Phytoremediation: From the Molecular to the Field Scale

B. Van Aken, J. M. Yoon, C. L. Just, S. Tanake, L. Brentner, B. Flokstra & J.L. Schnoor*

Department of Civil and Environmental Engineering & W. M. Keck PhytoTechnologies Laboratory The University of Iowa, Iowa City, IA 52242 USA

Presented to the International Phytotechnologies Conference April 20, 2005

Tree Hugger...

Powers of Ten: from the molecular nanoscale (<100 nm) to the field (1000 m), more than 10 orders of magnitude!

Research into Contaminant Transformations

Plant materials for different purposes:

Whole intact plants

Cell cultures Tissue Cultures

"Nodules"

From the Laboratory to the Greenhouse to the Field and back

Phytoremediation—the use of plants to help clean the environment...

- Advantages
 - Natural
 - Green, growing
 - Aesthetically pleasing
 - Cost-effective for large land areas where other technologies are not feasible
 - Sensible, appropriate, sustainable technology

- Disadvantages
 - Long clean-up times
 - Uncertain performance
 - Not for every site
 (deep wastes,
 anaerobic soils, etc)
 - Regulatory hurdles

Recent Advances in PhytoTechnology

- New evidence of phytoremediation effectiveness (for PAHs, RDX, ClO₄⁻, other)
- Progress with transgenic plants
 - First use in the field for selenium removal in CA (Norman Terry, Gary Banuelos et al., *ES&T*)
 - As and Hg progress also (Meagher, Rugh, others)
- Plume delineation by tree corings (Burken, Compton, and others)

Recent Advances in PhytoTechnology

- Emergence of *Populus* genomic database for plant functional genomics
 - *Populus* EST resource published (Sterky et al., PNAS 101:38, 13951-13956
 - Genome shotgun sequences by DOE (
 - International Genome Consortium (www.ornl.gov/ipgc)

Use Arabadopsis to learn about poplar

The high similarity between *Populus* and *Arabidopsis* will allow *Populus* to directly benefit from *Arabadopsis* detailed functional genomic information. Enzymes can be identified by molecular techniques...

A. thaliana (At1g17170) GST: 27.5 x increase after TNT exposure (Ekman et al., 2003, Plant Physio 133:1397-1406)

Blast Corresponding Protein (aa) Sequence in Poplar Genome Project

```
Score = 179 bits (383), Expect(3) = 6e-79
ArabidopsisIdentities = 68/109 (62%), Positives = 88/109 (80%)
Frame = -1
Populus
Query: 1 MADEVILLDFWASMFGMRTRIALAEKRVKYDHREEDLWNKSSLLLEMNPVHKKIPVLIHN 60
M D V LL FW S + MR ++ALAEK ++Y+ RE++L +KS LLLEMNPVHK IPVLIHN
Sbjct: 926 MEDRVTLLIFWPSPWAMRVKVALAEKGIEYESREQNLIDKSPLLLEMNPVHKTIPVLIHN 747
Query: 61 GKPVCESLIQIEYIDETWPDNNPLLPSDPYKRAHAKFWADFIDKKVNVT 109
GKP+CES ++YIDE W D +PLLPSDPY+R+ A+FWAD+IDKK +++
Sbjct: 746 GKPICESHNIVQYIDEVWKDKSPLLPSDPYQRSQARFWADYIDKKASIS 600
```

Find DNA poplar sequence corresponding to the Arabidopsis protein

Past Applications have shown the promise of phytoremediation for soils and sediments

Amana, Iowa, 1992: Riparian zone buffer strip to control pesticides, nutrients and soil runoff

- Groundwater and soil concs. improved for nitrate and pesticides after only 4 years
- This could still be a growth area!

Phyto Applications that really work!

