |
| RAMING      | 12 OUO - Chunged Sur place on infutering of the Phaneses               |
| ANDOR       | - 1,2,3 banks to 4,56, Santo, 1,2,5 pare relation of the will          |
| Ford        | 0812 Sampling here to do standards on nogen to find when               |
|             | be a daily foutine She alight D. A. Wild-MAZGIN TO                     |
| -           | 0900 Maintime Stated With passage up 1 00-11                           |
| 1000        |                                                                        |

Cent 11-11-15 replace Porophosphate Pump + Drains of System RHAWIT 1030 Completed replacing Ryrophosphate Runp. Bume test for Notation ANDOR of purp OK, Rump will be retested for reak tested. per W/4-0029/V FORD on Shid #1 BID S/D Skid #2 for maintence activity flush System with Nines water isolated Chemical Values. maintener will pafam Per W/D 15-029933/Y. Replacing Infeltration Regulators allo to hose Regulators higher PSI 20 to give batter flew through infettration lines. 1400 Fitters Complete Regulators installation per 15-029933/V 1410 Started skid \$ 2"Back in operation. 20ps1-Regulations 1455 Skid # 2 Stabilize. New Ratio - River Water 78-80-4.7 MONO, 3.0 PYRO. 1440 Late Entry Janher with MMO, deliveral + Storted; Maryest 95854 Jenep- 108° 1515 Completed Throw transfer to Tank farm. 1630 Jurned Edogbook Do Your Playeter- A. E ANDOR Alluin & andr "/11/15 1630 RECEIVED LOGBOOK DUTIES FROM A.E. ANDOR FOR SWINC PLAYTER SHIPT KIPLATTER THE Clat 2310 TUKNED LOCBOOK OVER TO & FAITH K. PURYTER The Charter "11/15 Faith 2312 Assumed Logbook from K Playter. " Julif15 11/12/15 BEUIENTO LOG BOOK. FAITH 0515 ANONOSODIUM PUMPING 4.6-4.7 gpm AND PTROPHOSPHATE PUMPING AT 3.0-3.1 gpm AND RIVER AMP RUNNING AT 77 gpm. BERTHAND 11/12/15 0715 - ERT Buck up Running / Windows was explaining Days Battelle here Complete. all Running. Commy 1010 Started fyrophosphate recept at FOD 935 and ended at 1008. Manifest 03857 84"F arelis 1235 State 8 stry - Changed filters out on Both Stids " Six Pachers nich Forn from the Rules! 1235 Late Entry- Desimed Loybook at 0600 A.E. ANDOR Allin Indes. 1330 Received Ry 20 phosheplate # 45868 7,502 GALLONS, 84" 1400 Stapped Transper- Sent Back around 2,000 gallons due tanks are full. 1430 Recaud Monophusphate Munifest # 95869 110° F. pumping 1500 S/O Transfer to Tayah Parmi Domething Monophuphate Complete. 1610 Jurn Ontrof Robinson / Logbook Oxer to Jun Billingsly Bert andez-TRIS 1610 Accepted Log book duties & Billingsley gulling Swigs No further entries the page

CHPRC-02799, Rev. 1

Cant Stonpg 7 1900 Field readings of insiltration solution 112/15 Billingsh Taken 2 2100 Field readings of infiltration Solution Ford Bestrand taken. Billingelen 2317 Turn over Logbook to B Andor I 2317 Assumed Control Room duties from Jan Billingty A.E. ANDOR Alin & Ande Settingo 0530 Suen Logbook one to Roy Ramining + Revin Playter Bort leader Bertrand A.E. ANDOR, Undo) 0540 LOG BOOK PEVIENES. ERIC BEETRAND 0540 Assumed control of Log Book RRAMENEZ 11/13/15 0734 - Sampler on site to switch out my Row PLAyter CSED - RECEIVED 321 GAUGHE OF PROPHORINGE ALONG OF BULANCE OF RAMITEZ SIMULANT FROM 11/12/15 DAYSILIFT. TOUP: 84 F. REDENED 3,512 CRUME EALONS OF MONOSCOULUL PRIOSPHATE, TENUP: 00"F. (HEALIDAL BETEIPT (DIMPLETED AT OTOS 140 - RECEIVED 6435 GALLONS OF MONDSODIUM PHOSPHPTE, TEMP 108°F Chemical RECETT Complete At 1200 pm 1430 RECENED U, UZZ CALLONG OF MONOSCIPIUM PROFILATE. TEMP 82"F. CHEMICAL RECEIPT CONVENENCE AT 455 1740 - Rolmanist LOB BOOK TO ERIC BERTRAND R REINING 1820 Assumed logbook duties, Charthe Colar AFaith 1925 Finished a walkdown of workarea, chicking for laks puprighting stantions, no new backs ound. Tubined hogbook over to R. Reminey. ObPaiter 0535 - ASSUMED CONTROL OF LOC BOOK RRAMITEZ 11/14/15 0540 - VALDED IN FILTORS 1, 2 AND 3 AND VALVED OUT \$5 AND 6 BILLINGSLY ON SIL PACK RAMIVEL 0800- RECEIVED 6,479 GALLONS OF MONDSODIUM Phosphate Bosin COMPLETED UNLOODING AT 0826, TEMP 112°F 0850 RECEIVED 7,218 GALLONS OF PYRO Phos Pate. TEMP 84"F 0915 COMPLETED UN LOADING OF CHEMICAL 1055 - RECEIVED 4,461 GALLONS OF MONDSODIUM PHOSPHATE TEMP 102.F. 1125 - COMPLETED UNLOADING OF Chemicals 1705 Revers tochook & ANOSHUN. Ra Dom/ C OProv Sach! 1730 TURNED DUEN LOG BOOK TO ERIC BONTRAND RRAMING 1730 ASSUMED LOGBOOK DUTIES, SKID # 2 AT 78 GOM AND CHEMICALS 1/14/15 AT 4.7 FOR CHEMI AND 3.1 FOR CHEM 2 K. PLAYJER I Phyto PLAYTER 0500 CHANGED CHEMICAL RATIOS 0530 TURNED LOEBCOK OVER TO BANDOR K. PLAYTER K- Phile "115/15 0530 Reaved Lay book + locumed + Remin A.E. ANON / Illucata

|                       | 9                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Illelie               |                                                                                                                       |
| 1115/15               | Aur diad to the second second                                                                                         |
| A. Under              | 0615 - adjust Chino pumpa (Pyro) + (Mono) also put 4,5,6, fetters                                                     |
| Carry Facts           | back on line Chineal pumps adjusted to fullers open to allowing                                                       |
| Low Toll              | more kines water flow.                                                                                                |
| Days.                 | 1730 Damplers brought Myron L. Dample meters<br>1140 Fitters here to Replace filters on Skid # 2 (River) Side filters |
|                       | Der W/0 15-04754 V. all Cumetars are on-line (6)                                                                      |
| 1                     | 1315 Received 6054 gallons of monosodium Phosphate. Thansper                                                          |
|                       | Started at 1220 and ended at 1305. Manpist Jumper 95843, Temp                                                         |
|                       | 118°F.                                                                                                                |
| -                     | 1400 Jook Leads on Rysophopphate, Monsphayhate Byes 11' 5226                                                          |
|                       | AND, MIDIO 15' LOTA,                                                                                                  |
| 11/1                  | 1750 Thim Rosvow all to yen Billingalip/ Ourt ander                                                                   |
| 115/15                | 1133 Accepter bogbook from D Andor of Bullingen                                                                       |
| Buines                | 1106 corpleted tilter stid & data                                                                                     |
| partipo               | monitoring for sloing shift, 201                                                                                      |
| W.J.                  | Ma Iwn babook over to K Mayter I Billing                                                                              |
| 115/15                | HILE ACCEPTED LOGBOOK FROM J. BILLINGLEY K.PLATTER TERT                                                               |
| PLATTER               | 2316 SND 2 15 ON LINE AND RUNNING ABOUT BO GIM CHEMICAL                                                               |
| -                     | #1 15 4.4 GPM CHEMICAL #2 15 2.7 GPM                                                                                  |
| -                     | OSYS TURNED LOGBOOK OVER TO B. ANDOR K.PLANTER The Refer                                                              |
| A.C. L.               | 0545 Recurd Logbook duties forom & bound from K. Playter / But linder                                                 |
| Causen                | 0005 Started valve line up of skid 1 for Injection per procedure                                                      |
| 1/10/15               | SGIRP-PRU-OV-53038, Filters 4, 5, Ele art open for use on                                                             |
| Karmilez              | Stid 1.                                                                                                               |
| ANDOR                 | DE08 Late Entry Receved logbook auties, CDFacth 7.15                                                                  |
| FORD                  | 0810 Started Shut down of Skid 2 per procedure SGRP. PRO. UP. 53038.                                                  |
|                       | langet totals for Monosodium Phosphate: 52940 and Totals                                                              |
|                       | for Myrophosphate: 33,335 were headened.                                                                              |
| -                     | The infiltration header was flushed and drained.                                                                      |
|                       | 10815. The chemical lines need to be flushed and drained.                                                             |
| 1                     | 0930- Expected SKID#1 and commenced injections with Well's"                                                           |
|                       | 399-1-95, 96, 97, 89, 90 and 91. Retest completed satisfactorily                                                      |
|                       | for new Puvophospiate pump per GW-15-02931/Y.                                                                         |
| 1                     | 1855 Late Entry for 1013-Startid Recieving Purophosphate. Thansfer                                                    |
|                       | evand at 1045. Total recurst 7280 gallons. Manufist 9 5894. 70.F.                                                     |
|                       | 1215 - Increased total flow to approximately 0350 gpm.                                                                |
|                       | Placed Mono Jump "IN HAND".                                                                                           |
| and the second second | 1310 Started Recupt of Mono sodium phosphate manufest                                                                 |
|                       | 15 95908 110°F 4523 adelons, Chumial real of noniplated at 1330                                                       |
| 11/1                  | 1331355 Valved out 399-1-95 due to proken airling.                                                                    |
| 1                     | 1413-Startid hucup + of Moniportium Phosubate, Mainfest 95902 1010°F                                                  |
| 1                     | sen answered berget unwhited                                                                                          |
| Balance               | 1200 Diamand I acoupt Bolter                                                                                          |

CHPRC-02799, Rev. 1

| Cont'd Gumpan | 1                                                              |
|---------------|----------------------------------------------------------------|
| 1/10/15       | 1435 Will 399-1-95 repaired per GW-15-01743/G and              |
| FAITH         | placed back online.                                            |
| RAMIREZ       | 1621 - Logbook is turned over to B. Andor. (Fastin "/10/15     |
| ANDOR         | 1628 Loppoor assumed a.E. ander A.E. ANOOR                     |
| FORD          | 1600 Started Mono off-loading Manfest # 95910 Jenep, 1057      |
|               | 1700 Completed mono Jeanfre Tant Farm.                         |
|               | 1700 #3 Injection amplitud on Wells, Per. DERP-TRO-OF 53038    |
|               | 1855 Startod 3 Kil # 1 #4                                      |
| 11/10/15 1805 | Late Entry Started Pyro tanker to Sunk Jurm "95914 66 TEmp     |
| ANDOR         | 1840 Late Entry Paysophopete Trensfer Complete.                |
| Danies        | 3310 Lurned Logforth over to Cindy taith Level linder Die Mook |
| Berthand      | 2315 assumed logbook duties, CFautin                           |
| Serings /1/15 | 0330 Completed Injection Round # 330 wells Dust about pu       |
| CFaith        | 59 RP - PR6-DP-53038.                                          |
| SRust         | 6345 Started Round #5 of Injections to well's pu Jakr-Tho-     |
|               | or. 53038. Performed walkerowns of comes to access             |
|               | all readings are being taken from the Kosemond's as the        |
| 11/11/15      | Control panil readings are not the same,                       |
| DAYS          | \$553 - Turned logbook our to K. naming. aptacent prin         |
| RAMINEZ       | US53 - ASSUMED CONTROL OF LOG BOOK KIGPMUNZ                    |
| POPE          | 0825 - RECEIVED PYRO Phosphate 6,704 GALI AT 75 F              |
|               | 0850 completes UNLOADING Pypothosthate                         |
|               | 0357 RECEIVED GULY GAL. OF MOND SODIUM PROSMATO AT ILE F       |
|               | 0915 completed UNLOADING OF Chemicals AND ILECTIVED NEW        |
| -             | MULLON INSTRUMENT                                              |
| illa          | Not 1150- received 4500 cars of typernospinie 101              |
|               | 1149 - Completes UN COADING METROSINATO                        |
|               | A THE CALLENTALS ON SITE TO CALINGE OF THE                     |
|               | GENGRATOR FOR SEIN 2                                           |
| -             | 1225 - Received mano source from the 2, 10 cm - 1 1 - 1        |
|               | 1423 - Completed Disconting of Cherticity willows              |
| -             | OFF SHE I DOMIN 11-18-15                                       |
| mustic        | ALT - REPORTED LOCK AND TAG BOUNDERS AFTER                     |
| Deus          | Assuming CONTROL OF LOG BOOK R RAMMAN                          |
| FAITH         | MOD Startid SKID I Injection ounation. First                   |
| RAMINO        | wsakeAP/25 to be taken at 0800.                                |
| W.            | 10755 Walkdownof work site dory, Stantions uplighter           |
|               | for Lock & Tag boundary. Other Stantions and voped areas       |
| 1             | biainted .                                                     |
| 080           | 5 Well 399-1-91 has some subsidence noted around               |
| 0.00          | the wells                                                      |
| 1. B          | 10 ~ 00000                                                     |

CHPRC-02799, Rev. 1

| 11/12/15   | 1242. Einal Twention tarrets for Rusphosphete and monophosphate |
|------------|-----------------------------------------------------------------|
| Katth      | wise privered Death chemicals had ~ 500 gallono left, Running   |
| Barner.    | Entere the invest remainder of mone and pure anto the ground    |
| Tant info  | to emply chemical storad Chanks.                                |
| 1          | 345 Nonepleted empting chemical tanks and lines to extent       |
|            | Dossilal, Flushed and drained skid pitters and 4 packane        |
|            | opened skidt 1 River Drain Valve -                              |
|            | 1440 - ALL Chumical Tank valves have been isolated.             |
|            | 1515 - Last Entry. ODFarin                                      |
| 11/22/15   | ORD Fight flant for ERT S/O - ERT ALL DOWN'S PNNL W.II          |
| M1. 21.2   | be started it up!                                               |
|            | 2946 United Rentals here fixed light pant, for ERT, apparently  |
| ander      | had ner and puel so fuel line full of air, Light Plant on time  |
| Barthaul   | and good.                                                       |
| (          | 3947 Changed aut Sample Vary It has been picked up and          |
|            | removed from projects                                           |
|            | 1000 Fitters are working on Wrapping hose up and pulling them   |
|            | in Wooden themspart Borber                                      |
| -          | 1001 Electricium removed leghts atop Deides 14 2 per            |
| -          | W/O GW-15-06878/W.                                              |
| -          | 1030 Electrucians Decure ground Capter at leger Munte, and      |
| -          | Summaters by Shids fut come around ends, par alo consta         |
| -          | 78/W.                                                           |
|            | 1310 Carpenters ranoual Plywood on Stads and 2                  |
| -          | flywood laying on graving                                       |
| 10/0       | 1315 Filling Continued to Koll north up.                        |
| (219       | 0830 Onsite, Sit up Granish's conce Sugn around here            |
| Al lindes  | denell as ween suy baundress agres and areas in house           |
| Days       | 1500 operators filling, and have still path Shield #1+2         |
| -          | and site NE to 2734) low dread yard.                            |
| -          | of alle that to one approved from                               |
| 12/10 "    | 13 + at 0x30 resolublished ropes + sens around                  |
| huder      | boundaries and lok on you handries trum wind blowing down       |
| Unice      | Sanglera are love. Jampling wells.                              |
|            | 0845 Put enothe Signs on all Chemail tanks 1- 6 with            |
|            | lextra labels in lines, Shack                                   |
| 12/10/20.5 | 1315 Ent syster had stopped communicating, GW-15-672740M        |
| sheely     | released. A per and inte was incorpored, topt prijoz,           |
| 0          | resed EAT per step 5.2.1. Toole some fictures. Our site " their |
|            |                                                                 |

This page intentionally left blank.

# Appendix J

# Data Validation Report

This page intentionally left blank.

# J Data Validation Report

Data validation was performed for analytical data collected to support implementation of the Stage A enhanced attenuation remedy. This appendix provides the data validation report: VSR16-003, *Project 300FF5 U SEQUES, CERC15.* 

This page intentionally left blank.



ے ت

A-6004-835 (REV 1)

| CHPRC - REVIEW COMMENT RECORD (RCR)                   |                                                                                                                                                                            |                                                   |                                    |              | 1. Date 03/1               | 6/2016                                           | 2. Revie           | 2. Review No.                                |            |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|--------------|----------------------------|--------------------------------------------------|--------------------|----------------------------------------------|------------|--|
|                                                       |                                                                                                                                                                            |                                                   |                                    |              | 3. Project No.             |                                                  |                    | Page 1 of 1                                  |            |  |
| 5. Document Number(s)/Title(s) 6. Progra              |                                                                                                                                                                            |                                                   | ogram/Project/Building Number      |              | 7. Reviewer                | 7. Reviewer 8. Organization/Gr                   |                    | roup 9. Location/Phone                       |            |  |
| VSR1                                                  | 6-003                                                                                                                                                                      |                                                   |                                    | Jadie Kaas   | SGRP QA MO2216             |                                                  | / 376-             |                                              |            |  |
| 17. Comment Submittal Approval                        |                                                                                                                                                                            | 10. Agreement With Indicated Comment Disposition( |                                    |              | n(s)                       | 11. CLOSED                                       |                    |                                              |            |  |
| Jodie Kous                                            |                                                                                                                                                                            | Reviewer/Poir<br>(print an                        |                                    |              | int of Contact<br>nd sign) | Reviewer/Point of Contact<br>(print and sign)    |                    |                                              |            |  |
| Date Jadle Kaas<br>Organization Manager<br>(optional) |                                                                                                                                                                            | _                                                 | Date                               |              |                            | Jadie Kaas Judi Kaas                             |                    |                                              |            |  |
|                                                       | (print and sign)                                                                                                                                                           |                                                   | Author/Originator (print and sign) |              |                            | Author/Originator (print and sign)               |                    |                                              |            |  |
| 12.<br>Item                                           | 13a. Comments                                                                                                                                                              |                                                   | 13b. Basis                         | 13c.         | Recommendation             | 14. Reviewer<br>Concurrence<br>Required (Y or N) | 15. Dispositi<br>N | on (provide justification if<br>OT accepted) | 16. Status |  |
| 1                                                     | 1 Page 33 under lab blanks<br>discussion there is a typo -<br>the SDG should read SL1897                                                                                   |                                                   |                                    | Correct typo |                            |                                                  |                    |                                              | Closed     |  |
| 2                                                     | Page 45 lists the Alkalinity<br>MDL>requested DL., page 35<br>states "all reported sample<br>MDLs with associated non-<br>detected sample results were<br>below the CRDLs. |                                                   |                                    | Corre        | ct discrepancy             | ÷.                                               |                    |                                              | Closed     |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    | -                                            |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |
|                                                       | -                                                                                                                                                                          |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    | · · · ·                                      |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              | ni                         |                                                  |                    |                                              |            |  |
|                                                       |                                                                                                                                                                            |                                                   |                                    |              |                            |                                                  |                    |                                              |            |  |

ل 4-ل SGW-59614, REV. 0

A-6004-835 (REV 1)

Page 1 of 64





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

# Data Validation Report for CH2M Hill Plateau Remediation Company

# VSR16-003 Project 300FF5 U SEQUES, CERC15

# **Chemical Validation - Level C**

Validation Performed By:

eder

Date: 03-10-2016

Technical Review By:

Malintee

Date: 03-10-2016

Ellen McEntee

**Quality Review By:** 

VIN

Date: 03-17-2016

Mary Donivan Quality Assurance Manager
#### Page 2 of 64

# **TABLE OF CONTENTS**

| Metals                                                    |    |
|-----------------------------------------------------------|----|
| Memorandum                                                | 3  |
| Appendix 1 – Glossary of Data Reporting Qualifiers        | 8  |
| Appendix 2 – Summary of Data Qualification                | 10 |
| Appendix 3 – Data Validation Supporting Documentation     | 12 |
| Appendix 4 – Additional Documentation Requested By Client | 20 |
| General Chemistry                                         |    |
| Memorandum                                                | 31 |
| Appendix 1 – Glossary of Data Reporting Qualifiers        | 36 |
| Appendix 2 – Summary of Data Qualification                | 38 |
| Appendix 3 – Data Validation Supporting Documentation     | 40 |
| Appendix 4 – Additional Documentation Requested By Client | 47 |

Page 3 of 64

Date:10 March 2016To:CH2M Hill (technical representative)From:Analytical Quality Associates, Inc.Project:300FF5 U SEQUES, CERC15Subject:Inorganics - Sample Data Groups (SDGs) SL1897, SL1995, SL2015 and SL2023

## **INTRODUCTION**

This memorandum presents the results of data validation for SDGs SL1897, SL1995, SL2015 and SL2023 prepared by TestAmerica Laboratories, Inc. A list of samples validated along with the analytical methods is provided in the following table.

| Sample ID | Sample Date | Media  | Validation Level | <b>Analytical Methods</b> |
|-----------|-------------|--------|------------------|---------------------------|
| B32K93    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K95    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K90    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K87    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K84    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K39    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K30    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K33    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K24    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K99    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K36    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K66    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K69    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K72    | 08/28/15    | Water  | С                | 6010C & 6020A             |
| B32K27    | 08/31/15    | Water  | С                | 6010C & 6020A             |
| B32K48    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K51    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K42    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K45    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K60    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K63    | 09/02/15    | Water  | С                | 6010C & 6020A             |
| B32K21    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K18    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32KB1    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K97    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K54    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K57    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K78    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K75    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32K81    | 09/01/15    | Water  | С                | 6010C & 6020A             |
| B32KX9    | 11/09/15    | Liquid | С                | 6010C                     |
| B32L10    | 11/09/15    | Liquid | С                | 6010C                     |

#### Page 4 of 64

| B32L54 | 11/08/15 | Liquid | С | 6010C           |
|--------|----------|--------|---|-----------------|
| B32L04 | 11/07/15 | Liquid | С | 6010C           |
| B32L07 | 11/08/15 | Liquid | С | 6010C           |
| B32YY4 | 11/14/15 | Water  | С | 6010C and 6020A |
| B32YY5 | 11/14/15 | Water  | С | 6010C and 6020A |
| B32YY8 | 11/14/15 | Water  | С | 6010C and 6020A |
| B32YY9 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33002 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33003 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33011 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33010 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33015 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33014 | 11/14/15 | Water  | С | 6010C and 6020A |
| B33019 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33018 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33022 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33023 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33031 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33030 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33035 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33034 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33042 | 11/15/15 | Water  | С | 6010C and 6020A |
| B33043 | 11/15/15 | Water  | С | 6010C and 6020A |
| B32L56 | 11/18/15 | Liquid | С | 6010C and 6020A |
| B33KY4 | 11/17/15 | Liquid | С | 6010C and 6020A |

Data validation was conducted in accordance with the CHPRC validation statement of work and the Field Instruction for Uranium Sequestration in the 300 Area, SGW-58976, Rev. 0 (SAP). Appendices 1 through 4 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Data Validation Supporting Documentation
- Appendix 4. Additional Documentation Requested by Client

#### **DATA QUALITY OBJECTIVES**

#### • Holding Times and Sample Preservation

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The holding time requirement for ICP and ICP-MS metals are analysis within 180 days of sample collection. Sample preservation requires acid preservation with nitric acid to pH < 2.

The samples were analyzed within the prescribed holding times and properly preserved.

Page 5 of 64

#### • Blanks

The blank data results are reviewed to assess the extent of contamination introduced through sampling, sample preparation, and analysis.

#### **Laboratory Blanks**

All laboratory blank results were acceptable.

#### **Trip Blanks**

All trip blank results were acceptable with the following exception.

For SDG SL1897, the Ca result for trip blank sample B32K95 was > the MDL but <2X the MDL. The Ca result for associated sample B32K93 was > RL and was not qualified.

#### Field Blanks

No field blanks were submitted for validation.

#### **Equipment Blanks**

No equipment blanks were submitted for validation.

#### • Accuracy

Accuracy is evaluated by reviewing matrix spike sample results, laboratory control sample and ICP-AES interference check sample results. According to the SAP, the laboratory control sample accuracy limits are 80% to 120% and the matrix spike sample accuracy limits are 75% to 125%. The limits for reported analytes not listed in the SAP are specified by the DV procedure. The interference check sample limits are ones specified by the DV procedure.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

All MS/MSD recoveries were acceptable with the following exceptions.

For SDG SL2015, the MS recovery for Ca and the MS and MSD recoveries for Na were > the upper acceptance limit. The Ca and Na parent sample results were >4X the spike concentration; therefore, data should not be qualified.

For SDG SL2023, The MS recovery for K was > the upper acceptance limit, the MS recovery for Na was < the lower acceptance limit but  $\geq$ 30% and the MSD recoveries for K and Na were <30%. The K and Na parent sample results were >4X the spike concentration, therefore data should not qualified.

Page 6 of 64

#### Laboratory Control Samples (LCSs)

All LCS recoveries were acceptable.

# **ICP-AES Interference Check Samples (ICSs)**

ICS data was not included in the data package. Sample results should not be qualified based on this.

#### • Precision

Precision is evaluated by reviewing MS/MSD results, field duplicate sample results, field split sample results, and ICP serial dilution results. These QC results provide information on the laboratory reproducibility and whether sampling activities are adequate to acquire consistent sample results. According to the SAP, the relative percent difference (RPD) limits are  $\leq 20\%$ . The limits for reported analytes not listed in the SAP are specified by the DV procedure. When duplicate RPDs exceed the limits and have associated results <5X the SAP required detection limits (or <5X the laboratory reporting limits for analytes not listed in the SAP) with differences <1X the required detection limits no precision infraction occurred. The serial dilution limits are ones specified by the DV procedure.

#### MS/MSD Samples

All MS/MSD RPD values were acceptable.

#### **Field Duplicate Samples**

All field duplicate results were acceptable.

#### Field Split Samples

No field splits were submitted for validation.

#### **ICP Serial Dilution Samples**

ICS serial dilution data was not included in the data package. Sample results should not be qualified based on this.

#### • ICP-MS Internal Standards

The analysis of ICP-MS internal standards is used to determine the existences and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all samples (including QC) analyzed during the analytical run, beginning with the calibration.

Page 7 of 64

ICP-MS internal standards data was not included in the data package. Sample results should not be qualified based on this.

#### • Detection Limits

Reported MDLs are compared against the contractually required detection limits (CRDLs) to ensure that laboratory detection limits meet the required criteria.

All reported sample MDLs were below the CRDLs.

# • Completeness

SDGs SL1897, SL1995, SL2015 and SL2023 were submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

# **MAJOR DEFICIENCIES**

None found.

# MINOR DEFICIENCIES

There were no minor deficiencies leading to qualification of sample results as estimates. It should be noted that the laboratory did not sign the "received by" field of the Chain-of-Custody for sample B32K69.

# **REFERENCES**

GRP-GD-003, Rev. 1, Change 0, Data Validation for Chemical Analyses, July 2012.

SGW-58976, Rev. 0, Field Instructions for Uranium Sequestration in the 300 Area, July 2015.

Page 8 of 64

Appendix 1

**Glossary of Data Reporting Qualifiers** 

#### Page 9 of 64

Qualifiers that may be applied by data validators in compliance with the CHPRC statement of work are as follows:

- U The constituent was analyzed for, but was not detected. The data should be considered usable for decision-making purposes.
- UJ The constituent was analyzed for and was not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the RL. The data should be considered usable for decision-making purposes.
- **J** Indicates the constituent was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- J+ Indicates the constituent was analyzed for and detected. The associated value is estimated with a suspected positive bias due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- J- Indicates the constituent was analyzed for and detected. The associated value is estimated with a suspected negative bias due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- N- The analysis indicates the presence of an analyte that has been tentatively identified.
- **NJ** The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- **NJ**+ The analysis indicates the presence of an analyte that has been tentatively identified. The associated value is estimated with a suspected positive bias due to a quality control deficiency identified during data validation.
- NJ- The analysis indicates the presence of an analyte that has been tentatively identified. The associated value is estimated with a suspected negative bias due to a quality control deficiency identified during data validation.
- UR Indicates the constituent was analyzed for and not detected; however, due to an identified quality control deficiency the data should be considered unusable for decision-making purposes.
- **R** Indicates the constituent was analyzed for and detected; however, due to an identified quality control deficiency the data should be considered unusable for decision-making purposes.

