

Minimizing human exposure to contaminants in urban soils

Ganga Hettiarachchi
Department of Agronomy
Kansas State University

Project: Gardening Initiatives at Brownfields Sites Research Approach

Efficacy of soil amendments in reducing food-chain transfer (leafy, root, and fruiting vegetables)

 By measuring plant contaminant concentrations following kitchen-style washing, a laboratory cleaning procedure, or peeling

Efficacy of soil amendments in reducing direct exposure risk

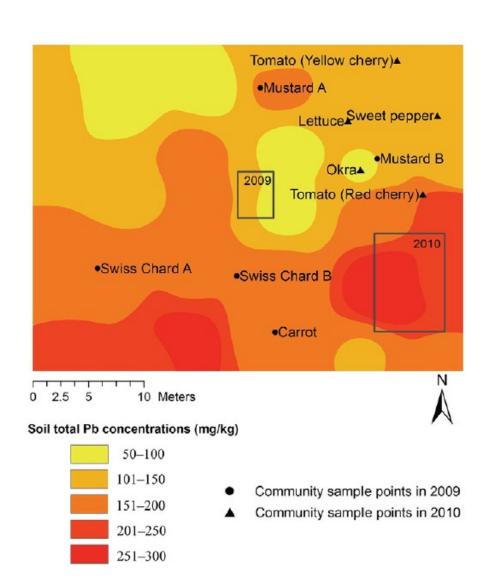
- By measuring bioaccessibility of soil contaminants
- By contaminant speciation

Experimental design: Randomized complete block with a split-plot arrangement KANSAS ST

Example Site 1: Kansas city, MO

Size ~ 42m x 37m

Silt loam (Sand-4%, Silt-75%, Clay-21%)


The site was screened *in situ*, every ~6 m for trace elements using x-ray fluorescence spectrometer

Moderately elevated Pb Soils were also tested for chlordane

NANSAS STATE

Attanayake et al., 2014. J. Environ. Qual. Vol. 43 No. 2, p. 475-487

Distribution of soil total Pb concentrations

**Laboratory conformation analysis-Using EPA 3051 method

Chlordane - n.d.
DDT- 0.04 mg/kg to1.3 mg/kg
DDE - only detected in two of the submitted samples (0.03, 0.04 mg/kg)

³ Sample		Mehlich-3				
ID	рН	P	Ext. K	NH ₄ -N	NO ₃ -N	OM
			mg/k	(g		%
98	6.6	130	624	53.6	73.2	3.9
9D	6.6	93	455	9.6	35.1	3.4
21S	7.2	116	417	11.8	22.7	3.0
21D	7.2	123	221	9.3	15.0	3.1
26S	7.8	57	255	8.3	4.3	1.5
26D	7.6	80	260	8.2	2.2	1.1
39S	6.9	154	488	15.0	24.2	4.7
39D	6.9	149	334	9.6	13.3	3.3

S = 0-15 cm D = 15-30 cm

Texture: Silt loam with 21% clay

Test plot-2010

Treatments:

No compost and compost @28 kg/m²

Crops:

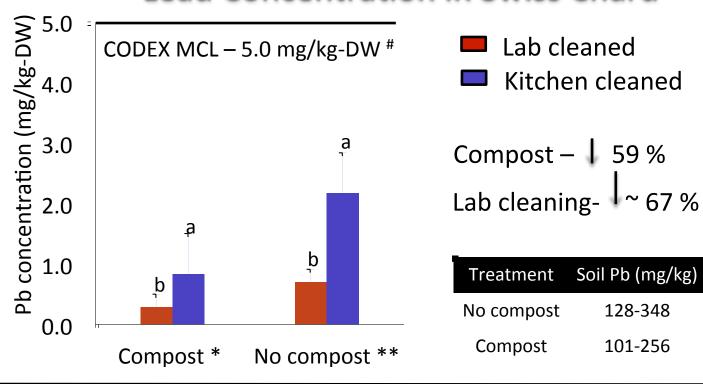
Swiss Chard

Carrots

Tomato

April 2010

June 2010.


