Jacobs

Challenging today. Reinventing tomorrow.

Agenda

- Footprint Analysis Tools Background
- Best Uses of SiteWise and SEFA
- Case Studies
- Key Takeaways

A Brief History

Public domain footprint analysis tools

SiteWise

Inputs

Component	Component Alias
Component 1	Remedial Investigation
Component 2	Remedial Action Construction
Component 3	Long-Term Monitoring
Component 4	Component 4

BULK MATERIAL QUANTITIES	Material 1	Material 2
Choose material from drop down menu	Bentonite	Virgin GAC
Choose units of material quantity from drop down menu	pounds	pounds
Input material quantity	165,000	300
PERSONNEL TRANSPORTATION - ROAD	Install	O&M
Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	No	No
Choose vehicle type from drop down menu*	Light truck	Light truck
Choose fuel used from drop down menu	Gasoline	Gasoline
Input distance traveled per trip (miles)	30	150
Input number of trips taken	20	12
Input number of travelers	1	1
Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected,		
otherwise a default will be used by the tool)		
DRILLING	Event 1	Event 2
DRILLING Input number of drilling locations	Event 1 5	Event 2 25
DRILLING Input number of drilling locations Choose drilling method from drop down menu	Event 1 5 Sonic Drilling	Event 2 25 Direct Push
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr)	Event 1 5 Sonic Drilling 5.00	Event 2 25 Direct Push 5.00
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu	Event 1 5 Sonic Drilling 5.00 Diesel	Event 2 25 Direct Push 5.00 Diesel
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR	Event 1 5 Sonic Drilling 5.00 Diesel Install	Event 2 25 Direct Push 5.00 Diesel 0&M
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers	Event 2 25 Direct Push 5.00 Diesel 0&M Construction laborers
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours)	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0	Event 2 25 Direct Push 5.00 Diesel O&M Construction laborers 48.0
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0 Soil Residue	Event 2 25 Direct Push 5.00 Diesel O&M Construction laborers 48.0 Residual Water
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0 Soil Residue No	Event 2 25 Direct Push 5.00 Diesel O&M Construction laborers 48.0 Residual Water No
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0 Soil Residue No	Event 2 25 Direct Push 5.00 Diesel 0&M Construction laborers 48.0 Residual Water No
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING Will DISEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons)	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0 Soil Residue No 20.0.	Event 2 25 Direct Push 5.00 Diesel 0&M Construction laborers 48.0 Residual Water No 16.0
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu	Event 1 5 Sonic Drilling 5.00 Diesel Install Construction laborers 200.0 Soil Residue No 20.0 Diesel	Event 2 25 Direct Push 5.00 Diesel 0&M Construction laborers 48.0 Residual Water No 16.0 Gasoline
DRILLING Input number of drilling locations Choose drilling method from drop down menu Input time spent drilling at each location (hr) Choose fuel type from drop down menu OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips	Event 1 5 Sonic Drilling 5.00 Diesel Construction laborers 200.0 Soil Residue No 20.0 Diesel 4.0	Event 2 25 Direct Push 5.00 Diesel O&M Construction laborers 48.0 Residual Water No 16.0 Gasoline 2.0

Outputs

Remedial Alternatives	GHG Emissions	Energy Usage	Water Usage	Electricity Usage
Alternative 1	High	High	Low	High
Alternative 2	Medium	Medium	Low	Low
Alternative 3	Medium	Medium	High	Low

Inputs

Remedy Component Names*
Site Investigation
Remedial Investigaiton
Remedial Action
< Component 4 >
< Component 5 >
< Component 6 >

Personnel Transportation

	Number of Roundtrips	Roundtrip Distance to Site		Transport	Total Distance Transported	Default Fuel	Fuel Usage Rate	Fuel Used for Personnel
Participant	to site	(miles)	Mode of Transportation*	Fuel Type*	(miles)	Usage Rate**	Override**	Transport**
John Doe	10	20	Car	Gasoline	200	25		8
Samantha Doe	1	40	Light-Duty/Passenger Truck	Gasoline	40	18.9	25	1.6
Airplane Travel	1	13028	Airplane	Diesel	13028	45		289.5