Page 10 of 64

Appendix 2

**Summary of Data Qualification** 

Page 11 of 64

| Inorganic Data Qualification Summary         |               |                                     |             |
|----------------------------------------------|---------------|-------------------------------------|-------------|
| SDGs:SL1897,<br>SL1995, SL2015 and<br>SL2023 | Reviewer: AQA | Project: 300FF5 U<br>SEQUES, CERC15 | Page 1 of 1 |
| Analyte(s)                                   | Qualifier     | Samples Affected                    | Reason      |
| Metals                                       | NA            | None                                | NA          |

Comments: None

Page 12 of 64

Appendix 3

**Data Validation Supporting Documentation** 

Page 13 of 64

Rev. 1, Chg. 0

#### **GRP-GD-003**

Page 391 of 418

# **Data Validation for Chemical Analyses**

Published Date: 07/31/12

SGRP-GD-SMP-50117

Effective Date: 07/31/12

| VALIDATION<br>LEVEL:                                                                     | А                                  | В                                  | С                                | D                                  | E                                |
|------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------|
| PROJECT: 300FF5 U SEQUES, CERC15                                                         |                                    |                                    | DATA PACKAG                      | E: VSR16-003                       |                                  |
| VALIDATOR: Ey                                                                            | vda Hergenreder                    | LAB: TestAmerio                    | Ca DATE: 03/10/16                |                                    |                                  |
| SDG: SL1897, SL1995, SL2015, SL202                                                       |                                    |                                    | SL2023                           |                                    |                                  |
|                                                                                          |                                    | ANALYSES F                         | PERFORMED                        |                                    |                                  |
| SW-846/ICP<br>X                                                                          | SW-<br>846/GFAA                    | SW-846/Hg                          | SW-846<br>Cyanide                | SW-846/ICPMS<br>X                  |                                  |
|                                                                                          |                                    |                                    |                                  |                                    |                                  |
| SAMPLES/MAT                                                                              | RIX                                |                                    |                                  |                                    |                                  |
| Water<br>SL1897: B32I                                                                    | K93, B32K95, B32                   | 2K90, B32K87, B3                   | 2K84, B32K39, B                  | 32K30, B32K33, I                   | B32K24, B32K99                   |
| B32k<br>B32k                                                                             | <36, B32K66, B32<br><63 B32K21 B32 | 2K69, B32K72, B3<br>2K18 B32KB1 B3 | 2K27, B32K48, B<br>2K97 B32K54 B | 32K51, B32K42, E<br>32K57 B32K78 I | 332K45, B32K60,<br>332K75 B32K81 |
| SL2015: B32                                                                              | YY4, B32YY5, B3                    | 32YY8, B32YY9, E                   | 333002, B33003, I                | B33011, B33010,                    | B33015, B33014                   |
| B33019, B33018, B33022, B33023, B33031, B33030, B33035, B33034, B33042, B33043<br>Liquid |                                    |                                    |                                  |                                    |                                  |
| SL1995: B32<br>SL2023: B32                                                               | KX9, B32L10, B3<br>L56, B33KY4     | 2L54, B32L04, B3                   | 32L07                            |                                    |                                  |

#### 1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

Comments:

SL1897: Received by on COC was not completed for sample B32K69

Page 14 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 392 of 418

**Data Validation for Chemical Analyses** 

Published Date: 07/31/12 SGRP-GD-SMP-50117 Effective Date: 07/31/12

#### 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E)

| Initial calibrations performed on all instruments? | No | N/A |
|----------------------------------------------------|----|-----|
| Initial calibrations acceptable?Yes                | No | N/A |
| ICP interference checks acceptable?                | No | N/A |
| ICV and CCV checks performed on all instruments?   | No | N/A |
| ICV and CCV checks acceptable?Yes                  | No | N/A |
| Standards traceable?Yes                            | No | N/A |
| Standards expired?Yes                              | No | N/A |
| Calculation check acceptable?Yes                   | No | N/A |
| Comments:                                          |    |     |

#### 3. BLANKS (Levels B, C, D, and E)

| ICB and CCB checks performed for all applicable analyses? (Levels D, E) | No | N/A |
|-------------------------------------------------------------------------|----|-----|
| ICB and CCB results acceptable? (Levels D, E)Yes                        | No | N/A |
| Laboratory blanks analyzed?Yes                                          | No | N/A |
| Laboratory blank results acceptable?Yes                                 | No | N/A |
| Field blanks analyzed? (Levels C, D, E)Yes                              | No | N/A |
| Field blank results acceptable? (Levels C, D, E)Yes                     | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes                      | No | N/A |
| Comments:                                                               |    |     |
| SDG SL1897: Trip Blank B32K95: Ca 68.4 ug/L                             |    |     |

Before each use, ensure this copy is the most current version.

Page 15 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 393 of 418

**Data Validation for Chemical Analyses** 

| Published Date: 07/31 | I/12 SGRP-G | GD-SMP-50117 E | Effective Date: | 07/31/12 |
|-----------------------|-------------|----------------|-----------------|----------|
|                       |             |                |                 |          |

#### 4. ACCURACY (Levels C, D, and E)

| MS/MSD samples analyzed?Yes                        | No | N/A |
|----------------------------------------------------|----|-----|
| MS/MSD results acceptable?Yes                      | No | N/A |
| MS/MSD standards NIST traceable? (Levels D, E)Yes  | No | N/A |
| MS/MSD standards expired? (Levels D, E)Yes         | No | N/A |
| LCS/BSS samples analyzed?Yes                       | No | N/A |
| LCS/BSS results acceptable?Yes                     | No | N/A |
| Standards traceable? (Levels D, E)Yes              | No | N/A |
| Standards expired? (Levels D, E)Yes                | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes | No | N/A |
| Performance audit sample(s) analyzed?Yes           | No | N/A |
| Performance audit sample results acceptable?Yes    | No | N/A |
| Comments:                                          |    |     |

SDG SL2015: Ca MS 175%\*; Na MS 199%\*/MSD 236%\*

SDG SL2023: K MS 135%\*/MSD -395%\*, Na MS 40%\*/MSD -465\*

\*Parent sample result >4X spike concentration

Page 16 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 394 of 418

**Data Validation for Chemical Analyses** 

| Published Date: 07/31/12 | SGRP-GD-SMP-50117 | Effective Date: 07/31/12 |
|--------------------------|-------------------|--------------------------|
|                          |                   |                          |

#### 5. PRECISION (Levels C, D, and E)

| Duplicate RPD values acceptable?                                | No | N/A |
|-----------------------------------------------------------------|----|-----|
| Duplicate results acceptable?Yes                                | No | N/A |
| MS/MSD standards NIST traceable? (Levels D, E)Yes               | No | N/A |
| MS/MSD standards expired? (Levels D, E)Yes                      | No | N/A |
| LCS/LCSD duplicates run due to insufficient sample material?Yes | No | N/A |
| Field duplicate RPD values acceptable?Yes                       | No | N/A |
| Field split RPD values acceptable?Yes                           | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes              | No | N/A |
|                                                                 |    |     |

Comments:

Page 17 of 64

Rev. 1, Chg. 0

# **GRP-GD-003**

Page 395 of 418

**Data Validation for Chemical Analyses** 

| Published Date: 07 | //31/12 S | SGRP-GD-SMP-50117 | Effective Date: | 07/31/12 |
|--------------------|-----------|-------------------|-----------------|----------|
|                    |           |                   |                 |          |

#### 6. ICP QUALITY CONTROL (Levels D and E)

| ICP serial dilution samples analyzed?Yes       | No | N/A |
|------------------------------------------------|----|-----|
| ICP serial dilution %D values acceptable?      | No | N/A |
| ICP post digestion spike required?Yes          | No | N/A |
| ICP post digestion spike values acceptable?Yes | No | N/A |
| Standards traceable?Yes                        | No | N/A |
| Standards expired?Yes                          | No | N/A |
| Transcription/calculation errors?Yes           | No | N/A |
|                                                |    |     |

Comments:

#### 7. HOLDING TIMES (all levels)

| Samples properly preserved?Yes      | No | N/A |
|-------------------------------------|----|-----|
| Sample holding times acceptable?Yes | No | N/A |
| Comments:                           |    |     |

Page 18 of 64

Rev. 1, Chg. 0

**GRP-GD-003** 

Page 396 of 418

**Data Validation for Chemical Analyses** 

Published Date: 07/31/12 SGRP-GD-SMP-50117 Effective Date: 07/31/12

#### 8. **RESULT QUANTITATION AND DETECTION LIMITS (all levels)**

| Results reported for all requested analyses?Yes     | No | N/A |
|-----------------------------------------------------|----|-----|
| Results supported in the raw data? (Levels D, E)Yes | No | N/A |
| Samples properly prepared? (Levels D, E)Yes         | No | N/A |
| Detection limits meet RDL?Yes                       | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes  | No | N/A |
|                                                     |    |     |

Comments:

Before each use, ensure this copy is the most current version.

Page 19 of 64

|                 |          | 1 age 19 01 04             |                          |
|-----------------|----------|----------------------------|--------------------------|
| Rev. 1, Chg. 0  |          | GRP-GD-003                 | Page 397 of 418          |
|                 | Data Va  | alidation for Chemical Ana | alyses                   |
| Published Date: | 07/31/12 | SGRP-GD-SMP-50117          | Effective Date: 07/31/12 |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |

Page 20 of 64

Appendix 4

Additional Documentation Requested By Client

Page 21 of 64

# **QC Sample Results**

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055

## Method: 6010C - Metals (ICP)

TestAmerica Job ID: 160-13589-1 SDG: SL1897

| Lab Sample ID: MB 160-209                                | 9385/1-A  |               |       |        |      |        |      | Cli   | ent Samp    | ole ID: Mo | ethod  | Blank   |
|----------------------------------------------------------|-----------|---------------|-------|--------|------|--------|------|-------|-------------|------------|--------|---------|
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Typ   | e: To  | tal/NA  |
| Analysis Batch: 210218                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
|                                                          | N         | IB MB         |       |        |      |        |      |       |             |            |        |         |
| Analyte                                                  | Resu      | ult Qualifier | RL    | . I    | MDL  | Unit   | I    | D P   | Prepared    | Analyz     | .ed    | Dil Fac |
| Calcium                                                  | 54        | .2 U          | 1000  |        | 54.2 | ug/L   |      | 09/0  | 03/15 15:59 | 09/09/15   | 20:18  | 1       |
| Potassium                                                | 4         | 56 U          | 5000  |        | 456  | ug/L   |      | 09/0  | 03/15 15:59 | 09/09/15   | 20:18  | 1       |
| —                                                        |           |               |       |        |      |        |      |       |             |            |        |         |
| Lab Sample ID: MB 160-209                                | 9385/1-A  |               |       |        |      |        |      | Cli   | ent Samp    | ole ID: Mo | ethod  | Blank   |
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Typ   | e: To  | tal/NA  |
| Analysis Batch: 210333                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
|                                                          | N         | IB MB         |       |        |      |        |      |       |             |            |        |         |
| Analyte                                                  | Resu      | ult Qualifier | RL    | . I    | MDL  | Unit   | 1    | D P   | repared     | Analyz     | ed     | Dil Fac |
| Magnesium                                                | 50        | ).5 U         | 1000  |        | 50.5 | ug/L   |      | 09/0  | 03/15 15:59 | 09/10/15   | 14:05  | 1       |
| Sodium                                                   | 10        | 05 U          | 1000  |        | 105  | ug/L   |      | 09/0  | 03/15 15:59 | 09/10/15   | 14:05  | 1       |
| _                                                        |           |               |       |        |      |        |      |       |             |            |        |         |
| Lab Sample ID: LCS 160-20                                | )9385/2-A |               |       |        |      |        | Clie | nt Sa | mple ID:    | Lab Con    | trol S | ample   |
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Typ   | e: To  | tal/NA  |
| Analysis Batch: 210218                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
| -                                                        |           |               | Spike | LCS    | LCS  | ;      |      |       |             | %Rec.      |        |         |
| Analyte                                                  |           |               | Added | Result | Qua  | lifier | Unit | D     | %Rec        | Limits     |        |         |
| Calcium                                                  |           |               | 10000 | 10730  |      |        | ug/L |       | 107         | 80 - 120   |        |         |
| Potassium                                                |           |               | 10000 | 10680  |      |        | ug/L |       | 107         | 80 - 120   |        |         |
|                                                          |           |               |       |        |      |        |      |       |             |            |        |         |
| Lab Sample ID: LCS 160-20                                | )9385/2-A |               |       |        |      |        | Clie | nt Sa | mple ID:    | Lab Con    | trol S | ample   |
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Typ   | be: To | tal/NA  |
| Analysis Batch: 210333                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
|                                                          |           |               | Spike | LCS    | LCS  |        |      |       |             | %Rec.      |        |         |
| Analyte                                                  |           |               | Added | Result | Qua  | lifier | Unit | D     | %Rec        | Limits     |        |         |
| Magnesium                                                |           |               | 10000 | 9282   |      |        | ug/L |       | 93          | 80 - 120   |        |         |
| Sodium                                                   |           |               | 10000 | 10050  |      |        | ug/L |       | 101         | 80 - 120   |        |         |
| —                                                        |           |               |       |        |      |        |      |       |             |            |        |         |
| Lab Sample ID: 160-13589-                                | 1 MS      |               |       |        |      |        |      |       | Client      | t Sample   | ID: B  | 32K93   |
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Typ   | be: To | tal/NA  |
| Analysis Batch: 210218                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
| · · · · · <b>,</b> · · · · · · · · · · · · · · · · · · · | Sample S  | ample         | Spike | MS     | MS   |        |      |       |             | %Rec.      |        |         |
| Analyte                                                  | Result C  | Qualifier     | Added | Result | Qua  | lifier | Unit | D     | %Rec        | Limits     |        |         |
| Calcium                                                  | 52700     |               | 10000 | 64230  |      |        | ug/L |       | 116         | 75 - 125   |        |         |
| Potassium                                                | 5680      |               | 10000 | 16600  |      |        | ug/L |       | 109         | 75 - 125   |        |         |
| _                                                        |           |               |       |        |      |        | 0    |       |             |            |        |         |
| Lab Sample ID: 160-13589-                                | 1 MS      |               |       |        |      |        |      |       | Client      | t Sample   | ID: B  | 32K93   |
| Matrix: Water                                            |           |               |       |        |      |        |      |       |             | Prep Tvp   | be: To | tal/NA  |
| Analysis Batch: 210333                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
| ,, <b>,</b>                                              | Sample S  | ample         | Spike | MS     | MS   |        |      |       |             | %Rec.      |        |         |
| Analvte                                                  | Result C  | Qualifier     | Added | Result | Qua  | lifier | Unit | D     | %Rec        | Limits     |        |         |
| Magnesium                                                | 11000     |               | 10000 | 20750  |      |        | ua/L |       | 98          | 75 - 125   |        |         |
| Sodium                                                   | 24800     |               | 10000 | 35130  |      |        | ua/L |       | 103         | 75 - 125   |        |         |
|                                                          |           |               |       |        |      |        |      |       |             |            |        |         |
| Lab Sample ID: 160-13589-                                | 1 MSD     |               |       |        |      |        |      |       | Client      | t Sample   | ID: B  | 32K93   |
| Matrix: Water                                            | -         |               |       |        |      |        |      |       |             | Prep Tvr   | e: To  | tal/NA  |
| Analysis Batch: 210218                                   |           |               |       |        |      |        |      |       |             | Prep Ba    | tch: 2 | 09385   |
|                                                          | Sample S  | ample         | Spike | MSD    | MSE  | )      |      |       |             | %Rec.      |        | RPD     |
| Analyte                                                  | Result C  | Qualifier     | Added | Result | Qua  | lifier | Unit | D     | %Rec        | Limits     | RPD    | Limit   |
| Calcium                                                  | 52700     |               | 10000 | 63740  |      |        | ug/L |       | 111         | 75 - 125   | 1      | 20      |

TestAmerica St. Louis

10/7/2015

#### Page 22 of 64

# **QC Sample Results**

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055 TestAmerica Job ID: 160-13589-1 SDG: SL1897

| Method: 6010C - Metals                                                     | (ICP) (C | ont   | inued)    |       |      |        |      |         |      |      |             |                                 |                            |                          |
|----------------------------------------------------------------------------|----------|-------|-----------|-------|------|--------|------|---------|------|------|-------------|---------------------------------|----------------------------|--------------------------|
| Lab Sample ID: 160-13589-1                                                 | MSD      |       |           |       |      |        |      |         |      |      | Client      | Sample                          | ID: B                      | 32K93                    |
| Matrix: Water                                                              |          |       |           |       |      |        |      |         |      |      |             | Prep Tvr                        | e: To                      | tal/NA                   |
| Analysis Batch: 210218                                                     |          |       |           |       |      |        |      |         |      |      |             | Prep Ba                         | tch: 2                     | 09385                    |
| · ·····                                                                    | Sample   | San   | nple      | Spike |      | MSD    | MSI  | D       |      |      |             | %Rec.                           |                            | RPD                      |
| Analyte                                                                    | Result   | Qua   | alifier   | Added |      | Result | Qua  | alifier | Unit | D    | %Rec        | Limits                          | RPD                        | Limit                    |
| Potassium                                                                  | 5680     |       |           | 10000 |      | 17370  |      |         | ug/L |      | 117         | 75 - 125                        | 5                          | 20                       |
|                                                                            |          |       |           |       |      |        |      |         |      |      | 0           |                                 |                            |                          |
| Lab Sample ID: 160-13589-1                                                 | MSD      |       |           |       |      |        |      |         |      |      | Client      | Sample                          | ID: B                      | 32K93                    |
| Matrix: water                                                              |          |       |           |       |      |        |      |         |      |      |             | Prep Typ                        |                            |                          |
| Analysis Batch: 210333                                                     | Comula   | 6 a m |           | Cuika |      | MOD    | MO   | •       |      |      |             | Ргер ва                         | tcn: 2                     | 09385                    |
| Analyta                                                                    | Decult   | San   | lifier    | Spike |      | Desult | 0    |         | 11   |      | % Dee       | /orec.                          | 000                        | Limit                    |
|                                                                            | Result   | Qua   |           | 40000 |      | Result | Qua  | anner   | Unit |      | %Rec        |                                 |                            |                          |
| Codium                                                                     | 11000    |       |           | 10000 |      | 21120  |      |         | ug/L |      | 101         | 75 - 125                        | 2                          | 20                       |
| Sodium                                                                     | 24800    |       |           | 10000 |      | 35500  |      |         | ug/L |      | 107         | 75 - 125                        | 1                          | 20                       |
| Lab Sample ID: MB 160-210                                                  | 508/1-A  |       |           |       |      |        |      |         |      | Clie | ent Samr    | ole ID: Mo                      | ethod                      | Blank                    |
| Matrix: Water                                                              |          |       |           |       |      |        |      |         |      | -    |             | Prep Tyr                        | e: Tot                     | tal/NA                   |
| Analysis Batch: 211062                                                     |          |       |           |       |      |        |      |         |      |      |             | Prep Ba                         | tch: 2                     | 10508                    |
|                                                                            |          | MB    | MB        |       |      |        |      |         |      |      |             |                                 |                            |                          |
| Analyte                                                                    | Re       | esult | Qualifier |       | RL   |        | MDL  | Unit    | D    | P    | repared     | Analyz                          | ed                         | Dil Fac                  |
| Calcium                                                                    |          | 54.2  | U         |       | 1000 |        | 54.2 | ug/L    |      | 09/1 | 11/15 13:32 | 09/14/15                        | 17:45                      | 1                        |
| Magnesium                                                                  |          | 50.5  | U         |       | 1000 |        | 50.5 | ua/L    |      | 09/1 | 11/15 13:32 | 09/14/15                        | 17:45                      | 1                        |
| Potassium                                                                  |          | 456   | U         |       | 5000 |        | 456  | ua/L    |      | 09/1 | 11/15 13:32 | 09/14/15                        | 17:45                      | 1                        |
| Sodium                                                                     |          | 105   |           |       | 1000 |        | 105  | ua/L    |      | 09/1 | 11/15 13:32 | 09/14/15                        | 17:45                      |                          |
| Analysis Batch: 211062                                                     |          |       |           | Spike |      | LCS    | LCS  | 6       |      |      |             | Prep Ba<br>%Rec.                | tch: 2                     | 10508                    |
| Analyte                                                                    |          |       |           | Added |      | Result | Qua  | alifier | Unit | D    | %Rec        | Limits                          |                            |                          |
| Calcium                                                                    |          |       |           | 10000 |      | 11330  |      |         | ug/L |      | 113         | 80 - 120                        |                            |                          |
| Magnesium                                                                  |          |       |           | 10000 |      | 9659   |      |         | ug/L |      | 97          | 80 - 120                        |                            |                          |
| Potassium                                                                  |          |       |           | 10000 |      | 9928   |      |         | ug/L |      | 99          | 80 - 120                        |                            |                          |
| Sodium                                                                     |          |       |           | 10000 |      | 10030  |      |         | ug/L |      | 100         | 80 - 120                        |                            |                          |
| -<br>I ab Sample ID: 160-13629-1                                           | MS       |       |           |       |      |        |      |         |      |      | Client      | Sample                          |                            | 32K27                    |
| Matrix: Water                                                              |          |       |           |       |      |        |      |         |      |      | onom        | Pren Tyr                        |                            | tal/NA                   |
| Analysis Batch: 211062                                                     |          |       |           |       |      |        |      |         |      |      |             | Pron Ra                         | tch: 2                     | 10508                    |
|                                                                            | Sample   | San   | nple      | Spike |      | MS     | MS   |         |      |      |             | %Rec.                           | 2                          | 10000                    |
| Analyte                                                                    | Result   | Qua   | alifier   | Added |      | Result | Qua  | alifier | Unit | D    | %Rec        | Limits                          |                            |                          |
| Calcium                                                                    | 73000    |       |           | 10000 |      | 80780  |      |         | ua/L |      | 78          | 75 - 125                        |                            |                          |
| Magnesium                                                                  | 14600    |       |           | 10000 |      | 24170  |      |         | ua/L |      | 95          | 75 - 125                        |                            |                          |
| Potassium                                                                  | 4250     | в     |           | 10000 |      | 14340  |      |         | ua/L |      | 101         | 75 - 125                        |                            |                          |
| Sodium                                                                     | 24400    |       |           | 10000 |      | 34560  |      |         | ug/L |      | 102         | 75 - 125                        |                            |                          |
| _<br>Lab Sample ID: 160-13629-1<br>Matrix: Water<br>Analysis Batch: 211062 | MSD      |       |           |       |      |        |      |         | 0    |      | Client      | : Sample<br>Prep Typ<br>Prep Ba | ID: B<br>be: Tot<br>tch: 2 | 32K27<br>tal/NA<br>10508 |
|                                                                            | Sample   | San   | nple      | Spike |      | MSD    | MSI  | D       |      |      |             | %Rec.                           |                            | RPD                      |
| Analyte                                                                    | Result   | Qua   | alifier   | Added |      | Result | Qua  | alifier | Unit | D    | %Rec        | Limits                          | RPD                        | Limit                    |
| Calcium                                                                    | 73000    |       |           | 10000 |      | 80650  |      |         | ug/L |      | 76          | 75 - 125                        | 0                          | 20                       |
| Magnesium                                                                  | 14600    |       |           | 10000 |      | 23910  |      |         | ug/L |      | 93          | 75 - 125                        | 1                          | 20                       |
| Potassium                                                                  | 4250     | В     |           | 10000 |      | 14640  |      |         | ug/L |      | 104         | 75 - 125                        | 2                          | 20                       |
| Sodium                                                                     | 24400    |       |           | 10000 |      | 35220  |      |         | ug/L |      | 108         | 75 - 125                        | 2                          | 20                       |

TestAmerica St. Louis

10/7/2015

#### Page 23 of 64

# **QC Sample Results**

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055

#### Method: 6010C - Metals (ICP) (Continued)

#### Lab Sample ID: MB 160-210925/1-A Matrix: Water Analysis Batch: 211197

| Analysis Batch: 211197 |        |           |      |      |      |   |                | Prep Batch:    | 210925  |
|------------------------|--------|-----------|------|------|------|---|----------------|----------------|---------|
| -                      | MB     | MB        |      |      |      |   |                |                |         |
| Analyte                | Result | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Calcium                | 54.2   | U         | 1000 | 54.2 | ug/L |   | 09/14/15 13:53 | 09/15/15 14:20 | 1       |
| Magnesium              | 50.5   | U         | 1000 | 50.5 | ug/L |   | 09/14/15 13:53 | 09/15/15 14:20 | 1       |
| Potassium              | 456    | U         | 5000 | 456  | ug/L |   | 09/14/15 13:53 | 09/15/15 14:20 | 1       |
| Sodium                 | 105    | U         | 1000 | 105  | ua/L |   | 09/14/15 13:53 | 09/15/15 14:20 | 1       |

#### Lab Sample ID: LCS 160-210925/2-A Matrix: Water

| Analysis Batch: 211197 |       |        |           |      |   |      | Prep Batch: | 210925 |
|------------------------|-------|--------|-----------|------|---|------|-------------|--------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.       |        |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits      |        |
| Calcium                | 10000 | 11350  |           | ug/L |   | 114  | 80 - 120    |        |
| Magnesium              | 10000 | 9774   |           | ug/L |   | 98   | 80 - 120    |        |
| Potassium              | 10000 | 10020  |           | ug/L |   | 100  | 80 - 120    |        |
| Sodium                 | 10000 | 10040  |           | ua/L |   | 100  | 80 - 120    |        |

#### Lab Sample ID: 160-13655-1 MS Matrix: Water

| Matrix: Water<br>Analysis Batch: 211197 | Sample | Sample    | Spike | MS     | MS        |      |   |      | Prep Type:<br>Prep Batch<br>%Rec. | Total/NA<br>: 210925 |
|-----------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|-----------------------------------|----------------------|
| Analyte                                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits                            |                      |
| Calcium                                 | 56800  |           | 10000 | 67820  |           | ug/L |   | 110  | 75 - 125                          |                      |
| Magnesium                               | 12400  |           | 10000 | 22530  |           | ug/L |   | 101  | 75 - 125                          |                      |
| Potassium                               | 5570   |           | 10000 | 15830  |           | ug/L |   | 103  | 75 - 125                          |                      |
| Sodium                                  | 24000  |           | 10000 | 34940  |           | ug/L |   | 110  | 75 - 125                          |                      |

# Lab Sample ID: 160-13655-1 MSD Matrix: Water

| Matrix: Water          |        |           |       |        |           |      |   |      | Prep Ty  | pe: Tot  | al/NA |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|
| Analysis Batch: 211197 |        |           |       |        |           |      |   |      | Prep Ba  | atch: 2' | 10925 |
|                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Calcium                | 56800  |           | 10000 | 64630  |           | ug/L |   | 78   | 75 - 125 | 5        | 20    |
| Magnesium              | 12400  |           | 10000 | 21900  |           | ug/L |   | 95   | 75 - 125 | 3        | 20    |
| Potassium              | 5570   |           | 10000 | 15520  |           | ug/L |   | 99   | 75 - 125 | 2        | 20    |
| Sodium                 | 24000  |           | 10000 | 34190  |           | ug/L |   | 102  | 75 - 125 | 2        | 20    |

#### Method: 6020A - Metals (ICP/MS)

| Lab Sample ID: MB 160-209384/<br>Matrix: Water<br>Analysis Batch: 211966 | 1 <b>-A</b> |           |     |      |      |   | Client Samp    | le ID: Method<br>Prep Type: To<br>Prep Batch: : | l Blank<br>otal/NA<br>209384 |
|--------------------------------------------------------------------------|-------------|-----------|-----|------|------|---|----------------|-------------------------------------------------|------------------------------|
| -                                                                        | MB          | MB        |     |      |      |   |                |                                                 |                              |
| Analyte                                                                  | Result      | Qualifier | RL  | MDL  | Unit | D | Prepared       | Analyzed                                        | Dil Fac                      |
| Uranium                                                                  | 0.23        | U         | 1.0 | 0.23 | ug/L |   | 09/03/15 15:57 | 09/18/15 21:18                                  | 2                            |

TestAmerica St. Louis

5 9

TestAmerica Job ID: 160-13589-1

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

SDG: SL1897

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: B32K48

Client Sample ID: B32K48

#### Page 24 of 64

# **QC Sample Results**

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055

TestAmerica Job ID: 160-13589-1 SDG: SL1897

| lethod: 6020A - Metals                     | (ICP/MS     | ) (Continu              | ied)   |        |           |      |                  |                            |                      |
|--------------------------------------------|-------------|-------------------------|--------|--------|-----------|------|------------------|----------------------------|----------------------|
| Lab Sample ID: LCS 160-20                  | )9384/2-A   |                         |        |        |           | Clie | ent Sample ID    | : Lab Contro               | Sample               |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Prep Type:                 | I otal/NA            |
| Analysis Batch: 211966                     |             |                         | 0.11.1 | 1.00   |           |      |                  | Prep Batcl                 | n: 209384            |
|                                            |             |                         | Spike  | LCS    | LCS       |      |                  | %Rec.                      |                      |
| Analyte                                    |             |                         | Added  | Result | Qualifier | Unit | <u> </u>         | Limits                     |                      |
| Jranium                                    |             |                         | 1000   | 1000   |           | ug/L | 100              | 80 - 120                   |                      |
| _ab Sample ID: 160-13589-<br>Matrix: Water | 1 <b>MS</b> |                         |        |        |           |      | Clier            | nt Sample ID<br>Prep Type: | : B32K93<br>Total/NA |
| Analysis Batch: 211966                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: 209384            |
|                                            | Sample      | Sample                  | Spike  | MS     | MS        |      |                  | %Rec.                      |                      |
| Analyte                                    | Result      | Qualifier               | Added  | Result | Qualifier | Unit | D %Rec           | Limits                     |                      |
| Iranium                                    | 46.8        |                         | 1000   | 1086   |           | ug/L | 104              | 75 - 125                   |                      |
| ah Sample ID: 160-13589.                   |             |                         |        |        |           |      | Clier            | nt Sample ID               | · B32K93             |
| Astrix: Wator                              | TIMOD       |                         |        |        |           |      | Olici            | Pron Typo:                 |                      |
| Analysis Batch: 211966                     |             |                         |        |        |           |      |                  | Pron Batcl                 | h. 209384            |
| Analysis Batch. 211500                     | Sample      | Sample                  | Snike  | MSD    | MSD       |      |                  | %Rec                       | RPD                  |
| Analyte                                    | Result      | Qualifier               |        | Result | Qualifier | Unit | D %Rec           | Limits F                   | RPD Limit            |
| Jranium                                    | 46.8        |                         | 1000   | 1116   |           |      | $-\frac{2}{107}$ | 75 - 125                   | $\frac{1}{3}$ 20     |
|                                            |             |                         |        |        |           | 0    |                  |                            |                      |
| ab Sample ID: MB 160-21                    | 0504/1-A    |                         |        |        |           |      | Client Sam       | ple ID: Meth               | od Blank             |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Prep Type:                 | Total/NA             |
| Analysis Batch: 211492                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: <b>210504</b>     |
|                                            |             | MB MB                   |        |        |           |      |                  |                            |                      |
| Inalyte                                    | Re          | sult Qualifier          |        | RL I   | MDL Unit  |      | D Prepared       | Analyzed                   | Dil Fac              |
| Jranium                                    |             | 0.23 U                  |        | 1.0    | 0.23 ug/L |      | 09/11/15 13:1    | 8 09/16/15 22:3            | 32 2                 |
| Lab Sample ID: LCS 160-2 <sup>4</sup>      | 10504/2-A   |                         |        |        |           | Clie | ent Sample ID    | : Lab Contro               | ol Sample            |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Prep Type:                 | Total/NA             |
| Analysis Batch: 211492                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: 210504            |
|                                            |             |                         | Spike  | LCS    | LCS       |      |                  | %Rec.                      |                      |
| Analyte                                    |             |                         | Added  | Result | Qualifier | Unit | D %Rec           | Limits                     |                      |
| Jranium                                    |             |                         | 1000   | 1017   |           | ug/L | 102              | 80 - 120                   |                      |
| ab Sample ID: 160-13629-                   | 1 MS        |                         |        |        |           |      | Clier            | nt Sample ID               | : B32K27             |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Pren Type:                 | Total/NA             |
| Analysis Batch: 211492                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: 210504            |
|                                            | Sample      | Sample                  | Spike  | MS     | MS        |      |                  | %Rec.                      |                      |
| Analyte                                    | Result      | Qualifier               | Added  | Result | Qualifier | Unit | D %Rec           | Limits                     |                      |
| Jranium                                    | 150         |                         | 1000   | 1177   |           | ug/L | 103              | 75 - 125                   |                      |
|                                            |             |                         |        |        |           |      | 0.1              |                            | Deelver              |
| Lab Sample ID: 160-13629-                  | 1 MSD       |                         |        |        |           |      | Clier            | it Sample ID               | : B32K27             |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Prep Type:                 | Total/NA             |
| Analysis Batch: 211492                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: 210504            |
|                                            | Sample      | Sample                  | Spike  | MSD    | MSD       |      |                  | %Rec.                      | RPD                  |
| Analyte                                    | Result      | Qualifier               | Added  | Result | Qualifier | Unit | D%Rec            | Limits F                   | RPD Limit            |
| nanium                                     | 150         |                         | 1000   | 1194   |           | ug/L | 104              | 10-120                     | 1 20                 |
| Lab Sample ID: MB 160-21                   | 0928/1-A    |                         |        |        |           |      | Client Sam       | ple ID: Meth               | od Blank             |
| Matrix: Water                              |             |                         |        |        |           |      |                  | Prep Type:                 | Total/NA             |
| Analysis Batch: 211967                     |             |                         |        |        |           |      |                  | Prep Batcl                 | h: 210928            |
|                                            |             |                         |        |        |           |      |                  |                            |                      |
| ,,                                         |             | MB MB                   |        |        |           |      |                  |                            |                      |
| Analyte                                    | Re          | MB MB<br>sult Qualifier |        | RL I   | MDL Unit  |      | D Prepared       | Analyzed                   | Dil Fac              |

