Field Studies to Assess Biostimulation for Remediation of Radionuclides and Heavy Metals at an \textit{in situ} Leach Mine Site

John Willford, Kevin Chamberlain, Paul Reimus, and Jim Clay

Collaborators:
Craig Cook, Peter Stahl, Sean Scott, Calvin Strom, David Williams, Lawrence Reimann, Carl van der Linden, Ken Williams, Joyce McBeth, Rizlan Bernier-Latmani

School of Energy Resources

Geology and Wellfield Development

- The ore occurs at depths of several hundred feet, the extent is determined by surface drilling.
- Ore is typically confined by impervious shale.
- After deposit delineated, an extraction plan is prepared and grids of injection and production wells are installed.

Traditional Restoration Strategies

- **Reverse Osmosis Water Sweeps**
 - Remove extra mining lixiviant, TDS
 - Remove some Uranium (VI)
- **Chemical Treatments**
 - Attempt to reestablish reducing environment
 - i.e. Hydrogen Sulfide or Sodium Sulfide

- Very expensive, large consumptive water loss
- Evidence of rebound after treatment-U not valence reduced
- Can bio-stimulation improve the efficiency of restoration?

Previous Smith Ranch Highland Trial

(Adapted from Hatzinger, 2004)

Microcosm Experiment Objectives

- Examine potential biostimulants for their efficacy in promoting biological reduction of Uranium (VI) in SRH system
 - Tryptone
 - Safflower oil with Methanol
- Determine effective measurements to demonstrate biological reducing situations
 - Water chemistry analyses
 - Carbon-isotopic analyses
 - Uranium-isotopic analyses
 - Microbial community analyses
Field Studies to Assess Biostimulation for Remediation of Radionuclides and Heavy Metals at an \textit{in situ} Leach Mine Site

Soluble Uranium Results

Evidence of Microbial Activity

Uranium Isotope Analysis Methods

- Isotopic fractionation correlates to valence reduction
- Samples of monitoring waters
- Sample load ~100 nanograms (10^{-9} gm) U
- Spiked with 233U/236U tracer
- Purification on ion exchange columns
- Sample/blank ~10,000
- Multi-collector, inductively-coupled plasma, mass spectrometry (MC-ICP-MS)

Other Issues/Unanswered Questions from Microcosm Study

- How much tryptone is required to stimulate growth and reduction of uranium (VI)?
- Where in mining process would this type of biostimulation be the most beneficial?
- Do the monitoring metrics hold up in a continuous flow system?
Field Studies to Assess Biostimulation for Remediation of Radionuclides and Heavy Metals at an \textit{in situ} Leach Mine Site

Column Study Design

- Study was setup in a 4x4 system
 - 4 levels of tryptone stimulation
 - 2000 mg/L
 - 200 mg/L
 - 20 mg/L
 - No tryptone control (No Add)
 - 4 types of water
 - High TDS/U (7-8 ppm U)
 - Medium TDS/U (2-3 ppm U)
 - Low TDS/U (~1 ppm U)
 - Deionized control
- 16 total columns – 4 per syringe pump

Visually Observable Changes

Oxidized

Reduced

4.4 mL average pore volume

Soluble Uranium Concentration Results

- **2000 mg/L Treatment**
 - 99.3% reduction in High 2000 treatment
 - Consistent reduction beginning at ~Day 42
 - Synchrotron data demonstrates high U(IV) presence in sediment

- **200 mg/L Treatment**
 - 82.6% reduction in Medium 200 treatment
 - Beginning at ~Day 112
 - Despite initial reduction, clear rebound in High TDS/U water

Uranium/Carbonate Concentrations

200 mg/L Treatment

- 99.3% reduction in High 2000 treatment
- Consistent reduction beginning at ~Day 42
- Synchrotron data demonstrates high U(IV) presence in sediment

- 82.6% reduction in Medium 200 treatment
- Beginning at ~Day 112
- Despite initial reduction, clear rebound in High TDS/U water
Field Studies to Assess Biostimulation for Remediation of Radionuclides and Heavy Metals at an *in situ* Leach Mine Site

John Willford, Kevin Chamberlain, Paul Reimus, and Jim Clay–4

Conclusions of Column Study
- Tryptone was effective at promoting microbial growth and reduction of uranium in a continuous flow system
 - Clogging due to stimulation not observed
 - 2000 mg/L of tryptone shown effective at 7-8 mg/L uranium
 - 200 mg/L of tryptone shown effective at 2-3 mg/L uranium
 - 20 mg/L did not display reduction different from No Add control
- Monitoring metrics:
 - Carbonate concentration syncs well with uranium reduction activity
 - Uranium isotopic fractionations syncs well with uranium reduction activity
 - 238U/235U fractionation very sensitive to changes in U concentration, including increases

Field Trial Experiment Objectives
- Evaluate tryptone for its ability to promote biological reduction of Uranium (VI) in a field situation
- Continue monitoring metrics to determine effective measurements to demonstrate biological reducing situations
 - Water chemistry analyses
 - Carbon-isotopic/carbonate analyses
 - Uranium-isotopic analyses
 - Microbial community analyses
- Demonstrate biostimulation practicality
 - To ease some regulatory questions from previous efforts

Field Trial at SRH
- Tryptone stimulation with longer-term monitoring in one field pattern in Mine Unit 4 at SRH
 - Stimulated P121 well pattern with tryptone (~80 mg/L)
 - 200kg total
 - Well pattern P121 used as control pattern
 - Tryptone added Sept-Oct 2014
Field Studies to Assess Biostimulation for Remediation of Radionuclides and Heavy Metals at an in situ Leach Mine Site

Measured Concentrations

Uranium Fractionation

Conclusions of Field Trial

- Reducing environment:
 - Overall, data suggest a reducing environment in stimulated well pattern P121
 - Selenium & uranium concentrations decrease
 - Arsenic & iron (ferrous) concentrations increase
 - Uranium isotopic fractionation is significant in stimulated environment

- Most recent data may suggest increased stability of reduced uranium in the stimulated pattern
 - More data necessary

Field Trial Thoughts, Future Directions

- Tryptone quantity added was likely too low
 - Only ~40% of the low value suggested based upon column data

- Was this the proper point in restoration to bioremediate?
 - Didn’t clog any wells
 - In-lab studies show reduction at higher levels, plus bottom level in microcosms was close to 0.4ppm

- What makes tryptone effective?
 - Carry-on lab trial is providing insight

Acknowledgements

- Cameco, Inc.
- State of Wyoming Legislature, ISRU Technology Research Program
 - UW School of Energy Resources