

## Phytoremediation-Humification Strategies for RDX in Surface Soil

Mike Reynolds<sup>1</sup>, Dave Ringelberg<sup>1</sup> Lee Newman<sup>2</sup>, Steve Larson<sup>3</sup>

## Army EQ Research Program SERDP

<sup>1</sup>Engineer Research and Development Center (ERDC), Cold Regions Research and Engineering Laboratory (CRREL) <sup>1</sup>Soil Microbiology Laboratory

<sup>2</sup>University of South Carolina

<sup>3</sup>ERDC - Environmental Laboratory



Third International Phytotechnologies Conference April 20-22, 2005 Atlanta



#### **Problem**

- RDX from low-order detonations
- Deposition onto surface soils
- Heterogeneous and widely dispersed
- Potential for range restrictions/closures



Hexahydro-1,3,5-trinitro-1,3,5-triazine





## Relatively high solubility Weak soil binding

- Potential human health effects
- Seizures
- Possible carcinogen effects

#### Remediation strategies?

 Cost effective, easily implemented, applicable to surface soils





#### **RDX Degradation Background**

#### RDX Biodegradation

- Favored in saturated soils rather than surface soils
- Plant uptake of RDX is significant, but degradation in plants is limited
- RDX conjugated in plant tissue can be redeposited onto soils as plants die
- Surface soils are not constant with regard to temperature, soil water potential, and carbon
- Can we identify, predict, or enhance processes that reduce the potential for RDX movement?







#### Relationship to Other Phytoremediation

Previous research – rhizosphere enhanced

remediation for petroleum

**Similarities** 

**Surface soil** 

**Limited site access** Root Accessible Few alternatives

#### **Different mechanisms**









## Objective/Description

**Mineralization** 

#### **Objective**

Sequester RDX-derived C in soil humic fractions



#### **Hypotheses**

- Soil RDX concentrations can be decreased by microbially driven transformations and plant uptake
- Humification can serve as an RDX sink
- Bioavailable carbon drives the microbiology
- Mineralization-Immobilization Turnover (MIT) drives humification
- Plant-conjugated RDX gives a humification advantage
  - There is characteristic microbiology associated with humification



## Approach- Theory & Hypothesis

"2" cycles
Native carbon
RDX carbon

Native carbon >>>> RDX carbon MIT drives soil processes

\*RDX ⇒ \*T-RDX

Plant

MIT

MineralizationImmobilization
Turnover

\*Biomass



\*Humic / Materials





#### Soil Water → Biofilm → A-OM → Particle







### Approach

#### **RDX** humification in surface soils

- Humification studies using both <sup>14</sup>C and nonlabeled RDX
- Add <sup>14</sup>C-RDX directly to soil
- Use 2 soils with different OM levels
- Defined soil moisture and temperature conditions

Plant-associated RDX (underway)

- Grow plants and load with <sup>14</sup>C-RDX
- Add plant tissue with RDX-derived <sup>14</sup>C to soils
- Use same soil moisture and temperature

RDX photo-degradation using variegated plants (underway)





## Approach- Methods



~ 1500g RT ~1/3 bar

3 bar \*Plant KOH trap BaCO<sub>4</sub> LSC

> Mineralization-Immobilization Turnover

#### \*RDX



\*T-RDX



RDX<sub>ACN</sub> HPLC LSC



\*Biomass



Lipid<sub>BD</sub> & GCMS LSC T-RFLP





OM<sub>MIBK</sub>





4 reps
2 soils (hi and lo OM)
Controls (no RDX)
Dark
Mini-core sampling









## Results - Partial Summary



- RDX loss slow but consistent
- T-RDX transient
- \*C in microbial biomass low and consistent
- RDX-specific microbial community changes ...??
- Mass balance decreases with time...??
  - Cumulative error...??
  - Missing a pool...??





## Results - RDX directly to Soil



(OM fractionation – MIBK method)





## Results - RDX directly to Soil

Soil biomass, normalized to soil dry weight showed:

- No sig. RDX effect on biomass
- More consistency in high OM soil (biomass responds to soil C rather than RDX-C)
- Yet respiration was greater in the high OM soil, and increased with time.
- Biomass and respiration sometimes viewed as "equivalent" but they diverge for both soils...
- These data suggest:
  - greater "activity" or "throughput" or <u>MIT</u> for the high OM soil,
  - greater cellular storage for the low OM soil







## Results - RDX to Soil

Fate of 14C derived from RDX?

Is there a difference between soils?

 In high OM soil, a significantly greater amount of RDX derived C moves into the bound humic fraction --"humification"

#### **And**

This appears related to MIT

# 14C location









### Results – Plant Tissue RDX to soil

Fate of 14C derived from **Plant RDX?** 

Is there a difference between soils?

 Yes, but a different pattern than seen for RDX added directly to soil is emerging

## 14C location

## **Bound Humic**

0.10 0.09 0.08

0.07 0.06 0.05 0.04 0.03



13

20

time (days)

33

hi-OM

48

77





## **Plant Tissue RDX to soil**



#### **Plant Tissue RDX to soil**







14C location



### Results

**Using Humic/Fulvic Ratio** 

**Direct soil RDX vs Plant Tissue RDX** 

High OM soil - convergence

Low OM soil - divergence

14C location

Low OM soil

High OM soil







## **Evolving Soil Communities**

#### Sudden variability in 14C evolution





## Results – Odd 14 C Rep for Plant Tissue RDX to soil



Phanerochaete?









- 1. Biotic transformation of RDX in surface soils is slow but does occur.
- 2. \*C in biomass low but constant suggesting steady state role in flow of RDX into other pools.
- 3. \*CO₂↑ low but constant. General CO₂↑ may be important as an indicator of MIT
- 4. RDX (soil) Greater amount of \*C associated with bound-humic fraction in the high OM, high respiration soil relative to the lower OM soil.
  - RDX (plant) changes in \*C in humic fractions for both soils, more so for low OM soil.
- 5. Photo-degradation in plant tissue, variegated plants (underway)



Data suggest possible plant-based, agronomic site management practices that encourage binding of RDX residues to soil