Materials Use and Transportation						1
Material Type*	Unit	Quantity	Tons	Is the Material Refined or Unrefined?**	Material Source: Virgin, Recycled, or Reused?**	Calculate Item Footprint?**
Ethanol, Corn, 95%	lb	10000	5	Refined	Virgin	Yes
Ethanol, Corn, 95%	lb	10000	5	Refined	Virgin	No
						~~~~

Default One- One-way way Distance Distance to Number of Include Return Total							Materials Use and Transportation
to Site Site Override One-way Trips Trip in Tran	Distance	Total Distance Transported	Include Return Trip in	Number of One-way Trips	One-way Distance to Site Override	Default One- way Distance to Site	
Material Type" (miles) (miles) to Site Calculations? (m	tiles)	(miles)	Calculations?	to Site	(miles)	(miles)	Material Type*
Ethanol, Corn, 95% 500 200	00	200			200	500	Ethanol, Corn, 95%
Ethanol, Corn, 95% 500 200	00	200			200	500	Ethanol, Corn, 95%

#### Outputs

Core Element		Metric	Unit of Measure	Metric Value
	M&W-1	Refined materials used on site	tons	
	M&W-2	Percent of refined materials from recycled or waste material	percent	
Materials	M&W-3	Unrefined materials used on site	tons	
Materials & Weste	M&W-4	Percent of unrefined materials from recycled or waste material	percent	
oc waste	M&W-5	Onsite hazardous waste generated	tons	
	M&W-6	Onsite non-hazardous waste generated	tons	
	M&W-7	Percent of total potential onsite waste that is recycled or reused	percent	
		Onsite water use (by source)		
	W-1	<ul> <li>Source, use, fate combination #1</li> </ul>	millions of gals	
Water	W-2	<ul> <li>Source, use, fate combination #2</li> </ul>	millions of gals	
	W-3	<ul> <li>Source, use, fate combination #3</li> </ul>	millions of gals	
	W-4	<ul> <li>Source, use, fate combination #4</li> </ul>	millions of gals	
	E-1	Total energy use	MMBtu	
	E-2	Total energy voluntarily derived from renewable resources		
Energy	E-2A	<ul> <li>Onsite generation or use and biodiesel use</li> </ul>	MMBtu	
	E-2B	<ul> <li>Voluntary purchase of renewable electricity</li> </ul>	MWh	
	E-2C	<ul> <li>Voluntary purchase of RECs</li> </ul>	MWh	
	A-1	Onsite NOx, SOx, and PM10 emissions	lbs	
	A-2	Onsite HAP emissions	lbs	
Air	A-3	Total NOx, SOx, and PM10 emissions	lbs	
	A-4	Total HAP emissions	lbs	
	A-5	Total GHG emissions	tons CO2e	
Land & Ecosystems		Qualitative description		



©Jacobs 2022

#### Flexibility Allows for User - Defined Emissions Factors

- Increase footprint accuracy
  - For products with a known emissions factor
  - Updated/preferred values
- May be particularly important outside of the USA

Table 1c: Impact per kg of material					
Material	kg CO2 e / kg				
Vegetable Oil	8.65E-01				

Table 4a: Electricity use impact by State*						
Profile Name	(lbs CO ₂ / MWh)					
Alaska	1302.08					
Alabama	1154.31					
Arkansas	1230.58					
Arizona	1236.53					
California	679.37					
Colorado	1955.27					
Connecticut	659.84					

# Best Uses of SiteWise and SEFA



#### **Compare Alternatives**

#### 10-15 hours per alternative



Remedial Alternatives	GHG Emissions	Energy Usage	Water Usage	Electricity Usage	Onsite NOx Emissions	Onsite SOx Emissions	Onsite PM10 Emissions	Total NOx emissions	Total SOx Emissions	Total PM10 Emissions	*Accident Risk Fatality	*Accident Risk Injury	Community Impacts	Resources Lost
Alternative 1	High	High	Low	High	Medium	Medium	Medium	High	Medium	High	High	High	user select	user select
Alternative 2	Medium	Medium	Low	Low	High	High	High	Medium	Medium	High	High	High	user select	user select
Alternative 3	Medium	Medium	High	Low	High	High	High	Medium	High	High	High	High	user select	user select