Contaminant Dilution through Compost Addition

Kansas City, MO

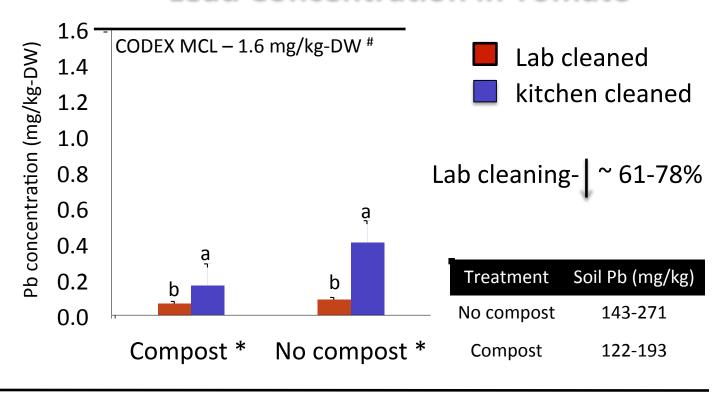
Plot #	Total Soil Pb (mg/kg)		
	Prior to Compost Addition	After Compost Addition	
1	289	203	
2	255	120	
5	253	146	
8	186	114	
Average	246	146	

Lead Concentration in Swiss Chard

p<0.05 (split plot design, 4 blocks)

*,** between two categories

a, b- within a category

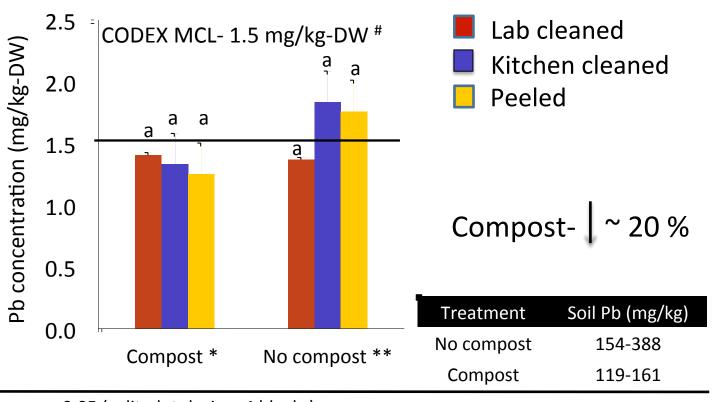

CODEX MCL (FAO/WHO) - 0.3 mg/kg fresh wt. basis (94% moisture)

128-348

101-256

Lead Concentration in Tomato

p<0.05 (split plot design, 4 blocks)


*,** between two categories

a, b- within a category

CODEX (FAO, WHO) - 0.1 mg/kg fresh wt. (94% moisture)

Lead Concentration in Carrot

p<0.05 (split plot design, 4 blocks)

*,** between two categories

a, b- within a category

CODEX (FAO, WHO) - 0.1 mg/kg fresh wt. (93% moisture)

Physiologically Based Extraction Test-PBET Results

Testing gastrointestinal dissolution of soil Pb

	Initial		End of the season		
	at pH 2.5		at pH 2.5		
Treatment	PBET	PBET*	PBET	PBET*	
	(mg/kg)	%	(mg/kg)	%	
No Compost	14.1 ± 4.8	5.6 ± 0.9**	12.8 ± 5.1	5.1 ± 0.5***	
Compost	7.4 ± 1.4	3.9 ± 0.4**	8.5 ± 1.8	3.9 ± 0.5***	

^{*} PBET Pb as a percentage of soil total Pb

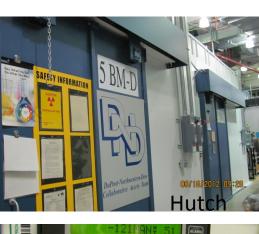
NIST 2711a: PBET Pb 35.2%

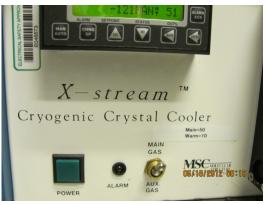
^{**} Values in the same columns were significantly different at p<0.15

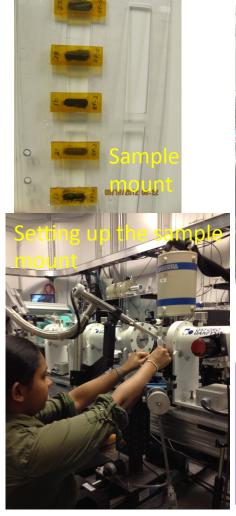
^{***} Values in the same were significantly different at p<0.1