- MNA + something more!
- Petrochemical wastes and rhizodegradation
- Plume control and degradation (TCE, MTBE, RDX, ClO₄⁻)
- Landfill cap and closures
- Dewatering contaminated sludges/sediments cdfs
- Created wetlands (rhizofiltration)
- Phytostabilization

Former Refinery and Tank Farm, Cabin Creek WV

- Highly contaminated soil >5,000 mg/kg TPH significantly cleaned in 4 years
- Planted with DN-34 hybrid poplar and grasses in 1999
- Growth is shown after 3 seasons; soil concs. improving, g.w. slow

Iowa Army Ammunition Plant

- RDX & TNT concs. in soil/groundwater up to 1 mg/L; excavation followed by phyto...
- Constructed wetlands phytoremediation full scale
- Meets RDX discharge permit of 2 ppb partly due to photolysis

TCE in surficial groundwater plume, at major chip manufacturer, Myrtle Beach SC

- Groundwater plume of TCE was migrating off the plant property
- Two acres of hybrid poplar were planted w/ roots into gw table
- Phytoremediation has decreased the TCE in gw and soils

Hydraulic capture of MTBE by hybrid poplars after (a) 1 month and (b) 8 months of growth at Houston, TX, 1999.

(b)

Mineralization of ¹⁴C-RDX and HMX by DN-34 *Populus deltoides x nigra* Nodules

 Nodules grown in Murashige and Skoog liquid culture medium are capable of mineralizing RDX and HMX to ¹⁴CO₂ with high yields

(Van Aken & Schnoor, ES&T, 2004)

Ecotoxicology Phyto Research

Ecotoxicology of plant materials after phytoremediation using leaching tests, Microtox, earthworm, and C. elegans microarray

Fate of (a) TNT; (b) RDX; (c) HMX in plants following uptake...

Developments – Ecology of Endophytes

Plants and plant tissues 'infected' by *Methylobacterium populi* sp. BJ001

Some remaining research questions...

What do the plants do for the bugs and vice versa? And how does this affect remediation?

Developments

Plant cell 'infected' by *Methylobacterium* populi sp. BJ001

Optical microscope (1,000x), safranine

Exposed plants show induced genes...

Populus trichocarpa genes induced by TNT and identified

Glutathione S-Transferase (2 isozymes) Nitrilase 2 Monodehydroascorbate Reductase Isocitrate Lyase Indole-3-Acetate B-Glucosyl Transferase RAP2-like Transcription Factor 12-Oxophytodienoate Reductase (OPR1) Cyto P450 - CYP71A12 Cyto P450 - CYP706A2 Cyto P450 - C4H - CYP73A5 Cyto P450 - CYP89A6 Cyto P450 - CYP81D11

Calibrators

Actin Cyclophilin Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) 18S rDNA

Gene Expression – Results

Gene Expression – Results

P. trichocarpa tissue cultures exposed to TNT 20.0 mg L⁻¹ show a higher expression (induction) of potential "detoxification" genes

-Glutathione S-transferases (conjugation with GSH)
-Cytochromes P-450 (oxidative transformation, e.g. hydroxylation)
-Reductases, nitrilase (nitro group reduction)
-Glucosyl transferase (conjugation with sugar)

Phyto has "morphed" into many innovative technologies including green roofs and low impact development..

James Patchett, President Conservation Design Forum, Inc. Elmhurst, Illinois February 4, 2004

Chicago City Hall 1999

Conclusions

- PhytoTechnologies are evolving...
 - It's innovative but also becoming part of mainstream treatment technologies (constructed wetlands, landfill caps, and ecological restoration)
 - Research is becoming more molecular to understand which plants might be used to degrade which chemicals opening new sustainable development technologies

Acknowledgements

The Great Students:

Sachiyo Tanaka

Laura Brentner

Brittany Folkstra

Dr. Jong Moon Yoon

Acknowledgements

DOE

Strategic Environmental Resear and Development Program

-SERDP (Strategic Environmental Research and Development Program)

- -W. M. Keck Foundation
- -NSF (National Science Foundation)