Phytoremediation Success and Experience at a Site in Southern New Jersey

George Prince- U.S.EPA/ERT Christopher Gussman- Lockheed Martin/REAC

Phytoremediation

- Still a relatively new technology.
- Many successful and exciting laboratory and growth room results have been published.
- Many good phytoremediation sites initiated.
- Many more good ideas.
- However, there is a lack of <u>long-term</u> monitoring data obtained under field conditions.

Phytoremediation in situ

• No two sites are the same. Most sites are typically heterogeneous. • Field conditions introduce many "real-life" obstacles and variables. "Average" weather is just that, an average of extremes!!

• Problems with site access, vandalism, etc.

U.S.EPA/ERT and REAC have been supporting and monitoring several phytoremediation sites during the past decade.

- J-Field. Aberdeen Proving Ground (Edgewood, MD)
- Kauffman and Minteer (Jobstown, NJ)
- Oregon Poplar (Clackamas, OR)
- Naples Truck Stop (UT)
 Edward Sears Property (New Gretna, NJ)

Edward Sears Property Site New Gretna, New Jersey

Background

- Mr. Edward F. Sears operated a business at his property from the mid-1960s to 1992.
- He would purchase off-specification or expired material from U.S. Government shipyards.
- The material would then be re-mixed and/or resold.

Edward Sears Property New Gretna, New Jersey Release of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) designated hazardous substance resulting in a potential threat to human health, welfare, and the environment. • First request to evaluate the property on December 27, 1993.

Approximately one acre property in a rural area of Route 9.

- Hundreds of deteriorated and aged containers were found improperly stored on site.
- A shed roof was found partially collapsed onto the material stored inside.
- The public could easily access site materials.
 - Great potential for additional releases existed.
- A CERCLA Removal Action was warranted.

Removal Activities

- 53 (1)-cubic yard DOT hazardous waste boxes containing approximately 4,000 containers removed.
- 120 55-gallon drums of waste removed.
- 450 cubic yards of contaminated soil excavated.
- EPA conducted a limited ground water investigation in the fall of 1995 and found elevated levels of volatile organic compounds (VOCs).

U.S.EPA/ERT and REAC Activities in 1995 and 1996 included:

- Installation of additional permanent and temporary monitoring wells.
- Chemical analysis of soil and ground water samples.
- Hydraulic tests.

Proposed applicable remedial alternatives for the site including: 1. Removal of source soil.
2. Pump and treat. 3. Phytoremediation. 4. No action (providing potable water to local residents).

Appropriate Site for Phytoremediation Technology!

- Contaminated zone is within sand, silt, and clay unit located approximately 5 to 18 feet below ground surface (bgs).
- Contamination is somewhat localized.
- Pilot tests of other technologies, such as pump and treat using air stripping and activated carbon, were expensive and inefficient.
- Pilot-scale Phytoremediation!!

Site preparation was initiated in October of 1996.

- Thomas Consultants, Inc. (Columbus, OH), was subcontracted by REAC.
- Created a planting grid 113 x 100 feet.
- Hybrid poplars (*Populus charkowiensis x P. incrassata*, NE 308) were chosen.
- Trees were spaced at 10 feet (north-south axis) by 12.5 feet (east-west axis).

- Trees planted in December of 1996.
- Trees averaged 14 feet in length.
- Holes dug with a 12-inch width auger, 15-feet deep.
- A 4-foot sonotube was placed in the upper portion of the hole, from 1 to 5 feet bgs.
- A plastic barrier placed on top, around the tree trunk.
- Trees planted down about 9 feet bgs.
- Amended soil and nutrients placed in the hole.

How to Plant A Tree

Ready for Planting

Additional Microwells for Ground Water Monitoring Installed Throughout the Site

Almost One Year Later 97% Survival!!

Monitoring and Maintenance

• Annual ground water sampling Transpiration gas sampling Sap flow rate measurements Tree growth rate and health evaluation Soil samples Fertilization of the trees Mowing and pruning

Ground Water Sampling

 Occurs at least once per year (late August)
 VOCs within the plot have dropped considerably!
 VOCs outside the plot remain high.

Trichloroethylene Concentration in Ground Water (Micrograms/Liter)

Considerable Reduction of VOCs in Ground Water

- Trimethylbenzene (total) reduced from 1,890 μg/L to 19.1 μg/L.
- Xylenes (total) reduced from 545 µg/L to nondetectable.
- All VOC contamination plumes have shrunk in size.
- No VOC reductions in an untreated, positive control area.

Transpiration Gas Sampling

 No positive results at this site, probably due to the relatively low VOC concentrations in the ground water *but* highly successful at other sites.

• Values obtained are relative, not to be used for mass balance.

Sap Flow Rates

 Measure ground water removal by the trees. • Varies with season, weather, size, location, and health of the trees. Allows comparison of the native trees with the hybrid poplars.

August 2004 Average Sap Flow Rates of Selected Trees (Gallons per Day)

• Poplar No. 67= 9.62 • Poplar No. 92= 20.76 • Poplar No. 94= 7.58 Pine= 5.54 • Red Cedar= 1.94 • Spruce= 10.51 Sassafras= 16.54 2.08 Oak= 9.64 Poplar (avg.)=

Average Sap Flow Rate of Four Selected Trees at the Edward Sears Property Site

Annual Average Percent Increase in Trunk Area of Select Trees

Tree Growth Monitoring

- After eight growing seasons (1997-2004):
- Average diameter of all the trees at breast height (dbh= 4.5 feet above ground surface) was 3.79 inches (9.62 cm).
- Largest diameter was 7.83 inches (19.86 cm).
- Average tree height was 43.77 feet (13.34m).
- Tallest tree was 59.27 feet tall (18.06 m).

How About the Roots??

• Poplar No. 55 examined May 2004. A small backhoe was used to dig along one side of the tree. Surface roots continue more than 12 feet (4 meters) from the tree base.

Down They Go!

• Plastic surface barrier still intact and filled with gnarled roots.

The sonotube was almost gone, but the root distribution showed evidence of it's former presence.

Roots were still present at
7 feet (2.1 meters) bgs,
becoming increasingly
sparse and finer with
depth.

Problems Encountered

Drought Vandalism

 Insects (especially caterpillars)

• Deer

Canker

Plants are Living Things

- Select plants appropriate for your site contaminants and conditions.
 - Soil should be sampled for agronomic analysis (pH, salinity, texture, nutrients)
- Soil amendments applied based on soil tests and observations of plant growth.
- Proper attention to soil moisture, especially during establishment.
- Insects and other pests controlled (spraying, fencing, smelly repellents)
- Reduce competition from weeds (mowing, herbicide).

Phytoremediation also blends with the local ecological community

Continue to Monitor

George Prince U.S.EPA/ERT 2890 Woodbridge Ave. Edison, New Jersey 08837

Prince.George@epa.gov

Christopher Gussman Lockheed Martin/REAC 2890 Woodbridge Ave. Building 209 Annex Edison, New Jersey 08837

christopher.d.gussman@ lmco.com