#### Page 25 of 64

# **QC Sample Results**

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055 TestAmerica Job ID: 160-13589-1 SDG: SL1897

|   | Lab Sample ID: LCS 160-21092<br>Matrix: Water                                                            |                                                    |                                            |                                          |                                       | Clie                                | nt Sai               | mple ID  | : Lab Cor<br>Prep Ty  | ntrol Sa<br>pe: Tot                                                             | ample<br>al/NA                  | 3                                        |              |
|---|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|-------------------------------------|----------------------|----------|-----------------------|---------------------------------------------------------------------------------|---------------------------------|------------------------------------------|--------------|
|   | Analysis Batch: 211967                                                                                   |                                                    |                                            | Spike                                    | LCS                                   | LCS                                 |                      |          |                       | Prep Ba<br>%Rec.                                                                | atch: 21                        | 10928                                    |              |
|   | Analyte                                                                                                  |                                                    |                                            | Added                                    | Result                                | Qualifier                           | Unit                 | D        | %Rec                  | Limits                                                                          |                                 |                                          |              |
| i | Uranium                                                                                                  |                                                    |                                            | 1000                                     | 1051                                  |                                     | ug/L                 |          | 105                   | 80 - 120                                                                        |                                 |                                          | 5            |
| Γ | Lab Sample ID: 160-13655-1 M                                                                             | S                                                  |                                            |                                          |                                       |                                     |                      |          | Clie                  | nt Sample                                                                       | D: B3                           | 32K48                                    | 6            |
|   | Analysis Batch: 211967                                                                                   |                                                    |                                            |                                          |                                       |                                     |                      |          |                       | Prep Ty<br>Prep Ba                                                              | pe: rot<br>atch: 21             | al/NA<br>10928                           | 7            |
|   |                                                                                                          |                                                    |                                            |                                          |                                       |                                     |                      |          |                       |                                                                                 |                                 | 10320                                    |              |
|   | -                                                                                                        | Sample                                             | Sample                                     | Spike                                    | MS                                    | MS                                  |                      |          |                       | %Rec.                                                                           |                                 |                                          |              |
|   | Analyte                                                                                                  | Sample<br>Result                                   | Sample<br>Qualifier                        | Spike<br>Added                           | MS<br>Result                          | MS<br>Qualifier                     | Unit                 | D        | %Rec                  | %Rec.<br>Limits                                                                 |                                 |                                          | 8            |
|   | Analyte<br>Uranium                                                                                       | Sample<br>Result<br>32.2                           | Sample<br>Qualifier                        | Spike<br>Added<br>1000                   | MS<br>Result<br>1091                  | MS<br>Qualifier                     | Unit<br>ug/L         | D        | %Rec<br>106           | %Rec.<br>Limits<br>75 - 125                                                     |                                 |                                          | 8            |
|   | Analyte<br>Uranium<br>Lab Sample ID: 160-13655-1 MS                                                      | Sample<br>Result<br>32.2                           | Sample<br>Qualifier                        | Spike Added 1000                         | MS<br>Result<br>1091                  | MS<br>Qualifier                     | Unit<br>ug/L         | D        | %Rec<br>106           | %Rec.<br>Limits<br>75 - 125                                                     | <br>e ID: B3                    | <br>32K48                                | 8<br>9       |
|   | Analyte<br>Uranium<br>Lab Sample ID: 160-13655-1 M<br>Matrix: Water                                      | Sample<br>Result<br>32.2                           | Sample<br>Qualifier                        | Spike Added 1000                         | MS<br>Result<br>1091                  | MS<br>Qualifier                     | Unit<br>ug/L         | D        | %Rec<br>106<br>Clier  | %Rec.<br>Limits<br>75 - 125<br>nt Sample<br>Prep Ty                             | e ID: B3<br>pe: Tot             | 32K48<br>al/NA                           | 8<br>9<br>10 |
|   | Analyte<br>Uranium<br>Lab Sample ID: 160-13655-1 M<br>Matrix: Water<br>Analysis Batch: 211967            | Sample<br>Result<br>32.2                           | Sample<br>Qualifier                        | Spike<br>Added<br>1000                   | MS<br>Result<br>1091                  | MS<br>Qualifier                     | Unit<br>ug/L         | <u>D</u> | %Rec<br>106<br>Clief  | %Rec.<br>Limits<br>75-125<br>nt Sample<br>Prep Ty<br>Prep Ba                    | e ID: B3<br>pe: Tot<br>atch: 21 | 32K48<br>al/NA<br>10928                  | 8<br>9<br>10 |
|   | Analyte<br>Uranium<br>Lab Sample ID: 160-13655-1 M<br>Matrix: Water<br>Analysis Batch: 211967            | Sample<br>Result<br>32.2<br>SD<br>Sample           | Sample<br>Qualifier<br>Sample              | Spike<br>Added<br>1000<br>Spike          | MS<br>Result<br>1091                  | MS<br>Qualifier<br>MSD              | Unit<br>ug/L         | <u>D</u> | %Rec<br>106<br>Clie   | %Rec.<br>Limits<br>75 - 125<br>nt Sample<br>Prep Ty<br>Prep Ba<br>%Rec.         | e ID: B3<br>pe: Tot<br>atch: 21 | 32K48<br>al/NA<br>10928<br>RPD           | 8<br>9<br>10 |
|   | Analyte<br>Uranium<br>Lab Sample ID: 160-13655-1 M<br>Matrix: Water<br>Analysis Batch: 211967<br>Analyte | Sample<br>Result<br>32.2<br>SD<br>Sample<br>Result | Sample<br>Qualifier<br>Sample<br>Qualifier | Spike<br>Added<br>1000<br>Spike<br>Added | MS<br>Result<br>1091<br>MSD<br>Result | MS<br>Qualifier<br>MSD<br>Qualifier | Unit<br>ug/L<br>Unit | D        | %Rec<br>Clien<br>%Rec | %Rec.<br>Limits<br>75-125<br>nt Sample<br>Prep Ty<br>Prep Ba<br>%Rec.<br>Limits | e ID: B3<br>pe: Tot<br>atch: 21 | 32K48<br>cal/NA<br>10928<br>RPD<br>Limit | 8<br>9<br>10 |

# Method: 310.1 - Alkalinity

| Lab Sample ID: MB 160-208 | 3691/1   |               |       |     |        |      |        |      | Cli    | ent San  | nple ID: Methoo  | l Blank |
|---------------------------|----------|---------------|-------|-----|--------|------|--------|------|--------|----------|------------------|---------|
| Matrix: Water             |          |               |       |     |        |      |        |      |        |          | Prep Type: To    | otal/NA |
| Analysis Batch: 208691    |          |               |       |     |        |      |        |      |        |          |                  |         |
|                           | N        | IB MB         |       |     |        |      |        |      |        |          |                  |         |
| Analyte                   | Resu     | ult Qualifier |       | RL  | I      | MDL  | Unit   |      | D F    | Prepared | Analyzed         | Dil Fac |
| Alkalinity                | 0.5      | 54 U          |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 08/31/15 15:01   | 1       |
| Bicarbonate Alkalinity    | 0.5      | 54 U          |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 08/31/15 15:01   | 1       |
| Carbonate Alkalinity      | 0.5      | 54 U          |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 08/31/15 15:01   | 1       |
| Hydroxide Alkalinity      | 0.8      | 54 U          |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 08/31/15 15:01   | 1       |
| Lab Sample ID: HLCS 160-2 | 208691/3 |               |       |     |        |      |        | Cli  | ent Sa | mple IC  | : Lab Control S  | Sample  |
| Matrix: Water             |          |               |       |     |        |      |        |      |        |          | Prep Type: To    | otal/NA |
| Analysis Batch: 208691    |          |               |       |     |        |      |        |      |        |          |                  |         |
|                           |          |               | Spike |     | HLCS   | HLC  | s      |      |        |          | %Rec.            |         |
| Analyte                   |          |               | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits           |         |
| Alkalinity                |          |               | 400   |     | 371.0  |      |        | mg/L |        | 93       | 90 - 110         |         |
| Bicarbonate Alkalinity    |          |               | 400   |     | 371.0  |      |        | mg/L |        | 93       | 90 - 110         |         |
| Lab Sample ID: LCS 160-20 | 8691/2   |               |       |     |        |      |        | Cli  | ent Sa | mple IC  | : Lab Control S  | Sample  |
| Matrix: Water             |          |               |       |     |        |      |        |      |        |          | Prep Type: To    | otal/NA |
| Analysis Batch: 208691    |          |               |       |     |        |      |        |      |        |          |                  |         |
|                           |          |               | Spike |     | LCS    | LCS  | 6      |      |        |          | %Rec.            |         |
| Analyte                   |          |               | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits           |         |
| Alkalinity                |          |               | 200   |     | 186.0  |      |        | mg/L |        | 93       | 90 - 110         |         |
| Bicarbonate Alkalinity    |          |               | 200   |     | 186.0  |      |        | mg/L |        | 93       | 90 - 110         |         |
| Lab Sample ID: 160-13527- | A-1 MS   |               |       |     |        |      |        |      | С      | lient Sa | ample ID: Matrix | c Spike |
| Matrix: Water             |          |               |       |     |        |      |        |      |        |          | Prep Type: To    | otal/NA |
| Analysis Batch: 208691    |          |               |       |     |        |      |        |      |        |          |                  |         |
| -                         | Sample S | ample         | Spike |     | MS     | MS   |        |      |        |          | %Rec.            |         |
| Analyte                   | Result C | Qualifier     | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits           |         |
| Alkalinity                | 0.54 U   | J             | 100   |     | 94.00  |      |        | mg/L |        | 94       | 80 - 120         |         |
| Bicarbonate Alkalinity    | 0.54 U   | J             | 100   |     | 94.00  |      |        | mg/L |        | 94       | 80 - 120         |         |

TestAmerica St. Louis

Page 75 of 83

10/7/2015

Client: CH2M Hill Plateau Remediation Company Project/Site: F15-055 TestAmerica Job ID: 160-14750-1 SDG: SL1995

# Method: 6010C - Metals (ICP)

| Lab Sample ID: MB 160-2254       | 414/1-A   |           |            |      |        |      |        |        |     | Clie | ent Samp     | ole ID: Me<br>Brop Typ | thod   | Blank   |
|----------------------------------|-----------|-----------|------------|------|--------|------|--------|--------|-----|------|--------------|------------------------|--------|---------|
| Matrix. Water                    |           |           |            |      |        |      |        |        |     |      |              |                        | e. 10  |         |
| Analysis Batch: 226904           |           |           |            |      |        |      |        |        |     |      |              | Ргер Ва                | cn: 2  | 25414   |
|                                  |           |           |            |      |        |      |        |        | _   | _    |              |                        |        |         |
| Analyte                          | Result    | Qualifier |            | RL   |        | MDL  | Unit   |        | D   | PI   | repared      | Analyze                | a -    | DIIFac  |
| Calcium                          | 54.2      | 2 0       |            | 1000 |        | 54.2 | ug/L   |        |     | 12/0 | 3/15 16:06   | 12/11/15 1             | 8:00   | 1       |
| Magnesium                        | 50.5      | 5 U       |            | 1000 |        | 50.5 | ug/L   |        |     | 12/0 | 3/15 16:06   | 12/11/15 1             | 8:00   | 1       |
| Potassium                        | 456       | 6 U       |            | 5000 |        | 456  | ug/L   |        |     | 12/0 | 3/15 16:06   | 12/11/15 1             | 8:00   | 1       |
| Lab Sample ID: MB 160-2254       | 414/1-A   |           |            |      |        |      |        |        |     | Clie | nt Samp      | ole ID: Me             | thod   | Blank   |
| Matrix: Water                    |           |           |            |      |        |      |        |        |     |      |              | Prep Typ               | e: To  | tal/NA  |
| Analysis Batch: 230096           |           |           |            |      |        |      |        |        |     |      |              | Prep Bat               | ch: 2  | 25414   |
|                                  | MB        | MB        |            |      |        |      |        |        |     |      |              |                        |        |         |
| Analyte                          | Result    | Qualifier |            | RL   | I      | MDL  | Unit   |        | D   | P    | repared      | Analyze                | d      | Dil Fac |
| Sodium                           | 105       | U         |            | 1000 |        | 105  | ug/L   |        | -   | 12/0 | 3/15 16:06   | 12/30/15 1             | 2:13   | 1       |
| <br>  ah Samnle ID: I CS 160-224 | 5414/2-0  |           |            |      |        |      |        | Clie   | ont | Sar  | nnle ID:     | Lab Cont               | rol S  | amnlo   |
| Matrix: Water                    |           |           |            |      |        |      |        | One    |     | oui  |              | Dron Tyn               |        | tal/NA  |
| Applycic Potob: 226004           |           |           |            |      |        |      |        |        |     |      |              | Dron Dol               | c. 10  | 2511A   |
| Analysis Balch. 220904           |           |           | Spiko      |      | 201    | 1.09 |        |        |     |      |              | %Poc                   | .cn. 2 | 23414   |
| Analyta                          |           |           | Addod      |      | Bocult | 0    | lifior | Unit   |     | Б    | % Pag        | l imite                |        |         |
|                                  |           |           | 10000      |      | 10060  | Que  |        |        |     | _    | 110          | <u>20 120</u>          |        |         |
| Magnasium                        |           |           | 10000      |      | 0060   |      |        | ug/L   |     |      | 100          | 00 - 120               |        |         |
| Detereium                        |           |           | 10000      |      | 9960   |      |        | ug/L   |     |      | 100          | 80 - 120               |        |         |
| Potassium                        |           |           | 10000      |      | 9799   |      |        | ug/L   |     |      | 98           | 80 - 120               |        |         |
| Lab Sample ID: LCS 160-225       | 5414/2-A  |           |            |      |        |      |        | Clie   | ent | Sar  | nple ID:     | Lab Cont               | rol S  | ample   |
| Matrix: Water                    |           |           |            |      |        |      |        |        |     |      |              | Prep Typ               | e: To  | tal/NA  |
| Analysis Batch: 230096           |           |           | Spike      |      | LCS    | LCS  | ;      |        |     |      |              | Prep Bat<br>%Rec.      | ch: 2  | 25414   |
| Analyte                          |           |           | Added      |      | Result | Qua  | lifier | Unit   |     | D    | %Rec         | Limits                 |        |         |
| Sodium                           |           |           | 10000      |      | 9758   |      |        | ug/L   |     | _    | 98           | 80 - 120               |        |         |
|                                  | 40 D M0   |           |            |      |        |      |        |        |     |      | is not O and |                        |        | 0       |
| Lab Sample ID: 160-14/70-A       | 13-B M3   |           |            |      |        |      |        |        |     | CI   | ient San     |                        |        | Бріке   |
| Matrix: water                    |           |           |            |      |        |      |        |        |     |      |              | Prep Typ               | e: 10  |         |
| Analysis Batch: 226904           |           |           | <b>•</b> " |      |        |      |        |        |     |      |              | Ргер Ва                | ch: 2  | 25414   |
|                                  | Sample Sa | mple      | Spike      |      | MS     | MS   |        |        |     | _    |              | %Rec.                  |        |         |
| Analyte                          | Result Qu | alifier   | Added      |      | Result | Qua  | lifier | Unit   |     | D    | %Rec         | Limits                 |        |         |
| Calcium                          | 52800     |           | 10000      |      | 64170  |      |        | ug/L   |     |      | 114          | 75 - 125               |        |         |
| Magnesium                        | 11600     |           | 10000      |      | 21900  |      |        | ug/L   |     |      | 103          | 75 - 125               |        |         |
| Potassium                        | 5890      |           | 10000      |      | 15870  |      |        | ug/L   |     |      | 100          | 75 - 125               |        |         |
| Sodium                           | 31400     |           | 10000      |      | 41190  |      |        | ug/L   |     |      | 98           | 75 - 125               |        |         |
| <br>Lab Sample ID: 160-14770-A   | -13-C MSD |           |            |      |        |      |        | Client | Sa  | mp   | le ID: Ma    | atrix Spik             | e Dur  | olicate |
| Matrix: Water                    |           |           |            |      |        |      |        |        |     | 12   |              | Prep Tvp               | e: To  | tal/NA  |
| Analysis Batch: 226904           |           |           |            |      |        |      |        |        |     |      |              | Prep Bat               | ch: 2  | 25414   |
|                                  | Sample Sa | mple      | Spike      |      | MSD    | MSI  | )      |        |     |      |              | %Rec.                  |        | RPD     |
| Analyte                          | Result Qu | alifier   | Added      |      | Result | Qua  | lifier | Unit   |     | D    | %Rec         | Limits                 | RPD    | Limit   |

| Calcium   | 52800 | 10000 | 64560 | ug/L | 118 | 75 - 125 | 1 | 20 |
|-----------|-------|-------|-------|------|-----|----------|---|----|
| Magnesium | 11600 | 10000 | 22020 | ug/L | 104 | 75 - 125 | 1 | 20 |
| Potassium | 5890  | 10000 | 15900 | ug/L | 100 | 75 - 125 | 0 | 20 |
| Sodium    | 31400 | 10000 | 41390 | ug/L | 100 | 75 - 125 | 0 | 20 |
| <b>—</b>  |       |       |       |      |     |          |   |    |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-064 / X15-065

Method: 6010C - Metals (ICP)

TestAmerica Job ID: 160-14872-1 SDG: SL2015

| Method: 6010C - Metals (ICP                     | )         |                          |       |       |             |      |        |            |             |              |              |
|-------------------------------------------------|-----------|--------------------------|-------|-------|-------------|------|--------|------------|-------------|--------------|--------------|
| Lab Sample ID: MB 160-222822/1<br>Matrix: Water | <b>-A</b> |                          |       |       |             |      | C      | lient San  | nple ID: M  | ethod        | Blank        |
| Analysia Pataby 224724                          |           |                          |       |       |             |      |        |            | Brop Br     | pe. 10       | 22022        |
| Analysis Balch: 224721                          |           |                          |       |       |             |      |        |            | Ргер Ба     |              | 22022        |
| Analyto                                         | Po        | ivid ivid<br>scult Quali | fior  | DI    | MDI Unit    |      | п      | Proparod   | Analy       | zod          | Dil Eac      |
|                                                 | INC.      | 54.2 II                  |       | 1000  | 54.2 ug/l   |      |        | /10/15 16· | 16 11/30/15 | <u>08.35</u> | 1            |
| Sodium                                          |           | 105 11                   |       | 1000  | 105 ug/L    |      | 11     | /10/15 16. | 16 11/30/15 | 00.35        | 1            |
|                                                 |           | 105 0                    |       | 1000  | 105 ug/L    |      | 11     | /19/15 10. | 10 11/30/15 | 06.55        | 1            |
| Lab Sample ID: LCS 160-222822/                  | 2-A       |                          |       |       |             | CI   | ient S | ample IC   | ): Lab Cor  | ntrol Sa     | ample        |
| Matrix: Water                                   |           |                          |       |       |             |      |        |            | Prep Ty     | pe: Tot      | tal/NA       |
| Analysis Batch: 224721                          |           |                          |       |       |             |      |        |            | Prep Ba     | atch: 2      | 22822        |
|                                                 |           |                          | Spike | LCS   | S LCS       |      |        |            | %Rec.       |              |              |
| Analyte                                         |           |                          | Added | Resul | t Qualifier | Unit | I      | D %Rec     | Limits      |              | _            |
| Calcium                                         |           |                          | 10000 | 1102  | )           | ug/L |        | 110        | 80 - 120    |              |              |
| Sodium                                          |           |                          | 10000 | 983   | 1           | ug/L |        | 98         | 80 - 120    |              |              |
|                                                 |           |                          |       |       |             |      |        | Clie       | nt Sample   | D: B3        | 32YY4        |
| Matrix: Water                                   |           |                          |       |       |             |      |        |            | Prep Typ    | e: Diss      | olved        |
| Analysis Batch: 224721                          |           |                          |       |       |             |      |        |            | Prep Ba     | atch: 2      | 22822        |
| Sa                                              | mple      | Sample                   | Spike | MS    | S MS        |      |        |            | %Rec.       |              |              |
| Analyte R                                       | lesult    | Qualifier                | Added | Resul | t Qualifier | Unit | I      | D %Rec     | Limits      |              |              |
| Calcium 15                                      | 57000     | D                        | 10000 | 17430 | D           | ug/L |        | 175        | 75 - 125    |              |              |
| Sodium 25                                       | 52000     | D                        | 10000 | 27160 | D           | ug/L |        | 199        | 75 - 125    |              |              |
| _<br>Lab Sample ID: 160-14872-1 MSD             | )         |                          |       |       |             |      |        | Clie       | nt Sample   | D: B3        | <b>32YY4</b> |
| Matrix: Water                                   |           |                          |       |       |             |      |        |            | Prep Tvp    | e: Diss      | olved        |
| Analysis Batch: 224721                          |           |                          |       |       |             |      |        |            | Prep Ba     | atch: 2      | 22822        |
| Sa                                              | mple      | Sample                   | Spike | MSE   | MSD         |      |        |            | %Rec.       |              | RPD          |
| Analyte R                                       | lesult    | Qualifier                | Added | Resul | t Qualifier | Unit | I      | D %Rec     | Limits      | RPD          | Limit        |
| Calcium 15                                      | 57000     | D                        | 10000 | 16730 | D D         | ug/L |        | 105        | 75 - 125    | 4            | 20           |
| Sodium 25                                       | 52000     | D                        | 10000 | 27530 | ) D         | ug/L |        | 236        | 75 - 125    | 1            | 20           |

#### Method: 6020A - Metals (ICP/MS)

| Lab Sample ID: MB 160-2228<br>Matrix: Water<br>Analysis Batch: 224377   | 23/1-A  | MB   | MB        |       |     |        |      |        |       | Cli   | ent San   | nple ID: Method<br>Prep Type: To<br>Prep Batch:  | d Blank<br>otal/NA<br>222823 |
|-------------------------------------------------------------------------|---------|------|-----------|-------|-----|--------|------|--------|-------|-------|-----------|--------------------------------------------------|------------------------------|
| Analyte                                                                 | Re      | sult | Qualifier |       | RL  | I      | MDL  | Unit   | D     | F     | repared   | Analyzed                                         | Dil Fac                      |
| Uranium                                                                 | (       | 0.23 | U         |       | 1.0 |        | 0.23 | ug/L   |       | 11/   | 19/15 16: | 18 11/26/15 01:54                                | 2                            |
| Lab Sample ID: LCS 160-2228<br>Matrix: Water<br>Analysis Batch: 224377  | 823/2-A |      |           |       |     |        |      |        | Clier | ıt Sa | mple IE   | : Lab Control S<br>Prep Type: To<br>Prep Batch:  | Sample<br>otal/NA<br>222823  |
|                                                                         |         |      |           | Spike |     | LCS    | LCS  | ;      |       |       |           | %Rec.                                            |                              |
| Analyte                                                                 |         |      |           | Added |     | Result | Qua  | lifier | Unit  | D     | %Rec      | Limits                                           |                              |
| Uranium                                                                 |         |      |           | 1000  |     | 1007   |      |        | ug/L  |       | 101       | 80 - 120                                         |                              |
| Lab Sample ID: 160-14872-1 I<br>Matrix: Water<br>Analysis Batch: 224377 | MS      |      |           |       |     |        |      |        |       |       | Clie      | nt Sample ID: E<br>Prep Type: Dis<br>Prep Batch: | 332YY4<br>solved<br>222823   |
|                                                                         | Sample  | Sam  | ple       | Spike |     | MS     | MS   |        |       |       |           | %Rec.                                            |                              |
| Analyte                                                                 | Result  | Qual | ifier     | Added |     | Result | Qua  | lifier | Unit  | D     | %Rec      | Limits                                           |                              |
| Uranium                                                                 | 3970    |      |           | 1000  |     | 5139   |      |        | ug/L  |       | 117       | 75 - 125                                         |                              |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-064 / X15-065 TestAmerica Job ID: 160-14872-1 SDG: SL2015

**Client Sample ID: B32YY4** 

Prep Type: Dissolved

# Method: 6020A - Metals (ICP/MS) (Continued) Lab Sample ID: 160-14872-1 MSD Matrix: Water

| Analysis Batch: 224377 |        |           |       |        |           |      |   |      | Prep Ba  | atch: 22 | 22823 |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|
|                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Uranium                | 3970   |           | 1000  | 5200   |           | ug/L |   | 123  | 75 - 125 | 1        | 20    |

## Method: 310.1 - Alkalinity

| _                               |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
|---------------------------------|--------|------|-----------|-------|-----|--------|------|--------|------|--------|----------|-------------|---------|---------|
| Lab Sample ID: MB 160-2228      | 67/1   |      |           |       |     |        |      |        |      | Cli    | ent San  | nple ID: Me | thod    | Blank   |
| Matrix: Water                   |        |      |           |       |     |        |      |        |      |        |          | Prep Typ    | e: Tot  | al/NA   |
| Analysis Batch: 222867          |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
|                                 |        | MB   | MB        |       |     |        |      |        |      |        |          |             |         |         |
| Analyte                         | Re     | sult | Qualifier |       | RL  | I      | MDL  | Unit   |      | D F    | Prepared | Analyze     | əd      | Dil Fac |
| Bicarbonate Alkalinity          | (      | 0.54 | U         |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 11/20/15 0  | 9:17    | 1       |
| Carbonate Alkalinity            | (      | 0.54 | U         |       | 5.0 |        | 0.54 | mg/L   |      |        |          | 11/20/15 0  | 9:17    | 1       |
| Lab Sample ID: HLCS 160-22      | 2867/3 |      |           |       |     |        |      |        | Cli  | ent Sa | mple ID  | ): Lab Cont | trol Sa | ample   |
| Matrix: Water                   |        |      |           |       |     |        |      |        |      |        |          | Prep Typ    | e: Tot  | al/NA   |
| Analysis Batch: 222867          |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
| -                               |        |      |           | Spike |     | HLCS   | HLC  | s      |      |        |          | %Rec.       |         |         |
| Analyte                         |        |      |           | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits      |         |         |
| Bicarbonate Alkalinity          |        |      |           | 400   |     | 370.0  |      |        | mg/L |        | 92       | 90 - 110    |         |         |
| Lab Sample ID: LCS 160-2228     | 367/2  |      |           |       |     |        |      |        | Cli  | ent Sa | mple ID  | ): Lab Cont | trol Sa | ample   |
| Matrix: Water                   |        |      |           |       |     |        |      |        |      |        |          | Prep Typ    | e: Tot  | al/NA   |
| Analysis Batch: 222867          |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
|                                 |        |      |           | Spike |     | LCS    | LCS  | ;      |      |        |          | %Rec.       |         |         |
| Analyte                         |        |      |           | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits      |         |         |
| Bicarbonate Alkalinity          |        |      |           | 200   |     | 187.0  |      |        | mg/L |        | 93       | 90 - 110    |         |         |
|                                 | 5 MS   |      |           |       |     |        |      |        |      | С      | lient Sa | mple ID: N  | latrix  | Spike   |
| Matrix: Water                   |        |      |           |       |     |        |      |        |      |        |          | Prep Typ    | e: Tot  | al/NA   |
| Analysis Batch: 222867          |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
|                                 | Sample | Sam  | ple       | Spike |     | MS     | MS   |        |      |        |          | %Rec.       |         |         |
| Analyte                         | Result | Qual | ifier     | Added |     | Result | Qua  | lifier | Unit | D      | %Rec     | Limits      |         |         |
| Bicarbonate Alkalinity          | 213    |      |           | 100   |     | 306.0  |      |        | mg/L |        | 93       | 80 - 120    |         |         |
| <br>Lab Sample ID: 160-14833-A- | 5 DU   |      |           |       |     |        |      |        |      |        | Client   | Sample ID   | : Dup   | licate  |
| Matrix: Water                   |        |      |           |       |     |        |      |        |      |        |          | Prep Typ    | e: Tot  | al/NA   |
| Analysis Batch: 222867          |        |      |           |       |     |        |      |        |      |        |          |             |         |         |
| -                               | Sample | Sam  | ple       |       |     | DU     | DU   |        |      |        |          |             |         | RPD     |
| Analyte                         | Result | Qual | ifier     |       |     | Result | Qua  | lifier | Unit | D      |          |             | RPD     | Limit   |
| Bicarbonate Alkalinity          | 213    |      |           |       |     | 214.0  |      |        | mg/L |        |          |             | 0.5     | 20      |
| Carbonate Alkalinity            | 0.54   | U    |           |       |     | 0.54   | U    |        | mg/L |        |          |             | NC      | 20      |

