

Cost Comparisons of Phytotechnologies to Other Remedial Approaches

David Tsao, Ph.D

OVERVIEW

- 1. Case Study Background
- 2. Net Present Valuation vs. Total Life Cycle
- 3. Influence Factors and Weighted Probabilities of Occurrence
- 4. Rate of Return on (Research) Investment

Case Study Background

· Site Conditions:

- Neighborhood properties adjacent to a former petroleum refinery
- Groundwater impacted with gasoline range organics (BTEX)
- Portion of groundwater treated using horizontal 3-phase extraction
- Groundwater 5-13 ft bgs; silty clay; 5 x 10-6 cm/s

Issues:

- Extraction efficiency low (low hydraulic conductivity = low recoveries)
- Refinery property undergoing redevelopment
- Reduce the disturbance to the local community (minimize sound, safety risks, heavy equipment traffic)
- **Provide some value** to the community for these under-utilized properties

· Phytotechnology Option:

 Create bird / butterfly gardens ("Phytoscapes") using vegetation that can promote rhizodegradation and control hydraulics

Site Map

Plant Screening Experiments

Pure Gasoline Injections

Examined various deep-rooted species (naturalizing and landscape); monitored survivability over time

Injected pure gasoline (+/- 10% oxygenates) at various volumes

Irrigated with pure gasoline (various volumes)

Sub-irrigation only source of water

1 L total soil volume

5

Gasoline Testing Results

Not Only Tolerate, But Remediate

45 mls per 1 L cell (7.5% by wgt)

Final Soil Concentrations:

Unplanted Control Pots (not shown):

BTEX 1,875 ug/kgMTBE 2,700 ug/kg

Planted Pots: Bottom Soil Layer

> BTEX 46 ug/kg (ND, 11, ND, 35)

MTBE 50 ug/kg orders of magnitude lower

Gasoline Toxicity Results

Tolerant Species

3 out of 3 Buffalo grasses (*Buchloe dactyloides* spp.)

MOST ornamental clump grasses (Andropogon, Bouteloua, Elymus, Miscanthus, Pennisetum, Saccharum,...)

1 of 1 Columbine (Aquilegia canadensis)

1 of 2 Coneflowers (Echinacea sp.)

2 of 2 Blazingstars (Liatris sp.)

3 of 3 Hollies (//ex sp.)

1 of 1 Mugo pine (Pinus mugo)

2 of 3 Viburnums (Viburnum sp.)

Intolerant Species

2 of 3 Goldenrods (Solidago sp.)

2 of 2 Indigos (Baptista sp.)

1 of 2 Asters (Aster sp.)

1 of 1 Golden Alexanders (Zizia aurea)

1 of 1 Cardinal flower (Lobelia cardinalis)

1 of 2 Daylilies (Hemerocallus sp.)

4 of 5 Junipers (Juniperus sp.)

1 of 1 Japanese yew (Taxus x Media)

1 of 1 Emerald arborvitae (Thuja occidentalis)

Uses:

Prevention and Remediation

Uses:

- Leak Detection?

See Poster

Total Life Cycle Cost Comparison

_	001 001110011		A pr ammateu compai	
•	Option 1: Horizontal 3-Phase (H3P) Extraction System			
	- Capital (installation)	\$1	,000k	
	OM&M = \$150k per year for 5 years	\$	750k	
	- TOTAL Life Cycle Cost	\$1	, 750 k	
•	Option 2: Plant Hydraulic Barrier (Phyto) System	m		
	 Capital (research and development) 	\$	110k	
	• Includes pilot test, standard (1°) + additional (2°) monitoring			
	- Capital (installation)	\$	200k	
	OM&M (establishment) = \$45k year 1, \$25k year 2	\$	70k	
	OM&M = \$10k per year thereafter for 8 years	\$	80k	
	- TOTAL Life Cycle Cost	\$	460k	
•	Cost Savings (Value Added)	\$1	,290k	
•	"Does not consider the time-value of money economics are not realistic"		1	

Net Present Valuation (NPV)

Cost Comparison

- · Option 1: Horizontal 3-Phase (H3P) Extraction System
 - Capital (\$1,000k installation now)
 - OM&M (\$150k/yr for 5 years future)
 - TOTAL NPV (2.5% Rate)

\$1,603k

- · Option 2: Plant Hydraulic Barrier (Phyto) System
 - Capital (\$110k R&D spent already)
 - Capital (\$200k installation **now**)
 - OM&M (\$75k for 2 years establishment **future**)
 - OM&M (\$10k/yr for 8 years after establishment **future**)
 - TOTAL NPV (2.5% Rate)