	GHG		CERCLA Criteria	No Action	AS/SVE, MNA, LUCs, and VIMS	ISCO, MNA, LUCs, and VIMS	ERD, MNA, LUCs, and VIMS
	emissions			(1)	(2)	(3)	(4)
	61113310115		Threshold Criteria				
			Protection of Human Health and the Environment	0	•	•	•
			Compliance with ARARs	0	•	•	•
	Air pollutant emissions		Primary Balancing Criteria				
Air poliulant emis			Long-term Effectiveness and Permanence	0	•	•	•
(NO SO PM			Reduction in Toxicity, Mobility, or Volume	0	0	•	•
$(100_{\chi}, 00_{\chi}, 100_{\chi})$	107		Short-term Effectiveness	0	•	•	•
Resource us	se		Implementability	•	0	0	0
(water and one	rav		Present-Worth Cost	\$0	\$2.91 M	\$2.18 M	\$2.63 M
(water and energy)		Relative Ranking: ● High <b>O</b> Moderate ○ Low					
Accident Ris	sk		Rankings are provided as qualitative description	ons of the relative o	compliance of each	alternative with the	criteria

## **Evaluate Individual Alternatives**

- Consumables
  - Identify onsite soil that can be used as backfill
  - Evaluate alternate materials with lower footprints
- Residual handling
  - Additional delineation to reduce removal volume
  - Identify closer disposal facility
- Transportation of equipment
  - Evaluate transportation via rail

#### 8-10 hours per alternative





## **Calculate Savings**

#### <1 hour per BMP

- Best Management Practice Implemented:
  - Select local waste disposal facilities to minimize transportation impacts.
- Action:
  - Disposed of aqueous waste in an on-site groundwater treatment plant versus at an off-site facility.
- Associated Impacts:
  - Avoided 26,000 road miles per year
  - Reduced road congestion and traffic through neighborhoods



# Case Study 1



# Site Background

- Debris disposal area
  - Investigated since 1998
- Potential risk identified due to:
  - Metals in soil
  - Surface and subsurface debris



#### **Remedy Evaluation**

- Alternative 1: No Action (not analyzed)
- Alternative 2: Removal and Offsite Disposal
- Alternative 3: Low Permeability Soil Cover

	GHG Emissions	Total energy Used	Water Used	NO _x emissions	SO _x Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
	metric ton MMBTU	gallons	metric ton	metric ton	metric ton			
Alternative 2 - Removal and Offsite Disposal	Low	Low	High	Low	Low	Medium	Medium	Medium
Alternative 3 - Low Permeability Soil Cover	High	High	High	High	High	High	High	High

#### **Remedy Evaluation**

- Alternative 1: No Action (not analyzed)
- Alternative 2: Removal and Offsite Disposal
- Alternative 3: Low Permeability Soil Cover

Removal Action Alternative Compariso	n			
Alternative	Effectiveness	Implementation	Cost	<b>Environmental Footprint</b>
Alternative 1 – No Action	Least Effective	Easiest	Least Expensive	None
Alternative 2 – Removal and Offsite Disposal	Most Effective	Moderately Easy	Moderately Expensive	Smallest Footprint (Active Alternatives)
Alternative 3 – Low- Permeability Soil Cover	Effective	Moderately Easy	Moderately Expensive and Most Expensive of the Three Alternatives	Largest Footprint of the Three Alternatives

# Case Study 2



# Site Background

- Former motor pool
  - Investigated since 1996
- 1,1,2,2-TeCA, TCE, and daughter products in groundwater
  - Concentrations indicative of DNAPL
  - Constituting principal threat waste



#### **Remedial Evaluation**







Water Impacts











#### **Remedial Evaluation**

Alternative	Effectiveness	Implementation	Cost	Environmental Footprint
Alternative 1 - No action	Least	Easy	None	None
Alternative 2 – ERD	Effective	Moderate-Hard	Low-Moderate	Low-Moderate
Alternative 3 – ISCO	Effective	Moderate-Hard	Most expensive	Moderate
Alternative 4 – HDD AS	Effective	Moderate	Least expensive	Highest