Client: CH2M Hill Plateau Remediation Company ProsectjSite: / 1F-0FF

#### Method: 6010C - Metals (ICP)

| Lab Sample ID: MB 160-2277<br>Matrix: Water<br>Analysis Batch: 231720 | 15/1-А<br>мв | МВ        |      |      |      | Client Sample ID: Method Blank<br>Prep Type: Total/NA<br>Prep Batch: 227715 |                |                |         |  |  |
|-----------------------------------------------------------------------|--------------|-----------|------|------|------|-----------------------------------------------------------------------------|----------------|----------------|---------|--|--|
| Analyte                                                               | Result       | Qualifier | RL   | MDL  | Unit | D                                                                           | Prepared       | Analyzed       | Dil Fac |  |  |
| Calcium                                                               | F4.2         | U         | 1000 | F4.2 | ugjL |                                                                             | 12j16j1F 1F:07 | 01j11j16 15:14 | 1       |  |  |
| Magnesium                                                             | F0.F         | U         | 1000 | F0.F | ugjL |                                                                             | 12j16j1F 1F:07 | 01j11j16 15:14 | 1       |  |  |
| Potassium                                                             | 4F6          | U         | F000 | 4F6  | ugjL |                                                                             | 12j16j1F 1F:07 | 01j11j16 15:14 | 1       |  |  |
| Sodium                                                                | 10F          | U         | 1000 | 10F  | ugjL |                                                                             | 12j16j1F 1F:07 | 01j11j16 15:14 | 1       |  |  |

#### Lab Sample ID: LCS 160-227715/2-A **Matrix: Water**

| Analysis Batch: 231720 |       |        |           |      |   |      | Prep Batch: 22771 |
|------------------------|-------|--------|-----------|------|---|------|-------------------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.             |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits            |
| Calcium                | 10000 | 11500  |           | ugjL |   | 115  | 30 - 120          |
| Magnesium              | 10000 | 7802   |           | ugjL |   | 78   | 30 - 120          |
| Potassium              | 10000 | 770F   |           | ugjL |   | 77   | 30 - 120          |
| Sodium                 | 10000 | 7857   |           | ugjL |   | 78   | 30 - 120          |

#### Lab Sample ID: 160-14933-1 MS Matrix: Other Aqueous Sample Analysis Batch: 231720

| Analysis Baton. 201120 |         |           |       |         |           |      |   |      | Thep Bateri. EET To |
|------------------------|---------|-----------|-------|---------|-----------|------|---|------|---------------------|
|                        | Sample  | Sample    | Spike | MS      | MS        |      |   |      | %Rec.               |
| Analyte                | Result  | Qualifier | Added | Result  | Qualifier | Unit | D | %Rec | Limits              |
| Calcium                | 13F00   | ВD        | 10000 | 50550   | B D       | ugjL |   | 113  | 8F - 12F            |
| Magnesium              | 4010    | ВD        | 10000 | 15630   | ВD        | ugjL |   | 78   | 8F - 12F            |
| Potassium              | 1720000 | D         | 10000 | 175F000 | D         | ugjL |   | 15F  | 8F - 12F            |
| Sodium                 | 2200000 | D         | 10000 | 2201000 | D         | uaiL |   | 40   | 8F - 12F            |

#### Lab Sample ID: 160-14933-1 MSD **Matrix: Other Aqueous Sample** Analysis Batch: 231720

| Allalysis Dalcil. 231720 |         |           |       |         |           |      |   |      | гіер Ба  | IIUII. 24 | 2//10 |
|--------------------------|---------|-----------|-------|---------|-----------|------|---|------|----------|-----------|-------|
|                          | Sample  | Sample    | Spike | MSD     | MSD       |      |   |      | %Rec.    |           | RPD   |
| Analyte                  | Result  | Qualifier | Added | Result  | Qualifier | Unit | D | %Rec | Limits   | RPD       | Limit |
| Calcium                  | 13F00   | B D       | 10000 | 27F50   | ВD        | ugjL |   | 110  | 8F - 12F | 5         | 20    |
| Magnesium                | 4010    | ВD        | 10000 | 15030   | ВD        | ugjL |   | 71   | 8F - 12F | 4         | 20    |
| Potassium                | 1720000 | D         | 10000 | 1332000 | D         | ugjL |   | -57F | 8F_12F   | 5         | 20    |
| Sodium                   | 2200000 | D         | 10000 | 21F1000 | D         | ugjL |   | -46F | 8F_12F   | 2         | 20    |

#### Method: 6020A - Metals (ICP/MS)

| Lab Sample ID: MB 160-227718/1-A<br>Matrix: Water<br>Analysis Batch: 230919 |        |           |     |      |      |   | Client Samp   | le ID: Methoc<br>Prep Type: To<br>Prep Batch: : | l Blank<br>otal/NA<br>227718 |
|-----------------------------------------------------------------------------|--------|-----------|-----|------|------|---|---------------|-------------------------------------------------|------------------------------|
|                                                                             | MB     | MB        |     |      |      |   |               |                                                 |                              |
| Analyte                                                                     | Result | Qualifier | RL  | MDL  | Unit | D | Prepared      | Analyzed                                        | Dil Fac                      |
| Uranium                                                                     | 0.25   | U         | 1.0 | 0.25 | ugjL |   | 12j16j1F1F:14 | 01j06j16 17:F0                                  | 2                            |

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

TestAmerica Job ID: 160-14755-1

SDG: SL2025

#### Client Sample ID: B32L56 Prep Type: Total/NA Prep Batch: 227715

| Client Sample ID: B32L56 |  |
|--------------------------|--|
| Prep Type: Total/NA      |  |

# Prep Type: Total/NA Prep Batch: 227715

Client: CH2M Hill Plateau Remediation Company ProsectjSite: / 1F-0FF

TestAmerica Job ID: 160-14755-1 SDG: SL2025

# Method: 6020A - Metals (ICP/MS) (Continued)

| Lab Sample ID: LCS 160-22<br>Matrix: Water<br>Analysis Batch: 230919                                   | 27718/2-A                               |                          | Spike                  | LCS                   | LCS                  | Clier        | nt Sa | mple ID            | : Lab Cor<br>Prep Ty<br>Prep Ba<br>%Rec.                        | ntrol Sa<br>pe: Tot<br>atch: 22 | mple<br>al/NA<br>27718         |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|------------------------|-----------------------|----------------------|--------------|-------|--------------------|-----------------------------------------------------------------|---------------------------------|--------------------------------|
| Analyte                                                                                                |                                         |                          | Added                  | Result                | Qualifier            | Unit         | D     | %Rec               | Limits                                                          |                                 |                                |
| Uranium                                                                                                |                                         |                          | 1000                   | 1008                  |                      | ugjL         |       | 101                | 30 - 120                                                        |                                 |                                |
| Lab Sample ID: 160-14933-<br>Matrix: Other Aqueous Sar<br>Analysis Batch: 230919<br>Analyte<br>Uranium | 1 MS<br>nple<br>Sample<br>Result<br>F.3 | Sample<br>Qualifier<br>U | Spike<br>Added<br>1000 | MS<br>Result<br>76F.7 | MS<br>Qualifier<br>D | Unit<br>ugjL | D     | Clie<br>%Rec<br>78 | nt Sample<br>Prep Typ<br>Prep Ba<br>%Rec.<br>Limits<br>8F - 12F | e ID: B:<br>pe: Tot<br>atch: 2  | 82L56<br>al/NA<br>27718        |
| Lab Sample ID: 160-14933-<br>Matrix: Other Aqueous Sar<br>Analysis Batch: 230919                       | 1 MSD<br>nple<br>Sample                 | Sample                   | Spike                  | MSD                   | MSD                  |              |       | Clie               | nt Sample<br>Prep Ty<br>Prep Ba<br>%Rec.                        | e ID: B3<br>pe: Tot<br>atch: 22 | 82L56<br>al/NA<br>27718<br>RPD |
| Analyte                                                                                                | Result                                  | Qualifier                | Added                  | Result                | Qualifier            | Unit         | D     | %Rec               | Limits                                                          | RPD                             | Limit                          |
| Uranium                                                                                                | F.3                                     | U                        | 1000                   | 7F7.4                 | D                    | ugjL         |       | 76                 | 8F_12F                                                          | 1                               | 20                             |

#### Method: 310.1 - Alkalinity

| Lab Sample ID: MB 160-224347/1<br>Matrix: Water<br>Analysis Batch: 224347   |        |           |       |     |        |     |      |        | Client Sa | mple ID: Method<br>Prep Type: To            | d Blank<br>otal/NA |
|-----------------------------------------------------------------------------|--------|-----------|-------|-----|--------|-----|------|--------|-----------|---------------------------------------------|--------------------|
| · ·····, ··· · ··· ··· ··· ··· ···                                          | MB     | MB        |       |     |        |     |      |        |           |                                             |                    |
| Analyte                                                                     | Result | Qualifier |       | RL  | М      | DL  | Unit | D      | Prepare   | d Analyzed                                  | Dil Fac            |
| Bicarbonate Alkalinity as CaCO5                                             | 0.F4   | U         |       | F.0 | 0      | .F4 | mgjL |        |           | 11j2Fj1F 13:F0                              | 1                  |
| Carbonate Alkalinity as CaCO5                                               | 0.F4   | U         |       | F.0 | 0      | .F4 | mgjL |        |           | 11j2Fj1F 13:F0                              | 1                  |
| Lab Sample ID: HLCS 160-224347/3<br>Matrix: Water<br>Analysis Batch: 224347 | 3      |           | Spike |     | HLCS I | HLC | s    | Client | Sample    | ID: Lab Control S<br>Prep Type: To<br>%Rec. | Sample<br>otal/NA  |

| Analyte                         | Added | Result | Qualifier | Unit   | D   | %Rec    | Limits     |              |
|---------------------------------|-------|--------|-----------|--------|-----|---------|------------|--------------|
| Bicarbonate Alkalinity as CaCO5 | 400   | 588.0  |           | mgjL   | _   | 74      | 70 - 110   |              |
| Lab Sample ID: LCS 160-224347/2 |       |        |           | Client | Saı | mple IC | ): Lab Cor | ntrol Sample |

| Lab Sample ID: LCS 160-224347/2 |       |        |           | Clie | nt Sa | mple ID | : Lab Control Sample |
|---------------------------------|-------|--------|-----------|------|-------|---------|----------------------|
| Matrix: Water                   |       |        |           |      |       |         | Prep Type: Total/NA  |
| Analysis Batch: 224347          |       |        |           |      |       |         |                      |
| -                               | Spike | LCS    | LCS       |      |       |         | %Rec.                |
| Analyte                         | Added | Result | Qualifier | Unit | D     | %Rec    | Limits               |
| Bicarbonate Alkalinity as CaCO5 | 200   | 170.0  |           | mgjL |       | 7F      | 70 - 110             |

# Method: 310.1 - Alkalinity - DL

| Lab Sample ID: 160-14957-<br>Matrix: Water | A-1 MS |           |       |        |           |      | CI | ient Sa | mple ID: M<br>Prep Typ | Matrix Spike<br>be: Total/NA |
|--------------------------------------------|--------|-----------|-------|--------|-----------|------|----|---------|------------------------|------------------------------|
| Analysis Batch: 224347                     | Sampla | Sample    | Spiko | ме     | ме        |      |    |         | % Boo                  |                              |
| Analyto                                    | Bosult | Oualifior | Addod | Posult | Qualifier | Unit | П  | %Pac    | limite                 |                              |
| Bicarbonate Alkalinity as CaCO5<br>- DL    | F60    |           | F01   | 1020   | Quaimer   | mgjL |    | 72      | 30 - 120               |                              |

TestAmerica St. Louis

Page 31 of 64

Date: 10 March 2016
To: CH2M Hill (technical representative)
From: Analytical Quality Associates, Inc.
Project: 300FF5 U SEQUES, CERC15
Subject: General Chemistry - Sample Data Groups (SDGs) SL1897, SL1995, SL2015. SL2023, WC0618, WC0720, WC0722, WC0723 and WC0726

#### **INTRODUCTION**

This memorandum presents the results of data validation for SDGs SL1897, SL1995, SL2015, SL2023, WC0618, WC0720, WC0722, WC0723 and WC0726 prepared by TestAmerica Laboratories, Inc. A list of samples validated along with the analytical methods is provided in the following table.

| Sample ID | Sample Date | Media | Validation | Analytical Methods |
|-----------|-------------|-------|------------|--------------------|
|           |             |       | Level      |                    |
| B32K93    | 08/28/15    | Water | C          | EPA 310.1          |
| B32K95    | 08/28/15    | Water | С          | EPA 310.1          |
| B32K90    | 08/28/15    | Water | С          | EPA 310.1          |
| B32K87    | 08/28/15    | Water | С          | EPA 310.1          |
| B32K84    | 08/28/15    | Water | С          | EPA 310.1          |
| B32K39    | 08/31/15    | Water | С          | EPA 310.1          |
| B32K30    | 08/31/15    | Water | C          | EPA 310.1          |
| B32K33    | 08/31/15    | Water | С          | EPA 310.1          |
| B32K24    | 08/31/15    | Water | С          | EPA 310.1          |
| B32K99    | 08/31/15    | Water | С          | EPA 310.1          |
| B32K36    | 08/31/15    | Water | С          | EPA 310.1          |
| B32K66    | 08/28/15    | Water | C          | EPA 310.1          |
| B32K69    | 08/28/15    | Water | C          | EPA 310.1          |
| B32K72    | 08/28/15    | Water | C          | EPA 310.1          |
| B32K27    | 08/31/15    | Water | C          | EPA 310.1          |
| B32K48    | 09/02/15    | Water | С          | EPA 310.1          |
| B32K51    | 09/02/15    | Water | C          | EPA 310.1          |
| B32K42    | 09/02/15    | Water | C          | EPA 310.1          |
| B32K45    | 09/02/15    | Water | C          | EPA 310.1          |
| B32K60    | 09/02/15    | Water | С          | EPA 310.1          |
| B32K63    | 09/02/15    | Water | C          | EPA 310.1          |
| B32K21    | 09/01/15    | Water | C          | EPA 310.1          |
| B32K18    | 09/01/15    | Water | C          | EPA 310.1          |
| B32KB1    | 09/01/15    | Water | С          | EPA 310.1          |
| B32K97    | 09/01/15    | Water | С          | EPA 310.1          |
| B32K54    | 09/01/15    | Water | С          | EPA 310.1          |
| B32K57    | 09/01/15    | Water | С          | EPA 310.1          |
| B32K78    | 09/01/15    | Water | С          | EPA 310.1          |
| B32K75    | 09/01/15    | Water | С          | EPA 310.1          |

#### Page 32 of 64

| B32K81 | 09/01/15 | Water        | С | EPA 310.1 |
|--------|----------|--------------|---|-----------|
| B32KX9 | 11/09/15 | Other Liquid | С | EPA 310.1 |
| B32L10 | 11/09/15 | Other Liquid | С | EPA 310.1 |
| B32L54 | 11/08/15 | Other Liquid | С | EPA 310.1 |
| B32L04 | 11/07/15 | Other Liquid | С | EPA 310.1 |
| B32L07 | 11/08/15 | Other Liquid | С | EPA 310.1 |
| B32YY5 | 11/14/15 | Water        | С | EPA 310.1 |
| B32YY9 | 11/14/15 | Water        | С | EPA 310.1 |
| B33003 | 11/14/15 | Water        | С | EPA 310.1 |
| B33011 | 11/14/15 | Water        | С | EPA 310.1 |
| B33015 | 11/14/15 | Water        | С | EPA 310.1 |
| B33019 | 11/15/15 | Water        | С | EPA 310.1 |
| B33023 | 11/15/15 | Water        | С | EPA 310.1 |
| B33031 | 11/15/15 | Water        | С | EPA 310.1 |
| B33035 | 11/15/15 | Water        | С | EPA 310.1 |
| B33043 | 11/15/15 | Water        | С | EPA 310.1 |
| B32L56 | 11/18/15 | Other Liquid | С | EPA 310.1 |
| B32KY4 | 11/17/15 | Other Liquid | С | EPA 310.1 |
| B32L57 | 11/18/15 | Other Liquid | С | EPA 300.0 |
| B339X7 | 12/16/15 | Water        | С | EPA 300.0 |
| B339V4 | 12/16/15 | Water        | С | EPA 300.0 |
| B339N8 | 12/16/15 | Water        | С | EPA 300.0 |
| B339V8 | 12/16/15 | Water        | С | EPA 300.0 |
| B339Y0 | 12/16/15 | Water        | С | EPA 300.0 |
| B339N4 | 12/16/15 | Water        | С | EPA 300.0 |
| B339R4 | 12/16/15 | Water        | С | EPA 300.0 |
| B339R0 | 12/16/15 | Water        | С | EPA 300.0 |
| B339L4 | 12/16/15 | Water        | С | EPA 300.0 |
| B339T6 | 12/16/15 | Water        | С | EPA 300.0 |
| B339T2 | 12/16/15 | Water        | С | EPA 300.0 |
| B339V0 | 12/16/15 | Water        | С | EPA 300.0 |
| B339L0 | 12/16/15 | Water        | С | EPA 300.0 |
| B339R8 | 12/16/15 | Water        | С | EPA 300.0 |

Data validation was conducted in accordance with the CHPRC validation statement of work and the Field Instructions for Uranium Sequestration in the 300 Area, SGW-58976, Rev. 0 (SAP). Appendices 1 through 4 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Data Validation Supporting Documentation
- Appendix 4. Additional Documentation Requested by Client

Page 33 of 64

#### DATA QUALITY OBJECTIVES

#### • Holding Times and Sample Preservation

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The holding time requirements are as follows:

- All anions except nitrate, nitrite, and phosphate analysis within 28 days of sample collection
- ▶ Nitrate, nitrite, and phosphate analysis within 48 hours of collection
- > Alkalinity analysis within 14 days of sample collection

Sample preservation requires chilling to <6 degrees Celsius.

The samples were analyzed within the prescribed holding times and properly preserved with the following exceptions.

For SDGs WC0618, WC0720, WC0722, WC0723 and WC0726 the cooler temperatures were >6 degrees Celsius. However, the samples were delivered to the laboratory directly after sampling and data should not be qualified as a result.

#### • Blanks

The blank data results are reviewed to assess the extent of contamination introduced through sampling, sample preparation, and analysis.

#### Laboratory Blanks

All laboratory blank results were acceptable with the following exception.

For SDG SL1879, the alkalinity and bicarbonate alkalinity blank results were > the method detection limit (MDL) but < the reporting limit (RL). The alkalinity and bicarbonate alkalinity results for sample B32K99 were detects < the RLs and should be qualified as non-detects at the RL (2.0 mg/L) and flagged "U." All other sample results were detects > the RL and were not qualified.

#### Trip Blanks

All trip blank results were acceptable with the following exceptions.

For SDG SL1897, alkalinity and bicarbonate alkalinity were detected in trip blank sample B32K99; however the results were further qualified as non-detects.

For SDG WC0720, orthophosphate was detected in trip blank sample B339Y0.

Page 34 of 64

# Field Blanks

No field blanks were submitted for validation.

# **Equipment Blanks**

No equipment blanks were submitted for validation.

• Accuracy

Accuracy is evaluated by reviewing matrix spike sample results and laboratory control sample results. According to the SAP, the matrix spike sample accuracy limits are 75% to 125% and the laboratory control sample accuracy limits are 80% to 120%. The limits for reported analytes not listed in the SAP are specified by the DV procedure.

# Matrix Spike (MS) Samples

All MS recoveries were acceptable with the following exception.

For SDG WC0726, the MS recovery for orthophosphate was < the lower acceptance limit. All orthophosphate sample results were detects and should be qualified as estimates and flagged "J."

# Laboratory Control Samples (LCSs)

All LCS recoveries were acceptable.

# • Precision

Precision is evaluated by reviewing laboratory duplicate sample results, field duplicate sample results, and field split sample results. These QC results provide information on the laboratory reproducibility and whether sampling activities are adequate to acquire consistent sample results. According to the SAP, the relative percent difference (RPD) limits are  $\leq 20\%$ . The RPD limits for reported analytes not listed in the SAP are specified by the DV procedure. When duplicate RPDs exceed the limits and have associated results <5X the reporting limits with difference <1X the required detection limits no precision infraction occurred.

# **Laboratory Duplicate Samples**

All laboratory duplicate results were acceptable.

# Field Duplicate Samples

All field duplicate results were acceptable.

Page 35 of 64

# **Field Split Samples**

No field splits were submitted for validation.

# • Detection Limits

Reported MDLs are compared against the contractually required detection limits (CRDLs) to ensure that laboratory detection limits meet the required criteria.

For SDG SL2023, the alkalinity MDLs were > the requested CRDLs.

# • Completeness

SDGs SL1897, SL1995, SL2015, SL2023, WC0618, WC0720, WC0722, WC0723 and WC0726 were submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

# **MAJOR DEFICIENCIES**

None found.

# MINOR DEFICIENCIES

There were minor deficiencies leading to qualification of sample results as estimates due to blank contamination and low matrix spike recovery. See the table in Appendix 2 for a listing of all affected sample results.

It should be noted that the laboratory did not sign the "received by" field of the Chain-of-Custody for sample B32K69

# **REFERENCES**

GRP-GD-003, Rev. 1, Change 0, Data Validation for Chemical Analyses, July 2012.

SGW-58976, Rev. 0, Field Instructions for Uranium Sequestration in 300 Area, July 2015.

Page 36 of 64

Appendix 1

**Glossary of Data Reporting Qualifiers** 

#### Page 37 of 64

Qualifiers that may be applied by data validators in compliance with the CHPRC statement of work are as follows:

- U The constituent was analyzed for, but was not detected. The data should be considered usable for decision-making purposes.
- UJ The constituent was analyzed for and was not detected. Due to a quality control deficiency identified during data validation the value reported may not accurately reflect the RL. The data should be considered usable for decision-making purposes.
- **J** Indicates the constituent was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- J+ Indicates the constituent was analyzed for and detected. The associated value is estimated with a suspected positive bias due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- J- Indicates the constituent was analyzed for and detected. The associated value is estimated with a suspected negative bias due to a quality control deficiency identified during data validation. The data should be considered usable for decision-making purposes.
- N- The analysis indicates the presence of an analyte that has been tentatively identified.
- **NJ** The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- **NJ**+ The analysis indicates the presence of an analyte that has been tentatively identified. The associated value is estimated with a suspected positive bias due to a quality control deficiency identified during data validation.
- NJ- The analysis indicates the presence of an analyte that has been tentatively identified. The associated value is estimated with a suspected negative bias due to a quality control deficiency identified during data validation.
- UR Indicates the constituent was analyzed for and not detected; however, due to an identified quality control deficiency the data should be considered unusable for decision-making purposes.
- **R** Indicates the constituent was analyzed for and detected; however, due to an identified quality control deficiency the data should be considered unusable for decision-making purposes.
Page 38 of 64

Appendix 2

**Summary of Data Qualification** 

Page 39 of 64

| General Chemistry Data Qualification Summary                                             |               |                                     |                               |
|------------------------------------------------------------------------------------------|---------------|-------------------------------------|-------------------------------|
| SDGs: SL1897,<br>SL1995, SL2015,<br>SL2023, WC0618,<br>WC0720, WC0722,<br>WC0723, WC0726 | Reviewer: AQA | Project: 300FF5 U<br>SEQUES, CERC15 | Page 1 of 1                   |
| Analyte(s)                                                                               | Qualifier     | Samples Affected                    | Reason                        |
| Alkalinity,<br>Bicarbonate Alkalinity                                                    | 2.0U          | B32K99                              | Method blank<br>contamination |
|                                                                                          | Ŧ             |                                     | Low matrix spike              |

Comments: None

Page 40 of 64

Appendix 3

**Data Validation Supporting Documentation** 

Page 41 of 64

Rev. 1, Chg. 0

### **GRP-GD-003**

Page 398 of 418

# Data Validation for Chemical Analyses

Published Date: 07/31/12

SGRP-GD-SMP-50117

Effective Date: 07/31/12

| VALIDATION<br>LEVEL:                                                                     | А                                                                                                                                                                        | В                      | С                         | D                                  | E                                |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|------------------------------------|----------------------------------|
| PROJECT: 300                                                                             | FF5 U SEQUES,                                                                                                                                                            | CERC15                 | DATA PACKAG               | E: VSR16-003                       |                                  |
| VALIDATOR: Ey                                                                            | /da Hergenreder                                                                                                                                                          | LAB: TestAmer          | DATE: 03/10/16            |                                    |                                  |
|                                                                                          |                                                                                                                                                                          |                        | SDG: SL1897, S<br>WC0720, | SL1995, SL2015, S<br>WC0722, WC072 | SL2023, WC0618<br>3, WC0726      |
|                                                                                          |                                                                                                                                                                          | ANALYSES F             | PERFORMED                 |                                    |                                  |
| Anions/IC<br>X                                                                           | тос                                                                                                                                                                      | тох                    | TPH-418.1                 | Oil and<br>Grease                  | Alkalinity<br>X                  |
| Ammonia                                                                                  | BOD/COD                                                                                                                                                                  | Chloride               | Chromium-VI               | рН                                 | NO <sub>3</sub> /NO <sub>2</sub> |
| Sulfate                                                                                  | TDS                                                                                                                                                                      | TKN                    | Phosphate                 |                                    |                                  |
|                                                                                          |                                                                                                                                                                          |                        |                           |                                    |                                  |
| SAMPLES/MAT                                                                              | RIX Water                                                                                                                                                                |                        |                           |                                    |                                  |
| SL1897: B32                                                                              | (93, B32K95, B32                                                                                                                                                         | K90, B32K87, B3        | 2K84, B32K39, B           | 32K30, B32K33, E                   | 332K24, B32K99,                  |
| B32P                                                                                     | <u>(36, B32K66, B32</u>                                                                                                                                                  | <u>K69, B32K72, B3</u> | <u>2K27, B32K48, B</u>    | <u>32K51, B32K42, I</u>            | <u>B32K45, B32K60,</u>           |
| B326<br>SL2015: B32                                                                      | B32K63, B32K21, B32K18, B32KB1, B32K97, B32K54, B32K57, B32K78, B32K75, B32K81<br>SL2015: B32YY5, B32YY9, B33003, B33011, B33015, B33019, B33023, B33031, B33035, B33043 |                        |                           |                                    |                                  |
| WC0720: B339X7, B339V4, B339N8, B339V8, B339Y0, B339N4<br>WC0722: B339R4, B339R0, B339L4 |                                                                                                                                                                          |                        |                           |                                    |                                  |
| WC0723: B3                                                                               | 39T6, B339T2, B3                                                                                                                                                         | 339V0                  |                           |                                    |                                  |
| Other Liquid                                                                             |                                                                                                                                                                          |                        |                           |                                    |                                  |
| SI 1005. B324                                                                            | (X0 B321 10 B32                                                                                                                                                          | 154 B32104 B32         | 21.07                     |                                    |                                  |
| 3L1995. D32KA9, D32L10, D32L04, D32L04, D32L07                                           |                                                                                                                                                                          |                        |                           |                                    |                                  |

SL2023: B32L56, B33KY4

WC0618: B32L57

### 1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

Comments:

SDG SL1897: Received by was not completed on the COC for sample B32K69

Before each use, ensure this copy is the most current version.

Page 42 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 399 of 418

**Data Validation for Chemical Analyses** 

Published Date: 07/31/12 SGRP-GD-SMP-50117 Effective Date: 07/31/12

### 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E)

| Initial calibrations performed on all instruments?Yes | No | N/A |
|-------------------------------------------------------|----|-----|
| Initial calibrations acceptable?Yes                   | No | N/A |
| ICV and CCV checks performed on all instruments?      | No | N/A |
| ICV and CCV checks acceptable?Yes                     | No | N/A |
| Standards traceable?Yes                               | No | N/A |
| Standards expired?Yes                                 | No | N/A |
| Calculation check acceptable?Yes                      | No | N/A |
| Comments:                                             |    |     |

Commento.

### 3. BLANKS (Levels B, C, D, and E)

| ICB and CCB checks performed for all applicable analyses? (Levels D, E)Yes | No | N/A |
|----------------------------------------------------------------------------|----|-----|
| ICB and CCB results acceptable? (Levels D, E)Yes                           | No | N/A |
| Laboratory blanks analyzed?Yes                                             | No | N/A |
| Laboratory blank results acceptable?Yes                                    | No | N/A |
| Field blanks analyzed? (Levels C, D, E)Yes                                 | No | N/A |
| Field blank results acceptable? (Levels C, D, E)Yes                        | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes                         | No | N/A |
| Comments:                                                                  |    |     |

SL1879: MB batch 209347 alkalinity and bicarbonate alkalinity 0.50 mg/L SL1879: trip blank sample B32K99: alkalinity and bicarbonate alkalinity 0.50 mg/L WC0720: trip blank sample B339Y0: orthophosphate 0.33 mg/L

Before each use, ensure this copy is the most current version.