\$ 416k

Cost Savings (Value Added)

\$1,187k

 "Still not a fair comparison...Option 1 could be anything outlandish...artificially creates a clear-cut decision"

Other Influencing Factors

Quantifiables to Non-Quantifiables

- Quantifiables:
 - Capital and OM&M costs, legal fees, risk assessments, reporting requirements, length of project
- Semi-Quantifieldes
 - Regulatory acceptance, meets remedial goals, innovative approaches
 - Community relations (meets wants/needs), reuse, reputation
 - NGO support, stakeholder engagement, ecological benefit/impact
- Non-Quantifiables:
 - Company core values (i.e. green company), corporate strategy, "right thing to do", livability
- Although the semi- and non-quantifiables are difficult to valuate, they undeniably have real influence on clean up options

Weighted Probability of Occurrence

Influencing Factors	H3P Extract		Phyto	
Quantifiables Financials (Net Present Valuations)	+ 0%	(0%)	+100% (100%)	
Semi-Quantifiables Meet Remedial Goals (Track Records) Innovative Approach (Univ. Involved) Beneficial Reuse (Fits Local Plan) Ecological Enhancement (Want/Need)	+50%	(50%)	- 50%	(50%)
	- 5%	(45%)	+ 5%	(55%)
	- 10%	(35%)	+ 10%	(65%)
	- 5%	(30%)	+ 5%	(70%)
Non-Quantifiables Livability (Complaints of H3P System) Corporate Strategy (Reuse)	- 10%	(20%)	+ 10%	(80%)
	- 5%	(15%)	+ 5%	(85%)

13

Weighted Probability of Occurrence

Cost Comparison

_	ust companson	OA E	3P affiliated compa	
•	Option 1: Horizontal 3-Phase (H3P) Extraction S	on 1: Horizontal 3-Phase (H3P) Extraction System		
	- TOTAL NPV	\$1	,603k	
	 Weighted Probability of Occurrence 	X	15%	
•	Option 2: Plant Hydraulic Barrier (Phyto) System	n		
	- TOTAL NPV	+\$	416k	
	 Weighted Probability of Occurrence 	X	85%	
•	Weighted NPV Options Baseline	\$	594k	
•	ACTUAL: Plant Hydraulic Barrier (Phyto) System	n		
	- TOTAL NPV (100% weighted)	- \$	416k	
•	Cost Savings (Value Added)	\$	178k	
•	"Very defendable accounting approachrigorousimple) process"	ıs (yet	

Additional Value "Tips the Scales"

Semi- and Non-Quantifiables

Justifying R&D

Pilot Study Costs of \$110k

Planting

Pilot Study

Other Components

Rate of Return on Investment

- Research Investment to conduct phyto pilot: \$110k
 - Not known up front whether it would prove successful
 - Compete against capital projects (revenue-generating)
- Concept of a Rate of Return (RoR):
 - If you invest \$1, you want to get back more than \$1 in revenue
 - Common industry practice uses a **hurdle RoR**, i.e. 15% (\$1.15 back)
 - A project that does not exceed hurdle usually will not get funded
- How do you incorporate this into remediation?
 - Generally, **remediation is only a cost-center** (no revenue generated)
 - But, there is a **cost savings** in using alternative approaches
 - Use the NPV and weighted outcomes to include semi- and nonquantifiables

Rate of Return on Investment

•	Option 1: H3P System Total NPV x Weighting	\$240k
•	Option 2: Phyto System Total NPV x Weighting	+\$354k
•	Weighted NPV Options Baseline	\$594k
•	ACTUAL: Phyto System Total NPV	- \$416k
•	Cost Savings (Value Added)	\$178k
•	Phyto R&D Investment	\$110k
•	Rate of Return on Investment	
	¢170k ¢110k	

\$178k - \$110k RoR = ----- x 100% = 62% !! \$110k

19

Conclusions and Recommendations

- Corporate Perspective
 - Economics of remediation evaluated on a common accounting basis
 - Use **net present valuation** over life cycle costs
 - Use **probabilities of occurrence** to weight options
 - Demonstrate a beneficial rate of return on investment
- · Benefits of this to the Site Owners
 - Provides **justification** to spend on remediation
 - Advocate semi- and non-quantifiable influencing factors to managers and regulators alike (step through the holistic thought process, "tell the whole story")
- · Benefits of this to the Environmental Consulting Community
 - Puts the economics in terms that site owners understand
 - Keeps it realistic (believable and credible)
- Benefits of this to the Academic Community
 - Provides justification to secure R&D funding from site owners

QUESTIONS!!!

