Overview of Remediation Technologies for Radionuclides in Soil and Groundwater

MICHAEL TRUEX
Pacific Northwest National Laboratory

Context
- Remediation technologies operate at the intersection of
 - radionuclide characteristics
 - the target problem
 - remedy functionality
 - remediation objectives

Outline
- Radionuclide characteristics related to remediation
- Considering end states and attenuation in remedy decisions
- Remedy technologies and approaches
- Remedy implementation
- Discussion focused on
 - Uranium, Tc-99, Sr-90, I-129, tritium
 - Groundwater protection and groundwater remediation

Radionuclide Characteristics (Friend or Foe)
- Half-life
 - Shorter is better (when exposure is controlled)
 - Sr-90 or tritium compared to uranium, I-129, or Tc-99
- Mobility (sorption)
 - Very low mobility generally good
 - Medium or high mobility - depends on the situation
 - Attenuated transport can be helpful (vadose zone contamination) or problematic (P&T)
 - Secondary sources are problematic unless balanced by attenuation

Radionuclide Characteristics (Friend or Foe)
- Biogeochemical interactions
 - Helpful
 - Uranium and Sr-90 interactions with phosphate
 - Uranium silicate precipitates
 - Mixed
 - Uranium and I-129 (and Cr) interactions with carbonate
 - Depends on location/extent
 - I-129 species transformation
 - Depends on change in mobility and potential for attenuation/sequestration
 - Uranium and Tc-99 redox
 - Depends on setting and role in a remedy
 - No interactions
 - Tritium

Disposal Chemistry

Szecsody et al. 2013
Truc et al. 2014
Overview of Remediation Technologies for Radionuclides in Soil and Groundwater

Michael Truex–2

Radionuclide Characteristics
(Friend or Foe)

- The Conceptual Site Model helps us decide:
 - Friend or foe for risk and transport
 - Friend or foe for remediation

![Diagram of Conceptual Site Model](Truex et al. 2017a)

Considering End States and Attenuation in Remedy Selection

- Systems-Based Assessment
 - Site Data
 - Source Terms

- Conceptual Model
 - MNA-style investigation
 (Attenuation/transport processes)

- Refined Conceptual Model
 - Assess risk and appropriate end state

- Remedial Strategy
 - Minimal impact (MNA)
 - Full remedy

- Partial remedy
 - Enhancements and targeted actions

![Diagram of Remedial Strategy](Truex et al. 2017a)

Remedy Technologies and Approaches

- Vadose zone
 - Attenuation
 - Consider transport processes in the vadose zone
 - Flux control (enhanced attenuation)
 - Physical stabilization
 - Hydraulic control
 - Biogeochemical stabilization
 - Extraction (e.g., excavation, soil flushing)
 - Cost/benefit
 - Groundwater treatment (e.g., phosphate)
 - Consider vadose zone source characteristics for groundwater impact

![Diagram of Vadose Zone Attenuation](Dresel et al. 2011)

Attenuation

- Source and Flux to Groundwater
 - Natural Attenuation

- MNA for Vadose Zone/Groundwater System
 - Source
 - Flux
 - Natural Attenuation Capacity

![Diagram of MNA for Vadose Zone/Groundwater System](Dresel et al. 2011)

Desiccation

- Desiccation as hydraulic control

![Diagram of Desiccation](Truex et al. 2017b)

Geochemical stabilization – vadose zone

- Ammonia gas for uranium sequestration

![Diagram of Geochemical Stabilization](Szecsody et al. 2012)
Overview of Remediation Technologies for Radionuclides in Soil and Groundwater

Michael Truex–3

Uranium source zone

- Periodically rewetted zone

Geochemical stabilization – periodically rewetted zone

- Phosphate treatment for uranium

Remedy Technologies and Approaches

- Groundwater
 - Attenuation
 - EPA guidance
 - Enhanced Attenuation and Source Control
 - Physical stabilization
 - Hydraulic control
 - Biogeochemical stabilization
 - Extraction (P&T)
 - Cost/benefit
 - Volumetric Treatment/Permeable Reactive Barriers
 - Scale, transport, attenuation

Carbonate interactions

- Uranium, iodate, and chromate co-precipitates with calcite

100-N Strontium

- Only near-river strontium is a risk to the river
- Monitoring linked to remedy approach

Remedy Implementation

- Amendment distribution
 - Vadose zone gas phase
 - Phosphate mobility
 - Particles
 - Bioremediation amendments
Overview of Remediation Technologies for Radionuclides in Soil and Groundwater

Michael Truex

Reductants

- ZVI
- SMI

Truex et al. 2011a
Truex et al. 2011b

Remedy Implementation

- Adaptive Site Management
 - National Research Council
 - ITRC
 - Remediation Management of Complex Sites
 - http://rmcs-1.itrcweb.org/
- Exit Strategies (P&T)
 - http://bioprocess.pnnl.gov/Pump-and-Treat.htm

References

Truex, MJ et al. 2014. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau. PNNL-23666, Pacific Northwest National Laboratory, Richland, WA.