Page 43 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 400 of 418

**Data Validation for Chemical Analyses** 

| Published Date: | 07/31/12 | SGRP-GD-SMP-50117 | Effective Date: | 07/31/12 |
|-----------------|----------|-------------------|-----------------|----------|
|                 |          |                   |                 |          |

### 4. ACCURACY (Levels C, D, and E)

| Spike samples analyzed?Yes                         | No | N/A |
|----------------------------------------------------|----|-----|
| Spike recoveries acceptable?Yes                    | No | N/A |
| Spike standards NIST traceable? (Levels D, E)Yes   | No | N/A |
| Spike standards expired? (Levels D, E)Yes          | No | N/A |
| LCS/BSS samples analyzed?Yes                       | No | N/A |
| LCS/BSS results acceptable?Yes                     | No | N/A |
| Standards traceable? (Levels D, E)Yes              | No | N/A |
| Standards expired? (Levels D, E)Yes                | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes | No | N/A |
| Performance audit sample(s) analyzed?Yes           | No | N/A |
| Performance audit sample results acceptable?Yes    | No | N/A |
| Comments:                                          |    |     |

WC0726: Orthophosphate MS 40%

Page 44 of 64

Rev. 1, Chg. 0

# GRP-GD-003

Page 401 of 418

**Data Validation for Chemical Analyses** 

| Published Date: 07 | //31/12 S | GRP-GD-SMP-50117 | Effective Date: | 07/31/12 |
|--------------------|-----------|------------------|-----------------|----------|
|                    |           |                  |                 |          |

### 5. PRECISION (Levels C, D, and E)

| Duplicate RPD values acceptable?                                | No | N/A |
|-----------------------------------------------------------------|----|-----|
| Duplicate results acceptable?Yes                                | No | N/A |
| MS/MSD standards NIST traceable? (Levels D, E)Yes               | No | N/A |
| MS/MSD standards expired? (Levels D, E)Yes                      | No | N/A |
| LCS/LCSD duplicates run due to insufficient sample material?Yes | No | N/A |
| Field duplicate RPD values acceptable?Yes                       | No | N/A |
| Field split RPD values acceptable?                              | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes              | No | N/A |
|                                                                 |    |     |

Comments:

### 6. HOLDING TIMES (all levels)

| Samples properly preserved?Yes                                          | No | N/A |  |  |
|-------------------------------------------------------------------------|----|-----|--|--|
| Sample holding times acceptable?                                        | No | N/A |  |  |
| Comments:                                                               |    |     |  |  |
| SDG WC0618: Cooler temperature upon receipt at the laboratory was 14.5C |    |     |  |  |
| SDG WC0720: Cooler temperature upon receipt at the laboratory was 11.3C |    |     |  |  |
| SDG WC0722: Cooler temperature upon receipt at the laboratory was 13.3C |    |     |  |  |
| SDG WC0723: Cooler temperature upon receipt at the laboratory was 15.4C |    |     |  |  |
| SDG WC0726: Cooler temperature upon receipt at the laboratory was 8.4C  |    |     |  |  |

Before each use, ensure this copy is the most current version.

Page 45 of 64

Rev. 1, Chg. 0

# **GRP-GD-003**

Page 402 of 418

**Data Validation for Chemical Analyses** 

Published Date: 07/31/12 SGRP-GD-SMP-50117 Effective Date: 07/31/12

### 7. RESULT QUANTITATION AND DETECTION LIMITS (all levels)

| Results reported for all requested analyses?Yes     | No | N/A |
|-----------------------------------------------------|----|-----|
| Results supported in the raw data? (Levels D, E)Yes | No | N/A |
| Samples properly prepared? (Levels D, E)Yes         | No | N/A |
| Detection limits meet RDL?                          | No | N/A |
| Transcription/calculation errors? (Levels D, E)Yes  | No | N/A |

Comments:

SDG SL2023: Alkalinity MDL >requested DL.

| Before each use, | ensure this copy is | s the most current version. |
|------------------|---------------------|-----------------------------|

Page 46 of 64

|                 |          | Page 46 of 64              |                          |
|-----------------|----------|----------------------------|--------------------------|
| Rev. 1, Chg. 0  |          | GRP-GD-003                 | Page 403 of 418          |
|                 | Data V   | alidation for Chemical Ana | lyses                    |
| Published Date: | 07/31/12 | SGRP-GD-SMP-50117          | Effective Date: 07/31/12 |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |
|                 |          |                            |                          |

Page 47 of 64

Appendix 4

Additional Documentation Requested By Client

# QC Staniple Results

| Client: CH2M Hill Plateau Ren<br>Project/Site: X15-055 | nediation C | omp  | any       |            |     |        |      |        |      | Te     | stAı | nerio | ca Job ID: ´<br>Si      | 160-13<br>DG: SI | 589-1<br>L1897  |
|--------------------------------------------------------|-------------|------|-----------|------------|-----|--------|------|--------|------|--------|------|-------|-------------------------|------------------|-----------------|
| Lab Sample ID: 160-13655-<br>Matrix: Water             | 1 MSD       |      |           |            |     |        |      |        |      |        |      | Clie  | nt Sample<br>Prep Typ   | ID: B3<br>e: Tot | 32K48<br>al/NA  |
| Analysis Batch: 211967                                 | Sampla      | Sam  | nla       | Spiko      |     | Men    | мег  | •      |      |        |      |       | Prep Ba                 | tch: 2           | 10928           |
| Analyto                                                | Bosult      | Oua  | lifior    | Addod      |     | Posult |      | lifior | Unit | п      | 0/   | Pac   | /onec.                  | חסס              | Limit           |
|                                                        | 32.2        | Qua  |           | 1000       |     | 1060   | Qua  | inter  |      |        | /0   | 103   | 75 125                  | 3                | 20              |
| Granium                                                | 52.2        |      |           | 1000       |     | 1000   |      |        | ug/L |        |      | 105   | 75-125                  | 5                | 20              |
| Method: 310.1 - Alkalini                               | ty          |      |           |            |     |        |      |        |      |        |      |       |                         |                  |                 |
| Lab Sample ID: MB 160-208<br>Matrix: Water             | 3691/1      |      |           |            |     |        |      |        |      | Cli    | ent  | Sam   | nple ID: Me<br>Prep Typ | ethod<br>e: Tot  | Blank<br>:al/NA |
| Analysis Batch: 208691                                 |             |      |           |            |     |        |      |        |      |        |      |       |                         |                  |                 |
|                                                        | _           | MB   | MB        |            |     |        |      |        |      |        | _    |       |                         | _                |                 |
| Analyte                                                | Re          | sult | Qualifier |            | RL  |        | MDL  | Unit   |      | D      | Prep | ared  | Analyz                  | ed               | Dil Fac         |
| Alkalinity                                             |             | 0.54 | U         |            | 5.0 |        | 0.54 | mg/L   |      |        |      |       | 08/31/15 1              | 15:01            | 1               |
| Bicarbonate Alkalinity                                 |             | 0.54 | U         |            | 5.0 |        | 0.54 | mg/L   |      |        |      |       | 08/31/15 1              | 15:01            | 1               |
| Carbonate Alkalinity                                   |             | 0.54 | U         |            | 5.0 |        | 0.54 | mg/L   |      |        |      |       | 08/31/15 1              | 15:01            | 1               |
| Hydroxide Alkalinity                                   |             | 0.54 | U         |            | 5.0 |        | 0.54 | mg/L   |      |        |      |       | 08/31/15 1              | 15:01            | 1               |
| Lab Sample ID: HLCS 160-2                              | 208691/3    |      |           |            |     |        |      |        | Clie | ent Sa | mp   | le ID | : Lab Con               | trol Sa          | ample           |
| Matrix: Water                                          |             |      |           |            |     |        |      |        |      |        | -    |       | Prep Typ                | e: Tot           | al/NA           |
| Analysis Batch: 208691                                 |             |      |           |            |     |        |      |        |      |        |      |       |                         |                  |                 |
|                                                        |             |      |           | Spike      |     | HLCS   | HLC  | s      |      |        |      |       | %Rec.                   |                  |                 |
| Analyte                                                |             |      |           | Added      |     | Result | Qua  | lifier | Unit | D      | %    | Rec   | Limits                  |                  |                 |
| Alkalinity                                             |             |      |           | 400        |     | 371.0  |      |        | mg/L |        |      | 93    | 90 - 110                |                  |                 |
| Bicarbonate Alkalinity                                 |             |      |           | 400        |     | 371.0  |      |        | mg/L |        |      | 93    | 90 - 110                |                  |                 |
|                                                        | 0004/0      |      |           |            |     |        |      |        | 01   |        |      |       |                         |                  |                 |
| Lab Sample ID: LCS 160-20                              | 18691/2     |      |           |            |     |        |      |        | Clie | ent Sa | imp  |       | : Lab Con               |                  | ampie           |
| Matrix: water                                          |             |      |           |            |     |        |      |        |      |        |      |       | Prep Typ                | e: 101           | al/NA           |
| Analysis Batch: 208691                                 |             |      |           | <b>•</b> " |     |        |      |        |      |        |      |       |                         |                  |                 |
|                                                        |             |      |           | Spike      |     | LCS    | LCS  |        |      | _      |      | _     | %Rec.                   |                  |                 |
| Analyte                                                |             |      |           | Added      |     | Result | Qua  | lifier | Unit | D      | %    | Rec   | Limits                  |                  |                 |
| Alkalinity                                             |             |      |           | 200        |     | 186.0  |      |        | mg/L |        |      | 93    | 90 - 110                |                  |                 |
| Bicarbonate Alkalinity                                 |             |      |           | 200        |     | 186.0  |      |        | mg/L |        |      | 93    | 90 - 110                |                  |                 |
| Lab Sample ID: 160-13527-                              | A-1 MS      |      |           |            |     |        |      |        |      | С      | lier | nt Sa | mple ID: N              | latrix           | Spike           |
| Matrix: Water                                          |             |      |           |            |     |        |      |        |      |        |      |       | Prep Typ                | e: Tot           | al/NA           |
| Analysis Batch: 208691                                 | <b>.</b> .  | _    |           |            |     |        |      |        |      |        |      |       | ~ -                     |                  |                 |
|                                                        | Sample      | Sam  | ple       | Spike      |     | MS     | MS   |        |      | _      |      |       | %Rec.                   |                  |                 |
| Analyte                                                | Result      | Qua  | lifier    | Added      |     | Result | Qua  | lifier | Unit | D      | %    | Rec   | Limits                  |                  |                 |
| Alkalinity                                             | 0.54        | U    |           | 100        |     | 94.00  |      |        | mg/L |        |      | 94    | 80 - 120                |                  |                 |
| Bicarbonate Alkalinity                                 | 0.54        | U    |           | 100        |     | 94.00  |      |        | mg/L |        |      | 94    | 80 - 120                |                  |                 |
| Lab Sample ID: 160-13527-                              | A-1 DU      |      |           |            |     |        |      |        |      |        | С    | lient | Sample ID               | ): Dup           | licate          |
| Matrix: Water                                          |             |      |           |            |     |        |      |        |      |        |      |       | Prep Typ                | e: Tot           | al/NA           |
| Analysis Batch: 208691                                 |             |      |           |            |     |        |      |        |      |        |      |       |                         |                  |                 |
| -                                                      | Sample      | Sam  | ple       |            |     | DU     | DU   |        |      |        |      |       |                         |                  | RPD             |
| Analyte                                                | Result      | Qua  | lifier    |            |     | Result | Qua  | lifier | Unit | D      |      |       |                         | RPD              | Limit           |
| Alkalinity                                             | 0.54        | U    |           |            |     | 0.54   | U    |        | mg/L |        |      |       |                         | NC               | 20              |
| Bicarbonate Alkalinity                                 | 0.54        | U    |           |            |     | 0.54   | U    |        | mg/L |        |      |       |                         | NC               | 20              |
| Carbonate Alkalinity                                   | 0.54        | U    |           |            |     | 0.54   | U    |        | mg/L |        |      |       |                         | NC               | 20              |
| Hydroxide Alkalinity                                   | 0.54        | U    |           |            |     | 0.54   | U    |        | mg/L |        |      |       |                         | NC               | 20              |
|                                                        |             |      |           |            |     |        |      |        | -    |        |      |       |                         |                  |                 |

TestAmerica St. Louis

# QC Stahiple Results

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055 TestAmerica Job ID: 160-13589-1 SDG: SL1897

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Client Sample ID: B32K39

Client Sample ID: B32K39

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

### Method: 310.1 - Alkalinity (Continued)

| Lab Sample ID: MB 160-209347/1<br>Matrix: Water |        |           |     |      |      |        | Client Sam | ple ID: Method<br>Prep Type: To | l Blank<br>otal/NA |
|-------------------------------------------------|--------|-----------|-----|------|------|--------|------------|---------------------------------|--------------------|
| Analysis Batch. 209347                          | МВ     | МВ        |     |      |      |        |            |                                 |                    |
| Analyte                                         | Result | Qualifier | RL  | MDL  | Unit | D      | Prepared   | Analyzed                        | Dil Fac            |
| Alkalinity                                      | 0.500  | B         | 2.0 | 0.22 | mg/L |        |            | 09/03/15 12:47                  | 1                  |
| Bicarbonate Alkalinity                          | 0.500  | В         | 2.0 | 0.22 | mg/L |        |            | 09/03/15 12:47                  | 1                  |
| Carbonate Alkalinity                            | 0.22   | U         | 2.0 | 0.22 | mg/L |        |            | 09/03/15 12:47                  | 1                  |
| Hydroxide Alkalinity                            | 0.22   | U         | 2.0 | 0.22 | mg/L |        |            | 09/03/15 12:47                  | 1                  |
| Lab Sample ID: HLCS 160-209347                  | /3     |           |     |      |      | Client | Sample ID: | : Lab Control S                 | Sample             |
| Matrix: Water                                   |        |           |     |      |      |        |            | Prep Type: To                   | otal/NA            |

### Analysis Batch: 209347

| -                      | Spike | HLCS   | HLCS      |      |   |      | %Rec.    |  |
|------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Alkalinity             | 400   | 374.0  |           | mg/L |   | 93   | 90 - 110 |  |
| Bicarbonate Alkalinity | 400   | 374.0  |           | mg/L |   | 93   | 90 - 110 |  |

### Lab Sample ID: LCS 160-209347/2 Matrix: Water Analysis Batch: 209347

| -                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |      |
|------------------------|-------|--------|-----------|------|---|------|----------|------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |      |
| Alkalinity             | 200   | 188.0  |           | mg/L |   | 94   | 90 - 110 | <br> |
| Bicarbonate Alkalinity | 200   | 188.0  |           | mg/L |   | 94   | 90 - 110 |      |

### Lab Sample ID: 160-13602-1 MS

Matrix: Water

| Analysis Datch. 200047 | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |      |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |      |
| Alkalinity             | 126    |           | 100   | 207.0  |           | mg/L |   | 81   | 80 - 120 | <br> |
| Bicarbonate Alkalinity | 126    |           | 100   | 207.0  |           | mg/L |   | 81   | 80 - 120 |      |

### Lab Sample ID: 160-13602-1 DU Matrix: Water

| Analysis Batch: 209347 |        |           |      |              |      |   |       |       |
|------------------------|--------|-----------|------|--------------|------|---|-------|-------|
| -                      | Sample | Sample    | C    | U DU         |      |   |       | RPD   |
| Analyte                | Result | Qualifier | Resu | It Qualifier | Unit | D | RPD   | Limit |
| Alkalinity             | 126    |           | 126  | 0            | mg/L |   | <br>0 | 20    |
| Bicarbonate Alkalinity | 126    |           | 126  | 0            | mg/L |   | 0     | 20    |
| Carbonate Alkalinity   | 0.22   | U         | 0.2  | 2 U          | mg/L |   | NC    | 20    |
| Hydroxide Alkalinity   | 0.22   | U         | 0.2  | 2 U          | mg/L |   | NC    | 20    |

### Lab Sample ID: MB 160-210949/1 Matrix: Water Analysis Batch: 210949

| -                      | MB     | MB        |     |      |      |   |          |                |         |
|------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity             | 0.54   | U         | 5.0 | 0.54 | mg/L |   |          | 09/14/15 13:04 | 1       |
| Bicarbonate Alkalinity | 0.54   | U         | 5.0 | 0.54 | mg/L |   |          | 09/14/15 13:04 | 1       |
| Carbonate Alkalinity   | 0.54   | U         | 5.0 | 0.54 | mg/L |   |          | 09/14/15 13:04 | 1       |
| Hydroxide Alkalinity   | 0.54   | U         | 5.0 | 0.54 | mg/L |   |          | 09/14/15 13:04 | 1       |

TestAmerica St. Louis

# QC Sample Results

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-055

TestAmerica Job ID: 160-13589-1 SDG: SL1897

| Method: 310.1 - Alkalin                   | ity (Conti | nued)     |       |        |           |        |          |              |                                  |                 |
|-------------------------------------------|------------|-----------|-------|--------|-----------|--------|----------|--------------|----------------------------------|-----------------|
| Lab Sample ID: HLCS 160-<br>Matrix: Water | -210949/3  |           |       |        |           | Clie   | nt Sar   | nple ID      | : Lab Control S<br>Prep Type: To | ample<br>tal/NA |
| Analysis Batch: 210949                    |            |           |       |        |           |        |          |              |                                  |                 |
|                                           |            |           | Spike | HLCS   | HLCS      |        | _        | a/ <b>B</b>  | %Rec.                            |                 |
| Analyte                                   |            |           | Added | Result | Qualifier | Unit   | D        | %Rec         |                                  |                 |
| Aikalinity                                |            |           | 400   | 374.0  |           | mg/L   |          | 93           | 90 - 110                         |                 |
| Bicarbonate Alkalinity                    |            |           | 400   | 374.0  |           | mg/L   |          | 93           | 90 - 110                         |                 |
| Lab Sample ID: LCS 160-2                  | 10949/2    |           |       |        |           | Clie   | nt Sar   | nple ID      | : Lab Control S                  | ample           |
| Matrix: Water                             |            |           |       |        |           |        |          |              | Prep Type: To                    | tal/NA          |
| Analysis Batch: 210949                    |            |           |       |        |           |        |          |              |                                  |                 |
| -                                         |            |           | Spike | LCS    | LCS       |        |          |              | %Rec.                            |                 |
| Analyte                                   |            |           | Added | Result | Qualifier | Unit   | D        | %Rec         | Limits                           |                 |
| Alkalinity                                |            |           | 200   | 186.0  |           | mg/L   |          | 93           | 90 - 110                         |                 |
| Bicarbonate Alkalinity                    |            |           | 200   | 186.0  |           | mg/L   |          | 93           | 90 - 110                         |                 |
| Lab Sample ID: 160-13655                  | -1 MS      |           |       |        |           |        |          | Clie         | nt Sample ID: B                  | 32K48           |
| Matrix: Water                             | 1 1110     |           |       |        |           |        |          | <b>O</b> IIO | Pren Type: To                    | tal/NΔ          |
| Analysis Batch: 210949                    |            |           |       |        |           |        |          |              |                                  |                 |
| Analysis Baton. 210040                    | Sample     | Sample    | Spike | MS     | MS        |        |          |              | %Rec.                            |                 |
| Analyte                                   | Result     | Qualifier | Added | Result | Qualifier | Unit   | D        | %Rec         | Limits                           |                 |
| Alkalinity                                | 126        |           | 100   | 212.0  |           | ma/L   |          | 86           | 80 - 120                         |                 |
| Bicarbonate Alkalinity                    | 126        |           | 100   | 212.0  |           | mg/L   |          | 86           | 80 - 120                         |                 |
|                                           | 4 DU       |           |       |        |           |        |          | 0            |                                  | 001/ 40         |
| Lab Sample ID: 160-13655                  | -1 D0      |           |       |        |           |        |          | Cile         | nt Sample ID: B                  | 52 <b>1</b> .40 |
| Matrix: water                             |            |           |       |        |           |        |          |              | Prep Type: To                    | tai/NA          |
| Analysis Batch: 210949                    | Commis     | Comula    |       | DU     | DU        |        |          |              |                                  | 000             |
| Analyta                                   | Sample     | Sample    |       | DU     | DU        | l lait | <b>P</b> |              | 000                              | RPD<br>Limit    |
| Allelisite                                |            | Quaimer   |       |        | Quaimer   | Unit   |          |              |                                  |                 |
| Aikaimity                                 | 126        |           |       | 124.0  |           | mg/L   |          |              | 2                                | 20              |
| Bicarbonate Alkalinity                    | 126        |           |       | 124.0  |           | mg/L   |          |              | 2                                | 20              |
| Carbonate Alkalinity                      | 0.54       | U         |       | 0.54   | U         | mg/L   |          |              | NC                               | 20              |

0.54 U

mg/L

0.54 U

Hydroxide Alkalinity

TestAmerica St. Louis

NC

Client: CH2M Hill Plateau Remediation Company Project/Site: F15-055 TestAmerica Job ID: 160-14750-1 SDG: SL1995

# Method: 310.1 - Alkalinity

| Lab Sample ID: MB 160-221275/1<br>Matrix: Water<br>Analysis Batch: 221275  |        |           |       |     |        |      |        |      | C   | Clie | ent Sam | ple ID: Metho<br>Prep Type: 1 | od E<br>Fota | Blank<br>al/NA  |
|----------------------------------------------------------------------------|--------|-----------|-------|-----|--------|------|--------|------|-----|------|---------|-------------------------------|--------------|-----------------|
|                                                                            | MB     | MB        |       |     |        |      |        |      |     |      |         |                               |              |                 |
| Analyte R                                                                  | lesult | Qualifier |       | RL  | I      | MDL  | Unit   |      | D   | P    | repared | Analyzed                      | 0            | Dil Fac         |
| Bicarbonate Alkalinity as CaCO3                                            | 0.54   | U         |       | 5.0 |        | 0.54 | mg/L   |      |     |      |         | 11/11/15 07:28                | 3            | 1               |
| Carbonate Alkalinity as CaCO3                                              | 0.54   | U         |       | 5.0 |        | 0.54 | mg/L   |      |     |      |         | 11/11/15 07:28                | 3            | 1               |
| Lab Sample ID: HLCS 160-221275/3                                           |        |           |       |     |        |      |        | Cli  | ent | Sar  | nple ID | : Lab Control                 | Sa           | mple            |
| Matrix: Water                                                              |        |           |       |     |        |      |        |      |     |      |         | Prep Type: 1                  | Tota         | al/NA           |
| Analysis Batch: 221275                                                     |        |           |       |     |        |      |        |      |     |      |         |                               |              |                 |
|                                                                            |        |           | Spike |     | HLCS   | HLC  | S      |      |     |      |         | %Rec.                         |              |                 |
| Analyte                                                                    |        |           | Added |     | Result | Qua  | lifier | Unit |     | D    | %Rec    | Limits                        |              |                 |
| Bicarbonate Alkalinity as CaCO3                                            |        |           | 400   |     | 372.0  |      |        | mg/L |     |      | 93      | 90 - 110                      |              |                 |
| Lab Sample ID: LCS 160-221275/2<br>Matrix: Water<br>Analysis Batch: 221275 |        |           |       |     |        |      |        | Cli  | ent | Sar  | nple ID | : Lab Control<br>Prep Type: 1 | Sa<br>Fota   | mple<br>al/NA   |
|                                                                            |        |           | Spike |     | LCS    | LCS  | ;      |      |     |      |         | %Rec.                         |              |                 |
| Analyte                                                                    |        |           | Added |     | Result | Qua  | lifier | Unit |     | D    | %Rec    | Limits                        |              |                 |
| Bicarbonate Alkalinity as CaCO3                                            |        |           | 200   |     | 188.0  |      |        | mg/L |     | _    | 94      | 90 - 110                      |              |                 |
| Lab Sample ID: 160-14714-A-2 MS<br>Matrix: Water                           |        |           |       |     |        |      |        |      |     | CI   | ient Sa | mple ID: Matr<br>Prep Type: ∃ | ix S<br>Tota | Spike<br>al/NA  |
| Sample                                                                     | San    | nple      | Spike |     | MS     | MS   |        |      |     |      |         | %Rec.                         |              |                 |
| Analyte Result                                                             | t Qua  | alifier   | Added |     | Result | Qua  | lifier | Unit |     | D    | %Rec    | Limits                        |              |                 |
| Bicarbonate Alkalinity as CaCO3 124                                        | 1      |           | 100   |     | 216.0  |      |        | mg/L |     | -    | 92      | 80 - 120                      |              |                 |
| Lab Sample ID: 160-14714-A-2 DU<br>Matrix: Water<br>Analysis Batch: 221275 |        |           |       |     |        |      |        |      |     |      | Client  | Sample ID: D<br>Prep Type: 1  | upl<br>Fota  | licate<br>al/NA |
| Sample                                                                     | e San  | nple      |       |     | DU     | DU   |        |      |     |      |         |                               |              | RPD             |
| Analyte Result                                                             | t Qua  | alifier   |       |     | Result | Qua  | lifier | Unit |     | D    |         | RF                            | D            | Limit           |
| Bicarbonate Alkalinity as CaCO3                                            | 1      |           |       |     | 124.0  |      | -      | mg/L |     | —    |         |                               | 0            | 20              |
| Carbonate Alkalinity as CaCO3 0.54                                         | 4 U    |           |       |     | 0.54   | U    |        | mg/L |     |      |         | ١                             | ١C           | 20              |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-064 / X15-065 TestAmerica Job ID: 160-14872-1 SDG: SL2015

#### Method: 6020A - Metals (ICP/MS) (Continued) Lab Sample ID: 160-14872-1 MSD **Client Sample ID: B32YY4** Matrix: Water **Prep Type: Dissolved** Analysis Batch: 224377 Prep Batch: 222823 Sample Sample Spike MSD MSD %Rec. RPD Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits RPD Limit Uranium 3970 1000 5200 123 75 - 125 20 ug/L 1 Method: 310.1 - Alkalinity Lab Sample ID: MB 160-222867/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 222867 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared **Bicarbonate Alkalinity** 0.54 U 5.0 0.54 mg/L 11/20/15 09:17 0.54 U 5.0 Carbonate Alkalinity 0.54 mg/L 11/20/15 09:17 1 Lab Sample ID: HLCS 160-222867/3 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 222867 Spike HLCS HLCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 400 370.0 92 **Bicarbonate Alkalinity** mg/L 90 - 110 Lab Sample ID: LCS 160-222867/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 222867 LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits **Bicarbonate Alkalinity** 200 187.0 mg/L 93 90 - 110 Lab Sample ID: 160-14833-A-5 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA Analysis Batch: 222867 Sample Sample Spike MS MS %Rec. Amplute Recult Qualifier ault Ouslifian 0/ **D** Linelte

| Analyte                                    | Result Q  | uaimer Audeo | Result | Quaimer | Unit D | %Rec   | Linnits               |                           |         |
|--------------------------------------------|-----------|--------------|--------|---------|--------|--------|-----------------------|---------------------------|---------|
| Bicarbonate Alkalinity                     | 213       | 100          | 306.0  |         | mg/L   | 93     | 80 - 120              |                           |         |
| Lab Sample ID: 160-14833-<br>Matrix: Water | A-5 DU    |              |        |         |        | Client | Sample II<br>Prep Typ | ): Duplica<br>be: Total/N | te<br>A |
| Analysis Baten: 222007                     | Sample Sa | ample        | ווס    | DU      |        |        |                       | RF                        | חי      |

|                        | Sample | Sample    | D    | J DU  |         |      |   |         | RPD   |
|------------------------|--------|-----------|------|-------|---------|------|---|---------|-------|
| Analyte                | Result | Qualifier | Resu | t Qua | alifier | Unit | D | RPD     | Limit |
| Bicarbonate Alkalinity | 213    |           | 214. | 0     |         | mg/L |   | <br>0.5 | 20    |
| Carbonate Alkalinity   | 0.54   | U         | 0.5  | 4 U   |         | mg/L |   | NC      | 20    |

Client: CH2M Hill Plateau Remediation Company Pro&ctjSite: / 1F-0FF TestAmerica Job ID: 160-14755-1 SDG: SL2025

# Method: 6020A - Metals (ICP/MS) (Continued)

| Lab Sample ID: LCS 160-22<br>Matrix: Water<br>Analysis Batch: 230919                                   | 27718/2-A                               |                          | Spike                  | LCS                   | LCS                  | Clie         | nt Sai | mple ID            | : Lab Cor<br>Prep Ty<br>Prep Ba<br>%Rec.                                                                | ntrol Sa<br>be: Tot<br>atch: 22 | imple<br>al/NA<br>27718        |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|------------------------|-----------------------|----------------------|--------------|--------|--------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|--|
| Analyte                                                                                                |                                         |                          | Added                  | Result                | Qualifier            | Unit         | D      | %Rec               | Limits                                                                                                  |                                 |                                |  |
| Uranium                                                                                                |                                         |                          | 1000                   | 1008                  |                      | ugjL         |        | 101                | 30 - 120                                                                                                |                                 |                                |  |
| Lab Sample ID: 160-14933-<br>Matrix: Other Aqueous Sar<br>Analysis Batch: 230919<br>Analyte<br>Uranium | 1 MS<br>nple<br>Sample<br>Result<br>F.3 | Sample<br>Qualifier<br>U | Spike<br>Added<br>1000 | MS<br>Result<br>76F.7 | MS<br>Qualifier<br>D | Unit<br>ugjL | D      | Clie<br>%Rec<br>78 | Client Sample ID: B32L8<br>Prep Type: Total/N<br>Prep Batch: 22771<br>%Rec.<br>6Rec Limits<br>78 8F-12F |                                 |                                |  |
| Lab Sample ID: 160-14933-<br>Matrix: Other Aqueous Sar<br>Analysis Batch: 230919                       | 1 MSD<br>nple<br>Sample                 | Sample                   | Spike                  | MSD                   | MSD                  |              |        | Clie               | nt Sample<br>Prep Tyj<br>Prep Ba<br>%Rec.                                                               | e ID: B3<br>be: Tot<br>atch: 22 | 82L56<br>al/NA<br>27718<br>RPD |  |
| Analyte                                                                                                | Result                                  | Qualifier                | Added                  | Result                | Qualifier            | Unit         | D      | %Rec               | Limits                                                                                                  | RPD                             | Limit                          |  |
| Uranium                                                                                                | F.3                                     | U                        | 1000                   | 7F7.4                 | D                    | ugjL         |        | 76                 | 8F - 12F                                                                                                | 1                               | 20                             |  |

