Region 4 XRF Field Operations Guide (FOG)

Urban Lead Symposium September 2015

Glenn Adams Scientific Support Section EPA Region 4 Superfund Division

Typical Lead/Arsenic Samples

- Collect grab or composite sample (Seived/ UnSeived)
- Send sample to lab for analysis
- Make decisions on lab results
- XRF mostly used for field verification

Purpose of XRF FOG

- Provide the OSC/RPM with a field analysis method that:
 - Improves lead and arsenic soil sample results for decision making
 - Is practical, time- and cost-effective
 - Allows the OSC/RPM the ability to make informed and defensible decisions in the field
 - Helps control soil variability

SIEVING

When starting a soil sampling project, compare sieved and non-sieved XRF results for the first 10 samples. If the results are generally comparable, then sieving may not be needed. If sieved and non-sieved XRF results are not comparable, it is recommended that the remaining soil samples be sieved.

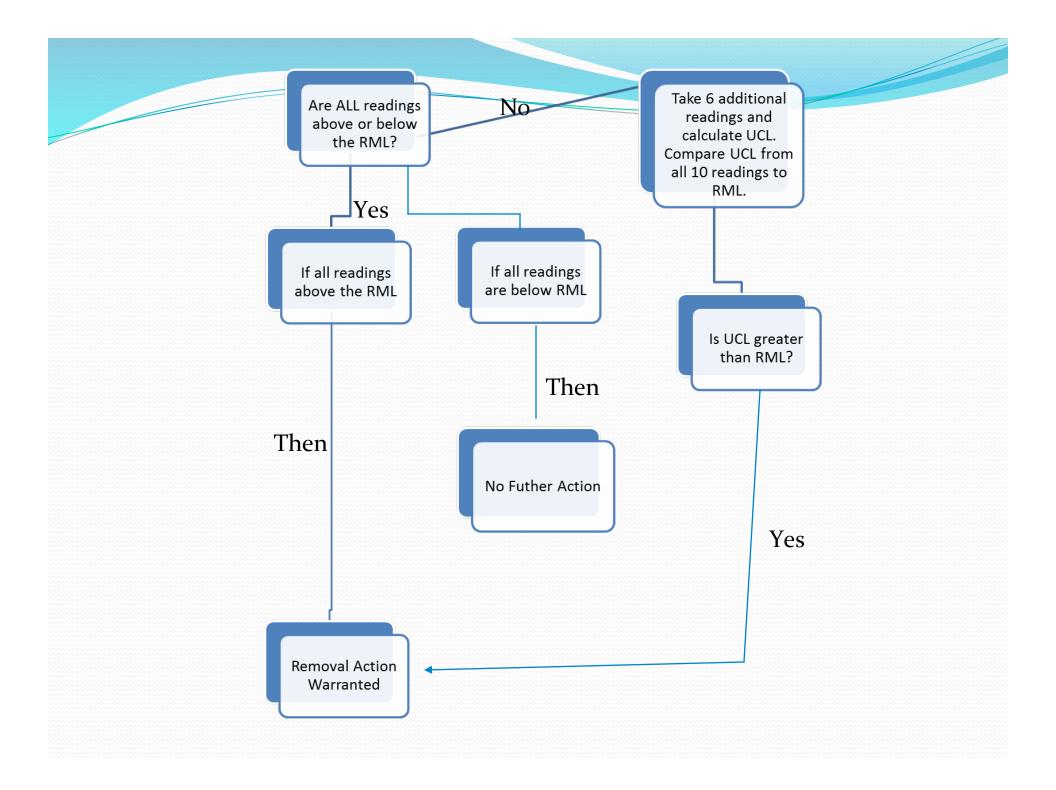
Steps in XRF FOG

- 1. Collect soil samples and place in plastic bag
- Measure moisture content; if >20% dry sample until <20%

3. Determine duration time needed for specific XRF e.g., Niton® XRF requires min 30 seconds to analyze lead and arsenic

Steps in XRF FOG (cont'd)

- Control outside variables by confirming XRF calibration and by performing a Bag Test
- 5. Take 4 XRF readings of soil in the bag
 - Readings taken from left side then right side, flip the bag, then take reading from left side and right side
- 6. Record results in spreadsheet and determine if additional readings are necessary


Are additional readings necessary?

- If all the readings (minimum 4) are either below or above the RML, no additional readings are needed
- If all are not, take 6 more readings and compare the calculated UCL to the RML
 - Typically the 1-sided t UCL should be used for decision making. If readings are highly variable, review 1 sided Chebyshev UCL for decision making.

After 10 readings, if UCL and some readings are > RML, the property should be considered for potential removal activities.

Confirmation and Duplicates

- Confirmatory samples consisting of 3 to 4 subsamples collected from the same bowl and sent to an off-site laboratory can be considered to provide additional data.
- A duplicate XRF measurement is recommended for every 10th field reading.
- It is suggested that calibration be confirmed three times per day during a sampling event: once prior to sampling, again midway through sampling, and another when sampling activities are complete.

XRF Spreadsheet

4	Sample ID	Readings	Lead XRF	Lead Error as 25D	Arsenic XRF	Arsenic Error as 2SD		
5	HP0085B-18							
6		1	82	9	43	8		
7	Date	2	45	6	26	6		
8	22-Aug-14	3	53	7	31	7		
9	-	4	58	7	19	6		
0		5						
1		6						
2		7						
3		8						
4		9						
5		10						
16								
7		Minimum	45		19		Lead	Arsenic
8		Maximum	82		43		59.5	29.8
19								
20		Total Readings			Arsenic Average		95% t-LCL	95% t-LCL
21		4	59.5	6.2	29.8	11.4	41	18
22							95% t-UCL	95% t-UCL
3			Lead SD	Subsampling Error		Subsampling Error	78	42
24			15.9	26.0	10.1	32.0	95% CS-LCL	95% CS-LCL
25							25	8
26			Lead RSD		Arsenic RSD		95% CS-UCL	95% CS-UCL
7			26.8%		34.0%		94	52
28				-				

Questions or Comments?

Contact Information: Glenn Adams US EPA Region 4 Superfund Division Scientific Support Section Resource & Scientific Integrity Branch Atlanta, Georgia 30303 (404) 562-8771 Adams.Glenn@epa.gov