Physiologically Based Extraction Test-PBET Results

Testing gastrointestinal dissolution of soil Pb

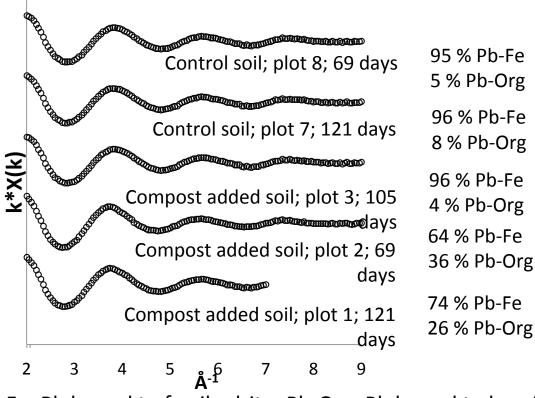

	Initial		End of the season	
	at pH 1.5		at p	H 1.5
Treatment	PBET	PBET*	PBET	PBET*
	(mg/kg)	%	(mg/kg)	%
No Compost	78.7 ± 19.5	32.9 ± 2.3**	84.4 ± 27.5	35.4 ± 1.5***
Compost	53.9 ± 6.8	29.0 ± 1.0**	56.7 ± 5.7	26.7± 0.8***


^{*} PBET Pb as a percentage of soil total Pb


NIST 2711a: PBET Pb 78.9%

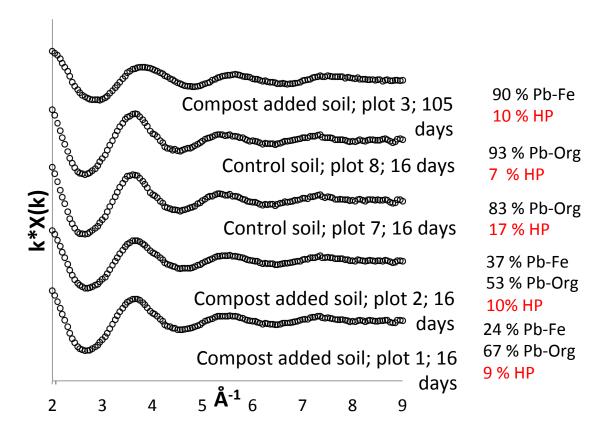
^{**} Values in the same columns were significantly different at p<0.1

^{***} Values in the same were significantly different at p<0.0.05



Speciation of soil Pb: Advanced Light Source, ANL, Argonne, IL

Pb L-edge x-ray absorption fine structure (XAFS) spectroscopy


Soils collected at harvesting-Kansas City site

Pb-Fe: Pb bound to ferrihydrite; Pb-Org: Pb bound to humic acid

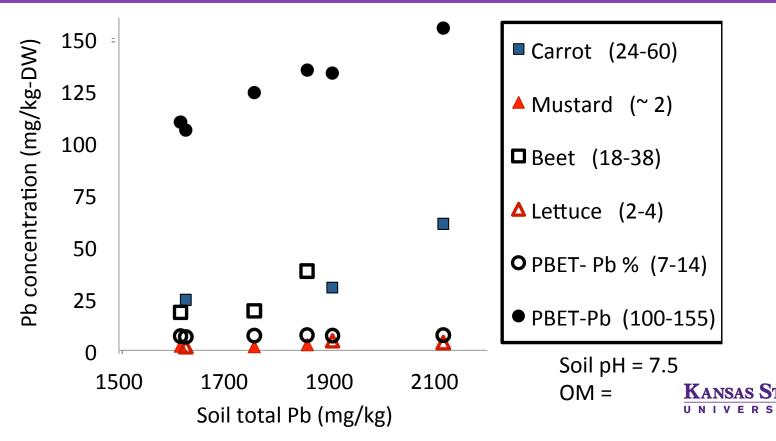
Pb XAFS- PBET soil residues

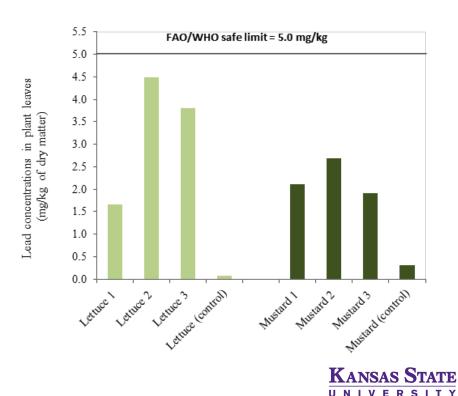
Pb-Fe: Pb bound to ferrihydrite; Pb-Org: Pb bound to humic acid; HP: hydroxypyromorphite