### Method: 310.1 - Alkalinity

| Lab Sample ID: MB 160-224347/1<br>Matrix: Water<br>Analysis Batch: 224347  |        |           |       |     |         |      | Client Sam | ple ID: Method<br>Prep Type: To | l Blank<br>otal/NA                      |                   |
|----------------------------------------------------------------------------|--------|-----------|-------|-----|---------|------|------------|---------------------------------|-----------------------------------------|-------------------|
| · ····· <b>,</b> ··· · ·······················                             | MB     | MB        |       |     |         |      |            |                                 |                                         |                   |
| Analyte                                                                    | Result | Qualifier |       | RL  | MDL     | Unit | D          | Prepared                        | Analyzed                                | Dil Fac           |
| Bicarbonate Alkalinity as CaCO5                                            | 0.F4   | U         |       | F.0 | 0.F4    | mgjL |            |                                 | 11j2Fj1F 13:F0                          | 1                 |
| Carbonate Alkalinity as CaCO5                                              | 0.F4   | U         |       | F.0 | 0.F4    | mgjL |            |                                 | 11j2Fj1F 13:F0                          | 1                 |
| Lab Sample ID: HLCS 160-224347/<br>Matrix: Water<br>Analysis Batch: 224347 | 3      |           | Spike |     | HLCS HL | cs   | Client     | Sample ID                       | Lab Control S<br>Prep Type: To<br>%Rec. | Sample<br>otal/NA |

| Analyte                         | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
|---------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Bicarbonate Alkalinity as CaCO5 | 400   | 588.0  |           | mgjL |   | 74   | 70 - 110 |  |
|                                 |       |        |           |      |   |      |          |  |

| Lab Sample ID: LCS 160-224347/2 | Client Sample ID: Lab Control San |        |           |      |   |      |           |             |
|---------------------------------|-----------------------------------|--------|-----------|------|---|------|-----------|-------------|
| Matrix: Water                   | atrix: Water                      |        |           |      |   |      | Prep Type | e: Total/NA |
| Analysis Batch: 224347          |                                   |        |           |      |   |      |           |             |
| -                               | Spike                             | LCS    | LCS       |      |   |      | %Rec.     |             |
| Analyte                         | Added                             | Result | Qualifier | Unit | D | %Rec | Limits    |             |
| Bicarbonate Alkalinity as CaCO5 | 200                               | 170.0  |           | mgjL |   | 7F   | 70 - 110  |             |

### Method: 310.1 - Alkalinity - DL

| Lab Sample ID: 160-14957-<br>Matrix: Water | A-1 MS |           |       |        |           |      | CI | ient Sa | mple ID: M<br>Prep Typ | Matrix Spike<br>be: Total/NA |
|--------------------------------------------|--------|-----------|-------|--------|-----------|------|----|---------|------------------------|------------------------------|
| Analysis Batch: 224347                     | Sampla | Sample    | Spiko | ме     | ме        |      |    |         | % Boo                  |                              |
| Analyto                                    | Bosult | Oualifior | Addod | Posult | Qualifier | Unit | П  | %Pac    | limite                 |                              |
| Bicarbonate Alkalinity as CaCO5<br>- DL    | F60    |           | F01   | 1020   | Quaimer   | mgjL |    | 72      | 30 - 120               |                              |

TestAmerica St. Louis

Client: CH2M Hill Plateau Remediation Company ProsectjSite: / 1F-0FF

TestAmerica Job ID: 160-14755-1 SDG: SL2025

### **Client Sample ID: Duplicate** Prep Type: Total/NA

8

#### Lab Sample ID: 160-14957-A-1 DU Matrix: Water Analysis Batch: 224347 RPD Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D RPD Limit F60 F60.0 0 20 Bicarbonate Alkalinity as CaCO5 mgjL - DL 2.8 U 2.8 U NC 20 Carbonate Alkalinity as CaCO5 mgjL DL

Client: CH2M Hill Plateau Remediation Company Project/Site: F15-055 TestAmerica Job ID: 300-1593-1 SDG: WC0618

# Method: 300.0 - Anions, Ion Chromatography

| Lab Sample ID: MB 300-20<br>Matrix: Water | 50/5   |                 |       |       |        |         |       |        | CI     | ient        | t Sam  | ple ID: Method<br>Prep Type: To | d Blank<br>otal/NA |
|-------------------------------------------|--------|-----------------|-------|-------|--------|---------|-------|--------|--------|-------------|--------|---------------------------------|--------------------|
| Analysis Batch: 2050                      |        |                 |       |       |        |         |       |        |        |             |        |                                 |                    |
|                                           |        | MB MB           |       |       |        |         |       |        |        |             |        |                                 |                    |
| Analyte                                   | Re     | sult Qualifier  | r     | RL    |        | MDL     | Unit  |        | D      | Prep        | bared  | Analyzed                        | Dil Fac            |
| Orthophosphate as P                       | 0      | .041 U          |       | 0.082 | C      | ).041 i | mg/L  |        |        |             |        | 11/18/15 16:39                  | 1                  |
|                                           | 50/0   |                 |       |       |        |         |       | 01     |        |             |        |                                 |                    |
| Lab Sample ID: LCS 300-20                 | 150/6  |                 |       |       |        |         |       | CII    | ent Sa | amp         |        | : Lab Control                   | Sample             |
| Matrix: Water                             |        |                 |       |       |        |         |       |        |        |             |        | Prep Type: 1                    | otal/NA            |
| Analysis Batch: 2050                      |        |                 | Spike |       | 1.00   | 1.00    |       |        |        |             |        | % Baa                           |                    |
| Analyta                                   |        |                 | Spike |       | Beault | LUS     | fier  | Unit   | -      | <b>n</b> 0/ | Baa    | %Rec.                           |                    |
| Analyte                                   |        |                 | Added |       | Result | Quai    | itier | Unit   |        | J %         | 0Rec   |                                 |                    |
| Onnophosphale as P                        |        |                 | 0.53  |       | 0.89   |         |       | mg/∟   |        |             | 106    | 80 - 120                        |                    |
| Lab Sample ID: 300-1594-4                 | _1 MS  |                 |       |       |        |         |       |        | 6      |             | nt Sai | molo ID: Matri                  | v Sniko            |
| Matrix: Wator                             |        |                 |       |       |        |         |       |        |        | JIIC        |        | Prop Type: T                    |                    |
| Apolycic Potob: 2050                      |        |                 |       |       |        |         |       |        |        |             |        | Fieb Type. It                   |                    |
| Analysis Batch: 2050                      | Samplo | Samplo          | Spiko |       | MS     | MS      |       |        |        |             |        | %Pac                            |                    |
| Analyta                                   | Bocult | Qualifier       | Addod |       | Pocult | Quali   | fior  | Unit   | -      | م<br>م      | Pag    | /intec.                         |                    |
| Orthophosphate as P                       |        |                 | 65 3  |       | 660    |         | mer   | ma/l   |        |             | 123    | 75 125                          |                    |
| Of hophosphate as F                       | 590    | D               | 05.5  |       | 009    | D       |       | mg/∟   |        |             | 125    | 75-125                          |                    |
| Lab Sample ID: 300-1594-4                 |        |                 |       |       |        |         |       |        |        | С           | lient  | Sample ID: Du                   | Inlicate           |
| Matrix: Water                             |        |                 |       |       |        |         |       |        |        | Ŭ           | mont   | Pron Type: T                    | otal/NA            |
| Analysis Batch: 2050                      |        |                 |       |       |        |         |       |        |        |             |        | пер туре. П                     |                    |
| Analysis Batch. 2000                      | Sample | Sample          |       |       | ווס    | טס      |       |        |        |             |        |                                 | RPD                |
| Analyte                                   | Result | Qualifier       |       |       | Result | Quali   | ifior | Unit   | г      | h           |        | RPI                             |                    |
| Orthophosphate as P                       | 590    |                 |       |       | 601    | D       |       | ma/l   |        |             |        |                                 | $\frac{1}{2}$ 20   |
|                                           | 000    | D               |       |       | 001    | D       |       | iiig/L |        |             |        |                                 | 2 20               |
| Lab Sample ID: MB 300-20                  | 51/5   |                 |       |       |        |         |       |        | CI     | ient        | t Sam  | ple ID: Method                  | Blank              |
| Matrix: Water                             |        |                 |       |       |        |         |       |        |        |             |        | Pren Type: T                    | otal/NA            |
| Analysis Batch: 2051                      |        |                 |       |       |        |         |       |        |        |             |        |                                 |                    |
| Analysis Batem 2001                       |        | МВ МВ           |       |       |        |         |       |        |        |             |        |                                 |                    |
| Analyte                                   | Re     | esult Qualifier | r     | RL    |        | MDL     | Unit  |        | D      | Prec        | oared  | Analyzed                        | Dil Fac            |
| Chloride                                  |        | 0.10 U          |       | 0.20  |        | 0.10    | ma/L  |        |        |             |        | 11/18/15 16:39                  | 1                  |
| Sulfate                                   |        | 0.13 U          |       | 0.25  |        | 0.13    | ma/L  |        |        |             |        | 11/18/15 16:39                  | 1                  |
|                                           |        |                 |       |       |        |         |       |        |        |             |        |                                 |                    |
| Lab Sample ID: LCS 300-20                 | )51/6  |                 |       |       |        |         |       | Clie   | ent Sa | amr         | ole ID | : Lab Control S                 | Sample             |
| Matrix: Water                             |        |                 |       |       |        |         |       |        |        |             |        | Prep Type: T                    | otal/NA            |
| Analysis Batch: 2051                      |        |                 |       |       |        |         |       |        |        |             |        | 1 <b>1</b>                      |                    |
| ·                                         |        |                 | Spike |       | LCS    | LCS     |       |        |        |             |        | %Rec.                           |                    |
| Analyte                                   |        |                 | Added |       | Result | Quali   | ifier | Unit   | 0      | <b>)</b> %  | 6Rec   | Limits                          |                    |
| Chloride                                  |        |                 | 16.0  |       | 16.9   |         |       | mg/L   |        |             | 105    | 80 - 120                        |                    |
| Sulfate                                   |        |                 | 20.0  |       | 21.3   |         |       | mg/L   |        |             | 106    | 80 - 120                        |                    |
|                                           |        |                 |       |       |        |         |       | 5      |        |             |        |                                 |                    |
| Lab Sample ID: 300-1594-A                 | -1 MS  |                 |       |       |        |         |       |        | C      | Clie        | nt Sai | mple ID: Matri                  | x Spike            |
| Matrix: Water                             | -      |                 |       |       |        |         |       |        |        |             |        | Prep Type: T                    | otal/NA            |
| Analysis Batch: 2051                      |        |                 |       |       |        |         |       |        |        |             |        |                                 |                    |
|                                           | Sample | Sample          | Spike |       | MS     | MS      |       |        |        |             |        | %Rec.                           |                    |
| Analyte                                   | Result | Qualifier       | Added |       | Result | Quali   | ifier | Unit   | 0      | <b>)</b> %  | Rec    | Limits                          |                    |
| Chloride                                  | 38     | D               | 160   |       | 200    | D       |       | mg/L   |        |             | 101    | 75 - 125                        |                    |
| Sulfate                                   | 41     | D               | 200   |       | 235    | D       |       | mg/L   |        |             | 97     | 75 - 125                        |                    |
|                                           |        |                 |       |       |        |         |       | -      |        |             |        |                                 |                    |

Client: CH2M Hill Plateau Remediation Company Project/Site: F15-055 TestAmerica Job ID: 300-1593-1 SDG: WC0618

# Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 300-1594-A-1 DU<br>Matrix: Water<br>Analysis Batch: 2051 |        |           |  |        |           |      |   | Client Sample ID: Du<br>Prep Type: To | olicate<br>tal/NA |
|-------------------------------------------------------------------------|--------|-----------|--|--------|-----------|------|---|---------------------------------------|-------------------|
| -                                                                       | Sample | Sample    |  | DU     | DU        |      |   |                                       | RPD               |
| Analyte                                                                 | Result | Qualifier |  | Result | Qualifier | Unit | D | RPD                                   | Limit             |
| Chloride                                                                | 38     | D         |  | 38.4   | D         | mg/L |   | 1                                     | 20                |
| Sulfate                                                                 | 41     | D         |  | 41.2   | D         | mg/L |   | 2                                     | 20                |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-070 TestAmerica Job ID: 300-1860-1 SDG: WC0720

| Lab Sample ID: MB 300-2392/5<br>Matrix: Water |          |               |       |       |        |         |     |      | Cli    | ent San  | nple ID: Metho<br>Prep Type: T | d Blank<br>otal/NA | 4 |
|-----------------------------------------------|----------|---------------|-------|-------|--------|---------|-----|------|--------|----------|--------------------------------|--------------------|---|
| Analysis Batch: 2392                          |          |               |       |       |        |         |     |      |        |          |                                |                    |   |
|                                               | N        | IB MB         |       |       |        |         |     |      |        |          |                                |                    |   |
| Analyte                                       | Res      | ult Qualifier |       | RL    | I      | MDL U   | nit |      | DI     | Prepared | Analyzed                       | Dil Fac            |   |
| Nitrate as N                                  | 0.0      | 14 U          |       | 0.028 | 0      | .014 m  | g/L |      |        |          | 12/16/15 12:02                 | 1                  |   |
| Nitrite as N                                  | 0.0      | 19 U          |       | 0.038 | 0      | .019 m  | g/L |      |        |          | 12/16/15 12:02                 | 1                  |   |
| Orthophosphate as P                           | 0.0      | 41 U          |       | 0.082 | 0      | .041 m  | g/L |      |        |          | 12/16/15 12:02                 | 1                  |   |
| Lab Sample ID: LCS 300-2392/6                 |          |               |       |       |        |         |     | Clie | ent Sa | mple ID  | : Lab Control                  | Sample             |   |
| Matrix: Water                                 |          |               |       |       |        |         |     |      |        |          | Prep Type: T                   | otal/NA            |   |
| Analysis Batch: 2392                          |          |               |       |       |        |         |     |      |        |          | 10 <b>1 1</b>                  |                    |   |
|                                               |          |               | Spike |       | LCS    | LCS     |     |      |        |          | %Rec.                          |                    |   |
| Analyte                                       |          |               | Added |       | Result | Qualifi | er  | Unit | D      | %Rec     | Limits                         |                    |   |
| Nitrate as N                                  |          |               | 2.26  |       | 2.33   |         |     | mg/L |        | 103      | 80 - 120                       |                    |   |
| Nitrite as N                                  |          |               | 3.04  |       | 3.15   |         |     | mg/L |        | 103      | 80 - 120                       |                    |   |
| Orthophosphate as P                           |          |               | 6.53  |       | 6.73   |         |     | mg/L |        | 103      | 80 - 120                       |                    |   |
| Lab Sample ID: 300-1861-A-1 MS                | 5        |               |       |       |        |         |     |      | С      | lient Sa | mple ID: Matri                 | x Spike            |   |
| Matrix: Water                                 |          |               |       |       |        |         |     |      |        |          | Prep Type: T                   | otal/NA            |   |
| Analysis Batch: 2392                          |          |               |       |       |        |         |     |      |        |          |                                |                    | 1 |
| S                                             | ample S  | ample         | Spike |       | MS     | MS      |     |      |        |          | %Rec.                          |                    |   |
| Analyte I                                     | Result C | Qualifier     | Added |       | Result | Qualifi | er  | Unit | D      | %Rec     | Limits                         |                    |   |
| Nitrate as N                                  | 0.71 C   | )             | 0.452 |       | 1.19   | D       |     | mg/L |        | 106      | 75 - 125                       |                    |   |
| Nitrite as N                                  | 0.043 E  | B D           | 0.609 |       | 0.588  | D       |     | mg/L |        | 90       | 75 <sub>-</sub> 125            |                    |   |
| Orthophosphate as P                           | 30 E     | )             | 1.31  |       | 4.35   | D       |     | ma/L |        | 106      | 75 - 125                       |                    |   |

### Client Sample ID: Duplicate Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Type: Total/NA

| Matrix: Water   |      |  |  |  |  |  |  |  |  |  |
|-----------------|------|--|--|--|--|--|--|--|--|--|
| Analysis Batch: | 2392 |  |  |  |  |  |  |  |  |  |

|                     | Sample | Sample    | DU     | DU        |      |   |   |     | RPD   |
|---------------------|--------|-----------|--------|-----------|------|---|---|-----|-------|
| Analyte             | Result | Qualifier | Result | Qualifier | Unit | D | R | PD  | Limit |
| Nitrate as N        | 0.71   | D         | 0.715  | D         | mg/L |   |   | 0.7 | 20    |
| Nitrite as N        | 0.043  | B D       | 0.0425 | ВD        | mg/L |   |   | 0.7 | 20    |
| Orthophosphate as P | 3.0    | D         | 2.95   | D         | mg/L |   |   | 0.6 | 20    |

### Lab Sample ID: MB 300-2393/5 Matrix: Water

Analysis Batch: 2393

| -        | MB     | MB        |       |       |      |   |          |                |         |
|----------|--------|-----------|-------|-------|------|---|----------|----------------|---------|
| Analyte  | Result | Qualifier | RL    | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Chloride | 0.10   | U         | 0.20  | 0.10  | mg/L |   |          | 12/16/15 12:02 | 1       |
| Fluoride | 0.025  | U         | 0.050 | 0.025 | mg/L |   |          | 12/16/15 12:02 | 1       |
| Sulfate  | 0.13   | U         | 0.25  | 0.13  | mg/L |   |          | 12/16/15 12:02 | 1       |

### Lab Sample ID: LCS 300-2393/6 Matrix: Water

Analysis Batch: 2393

| -        | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Chloride | 16.0  | 16.3   |           | mg/L | _ | 102  | 80 - 120 |  |
| Fluoride | 4.00  | 4.09   |           | mg/L |   | 102  | 80 - 120 |  |
| Sulfate  | 20.0  | 20.5   |           | mg/L |   | 102  | 80 - 120 |  |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-070 TestAmerica Job ID: 300-1860-1 SDG: WC0720

# Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 300-1861-A-<br>Matrix: Water<br>Analysis Batch: 2393 |        | Client Sample ID: Ma<br>Prep Type |       |        |           |      | x S<br>ota | Spike<br>al/NA |                              |            |                |
|---------------------------------------------------------------------|--------|-----------------------------------|-------|--------|-----------|------|------------|----------------|------------------------------|------------|----------------|
|                                                                     | Sample | Sample                            | Spike | MS     | MS        |      |            |                | %Rec.                        |            |                |
| Analyte                                                             | Result | Qualifier                         | Added | Result | Qualifier | Unit | D          | %Rec           | Limits                       |            |                |
| Chloride                                                            | 10     | D                                 | 3.20  | 13.7   | D         | mg/L |            | 106            | 75 - 125                     |            |                |
| Fluoride                                                            | 0.050  | U                                 | 0.800 | 0.939  | D         | mg/L |            | 117            | 75 - 125                     |            |                |
| Sulfate                                                             | 45     | D                                 | 4.00  | 49.0   | D         | mg/L |            | 109            | 75 - 125                     |            |                |
| Lab Sample ID: 300-1861-A-<br>Matrix: Water<br>Analysis Batch: 2393 | 1 DU   |                                   |       |        |           |      |            | Client         | Sample ID: D<br>Prep Type: 1 | upl<br>ota | icate<br>al/NA |
| -                                                                   | Sample | Sample                            |       | DU     | DU        |      |            |                |                              |            | RPD            |
| Analyte                                                             | Result | Qualifier                         |       | Result | Qualifier | Unit | D          |                | RP                           | D          | Limit          |
| Chloride                                                            | 10     | D                                 |       | 10.4   | D         | mg/L |            |                | 0                            | .9         | 20             |
| Fluoride                                                            | 0.050  | U                                 |       | 0.050  | U         | mg/L |            |                | N                            | С          | 20             |
| Sulfate                                                             | 45     | D                                 |       | 45.0   | D         | mg/L |            |                | 0                            | .8         | 20             |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-070 TestAmerica Job ID: 300-1871-1 SDG: WC0722

| Method: 300.0 - Anions, Io                   | on Chro | oma      | atograp   | hy     |       |        |       |         |      |     |      |          |                               |                    |
|----------------------------------------------|---------|----------|-----------|--------|-------|--------|-------|---------|------|-----|------|----------|-------------------------------|--------------------|
| Lab Sample ID: MB 300-2394/<br>Matrix: Water | 5       |          |           |        |       |        |       |         |      |     | Clie | ent Sam  | ple ID: Metho<br>Prep Type: T | d Blank<br>otal/NA |
| Analysis Batch: 2394                         |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
|                                              |         | MB       | MB        |        |       |        |       |         |      |     |      |          |                               |                    |
| Analyte                                      | Re      | sult     | Qualifier |        | RL    |        | MDL   | Unit    |      | D   | P    | repared  | Analyzed                      | Dil Fac            |
| Nitrate as N                                 | 0       | .014     | U         |        | 0.028 | C      | 0.014 | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Nitrite as N                                 | 0       | .019     | U         |        | 0.038 | C      | 0.019 | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Orthophosphate as P                          | 0       | .041     | U         |        | 0.082 | C      | 0.041 | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Lab Sample ID: LCS 300-2394                  | 1/6     |          |           |        |       |        |       |         | Cli  | ent | Sar  | nole ID  | : Lab Control                 | Sample             |
| Matrix: Water                                |         |          |           |        |       |        |       |         |      |     |      |          | Prep Type: T                  | otal/NA            |
| Analysis Batch: 2394                         |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
|                                              |         |          |           | Spike  |       | LCS    | LCS   | 5       |      |     |      |          | %Rec.                         |                    |
| Analyte                                      |         |          |           | Added  |       | Result | Qua   | lifier  | Unit |     | D    | %Rec     | Limits                        |                    |
| Nitrate as N                                 |         |          |           | 2.26   |       | 2.33   |       |         | mg/L |     | -    | 103      | 80 - 120                      |                    |
| Nitrite as N                                 |         |          |           | 3.04   |       | 3.14   |       |         | mg/L |     |      | 103      | 80 - 120                      |                    |
| Orthophosphate as P                          |         |          |           | 6.53   |       | 6.65   |       |         | mg/L |     |      | 102      | 80 - 120                      |                    |
|                                              |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
| Lab Sample ID: 300-1871-1 M                  | S       |          |           |        |       |        |       |         |      |     |      | Clier    | nt Sample ID: I               | 3339R4             |
| Matrix: Water                                |         |          |           |        |       |        |       |         |      |     |      |          | Prep Type: T                  | otal/NA            |
| Analysis Batch: 2394                         | Comula  | <b>C</b> |           | Cuilto |       | MC     | MO    |         |      |     |      |          | 0/ <b>D</b> = =               |                    |
| Analyta                                      | Sample  | San      | ipie      | Spike  |       | Recult | 1015  | lifior  | Unit |     | P    | % Dee    | %Rec.                         |                    |
|                                              | Result  |          |           | Added  |       | Result | Qua   | littler | Unit |     | _    | %Rec     |                               |                    |
| Nitrite es N                                 | 0.020   |          |           | 0.452  |       | 0.28   |       |         | mg/L |     |      | 91       | 75-125                        |                    |
| Orthophosphato as P                          | 0.030   |          |           | 0.009  |       | 0.540  |       |         | mg/L |     |      | 90<br>75 | 75 125                        |                    |
| Onnophosphate as F                           | 19      | D        |           | 1.51   |       | 20.4   | D     |         | mg/∟ |     |      | 75       | 15-125                        |                    |
| Lab Sample ID: 300-1871-1 D                  | u       |          |           |        |       |        |       |         |      |     |      | Clier    | nt Sample ID: I               | 3339R4             |
| Matrix: Water                                |         |          |           |        |       |        |       |         |      |     |      | •        | Prep Type: T                  | otal/NA            |
| Analysis Batch: 2394                         |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
| · ······                                     | Sample  | San      | nple      |        |       | DU     | DU    |         |      |     |      |          |                               | RPD                |
| Analyte                                      | Result  | Qua      | lifier    |        |       | Result | Qua   | lifier  | Unit |     | D    |          | RP                            | D Limit            |
| Nitrate as N                                 | 5.9     | D        |           |        |       | 5.85   | D     |         | mg/L |     | -    |          | 0.                            | 3 20               |
| Nitrite as N                                 | 0.038   | U        |           |        |       | 0.038  | U     |         | mg/L |     |      |          | N                             | C 20               |
| Orthophosphate as P                          | 19      | D        |           |        |       | 19.4   | D     |         | mg/L |     |      |          | 0.0                           | 9 20               |
|                                              |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
| Lab Sample ID: MB 300-2395/                  | 5       |          |           |        |       |        |       |         |      |     | Clie | ent Sam  | ple ID: Metho                 | d Blank            |
| Matrix: Water                                |         |          |           |        |       |        |       |         |      |     |      |          | Prep Type: T                  | otal/NA            |
| Analysis Batch: 2395                         |         |          |           |        |       |        |       |         |      |     |      |          |                               |                    |
|                                              | _       | MB       | MB        |        |       |        |       |         |      | _   | _    |          |                               |                    |
| Analyte                                      | Re      | sult     | Qualifier |        | RL    |        | MDL   | Unit    |      | D   | P    | repared  | Analyzed                      | Dil Fac            |
| Chloride                                     |         | 0.10     | U         |        | 0.20  |        | 0.10  | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Fluoride                                     | 0       | .025     | 0         |        | 0.050 | C      | 0.025 | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Sulfate                                      |         | 0.13     | U         |        | 0.25  |        | 0.13  | mg/L    |      |     |      |          | 12/16/15 14:45                | 1                  |
| Lab Sample ID: LCS 300-2395                  | 5/6     |          |           |        |       |        |       |         | Cli  | ont | Sar  | nnlo ID  | Lab Control                   | Samplo             |
| Matrix: Water                                |         |          |           |        |       |        |       |         |      | ent | Uai  |          | Pren Tyne: T                  |                    |
| Analysis Batch: 2395                         |         |          |           |        |       |        |       |         |      |     |      |          | пер турс. т                   |                    |
| Analysis Datoll. 2000                        |         |          |           | Spike  |       | LCS    | LCS   | 5       |      |     |      |          | %Rec.                         |                    |
| Analyte                                      |         |          |           | Added  |       | Result | Qua   | lifier  | Unit |     | D    | %Rec     | Limits                        |                    |
| Chloride                                     |         |          |           | 16.0   |       | 16.2   |       |         | mg/L |     | _    | 102      | 80 - 120                      |                    |
| Fluoride                                     |         |          |           | 4.00   |       | 4.08   |       |         | mg/L |     |      | 102      | 80 - 120                      |                    |
| Sulfate                                      |         |          |           | 20.0   |       | 20.3   |       |         | mg/L |     |      | 102      | 80 - 120                      |                    |
|                                              |         |          |           |        |       |        |       |         | 5 -  |     |      |          | -                             |                    |

Client: CH2M Hill Plateau Remediation Company Project/Site: X15-070 TestAmerica Job ID: 300-1871-1 SDG: WC0722

# Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 300-1871-<br>Matrix: Water | 1 MS   |           |       |        |           |      | Clie | nt Sample I<br>Prep Type | D: B3<br>e: Tota | 39R4<br>al/NA | 4     |   |
|-------------------------------------------|--------|-----------|-------|--------|-----------|------|------|--------------------------|------------------|---------------|-------|---|
| Analysis Batch: 2395                      |        |           |       |        |           |      |      |                          |                  |               |       | 5 |
|                                           | Sample | Sample    | Spike | MS     | MS        |      |      |                          | %Rec.            |               |       |   |
| Analyte                                   | Result | Qualifier | Added | Result | Qualifier | Unit | D    | %Rec                     | Limits           |               |       | G |
| Chloride                                  | 23     | D         | 3.20  | 26.2   | D         | mg/L |      | 94                       | 75 - 125         |               |       |   |
| Fluoride                                  | 0.30   | D         | 0.800 | 1.06   | D         | mg/L |      | 95                       | 75 - 125         |               |       |   |
| Sulfate                                   | 57     | D         | 4.00  | 60.7   | D         | mg/L |      | 93                       | 75 - 125         |               |       |   |
| Lab Sample ID: 300-1871-                  | 1 DU   |           |       |        |           |      |      | Clie                     | nt Sample I      | D: B3         | 39R4  | 8 |
| Matrix: Water                             |        |           |       |        |           |      |      |                          | Prep Type        | : Tot         | al/NA |   |
| Analysis Batch: 2395                      |        |           |       |        |           |      |      |                          |                  |               |       | 9 |
| -                                         | Sample | Sample    |       | DU     | DU        |      |      |                          |                  |               | RPD   |   |
| Analyte                                   | Result | Qualifier |       | Result | Qualifier | Unit | D    |                          |                  | RPD           | Limit |   |
| Chloride                                  | 23     | D         |       | 23.1   | D         | mg/L |      |                          |                  | 0.3           | 20    |   |
| Fluoride                                  | 0.30   | D         |       | 0.303  | D         | mg/L |      |                          |                  | 0.6           | 20    |   |
| Sulfate                                   | 57     | D         |       | 57.0   | D         | mg/L |      |                          |                  | 0.05          | 20    |   |
|                                           |        |           |       |        |           |      |      |                          |                  |               |       |   |
|                                           |        |           |       |        |           |      |      |                          |                  |               |       |   |