#### **Remedial Design and Implementation**



















### **Remedial Design and Implementation**

- AS milestones for system shutdown
  - COC reduction to below 100  $\mu g/L$  within 50 feet of AS wells
  - COC reduction demonstrates asymptotic trends

Ð	Estimated Annual Reductions
	GHGEmissions (metric tons)
	1,400
als	Cost
	\$100,000
1	



## **Remedial Design and Implementation**

- AS milestones for system shutdown
  - COC reduction to below 100  $\mu g/L$  within 50 feet of AS wells
  - COC reduction demonstrates asymptotic trends

e TM	Estimated Annual Reductions
ron Wis	GHGEmissions (metric tons)
Site F	1,400
als	Cost
Vctu	\$100,000
<	

This is equivalent to CO₂ emissions from:



This is equivalent to carbon sequestered by:



https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

# Key TakeAways



#### What tool should you use?

	SiteWise	SEFA
Focus	Compare multiple alternatives	Evaluate one remedial alternative's footprint
Developer	Battelle, Naval Facilities Engineering Command, US Army Corps of Engineers	EPA
Structure	Organized by remedy components	Organized by core elements consistent with EPA's Methodology
Parameters Calculated	CO2e- Energy- NOx- SOx- PM - Injury risk - Fatality risk - Lost hours	- CO2e- Energy- NOx- SOx- PM- Air toxics
Outputs	Tables and	l Charts
Cost	Free	?! 
Software	Exce	el

## **Considerations and Challenges**

- These tools were designed to calculate the environmental footprint of remedial alternatives
  - What if you want to include societal impacts?
  - Or economic impacts?
- Project Size Matters
  - Too small may be a waste of resources
  - Too complex may be beyond the scope of a footprint analysis tool
- Easy to learn/easy to use
  - Novice practitioner can make mistakes
  - Advanced practitioner can harness full power of tool



## Key TakeAways

- A powerful tool with many uses
  - Compare remedies (10 15 hours per alternative)
  - Evaluate individual alternatives (8 10 hours)
  - Calculate savings (<1 hour)</li>
- Tool flexibility improves footprint accuracy
- Benefits
  - Additional line of evidence for remedy selection
  - Identify areas of opportunity
  - Take credit for footprint reductions



		S	EFA				
A.	Sp Enviro	oread onme Ar	lshee ental nalysi	ts fo Foot s	r prir	۱t	1 - 1 - 7 - 1 - 1
		Clic	k to add heade	r i			
		Greener Cleanu	ips: EPA Spreads	heets for Enviro <sit< th=""><th>nmental Fo e Name&gt; - &lt;</th><th>otprint A Remedy</th><th>nalysis Name&gt;</th></sit<>	nmental Fo e Name> - <	otprint A Remedy	nalysis Name>
identify th the works	e site name and remedy heets for the project.	name in the sp	paces below. Th	ese names will	be populat	ed on all	of
	Cito Namo			-Sito No	max	-	_
	Remedy			<remedy< td=""><td>Name&gt;</td><td></td><td></td></remedy<>	Name>		
Enter the	path and file name of the	e calculatios she	eet for the proje	et.			
	Path Name: Calculations File Nam	e:		calculations_(0	41612) <i>.</i> xlsx		
	Component		Componer	t Name		_	
	Component 1		< Comport	ent1>			
	Component 2		< Compor	ent 2 >			
	Component 3		< Compor	ent 3 >			
	Component 4		< Compor	ent 4 >			
	Composition 4		- eeinpor	ALL			

## Want to Learn More?

- The Sustainable Remediation Forum (SURF) developed short training videos on how to use SiteWise and SEFA.
- Trouble accessing YouTube? Contact <u>betsy.collins@jacobs.com</u> for video files.



# Betsy Collins Betsy.Collins@jacobs.com







Challenging today. Reinventing tomorrow.