Example Site 2: Philadelphia, PA

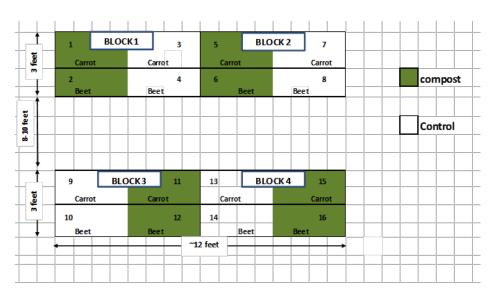
Testing plants and soils- A couple of sites in Philadelphia with very high Pb concentrations (> 1000 mg/kg)

Partnering with EPA region 3 and the

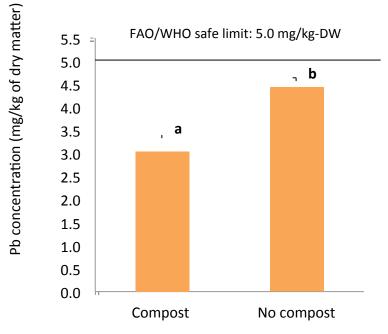

Greensgrow Philadelphia



Philadelphia- high Pb soil Example site 2



Philadelphia - 2011 data

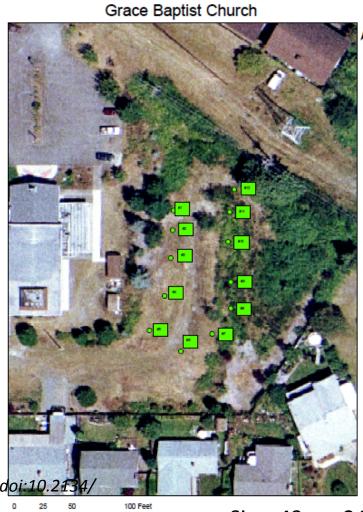

Sample Location	Lead concentrations in soils (mg/kg)
L 1	1627
L 2	1906
L 3	2117
M 1	1618
M 2	1858
M 3	1757
Average	1814
L control	3.59
M control	2.66

Philadelphia test plots- 2012

Soil Pb concentrations > 1300 mg/kg

Tacoma, WA Example Site 3

Element	Concentration		
	in soil (mg/kg)		


As 17- 162

Pb 17- 427

Texture: Sandy loam

Soil pH: 5.6 (soil: water)

Ref.: Defoe P.P., G.M. Hettiarachchi, C. Benedict, S. Martin. 2014. J. Environ. Qual. doi:10.21 jeq2014.03.0099

ANSAS STATE

Size: 43m x 24m

Test plots-Tacoma, WA- 2010

No compost and compost @ ~28 kg/m²

Crops:

Lettuce, Carrots **Tomato**

Tacoma, WA- Test plots

Dolomite+ Tagro added

Control

Further dilution of contaminants through enhanced growth

Lead uptake by tested vegetable types was similar Arsenic uptake was minimal

Summary

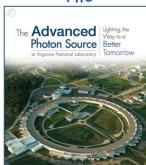
- The pathway from contaminated soil to plant to human is insignificant
- The potential exposure pathway of concern is direct exposure of humans to contaminated soils
- Bioaccessibilities of Pb and As in tested urban soils were low
- Compost additions help reducing contaminant concentration in vegetables and also, bioaccessible Pb and As to humans
- Pb speciation in soils was dominated by Pb sorbed to Fe oxy(hydr)oxide and to soil organic C (Pb-Org)
- The fraction of Pb-Org was high in soils with high organic C and increased with time after application of compost in the field
- Scorodite-like As^v species (Fe arsenate- like) were the most dominant in As species in tested soils

Contributors

- Graduate students- Chammi Attanayake, Phillip Defoe, Janelle Price, Ashley Harms, Jay Weeks
- Co-PI Sabine Martin and other Investigators (DeAnn Presley, Gary Pierzynski, Blasé Leven, Larry Erickson, Rhonda Janke)

Collaborators

- Jake Wagner (UMKC); Chris Benedict (WSU); Kristen McIvor (UW); Ginny Roberts (Purdue Extension); Chris Harrell (Lazarus LLC), Monica Palomo & her group (Cal Poly); Deon Van der Merwe (KSU); E. Santos (KSU); J. Tatarko (KSU)
- Mary Seaton Corboy and Nathan Hasler-Brooks (Greensgrow Philadelphia Project); Nathan Michael Szuberla & Karen Wolkins (Toledo Botanical Gardens)
- City brownfields offices, EPA Region 3, 5, and 7



Making a Difference

TOLEDO GROWS