I nieHt: I 2 CM 2 im Prateau RemediatioHI ompaHy Project/Site: X15-070

TestAmerica Job ID: 300-187C-1 SDG: WI 07C3

Prep Type: Total/NA

**Client Sample ID: Duplicate** 

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

### Method: 300.0 - Anions, Ion Chromatography

| Lab Sample ID: MB 300-2394/5<br>Matrix: Water  |        |           |       |       |      |        | Client Sam | ple ID: Method<br>Prep Type: To | d Blank<br>otal/NA |
|------------------------------------------------|--------|-----------|-------|-------|------|--------|------------|---------------------------------|--------------------|
| Allalysis Balcii. 2394                         | MB     | MB        |       |       |      |        |            |                                 |                    |
| Analyte                                        | Result | Qualifier | RL    | MDL   | Unit | D      | Prepared   | Analyzed                        | Dil Fac            |
| Nitrate as N                                   | 0.014  | U         | 0.008 | 0.014 | mg/L |        | -          | 10/16/15 14:45                  | 1                  |
| Nitrite as N                                   | 0.019  | U         | 0.038 | 0.019 | mg/L |        |            | 10/16/15 14:45                  | 1                  |
| Orthophosphate as P                            | 0.041  | U         | 0.08C | 0.041 | mg/L |        |            | 10/16/15 14:45                  | 1                  |
| Lab Sample ID: LCS 300-2394/6<br>Matrix: Water |        |           |       |       |      | Client | Sample ID: | Lab Control S<br>Prep Type: To  | Sample<br>otal/NA  |
| Analysis Batch: 2394                           |        |           | Spiko |       | 2    |        |            | %Pac                            |                    |

|                     | opine | 200    | 200       |      |   |      | /011000. |  |
|---------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N        | C.06  | C.33   |           | mg/L |   | 103  | 80 - 100 |  |
| Nitrite as N        | 3.04  | 3.14   |           | mg/L |   | 103  | 80 - 100 |  |
| Orthophosphate as P | 6.53  | 6.65   |           | mg/L |   | 10C  | 80 - 100 |  |

### Lab Sample ID: 300-1871-A-1 MS Matrix: Water Analysis Batch: 2394

|                     | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |  |
|---------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte             | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Nitrate as N        | 5.9    | D         | 0.45C | 6.08   | D         | mg/L |   | 91   | 75 - 1C5            |  |
| Nitrite as N        | 0.038  | U         | 0.609 | 0.548  | D         | mg/L |   | 90   | 75 <sub>-</sub> 1C5 |  |
| Orthophosphate as P | 19     | D         | 1.31  | 00.4   | D         | mg/L |   | 75   | 75 <u>-</u> 1C5     |  |

### Lab Sample ID: 300-1871-A-1 DU Matrix: Water Analysis Batch: 2394

| -                   | Sample | Sample    | DU       | DU        |      |   |         | RPD   |
|---------------------|--------|-----------|----------|-----------|------|---|---------|-------|
| Analyte             | Result | Qualifier | Result   | Qualifier | Unit | D | RPD     | Limit |
| Nitrate as N        | 5.9    | D         | <br>5.85 | D         | mg/L |   | <br>0.3 | 00    |
| Nitrite as N        | 0.038  | U         | 0.038    | U         | mg/L |   | NI      | 00    |
| Orthophosphate as P | 19     | D         | 19.4     | D         | mg/L |   | 0.09    | 00    |

### Lab Sample ID: MB 300-2395/5 Matrix: Water

Analysis Batch: 2395

| -         | MB     | MB        |       |       |      |   |          |                |         |
|-----------|--------|-----------|-------|-------|------|---|----------|----------------|---------|
| Analyte   | Result | Qualifier | RL    | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| l hroride | 0.10   | U         | 0.00  | 0.10  | mg/L |   |          | 10/16/15 14:45 | 1       |
| Fnuoride  | 0.0C5  | U         | 0.050 | 0.0C5 | mg/L |   |          | 10/16/15 14:45 | 1       |
| Sunfate   | 0.13   | U         | 0.C5  | 0.13  | mg/L |   |          | 1C/16/15 14:45 | 1       |

### Lab Sample ID: LCS 300-2395/6 Matrix: Water

Analysis Batch: 2395

|           | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| I hroride | 16.0  | 16.C   |           | mg/L | _ | 10C  | 80 - 100 |  |
| Fnuoride  | 4.00  | 4.08   |           | mg/L |   | 10C  | 80 - 100 |  |
| Sunfate   | 0.0   | C0.3   |           | mg/L |   | 10C  | 80 - 100 |  |

TestAmerica RichraHd

I nieHt: I 2 CM 2 imPrateau RemediatioHI ompaHy Project/Site: X15-070 TestAmerica Job ID: 300-187C-1 SDG: WI 07C3

# Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 300-1871-A-<br>Matrix: Water<br>Analysis Batch: 2395 | 1 MS   |           |       |        |           |      | CI | ient Sa | mple ID: Matrix<br>Prep Type: To | Spike<br>tal/NA   |
|---------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|----|---------|----------------------------------|-------------------|
|                                                                     | Sample | Sample    | Spike | MS     | MS        |      |    |         | %Rec.                            |                   |
| Analyte                                                             | Result | Qualifier | Added | Result | Qualifier | Unit | D  | %Rec    | Limits                           |                   |
| l hroride                                                           | C3     | D         | 3.00  | 06.C   | D         | mg/L |    | 94      | 75 - 1C5                         |                   |
| Fnuoride                                                            | 0.30   | D         | 0.800 | 1.06   | D         | mg/L |    | 95      | 75 <sub>-</sub> 1C5              |                   |
| Sunfate                                                             | 57     | D         | 4.00  | 60.7   | D         | mg/L |    | 93      | 75 <sub>-</sub> 1C5              |                   |
| Lab Sample ID: 300-1871-A<br>Matrix: Water<br>Analysis Batch: 2395  | 1 DU   |           |       |        |           |      |    | Client  | Sample ID: Du<br>Prep Type: To   | olicate<br>tal/NA |
|                                                                     | Sample | Sample    |       | DU     | DU        |      |    |         |                                  | RPD               |
| Analyte                                                             | Result | Qualifier |       | Result | Qualifier | Unit | D  |         | RPD                              | Limit             |
| Ihroride                                                            | C3     | D         |       | C3.1   | D         | mg/L |    |         | 0.3                              |                   |
| Fnuoride                                                            | 0.30   | D         |       | 0.303  | D         | mg/L |    |         | 0.6                              | 00                |
| Sunfate                                                             | 57     | D         |       | 57.0   | D         | mg/L |    |         | 0.05                             | 00                |

I nieHt: I 2 MP 2 innunatea R d emepiatio HI omya HS uro/ectXGite: 51N-070

GRnfate

TestAmerica Job ID: 300-187C-1 GDW: j | 07MC

# Method: 300.0 - Anions, Ion Chromatography

| uro/ectXGite: 51N-070                              |        | -     |           |                |       |        |         |       |                 |      |          |         | GDW: j                                | 1 07MC           |
|----------------------------------------------------|--------|-------|-----------|----------------|-------|--------|---------|-------|-----------------|------|----------|---------|---------------------------------------|------------------|
| Method: 300.0 - Anions, Io                         | on Chr | om    | atograp   | hy             |       |        |         |       |                 |      |          |         |                                       |                  |
| _<br>Lab Sample ID: MB 300-2394/2<br>Matrix: Water | 25     |       |           |                |       |        |         |       |                 |      | Clie     | ent Sam | ple ID: Method                        | Blank            |
| Analysis Batch: 2394                               |        |       |           |                |       |        |         |       |                 |      |          |         | 1100 1300.10                          |                  |
| Analysis Daten. 2004                               |        | мв    | MB        |                |       |        |         |       |                 |      |          |         |                                       |                  |
| Analyte                                            | R      | esult | Qualifier |                | RI    |        | ו וחא   | Init  |                 | П    | Р        | renared | Analyzed                              | Dil Fac          |
| itrate as                                          |        | 40111 | a         |                | 040MB | 0      | 401U n  | nl X6 |                 | _    |          | ropurou | 1000000000000000000000000000000000000 | 1                |
| itrite as                                          | c<br>c | 14019 | 9         |                | 04038 | 0      | 2019 n  | nLX6  |                 |      |          |         |                                       | 1                |
| Orthoyhosyhate as u                                | C      | )40U1 | g         |                | 0408M | 0      | 40U1 n  | nLX6  |                 |      |          |         | 1MACXINMD:1C                          | 1                |
| Lab Sample ID: LCS 300-2394                        | /26    |       |           |                |       |        |         |       | Cli             | ient | Sar      | mple ID | : Lab Control S                       | ample            |
| Matrix: Water                                      |        |       |           |                |       |        |         |       |                 |      |          |         | Prep Type: To                         | tal/NA           |
| Analysis Batch: 2394                               |        |       |           |                |       |        |         |       |                 |      |          |         |                                       |                  |
| -                                                  |        |       |           | Spike          |       | LCS    | LCS     |       |                 |      |          |         | %Rec.                                 |                  |
| Analyte                                            |        |       |           | Added          |       | Result | Quali   | fier  | Unit            |      | D        | %Rec    | Limits                                |                  |
| . itrate as .                                      |        |       |           | M4MC           | ;     | MABU   |         |       | mLX6            |      |          | 10U     | 80 - 1MD                              |                  |
| . itrite as .                                      |        |       |           | 340U           |       | 341C   |         |       | mLX6            |      |          | 10U     | 80 - 1MD                              |                  |
| Orthoyhosyhate as u                                |        |       |           | CANB           |       | C478   |         |       | mLX6            |      |          | 10U     | 80 - 1MD                              |                  |
| Lab Sample ID: 300-1658-1 MS<br>Matrix: Water      | 6      |       |           |                |       |        |         |       |                 |      |          | Clie    | nt Sample ID: B<br>Prep Type: To      | 339L0<br>otal/NA |
| Analysis Batch: 2394                               |        |       |           |                |       |        |         |       |                 |      |          |         |                                       |                  |
|                                                    | Sample | San   | nple      | Spike          |       | MS     | MS      |       |                 |      |          |         | %Rec.                                 |                  |
| Analyte                                            | Result | Qua   | alifier   | Added          |       | Result | Quali   | fier  | Unit            |      | D        | %Rec    | Limits                                |                  |
| . itrate as .                                      | U47    | D     |           | 04 <b>JN</b> V | 1     | N41 C  | D       |       | mLX6            |      |          | 98      | 7N-1MN                                |                  |
| . itrite as .                                      | 04038  | g     |           | 04009          |       | 04NNN  | D       |       | mLX6            |      |          | 91      | 7N-1MN                                |                  |
| Orthoyhosyhate as u                                | U4B    | D .   |           | 1431           |       | N430   | D .     |       | mLX6            |      |          | UO      | 7N-1MN                                |                  |
| Lab Sample ID: 300-1658-1 DL<br>Matrix: Water      | J      |       |           |                |       |        |         |       |                 |      |          | Clie    | nt Sample ID: E<br>Prep Type: To      | 339L0<br>tal/NA  |
| Analysis Batch: 2394                               |        |       |           |                |       |        |         |       |                 |      |          |         |                                       |                  |
|                                                    | Sample | San   | nple      |                |       | DU     | DU      |       |                 |      |          |         |                                       | RPD              |
| Analyte                                            | Result | Qua   | alifier   |                |       | Result | Quali   | fier  | Unit            |      | D        |         | RPD                                   | Limit            |
| . itrate as .                                      | U47    | D     |           |                |       | U4C9   | D       |       | mLX6            |      |          |         | 04                                    | i MD             |
| . itrite as .                                      | 04038  | g     |           |                |       | 04038  | g       |       | mLX6            |      |          |         | . I                                   | MD               |
| Orthoyhosyhate as u                                | U4B    | D .   |           |                |       | U48M   | D       |       | mLX6            |      |          |         | 048                                   | MD               |
| Lab Sample ID: MB 300-2397/2                       | 25     |       |           |                |       |        |         |       |                 |      | Clie     | ent Sam | ple ID: Method                        | Blank            |
| Matrix: Water                                      |        |       |           |                |       |        |         |       |                 |      |          |         | Prep Type: To                         | otal/NA          |
| Analysis Batch: 2397                               |        |       |           |                |       |        |         |       |                 |      |          |         |                                       |                  |
|                                                    | -      | MB    | MB        |                |       | _      |         |       |                 |      | _        | ~       |                                       |                  |
| Analyte                                            | R      | esult | Qualifier |                | RL    | I      |         | Jnit  |                 | D    | P        | repared | Analyzed                              | DII Fac          |
| I hroripe                                          |        | 0410  | g         |                | 04W0  |        | 0410 n  | nLX6  |                 |      |          |         | 1MACXINMD:1C                          | 1                |
| FriRoripe                                          | C      | 040MN | g         |                | 040N0 | 0      | 40 MN n | nLX6  |                 |      |          |         | 1MACXINMD:1C                          | 1                |
| GRifate                                            |        | 0413  | g         |                | 04MN  |        | 0413 n  | nLX6  |                 |      |          |         | 1MACXINMD:1C                          | 1                |
| Lab Sample ID: LCS 300-2397                        | /26    |       |           |                |       |        |         |       | Cli             | ient | Sar      | mple ID | : Lab Control S                       | ample            |
| watrix: water                                      |        |       |           |                |       |        |         |       |                 |      |          |         | Prep Type: 10                         | ital/NA          |
| Analysis Batch: 2397                               |        |       |           | 0. "           |       | 1.00   | 1.00    |       |                 |      |          |         | 0/ <b>D</b>                           |                  |
| Amelia                                             |        |       |           | Spike          |       | LCS    | LUS     | c: _  | 11              |      | -        | 0/ F    | %Rec.                                 |                  |
|                                                    |        |       |           | Added          |       | Kesult | Quali   | ier   | Unit            |      | <u>ט</u> | %Kec    |                                       |                  |
|                                                    |        |       |           | 1040           |       | 1048   |         |       | IIIL <i>X</i> 0 |      |          | TUM     |                                       |                  |
| ⊢n <del>k</del> oripe                              |        |       |           | 0400           |       | U41 M  |         |       | mLX6            |      |          | 103     | 80 - 1MU                              |                  |

M04N

mLX6

103

80 - 1MD

M040

I nieHt: | 2 MP 2 innunateaR demepiatioH I omyaHS uro/ectXGite: 51N-070 TestAmerica Job ID: 300-187C-1 GDW: j | 07MC

# Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 300-1658-1 M<br>Matrix: Water<br>Analysis Batch: 2397 | IS     |           |       |        |           |               |   | Clie | nt Sample<br>Prep Typ | ID: B3<br>e: Tot | 39L0<br>al/NA |
|----------------------------------------------------------------------|--------|-----------|-------|--------|-----------|---------------|---|------|-----------------------|------------------|---------------|
| · ·····, ··· · · · · · · · · · · · · ·                               | Sample | Sample    | Spike | MS     | MS        |               |   |      | %Rec.                 |                  |               |
| Analyte                                                              | Result | Qualifier | Added | Result | Qualifier | Unit          | D | %Rec | Limits                |                  |               |
| Ihnoripe                                                             | 1C     | D         | 34\10 | 1943   | D         | mLX6          |   | 99   | 7N₋1MN                |                  |               |
| FrRoripe                                                             | 043N   | D         | 04800 | 1410   | D         | mLX6          |   | 9U   | 7N₋1MN                |                  |               |
| GRifate                                                              | NO     | D         | U400  | N349   | D         | mL <b>X</b> 6 |   | 97   | 7N-1MN                |                  |               |
| Lab Sample ID: 300-1658-1 E<br>Matrix: Water<br>Analysis Batch: 2397 | U      |           |       |        |           |               |   | Clie | nt Sample<br>Prep Typ | ID: B3<br>e: Tot | 39L0<br>al/NA |
| Analysis Daton. 2007                                                 | Sample | Sample    |       | DU     | DU        |               |   |      |                       |                  | RPD           |
| Analyte                                                              | Result | Qualifier |       | Result | Qualifier | Unit          | D |      |                       | RPD              | Limit         |
| I hnoripe                                                            | 1C     | D         |       | 1C40   | D         | mLX6          |   |      |                       | 04N              | MD            |
| FrRoripe                                                             | 043N   | D         |       | 043U8  | D         | mLX6          |   |      |                       | 04J              | MD            |
| GRifate                                                              | NO     | D         |       | U948   | D         | mL <b>X</b> 6 |   |      |                       | 04J              | MD            |

4 5 6 7 8 9 10 11 12 13

# Appendix K

# Lessons Learned

This page intentionally left blank.

# K Lessons Learned

Post-job review meetings covering the 300-FF-5 Operable Unit (OU) Stage A uranium sequestration activities were held on December 9 and 10, 2015. Representatives of the groups and disciplines that supported and executed installation and operation of the Stage A enhanced attenuation system participated in the meetings. The primary purpose of the post-job review was to identify lessons learned from the 300-FF-5 OU Stage A uranium sequestration activities for application to the planning and execution of the follow-on Stage B uranium sequestration activities.

The post-job review for the Stage A uranium sequestration activities was conducted during two meetings. The first meeting was held on December 9, 2015 and was attended by personnel involved with the setup, testing, operation, and decommissioning of the chemical injection system. The second meeting was held on December 10, 2015 and was attended primarily by project scientists, system engineers, and other technical support personnel. This appendix provides the final report covering both sessions.

This page intentionally left blank.

### 1 Introduction

The primary purpose of this post-job review was to collect and identify lessons learned from the 300-FF-5 Sequestration Project (Stage A) design, installation, operation, and recovery, with the intent to improve these activities for Stage B. The project will incorporate these lessons into the relevant documentation (e.g., contracts, work packages, and operating procedures) for Stage B.

The post-job review for Stage A of the 300-FF-5 Sequestration project was conducted in two meetings. The first meeting, conducted on December 9, 2015, was attended by personnel involved with the setup, testing, operation, and decommissioning of the chemical injection system. The second meeting, conducted on December 10, 2015, consisted primarily of project scientists and other technical support personnel. This report outlines the main topics covered in the meetings. Attached to the report is a listing of personnel who attended both meetings.

The meetings covered a range of topics and addressed experiences gained from Stage A, including initial design through chemical injection. The meeting facilitator followed the post-job review process outlined in the CHPRC Post-ALARA/Post-Job Review form A-6004-821.

Following the meetings, it was determined that the post-job review report would be developed using an alternative report format. The format was developed to present the variety of lessons discussed at the meetings more clearly. However, the reformatted document still meets the intent of the post-job review process.

### 2 Hazards

### 2.1 Biological

The initial hazards identification did not identify a need to address the hazards presented by snakes. However, once the fieldwork commenced, rattlesnakes were encountered, and this hazard was subsequently addressed in the work documents. Action was taken to protect personnel working in the area. Workers were required to wear snake chaps when working off the gravel in brushy areas. This potential for encountering snakes needs to be specifically addressed in the pre-job briefings, especially for the area near, and along, the Columbia River, which rattlesnakes inhabit.

Insects were also identified as a bigger nuisance than was anticipated from the original job hazards analysis. Insects, particularly wasps, were particularly noticeable around the chemical mixing trailers and mobile office.

### 2.2 Environmental

Since Stage A was set up and performed late in the summer and early fall, fire hazards were a particular concern. All plant material in the area was extremely dry. Originally, the work scope was planned for earlier in the year when the fire hazard would not have been as significant. If allowable, Stage B should be performed in the spring to alleviate this concern.

Initial work planning did not sufficiently anticipate the impact of the high winds, which caused numerous problems, when encountered. For future work, more effective wind control measures, such as the use of wind breaks/barriers, are necessary. The project team was required to borrow barriers from PFP. The project needs to procure barriers of their own, and have them at the job site ready for use. If possible, recommend procuring the PFP barriers once they are finished with them.

Work along the river presented a variety of hazards and challenges that were greater issues than originally estimated. For example, the vegetation and slippery rocks created fall hazards, especially when personnel were handling equipment.

### 2.3 Electrical Resistance Tomography (ERT) System

A critique of the subcontractor's (PNNL) installation of the ERT probes prior to the start of the sequestration operation revealed that the electrical voltages for the ERT probes were greater than 50 volts and the DOE-0336 *Hanford Site Lockout/Tagout Procedure* hazardous energy control requirements would apply. Following the critique, project operations personnel took the appropriate action to ensure that the project work processes incorporated applicable hazardous energy control requirements prior to the commencement of sequestration operations.

The impacts of PNNL performing excavation for the ERT probe installation were not initially adequately addressed by the project.

### 2.4 Hoses & Fittings

Workers discovered that handling the large diameter water hoses coming from the river pumps was very difficult, especially on slippery rocks along the river shore. Extreme care is required when working with hoses and other bulky equipment. Additional personnel or appropriate mechanical means may be required to move these hoses. Following Stage A, a forklift was inappropriately used to drag the HDPE piping. Additionally, just using a large number of personnel in moving heavy HDPE piping is not sufficient. A worker was injured while assisting in manually moving HDPE during Stage A cleanup.

One individual was significantly sprayed with river water while draining a large diameter hose. Care needs to be taken to ensure personnel are adequately protected from wetting when working with hoses. For example, use of rain gear when disconnecting and draining the lines may be appropriate.

### 2.5 Electrical Cables

It was recommended that two electricians be used to handle long runs of 480v electrical cables, which are heavy and cumbersome in rough terrain.

### 2.6 Safety Shower & Portable Eyewash

Early in the setup for stage A, the pump trailer skids and the bulk chemical storage tanks were collocated, and the safety shower and portable eyewash station setup was planned accordingly. After a number of subsequent configuration design changes, this equipment was no longer collocated, which required staging of additional emergency equipment due to the new physical separation.

Steps need to be taken to ensure the emergency eyewash stations can be safely used during cold temperatures. Arrangements had to be taken to ensure the eyewash water was adequately warmed so it could be used during cold weather. Better planning and preparation is needed for future sequestration activities, especially if cold weather conditions can be expected.

Strong consideration should be given to the purchase of a portable emergency shower for any future sequestration activities. Given the large amount of bulk chemical being handled, a shower installation would be a wise investment. It is possible for a worker to be accidentally sprayed with a large amount of chemical.

### 2.7 Lighting

Stage A operated on a 24 hour basis and, in a few instances, Operations personnel found that the amount of temporary lighting staged for the project was insufficient for the work that was being performed after dark. Lighting surveys were conducted prior to the start of Stage A, which determined the initial placement of temporary lighting. The equipment was relocated and the work area expanded following the placement of the lighting. Thus, when operations began, the lighting was no longer in its optimum location. When planning for Stage B, the lighting survey should not be performed until the finalized equipment locations have been determined.

Operations personnel determined that portable light needed to be staged at the chemical storage tank farm.

One area where adequate lighting was staged was at the head of the access road. This light was very effective and needs to be continued in later sequestration work. The lighting helped personnel find the main road exit onto the access road for the sequestration project.

In general, a more extensive lighting study should be performed prior to the Stage B setup, which will help eliminate future lighting issues.

### 2.8 Ground Excavation

Repair of one of the wells supporting Stage A was required, as the upper several feet of the material surrounding the well were to be excavated. This activity was not planned to occur during sequestration setup, and created an unexpected challenge/potential hazard during the sequestration pumping system setup, with the workers having to work around the well excavation and repair activities. The well work required the use of heavy equipment that was not originally anticipated during the initial work planning for the sequestration setup.

### 2.9 Bulk Chemicals

Early in Stage A operations, it was discovered that the initial piping configuration for the handling of the chemicals at the tank farm was not the optimum configuration for the activities being supported during Stage A operations. Working with the chemical supplier and project maintenance and engineering personnel, a more effective chemical tank farm piping and valving configuration was identified. The new configuration was less complex, easier to use, and enhanced operational efficiency. It is important to recreate the final Stage A configuration for use in Stage B. An equipment/hose configuration engineering sketch would be an effective way of capturing the desired configuration.

After encountering challenges with less than optimum bulk chemical concentrations, project personnel were required to pump down the storage tanks and return their content to the chemical supplier. Performing the pump down required physical handling of the hoses in order to ensure all of the contents of the tanks and hoses were emptied. The heavy hoses present potential ergonomic challenges. If pumping down the bulk chemical tanks is anticipated during Stage B, any potential ergonomic challenges should be addressed as part of system setup.

### 3 Injuries

No significant injuries were encountered during Stage A. However, several first aid events included bug bites and stings, worker strain while moving HDPE, and one worker sprayed with river water during hose leak testing. All incidents were handled appropriately.

### 4 Work Planning and Control

### 4.1 Work Planning

If more worker involvement had been included during the Stage A job planning, setup and operation of the sequestration system could have been more efficient, including effective hazard identification. There was a lot of worker involvement, but it could have been improved. Multiple walk downs were performed, but some did not include all the required personnel, which was a missed opportunity.

### 4.2 **Pre-Job Briefing**

In general, all Stage A pre-job testing and operation briefings were effective and covered the necessary topics, such as work to be performed, precautions, limitations, and personal protective equipment. All personnel treated the briefings seriously.

One effective action that worked well was the delegation of some pre-job briefings by the Operations Supervisor (OS) to other field personnel, such as the Site Project Manager or Maintenance Field Work Supervisor (FWS). This action allowed the OS to focus on other key aspects of work site activities. In the future, consideration should be given for inclusion of a second OS in order to address the workload during day shift activities more effectively. The single OS was often spread too thin, given the amount and variety of activities occurring simultaneously. A single OS was determined to be adequate for back shift operation.

### 4.3 Ecological Review

Some project personnel indicated that the Stage A Ecological Review was not completed in a timely manner, which created work planning slowdowns and led to some project delays. For example, restrictions associated with river access could have been identified and addressed earlier. For Stage B, the project needs to ensure a thorough and complete Ecological Review before work planning commences.

### 4.4 Coordination of Personnel

There are opportunities for improvement in all areas of the Stage B job type coordination, including design, setup, testing, operation, and decommissioning. In particular, equipment assembly and operational procedure testing revealed some personnel confusion regarding effective assembly and system testing. These efforts need to be coordinated more effectively in the future.

One challenge not initially anticipated was the extent of personnel orchestration the OS required, due to the large work area footprint as well as the number and variety of personnel working in parallel. The constant coming and going interrupted pre-job briefings and support of other field activities, distracting the supervisory personnel.

The access road barrier at the entrance to the work site greatly assisted the OS by effectively controlling the flow of personnel into the site. However, the road barrier did create some challenges by requiring personnel accessing the job site to call the OS, at times causing distractions to the OS.

It was recommended that a designated parking area be setup for personnel, as parking sometimes created problems.

Stage A attracted many personnel who had no direct involvement with the project. Effectively controlling access to the work site should be considered, thereby lessening distraction of workers and supervision. While fieldwork is in progress, site access should be limited to only those with a critical need at the site.

The number of rope barriers set up for Stage A confused personnel. Prior to Stage B, optimal barrier placement and signage should be considered. Photo overlays or site maps that clearly designate barrier location and personnel ingress/egress access points should be provided to the Shift Office for briefing personnel prior to their arrival at the job site.

At times during Stage A, there was insufficient supervision of the work being performed by the ERT subcontractor. When the subcontractor installs the infiltration lines for Stage B, the project needs to ensure adequate oversight of the subcontractor's work in order to avoid the type of problems encountered prior to Stage A (refer to S&GRP Critique Report 2015-07 "Stop work Regarding Installation of ERT Probes by PNNL at the 300-FF-5 Sequestration Project" for further details).

Some Craft questioned the level of Craft oversight for the amount of "Skill of Craft" task activity and whether supervision could have been used more effectively in support of other activities.

The project interface with the sampling organization was very effective. No issues were identified. Continue the same working relationships in Stage B sequestration.

There was great personnel support of all overtime activities. No issues were identified. Continue these practices in Stage B sequestration.

There was great teamster support throughout the entire project. Continue these same practices in the future.

Ensure the Crafts are involved as early as possible in Stage B and use as many of the same Craft involved in Stage A, as possible.

For Stage B, address potential Craft jurisdictional issues early. A few jurisdictional issues occurred during Stage A.

- There was an issue with the teamsters regarding the chemical supplier moving the chemical tanks. For Stage B, a tilt-trailer will be purchased for teamsters to move the chemical tanks.
- Teamsters and pipefitters questioned the use of a subcontractor for excavation and installation of the infiltration system. Prior to Stage B, more comprehensive Plant forces work review will need to be performed.
- The only unexpected issue due to the cold weather conditions was the determination of which personnel would place heating blankets and pads on equipment for freeze protection.

### 4.5 Work Scheduling & Release

In general, daily work scheduling and release could have been more effective. Often, parallel work activities were being performed, which spread supervision pretty thin. Supervision needs to be empowered to limit the amount of work activity to what they can effectively control.

One action that would greatly help in managing the work site is more effective scheduling of routine deliveries of equipment and chemicals.

Operationally, many felt the use of a standalone Operational Test Procedure (OTP) for system testing would have kept things simpler than they actually were.
## 4.6 Work Packages & Procedures

The bulk of the Stage A equipment setup was determined to be a "Skill of the Craft" in nature. Nevertheless, the work package used to set up the equipment was overly prescriptive, and created a lot of "no value" paperwork. Future sequestration work planning needs to recognize this fact in order to eliminate a significant amount of frustration on the part of the Crafts and their supervision. Prior to Stage B, use of a dedicated work planning team would optimally incorporate "Skill of the Craft" principles in the planning.

Treating the system setup more like a construction project (e.g., Green Field Project) would greatly simplify things. Many felt the project administratively overkilled setup and testing in Stage A.

The work package used for Stage A combined electrical and mechanical activities. In the future, it is recommended that two separate work packages be developed. This approach would lead to increased work efficiency.

Some personnel did not have sufficient time to adequately review the work package. Additionally, no work package workability review was performed. Had one been performed, a number of problems were encountered in the field during equipment setup would have been avoided.

Since most of the equipment setup/assembly was "Skill of the Craft" work, consider using a Short Form JCS work package. This approach would greatly simplify fieldwork and enhance efficiency.

