Prediction of total soil Pb from Mehlich3 Pb in a commercial soil testing laboratory
A lower cost alternative for soil lead screening (?)

Rick Stehouwer, Dept. of Ecosystem Science and Management
John Spargo, Director Agric. Analytical Services Laboratory
Ann Wolf, former Director Agric. Analytical Services Laboratory
Promising correlations in the literature for Mehlich3, Morgan, modified Morgan and 1N HNO₃ extracts

Commercial lab (cost) limitations

- Use standard soil scoop, weighing adds time and cost
- Grinding to <0.250 mm is too costly
- Must fit into current operations
Penn State Agricultural Analytical Services Laboratory Data Set

- 1952 samples
- Mehlich3 analysis
 - 1:10 soil to extract ratio
 - use 2.12 cm³ scoop to measure soil and 25 mL M3 solution
- Total sorbed Pb
 - EPA 3050B
 - 1:50 soil to extract ratio
 - Weigh 1 g soil and 50 mL solution
Regression of total sorbed Pb on Mehlich3 Pb

\[Pb_{Tot} = 17.4 + 2.04 \, Pb_{M3} \quad R^2 = 0.80 \quad n=1952 \]
Ratio of Mehlich3 Pb to total sorbed Pb

M3 Pb/Tot Pb frequency distribution
Regression of total sorbed Pb on Mehlich3 Pb data trimmed of extreme Pb\textsubscript{M3}/Pb\textsubscript{Tot} ratios

\[\text{Pb}_{\text{Tot}} = 11.1 + 2.25 \text{ Pb}_{\text{M3}} \]

\[R^2 = 0.86 \quad n = 1882 \]
Regression of total sorbed Pb $<400 \text{ mg kg}^{-1}$ on Mehlich3 Pb

All data, $n=1833$

$\text{Pb}_{\text{Tot}} = 12.9 + 1.98 \text{ Pb}_{\text{M3}}$

$R^2 = 0.88$

Trimmed data, $n=1772$

$\text{Pb}_{\text{Tot}} = 11.7 + 2.03 \text{ Pb}_{\text{M3}}$

$R^2 = 0.89$
Regression of total sorbed Pb $>400 \text{ mg kg}^{-1}$ on Mehlich3 Pb

All data, n=119
$\text{Pb}_{\text{Tot}} = 248 + 1.69 \text{ Pb}_{\text{M3}}$
$R^2 = 0.53$

Trimmed data, n=110
$\text{Pb}_{\text{Tot}} = 127 + 2.08 \text{ Pb}_{\text{M3}}$
$R^2 = 0.89$
Regression of total sorbed Pb \(300-1000 \text{ mg kg}^{-1}\) on Mehlich3 Pb

All data, \(n=129\)
\[
Pb_{\text{Tot}} = 326 + 0.86 \, Pb_{\text{M3}}
\]
\(R^2 = 0.45\)

Trimmed data, \(n=120\)
\[
Pb_{\text{Tot}} = 273 + 1.12 \, Pb_{\text{M3}}
\]
\(R^2 = 0.53\)
Correlations of other measured parameters with $\text{Pb}_{M3}/\text{Pb}_{Tot}$ ratio

Soil pH
$R^2=0.01$

Soil CEC
$R^2=0.004$
Summary

<table>
<thead>
<tr>
<th>Total soil Pb range</th>
<th>All data</th>
<th>Trimmed data</th>
</tr>
</thead>
<tbody>
<tr>
<td>All samples (0 – 4,000 mg/kg)</td>
<td>(Pb_{\text{Tot}} = 17.4 + 2.04 \ Pb_{\text{M3}}) [R^2 = 0.80 \quad n=1952]</td>
<td>(Pb_{\text{Tot}} = 11.1 + 2.25 \ Pb_{\text{M3}}) [R^2 = 0.86 \quad n=1882]</td>
</tr>
<tr>
<td><400 mg/kg</td>
<td>(Pb_{\text{Tot}} = 12.9 + 1.98 \ Pb_{\text{M3}}) [R^2 = 0.88 \quad n=1833]</td>
<td>(Pb_{\text{Tot}} = 11.7 + 2.03 \ Pb_{\text{M3}}) [R^2 = 0.89 \quad n=1772]</td>
</tr>
<tr>
<td>>400 mg/kg</td>
<td>(Pb_{\text{Tot}} = 248 + 1.69 \ Pb_{\text{M3}}) [R^2 = 0.53 \quad n=119]</td>
<td>(Pb_{\text{Tot}} = 127 + 2.08 \ Pb_{\text{M3}}) [R^2 = 0.89 \quad n=110]</td>
</tr>
<tr>
<td>300 – 1,000 mg/kg</td>
<td>(Pb_{\text{Tot}} = 326 + 0.86 \ Pb_{\text{M3}}) [R^2 = 0.45 \quad n=129]</td>
<td>(Pb_{\text{Tot}} = 273 + 1.12 \ Pb_{\text{M3}}) [R^2 = 0.53 \quad n=120]</td>
</tr>
</tbody>
</table>
Results are promising, but...

- Correlation is good for
 - Full Pb range (up to 4,000 mg/kg)
 - Very strong for samples up to 400 mg/kg
- Correlation is weak in critical mid-range 300 – 1,000 mg/kg
- No evidence that soil pH or CEC correlate with Pb extraction
- Need to examine if multiple regression with other soil parameters measured in routine analysis can improve prediction, particularly in mid-range.
- We have an expanded data set now of over 5,000 samples
 - will provide more samples in mid- to high range Pb
 - Will provide for stronger assessment of correlation of Pb with other soil parameters