Novel Approach to Measurement of Rhizosphere Effect in Phytoremediation

G. Thoma, T. Lam, S. Ziegler and D. Wolf University of Arkansas, Fayetteville

Phytoremediation:

The use of plants and their associated microbiota, soil amendments, and agronomic techniques to remove or render harmless environmental contaminants. (Cunningham et al., 1996)

71 HE

Rhizodegradation

Carbon enriched environment
Exudates/lysates
Higher microbial #s and activity
Root 'exploration' of the soil

Rhizosphere interactions stimulate contaminant degradation by enhancing soil physical, chemical, and biological properties (adapted from Reynolds et al., 1999)

Conceptual Mathematical Model

Root decomposition

Volume and concentration variations: 18 differential equations

Sensitivity Analysis of Mathematical Model

• The rhizosphere degradation rate constant is kept constant at a value of 0.001 day-1 (Schwab et. al., 1995) with the exception of curve 4 where it was given a value of 0.002 day-1. The average root volume is 0.2% of the total soil volume (White et al., 2001).

Pyrene Degrader Population 62 Days After Planting

Roxana fine sandy loam Alfalfa, bermudagrass, fescue, annual ryegrass, plant species mixture, non-vegetated Pyrene at 500 mg kg⁻¹ Greenhouse: 12/12 h; 25 <u>+</u> 3°C Harvested 48, 55, 62, and 69 d

Pyrene concentrations soil 62 days after planting

Treatment	Vegetated bulk	Rhizosphere	
	$(mg kg^{-1})$		
Alfalfa	74	19	
Bermudagrass	48	6	
Fescue	141	229	
Ryegrass	46	88	
Plant Species Mix	53	94	

Non-Vegetated Bulk

99

99

Characterization of Rhizosphere Properties

Investigated properties:

Microorganism population, root exudates, water, nutrients, contaminant degradation.

Destructive methods:

- Remove grass
- Gently shake to remove bulk soil
- Adhering soil defined as the rhizosphere
 - May not be completely representative of rhizosphere soil
- Non-destructive methods:
 - Dye indicator in agar plate coupled with optical densitometer (Ruiz and Arvieu, 1990): artificial environment
 - Computer tomography and nuclear magnetic resonance.
 - SR-FTIR spectromicroscopic system (Raab and Martin, 2001): expensive, scattering of IR in soil matrix.

Objectives and Hypotheses

Objectives:

- Determine in-situ rhizosphere thickness.
- Determine in-situ PAH degradation rate.

Hypotheses:

- Contaminant depletion in soil zone adjacent to the root surface will be visible.
- Differences in luminescent intensity of PAHs under UV light will be observed between rhizosphere and bulk soil and over time.

Anticipated depletion of phenanthrene in the rhizosphere

Materials and Methods

- Deposit a thin PAH film onto a quartz plate.
- Assemble a inclined rhizotron with the quartz plate on one side.
- Grow plants under controlled environment in a BOD chamber.
- Photograph PAH film
 - Digitize and perform luminescent intensity analysis

Materials and Methods (cont.)

PAH film preparation

- Physical vapor deposition
- P = 1.9 torr.
- Uniform fine structure film.

Uniform heat distribution

- Aluminum chamber.
- Thick bottom plate and insulated wall (150°C).

Cold substrate (quartz)

- Dry ice and acetone (-78⁰C).
- Minimizes surface diffusion.

Quartz acetone plate Carbon filter

Dry ice &

To vacuumInsulatedpumpChamberPAH Deposition Chamber

Materials and Methods (cont.)

Image Acquisition

- Camera: Nikon 8008s w/ Nikkor 60mm (macro)
- UV lamp: 100W; fixed relative position
- Bellows: Nikon PB-6E (22X magnification)
- XY positioning platform
- Scanner: Minolta Dimage Scan Elite 5400
 - 4000 dpi (20 Mpixels)

Image Calibration and Rhizosphere Thickness Calculation

Image acquisition

Image analysis

530 pixels

Soybean on Phenanthrene (3 weeks)

Visible light illumination

Ultraviolet light illumination

Soybean on Phenanthrene (4 weeks)

Close-up Visualization of Rhizosphere: Soybean on Phenanthrene

Development of Bermuda Rhizosphere on Pyrene

Root and Rhizosphere Dimension

	Rhizosphere Thickness (µm)	Root diameter (µm)
Soybean + phenanthrene	370	400
Bermuda + pyrene	280	140

Rhizosphere thickness defined as the zone of clearing

Quantitative Image Analysis: Pyrene Film Uniformity and Luminescent Intensity Calibration

3

9

5

8

6

- Deposit pyrene thin films with different deposition time.
- Take UV illuminated photographs at 9 positions on the deposited pyrene thin film.
- Calculate of the image's intensity with Matlab program.
- Calculate of mean and standard deviation of the intensity.
- Dissolve the pyrene film with acetone and analyze pyrene concentration or mass with HPLC

Mass of Pyrene and Deposition Time Correlation

Luminescent Intensity vs. Pyrene Mass

Rhizosphere Contaminant Degradation Rate

- Photograph rhizosphere over time.
- Crop the image at different positions.
- Calculate the crop image luminescent intensity.
- Calculate mass of pyrene remaining.
- Calculate degradation rates

Bermuda Rhizodegradation Rate Constant

Degradation Rate: Zone 1

Degradation Rate: Zone 2

Degradation Rate: Zone 3 - Entire Rhizosphere

Conclusions

 Non-destructive, non-invasive quantification of rhizosphere thickness and in-situ PAH degradation rate are possible.

- Rhizosphere thickness and contaminant degradation:
 - Expand over time.
 - Vary along the root.
 - Depends on plant type, plant growth condition, soil structure and other factors.
- Understanding contaminant dynamics in rhizosphere is needed for modeling efforts.

Acknowledgement

This project is funded by the EPA through the Integrated Petroleum Environmental Consortium.

Thank you