Craft supervision emphasized the need to use the KISS approach toward work package development wherever possible. Multiple simple work packages, rather than one large complex work package, would be better for equipment assembly and testing. Additionally, simpler work packages would be more appropriate in the future because personnel have gained a great deal of experience from Stage A and, presumably, much of the same hardware will be used in the future.

It was identified that field personnel would derive a great benefit from an engineering field sketch of the hose layout (water and chemical). A sketch makes visualization of the desired operational configuration easier and would have benefitted the operational part of Stage A. The sketch would have greatly improved setup efficiency, eliminated rework, and simplified the work package.

Engineering should limit, to the extent possible, the number of formal engineering drawings for a temporary activity of this kind. It would greatly ease modifications when required. The need for periodic changes to a formal drawing slowed down the fieldwork during Stage A. A sketch with a "suggested layout" would have been much easier to deal with.

The experience from Stage A revealed that far too many pen and ink changes to the work package led to a number of project delays. This experience revealed a need to improve the work planning process, prior to the Stage B. For example, consider issuing multiple smaller work packages that contain less complex detail.

It was felt that the Stage A operating procedure took far too long to make workable. However, the procedure worked very well once all the issues were addressed. Given the Stage A experience, the procedure should be effectively used in Stage B with minimal changes.

Prior to Stage B, ensure all permits (e.g., excavation, fire) are still current. Revise as necessary before any fieldwork commences.

### 5 System Design

### 5.1 Criteria, Metrics and Specifications

It was identified that the initial equipment design criteria were not identified early enough in the planning effort. This led to a number of changes that delayed the start of Stage A. For Stage B, lock down equipment design as early as possible and involve the Craft personnel in this activity. Their experience will be useful to Engineering in determining the most effective hardware to be used, which will simplify and speed up equipment setup and testing.

Engineering needs to determine the functional design criteria as early as possible for Stage B, and then finalize the design. Many thought the design kept changing, which led to unnecessary rework and schedule delays at the start of Stage A. Scientists and Engineering need to work closely to lock in the design as early as possible.

Prior to Stage B system setup, complete the sequestration system configuration/design (i.e., river pumping, chemical mixing, infiltration, chemical storage). Lock down before field setup commences. During Stage A, the design and associated system configuration kept evolving after the initial setup was established, causing a lot of unnecessary rework and frustration. Aspects of the system evolution had a "back of the envelope, design as you go along" feeling for operations and maintenance personnel. For Stage B, consider using a more formal final design approach that incorporates the lessons learned from Stage A. Have the system configuration formalized in a drawing before field setup commences.

Early on, a better definition of what we actually needed to do upfront would have meant significantly less rework and improved timeliness of the evolution, including avoiding cold weather operation.

Conversely, there should not be an overly prescriptive definition associated with the Sampling and Analysis Plan (SAP) and the Remedial Design Report (RDR), particularly in the use of larger plus/minus range tolerances. Had this been in place initially, there would have been fewer bulk chemical challenges. The allowance for some flexibility would have more effectively supported field setup and subsequent operation. For example, where possible, state "solution needs to be alkaline between the range of x and y," instead of "pH must be 7.6."

Regarding RDR and SAP tables and volumes, only use the most important sets of data (i.e., remove all unnecessary data and options, which only cause confusion during field operations). Give Operations personnel only the specific set of metrics they need for their use in the field, which will eliminate the confusion that occurred in Stage A. For example, give gallons of chemical instead of concentrations, mixing ratio, and so forth. Personnel want to be precise, but measurements need to be geared to actual field measurement capabilities.

For Stage B, establish a set of clear criteria for project personnel to use in determining when pumping operations have been successfully completed.

The data from Stage A are still being collected at this time and the final determination of relevant requirements and specifications have not been determined.

A number of personnel recommended that the project re-address the impacts on sequestration based on the river stage. Initially, it was due to the projected river stage that the early September injections were desired. For many reasons, it would be desirable to commence injections earlier in the year. An analysis should be performed to determine if that is possible. The river fluctuated plus/minus one meter during Stage A, and review of preliminary data indicated that Periodically Rewetted Zone (PRZ) wetting was not an issue in Stage A. The river fluctuations were determined from Automated Water Level Network data.

Nevertheless, it is recognized that moving the sequestration to earlier in the calendar year may not be technically feasible.

# 5.2 Chemical Specifications

Project scientists will need to re-evaluate the chemical concentrations that will be used, based on data collected from Stage A, before any concentration determinations are made for Stage B.

There is a need to review the Geo-Chemical modeling prior to Stage B. This was the first time this particular chemical mixture and concentration was used on a large scale. These mixtures are complex (e.g., high salt solutions that behaved nonlinearly at various concentrations) and originally, their behavior in the field was not fully understood, leading to precipitation-related issues. Better upfront understanding of any chemical mixture behavior should go a long way toward avoiding future issues.

Provide Operations personnel the most appropriate measure of chemical injection. Is it the quantity of chemical pumped, or is it a desired flow rate for a specified time?

The primary goal was to get the appropriate concentration of chemical delivered to the PRZ in order to bind the uranium. At the time of the post job review, the project had not collected any uranium leachability data.

# 5.3 Field Monitoring

The RDR states that water level measurements would be collected during Stage A pumping. It was determined this was not feasible, and it was not done. This requirement will need to be addressed before Stage B.

There was a lack of clearly defined operational data for use by Operations personnel in Stage A pumping operations. Ensure operational data to be used by Operations is defined before Stage B. The data would have been of great use had they been available during Stage A. It would have also ensured that all applicable requirements and specifications had been captured by Operations personnel.

For Stage B, the project scientists need to clearly define exactly what data need to be collected. Determining this early on will ensure better preparation and less rework regarding equipment/ instrumentation setup and operation.

Sampling data showed that detectible chemical concentrations started showing up in the 10 foot PRZ three to four days after initiation of infiltration.

During Stage A, it was learned that the ERT system can actually measure whether the process is flushing uranium while performing infiltration.

Prior to implementation of Stage B, there needs to be a determination of the most effective means to measure conductivity during pumping operations. Will there be a greater reliance on the ERT grid data or by sampling monitoring wells? During the post job review, the pros and cons of each were discussed.

### 5.4 Miscellaneous Items

There is a need to determine exactly how many wells and boreholes (monitoring and injection) will need to be installed for Stage B. However, this can only be determined once the data are collected and analyzed from Stage A.

From the initial analysis of data from Stage A, it appears the chemical injection wells functioned as intended.

There is a belief, based on preliminary data analysis of Stage A data, that fewer injection wells will have to be installed for Stage B. This would be of great benefit if proved to be accurate. Consider not using PRZ chemical injection in Stage B. Preliminary Stage A data results seem to support the thesis that the injections were not of much value. The infiltration system seemed to be sufficient for both the unsaturated zone and the PRZ. However, more extensive data analysis will be required before any final decision is made. This will take several more months to accomplish.

Consideration should be given to performing a series of 8-hour injections, rather than a 24 hour continuous injection evolution, for Stage B. This approach can be formally determined once all Stage A data analysis is complete. The approach could have a number of operational benefits.

Consider implementing a TPA change notice if it would clarify the sequestration requirements for Stage B.

### 6 Hardware

## 6.1 Large Hoses/Lines

Stage A required multiple flexible water hoses of various types and sizes. Some of the larger hoses were difficult for Craft personnel to move by hand. The work crew encountered a number of problems during initial staging, connection, and recovery of these hoses. Future work planning needs to address these challenges.

Regarding the large diameter, red discharge hoses from each mixing skid, Craft personnel suggested using a solid, 45-degree downward-angled fitting to ensure the rubber hose did not collapse or pinch. Such a fitting would sustain a much smoother run from the mixing skid to the injection field.

Personnel discovered the need to ensure all hose connection fittings are sufficiently water tight before actual water pumping operations commence. During initial hose pressurization, many of the connection fittings leaked, some significantly. This, in turn, required a dedicated effort to ensure all fittings were adequately tightened.

Craft personnel encountered a number of issues with the various types of hose clamps, which led to multiple water leaks during equipment setup and testing. Engineering needs to ensure that clamp torque values are provided as well as better coupling of clamp types to hose types. For example, there were some band clamps that were not well matched to the types of hoses (e.g., flat collapsible or solid round). Another suggestion involved double clamping some fittings to the hoses to stop leakage.

A number of 100 foot and 50 foot water hose segments were used in the operation. Craft personnel found that shorter, 25 foot segments were much easier to handle. To improve personnel safety in the future, use 25 foot segments only.

The hose winder unit used for the red hoses did not work very well. If the red hose is used in the future, a better hose winder will be necessary. The hose winder worked well for the smaller hoses.

One consideration for Stage B sequestration is to use spare HDPE piping in place of the large diameter hoses. The project has lots of this material, and many feel that it would be more effective than the hoses. Another suggestion was the use of fire hose for some applications.

There was strong, universal opinion that the large red hoses coming off the chemical mixing skids discharge were not the best design for the application as they are flat prior to pressurization, which caused multiple problems. A more ridged hose or hard pipe should be used.

Crimp fittings on the smaller red hoses caused problems at the pressure regulators. If the same hoses are used in the future, different crimp fittings are needed.

Another problem encountered with the red hoses is that, over time, these hoses leached out the chemical being pumped. A type of hose that does not have this characteristic should be used. The red hoses were subject to frequent pinching/kinks, which was an operational distraction. In the future, a better hose or solid elbow installation would eliminate these distractions.

The ability to drain river water from the hoses directly onto the ground greatly simplified equipment operation and handling. This procedure needs to continue in the future to prevent operations from becoming more complicated and costly.

A personnel walkway over the chemical mixing skid discharge lines would be a beneficial safety aid. During Stage A, personnel were frequently required to walk over the lines, creating an unnecessary tripping hazard.

### 6.2 Infiltration system

Early in the project, following the installation of a series of monitoring and injection wells but prior to the start of Stage A, a broad area was excavated to support the installation of the infiltration lines. Unfortunately, the work was performed outside the authorized scope of the excavation work permit. Care needs to be taken to ensure that the excavation work permit is current, and that any specified requirements such as DOE-0344 *Hanford Site Excavating, Trenching, and Shoring Procedure (HSETSP)* are adequately met.

A number of the fittings associated with the infiltration system did not perform well, especially those associated with the regulators. Prior to Stage B, the Craft should be involved to determine, procure, and use better fittings.

Early in Stage A, the flow rates in the individual infiltration lines were not as high as anticipated. Once the pressure regulators were changed out, the flow rates increased.

During equipment testing, it was discovered there was no easy way to determine if there was flow in an infiltration line. A small vent valve at the end of these lines is an easy way to check water flow. In addition, consider the installation of an isolation valve in each line as well as a pressure gauge downstream of the pressure regulator in each line.

In the future, the project needs to learn the most effective approach for the installation of the infiltration lines. Stage A encountered some serious problems with this activity. One alternative is to perform the bulk excavation and installation of infiltration lines prior to the installation of additional monitoring wells. This would be the preferred approach for Stage B.

It is possible that some of the infiltration lines did not work. It is believed they could have been clogged with sand and chemical precipitation. Consider using a different material, instead of fine sand, when installing the infiltration lines to prevent clogging and enhance the effectiveness of chemical infiltration. Installing an inverted half pipe over the infiltration lines or running the infiltration lines inside a perforated pipe would significantly reduce line clogging and improve infiltration performance.

Determine if the line spacing used in Stage A is appropriate for Stage B. If possible, consider a wider spacing than the 6.5 feet, possibly 10 to 15 feet. The wider spacing would greatly ease installation in the field.

Keep the physical line distance from the mixing skid to the infiltration lines as short as practical in order to optimize pumping operations.

### 6.3 River Pumps

The large physical separation of the river pumps from their adjustable frequency devices (AFDs) is not the optimum configuration for system operation. Ideally, they need to be closer together. In the future, if there is a cost effective opportunity to bring them closer together, it should be done. This action is nice, but not critical.

Pump testing for Stage B may have new challenges, potentially due to the need for collecting and disposing of the purge water volumes. This may be required because of the large volume involved, and the potential effect on the local hydrology, if the water were drained directly onto the ground.

The construction of stairs for river access was a very good action, and needs to be used again in the Stage B.

A suggestion was made to incorporate changes to the platform used by personnel when on the boat in order to make working with heavy equipment on the river easier.

## 6.4 Chemical Mixing Skids

Consideration should be given to use larger capacity chemical mixing pumps. The existing pumps did not provide sufficient discharge pressure to the infiltration system. Different pumps would provide more efficient service and optimize the function of the infiltration system, which is especially important, given that Stage B involves treatment of much larger areas.

Consider replacing the mixing skid chemical pumps with metering pumps if allowed by chemical process injection flow requirements.

It will be necessary, prior to the next use of the mixing skid, to rework all the globe valve internals, in order to prevent leakage. The chemicals being pumped negatively affected the ability of the valves to properly seat. Another alternative might be to use valves more suitable for the material being pumped.

Operationally, Engineering was unfamiliar with the chemical mixing skid/chemical mixing ratio control. The experienced engineers who designed the mixing skids are no longer on the project. Sufficient time should be scheduled for personnel to become familiar with this equipment before they are required for actual sequestration operation. Consider using a test assembly at the 200W P&T for this purpose. This assembly could also be used for system and procedure testing.

Design the chemical mixing pump to operate in an automatic mode for Stage B. Factor the "Auto" mode of operation into the testing program to ensure it functions as intended.

Use of the six-pack filters was felt to be an effective and beneficial design. Their adjacent position to the chemical mixing skids should be continued in Stage B. The project needs to ensure sufficient availability of the 50-micron filter cartridges prior to the next use of these filters. Also, need to continue using the wooden hose support structures to elevate the river hoses to the six-pack filters. They worked very well and should be used again.

Provide a step assembly for shorter stature personnel to use when accessing the mixing skids to take readings.

### 7 Chemicals

The actual amount of chemical handling required by personnel in support of Stage A was much greater than originally expected, based on bench testing. As a result, a significant number of challenges associated with utilization of the bulk chemical were encountered during Stage A. These challenges caused a number of delays and increased Stage A costs significantly. The project should have recognized that the scale of operation was different from laboratory bench tests, and been prepared for the issues ahead of time. Unfortunately, the laboratory tests clearly did not prepare us for the actual field conditions encountered (i.e., volumes and temperatures). Prior to the implementation of Stage B, a number of specific lessons need to be learned. Further review based on the Stage A experience is necessary in order for the project to be prepared for Stage B.

Given the challenges encountered with the proper chemical mixing under various temperature conditions, it would be valuable to have a chemical mixing contingency plan in place before Stage B.

Need to determine the optimum chemical mixture to be used in the future (Na2PO4 vs. NaPO4).

It was good that the sequestration chemical was not regulated. Since there were a number of chemical leaks, there was no environmental concern when some leaked. Whenever a leak was discovered, it was properly reported, cleaned up, and disposed. In a number of areas, such as the chemical tank farm, spill containment was established prior to the commencement of operations.

If, in the future, the project scientists consider using a different chemical, it should also be unregulated. A regulated product would greatly complicate design, setup, operation, and decommissioning. If at all possible, stay with the same chemical product used in Stage A.

During Stage A, there was an unexpected amount of chemical precipitation out of solution, which caused a number of operational issues. Later in Stage A, this condition was essentially resolved. These lessons need to be carried over to Stage B.

One of the biggest challenges the project did not consider in association with the injection chemicals was the impact of the cold temperatures encountered due to setup delays. However, after a number of trials, a formulation was found that effectively worked, including the supplier heating the chemical prior to delivery at the site. If cold weather conditions are possible in Stage B, this formulation needs to be used again.

Consider re-evaluating the high chemical concentrations that were used. Consider lowering the concentration, and changing the mixing ratios, which would simplify injection operations. The river pump maximum capacity of 255 gpm will limit the ability to dilute the concentration, and this limitation will need to be considered unless a different a pump is used. A higher level of dilution would have a positive effect on the system components, and would be a desirable course of action, if it can be justified.

The chemical supplier's contract was not precise enough to require the vendor to supply the required product, and its associated documentation, that was actually needed. Prior to Stage B, the supplier's contract needs to be revised.

Need to clearly understand how the chemical supplier (i.e., Two Rivers) mixes the bulk chemicals prior to delivery. This information needs to be formally delivered, and is necessary in order to better plan how to use the chemical for injection. Additionally, we need an accurate certificate of analysis of the mixture sent to the field. These data are necessary for accurate determination of the desired concentration under various environmental conditions.

Have the chemical supplier use an instrument to measure phosphate concentration real time to ensure mixture consistency.

During Stage A, the chemical contractor and project scientists were very supportive and responsive to addressing operational challenges associated with the chemicals.

Early in Stage A, Operations personnel encountered unexpected challenges with the chemical line layout that was initially installed. Modifications were made to the configuration and no more issues were encountered. This final layout needs to be retained for Stage B.

Experience gained from Stage A determined that it would be desirable, if possible, to locate the chemical storage tanks closer to the chemical skids. The closer location would help optimize pumping operations by significantly shortening the long hose runs. In conjunction with moving the tanks, or alternatively the trailers, consider creating a differential height between the tanks and trailers to ensure an optimum net positive suction head for the trailer pumps. If there are other overriding considerations, such as personnel safety, and ease of chemical delivery truck unloading, the relocating of the tanks is not as critical for operational success.

The trailer flow meters caused a number of issues during the Stage A activity. There is a need to repair, and replace these units in order to enhance reliability. Additionally, consider relocating the flow meters to the discharge lines in order to optimize/simplify operations.

# 8 ERT System & Data Collection

Consider using an increased number of data loggers during Stage B. Additional data loggers would also be appropriate for the remaining data collection from Stage A. The data loggers are used to collect conductivity data. Consideration should be given to automate the collection and transmission of data collected from the loggers for Stage B. This action would greatly enhance this analysis of data on a real time basis.

During Stage A, it was determined that the daily monitoring (reading) of 26 piezometers is unrealistic. Prior to Stage B, the frequency of these readings should be reassessed.

## 9 Radiological

There were essentially no radiological challenges associated with this work. If there had been, the work would have been greatly complicated. For example, given the number of leaks encountered, contamination control would have been a challenge. It is assumed Stage B will also have minimal radiological implications. If not, a great deal of redesign and work planning will be necessary before any field activities can commence.

## 10 Training & Qualification

Training of all personnel was effective, and there were no issues encountered in this area. The project had a small core group of experienced personnel (i.e., NR-2 Sequestration). This greatly aided in the training and qualification of additional personnel. It is important to use, to the extent possible, the personnel who performed this project in any future sequestration activity.

### 11 Waste Handling

Better direction in collecting, handling, and disposing of chemical wastes is necessary. Given the large quantity of chemicals used and number of associated chemical lines and fittings in the project, the anticipated amount of waste management actions were underestimated. Recognizing that Stage B will be

K-15

handling significantly larger quantities of bulk chemical, and have even more potential for leaks, the need for better upfront waste management planning is essential.

### 12 Miscellaneous

Incorporate the basic philosophy that "If It Ain't Broke Don't Fix It." Most aspects of the Stage A worked well once they were fined tuned. For Stage B, minimize the amount of changes to only those that simplify the process, and make the project more efficient and cost effective.

Careful consideration should be given to addressing how equipment used in the Stage A is going to be properly stored for reuse (consider storage in Building 273W). It will also be necessary to label and inventory the equipment to ensure it will not "disappear" over time.

The re-use of some ¼-inch poly tubing to supply air to the well packers caused problems. The tubing had been used in an earlier sequestration project at NR-2 and was being reused for Stage A. It was discovered that the poly tubing had become brittle due to long-term UV exposure. During Stage A, this material was replaced in its entirety following a tubing break. Recommend the tubing again be replaced prior to Stage B to avoid unexpected air leaks.

One action taken early on in Stage A was the removal of the overhead electrical lines. This greatly simplified subsequent work activities, especially those requiring the use of heavy equipment.

The staging of a small portable office was a good action, and should be continued in the future. However, a little larger office would have been beneficial. Also, locate in the office a printer for use. Initially, there was no printer, and it was determined that one was needed. During Stage B, testing will be needed to verify the printer functions when logged into the system. Provision of a wireless fax/copier would also be great benefit to personnel.

To more effectively plan Stage B, ensure the field setup and testing is performed early enough in the year to ensure pumping operations are performed and completed, especially before freezing weather conditions are likely to develop. The cold weather conditions encountered during Stage A led to a variety of operational challenges that should be avoided in the future. For Stage B, if practical, avoid any cold weather conditions. However, if cold weather operations are necessary, ensure the project is adequately prepared. For example, have an air compressor of sufficient capacity at the site to remove water from the lines and hoses for freeze protection.

One negative impact due to cold weather was that there was insufficient electrical power available for the required electrical blankets to keep temperature sensitive equipment warm. If required to perform future winter operations, additional or larger capacity portable generators and heating blankets will be necessary.

The only equipment damage that was encountered during the project was the discovery of a small leak on the bottom of one of the bulk chemical storage tanks. This leak will need to be addressed before the affected tank can be placed back into service. The leaking chemical storage tank was pumped down, and was not used further during Stage A.

Determining upfront what hardware and consumables will be needed during Stage B and ensuring that sufficient materials are staged onsite will eliminate a lot of lost time traveling to the 200 Area for parts, thus improving efficiency.

Since the work activity is a mixed gender activity, consideration should be given for both male and female toilet facilities.

#### SGW-59614, REV. 0

#### 300-FF-5 STAGE A URANIUM SEQUESTRATION POST-JOB REVIEW AND LESSONS LEARNED

### 13 Summary

In general, it was determined that the Stage A sequestration was a successful operation. The project was able to inject a sufficient amount of chemical to meet design goals. However, the experience from Stage A revealed a significant number of lessons learned that will need to be addressed before the project evolves into Stage B sequestration. Following are some of the more significant lessons learned:

- The optimum chemical mixture and concentration
- The optimum number of wells to be used
- The necessity of chemical injection into the saturated zone
- The optimum types of hoses and fittings
- The most appropriate ERT system configuration
- The need to simplify the work documents used to setup and test the sequestration system
- The need to involve O&M personnel as early as possible for hazards identification and equipment determination
- The optimum configuration of the infiltration system
- The safest and most efficient way to install the infiltration system
- The most effective way(s) to control fieldwork activities (setup, testing and operations)
- The most effective means to control the number of personnel at the work site .

One of the project's most noticeable strengths was the consistently high level of teamwork exhibited by all personnel from the various organizations who participated in the project. Additionally, the entire project was conducted with no regulatory noncompliances. Finally, there were no near miss events, only a few minor personnel injuries, and a minor amount of equipment damage.

Attachment: Post Job Review Meeting Attendance Rosters

Post Job Review Facilitator:

Robert Barmettlor

Rebuch A Bayner D:

Date: 2/17/16

Project Manager:

Patrick Baynes

Date: 2/17/16

# SGW-59614, REV. 0

je.

| PRC POS                                    | T-ALARA / POST-                 | JOB REVIEW            | Page 5 of                              |  |
|--------------------------------------------|---------------------------------|-----------------------|----------------------------------------|--|
| Site:                                      |                                 | <u> </u>              | Facility:                              |  |
| Related AJHA Number: (enter N/A if no AJH/ | A is applicable to this feedbac | ж):                   |                                        |  |
| AJHA Feedback ID (if known):               |                                 | Work Number:          |                                        |  |
| Post                                       | Job/ALARA Review L              | essons Learned Roster |                                        |  |
| Name (print)                               | Date                            | Signature             |                                        |  |
| Bob Barmettlor                             | 12915.                          | R. Razzell            | R                                      |  |
| ERIC BERTRAND                              | 12/9/15                         |                       |                                        |  |
| Ben Tabayoyou                              | 12/9/15                         | Button                | a                                      |  |
| A.E. ANDOR                                 | 12/9/15                         | Allin E. J            | Induz                                  |  |
| Jose Gutierrez                             | 12-9-15                         | Jose Sulain           | 2                                      |  |
| Greg Larson                                | 12-9-15                         | The Latte             | and                                    |  |
| ROGER WHIRDER                              | 12/9/15                         | Allter                | he                                     |  |
| ERNESD M, BALDWIN                          | 12/9/15                         | quart                 | +                                      |  |
| DAN GILLIAN                                | 121915                          | Danger to             | tran                                   |  |
| Craig Moydole                              | 12/9/15                         | Confort               | ×0                                     |  |
| KEWEEKS                                    | 12/9/15                         | Reuces                | 2                                      |  |
| Pave St. John                              | 12/4/15                         | Autor                 |                                        |  |
| Kelly Whilley                              | 12/9/15                         | - Helly White         |                                        |  |
| Patrick Baynes                             | 12/9/15                         | Patrich Ask           | Baynes                                 |  |
| Randy Hormana                              | 12/9/15                         | Ref                   | 2                                      |  |
| 1                                          |                                 |                       |                                        |  |
| 5.<br>                                     |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
| A 4 50 (F 4 1)                             | · ·                             | 1                     |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       | ······································ |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       | ······································ |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |
|                                            |                                 |                       |                                        |  |

A-6004-821 (REV 4)

| Site:       300 - FF - 5       Facility: 300 - FF -         Related AJHA Number:       (arter NA II no AJHA is applicable to this feedback):       V [A].         Mark Feedback ID (If known):       V [A].       Work Number:         Post-Job/ALARA Review Lessons Learned Roster       Signature         Rading Data       Data       Signature         Record Data       [10] 15.       Record Data         Fave Data       [12] 10] 15.       Record Data         Fave Data       [12] 10] 15.       Record Data         Virginik Rohay       [12] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Record Baynes       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Record Baynes       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       Record Data         Sumit Mode       [2] 10] 15.       [3] 10] 10.         Sumit Mode       [3] 10] 10.       [3] 10] 10.         Sumit Mode       [3] 10] 10.       [3] 10. </th <th colspan="5" rowspan="2">PRC POST-ALARA / POST-JOB REVIEW</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRC POST-ALARA / POST-JOB REVIEW        |                                       |                      |           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------|-----------|--|--|
| Related AJHA Number: (enter NA If no AJHA is applicable to this feedback): U [4] .<br>AJHA Feedback ID (If known): U [4] .<br>Name (print) Date<br>Redorm Ethor. 18 (10) 15.<br>Roam Ethor. 18 (10) 15.<br>Roa                                                   |                                         |                                       |                      |           |  |  |
| AHA Feedback ID (If known): 1/A. Work Number:<br>Post-Job/ALARA Review Lessons Learned Roster<br>Name (print) Date Biggeture<br>R. Racmett loc. 12/10/15. Review Printing<br>Faves Elloy 12/10/15. Review Printing<br>Nirginik Rohey 12/10/15. Review Printing<br>Sunik Mater 12/10/15. Review Printing<br>Sunik Mater 12/10/15. Review Printing<br>Sunik Mater 12/10/15. Review Printing<br>Printing Printing                                                                                                                                                                                                | Related AJHA Number: (enter N/A if no A | JHA is applicable to this feedback    | PA.                  |           |  |  |
| Post-Job/ALARA Review Lessons Learned Roster           Name (print)         Date         Standard           R. Rometton         12/10/15         Review Lessons Learned Roster           Favan Ellos         12/10/15         Review Lessons Learned Roster           Virginia Rohad         12/10/15         Review Lessons Learned Roster           Standard         12/10/15         Review Lessons Learned Roster           Standard         12/10/15         Review Lessons Learned Roster           Sumit Mata         12/10/15         Review Lessons Learned Roster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AJHA Feedback ID (if known):            | A .                                   | Work Number:         |           |  |  |
| Name (print)  R. Barmett loc.  Ia (10) 15.  Robert loc.  Ia (10) 15.  Robert loc.                                                                                                                                                                                                                   | Po                                      | st-Job/ALARA Review Le                | ssons Learned Roster |           |  |  |
| Recompetition. 12/10/15. Recomposition<br>Faven Elloy 12/10/15 Recomposition<br>Virginia Rohad 12/10/15 Recommendation<br>Sundy Hormann 12/10/15 Recommendation<br>Recomposition 12/10/15 Recomposition<br>Recomposition 12/10/15 Recomp                                                                                                       | Name (print)                            | Date                                  | Signatur             | Signature |  |  |
| Favan Ello e 12/10/15 Higher & Change<br>Virginik Rohay 12/10/15 Higher & Change<br>Patrick Baynes 12/10/15 Patrick & Baynes<br>Sund Make 12/10/15 Higher<br>Roudy Hormann 12/10/15 Higher<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R. Barmettlor.                          | 12/10/15.                             | Raziolita            | Ð         |  |  |
| Virginik Rohay 12/10/15 Harming Portuge<br>Ratrick Baynes 12/10/15 Patrick Baynes<br>Sunit Make 12/10/15 Action 1<br>Ready Hormann 12/10/15 Action 1<br>12/10/15 Action 1<br>12 | Farah Elloy                             | 12/10/15                              | 478                  |           |  |  |
| Patrick Baying 12/10/15 Patrick Baying<br>Sunid Mater 12/10/15 Patrick Baying<br>Roudy Hormourn 12/10/15 Patrick Baying<br>Internet Patrick Baying Internet Patrick Baying Internet<br>Roudy Hormourn II2/10/15 Patrick Baying Internet Pa                                                                                                                                                                                                     | Virginia Rohay                          | 12/10/15                              | Harginia & Kothe     | 4         |  |  |
| Sund Maler is 10 for film i<br>Roudy Hormann 12/10/15 Aref 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Patrick Baynes                          | 12/10/15                              | Patrit & Bayne       |           |  |  |
| Reudy     Hormann     12/10/15       Image:                                                                                                                                                                                                                                                                          | Sunid Mahra                             | 12/10/15                              | fim                  |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Randy Hormann                           | 12/10/15                              | Tereb 26             |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      | 12.       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·   |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | · · · · · · · · · · · · · · · · · · · |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                       |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       | 1                    |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·   |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                  | 1 ×                                   |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····                                   |                                       |                      | <u> </u>  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      | 50        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                       |                      |           |  |  |

A-6004-821 (REV 4)

-

# SGW-59614, REV. 0

This page intentionally left blank.