Evidence of Biodegradation at a DNAPL Contaminated Fractured Bedrock Field Site Using Stable Carbon Isotopes

Michelle M.G. Chartrand, Stable Isotope Laboratory, University of Toronto; Penny L. Morrill, Stable Isotope Laboratory, University of Toronto; Georges Lacrampe-Couloume, Stable Isotope Laboratory, University of Toronto; Kevin T. Finneran, Geosyntec Inc.; Paula Chang, Geosyntec Inc.; Peter Zeeb, Geosyntec Inc.; and Barbara Sherwood Lollar, Stable Isotope Laboratory, University of Toronto

Stable carbon isotope analysis of chlorinated ethenes and ethene was performed at a site where the TCE DNAPL source and dissolved plume are located in fractured bedrock. Previous attempts to biostimulate the pilot test area (PTA) at the site resulted in the accumulation of cis-1,2-dichloroethene (cis-DCE). Since there was no appreciable production of vinyl chloride (VC) or ethene (ETH), there was no evidence for further reductive dechlorination beyond cis-DCE. Subsequently, the PTA was bioaugmented with KB-1, a natural microbial consortium shown in laboratory experiments to completely reduce TCE to non-toxic ETH. While the appearance of breakdown products (VC, ETH) suggested that bioaugmentation was successful to some extent, due to the continuous source of TCE from the DNAPL in the fractured bedrock and variability in the hydraulic gradient, concentration profiles of TCE and degradation products cis-DCE, VC and ETH were unable to unambiguously verify bioaugmentation.

Compound specific carbon isotope analysis of the chlorinated ethenes was able to confirm biodegradation. At any given sampling well, the isotopic signature of the breakdown products were more depleted than that of their parent compound. For instance, for one well during the September sampling event, the isotopic signatures of cis-DCE, VC and ETH were -17.6, -22.5 and -43.7 ‰, respectively. In addition, the isotopic signatures of cis-DCE and VC became increasingly enriched over the four sampling events (from -18.9 to -12.8 ‰, and from -21.6 to -18.2 ‰ for cis-DCE and VC, respectively) consistent with the effects of biodegradation. The isotopic profile of TCE remained relatively consistent (range -22.4 to -25.8 ‰) due to the continuous input of undegraded TCE from DNAPL dissolution. Stable carbon isotope measurements can provide an important line of evidence for biodegradation in hydrogeologically-complex systems.
Biographical Sketches

Michelle M.G. Chartrand
Michelle Chartrand (University of Western Ontario; MSc University of Guelph) is a PhD student in environmental chemistry in the Stable Isotope Laboratory at the University of Toronto with Prof. Barbara Sherwood Lollar. She is a recipient of an NSERC graduate scholarship. Her current research focuses on isotopic fractionation of VC during aerobic and anaerobic microbial degradation.
Stable Isotope Laboratory, University of Toronto
22 Russell St.
Toronto, ON, Canada M5S 3B1
Phone: (416) 978 0825
Fax: (416) 978 3938
email: chartrand@geology.utoronto.ca

Penny L. Morrill
Under the supervision of Barbara Sherwood Lollar at the University of Toronto’s Stable Isotope Laboratory, Penny’s PhD work involves quantifying the extent of chlorinated ethene degradation and biological enhancement of nonaqueous phase liquid dissolution using Stable Carbon Isotope fractionation during laboratory and field studies.
Stable Isotope Laboratory, University of Toronto
22 Russell St.
Toronto, ON, Canada M5S 3B1
Phone: (416) 978 0825
Fax: (416) 978 3938
email: morrill@geology.utoronto.ca

Georges Lacrampe-Couloume
Dr. Georges Lacrampe-Couloume completed his MSc in physical chemistry, MSc geology and PhD in organic chemistry at the University of Toulouse in France. Prior to accepting the position of Senior Research Associate in the Stable Isotope Laboratory at the University of Toronto in 1999, he was employed as an organic geochemist at Elf aquitaine in France. His main research interests are isotopic signatures of gases, hydrocarbon biodegradation, and the development of new analytical techniques.
Stable Isotope Laboratory, University of Toronto
22 Russell St.
Toronto, ON, Canada M5S 3B1
Phone: (416) 978 0825
Fax: (416) 978 3938
email: glc@geology.utoronto.ca

Kevin T. Finneran
Kevin T. Finneran, Ph.D., is a microbiologist for GeoSyntec. He leads laboratory research and field bioremediation projects for contaminants including MTBE, uranium, chlorinated solvents, and RDX. Dr. Finneran’s expertise also includes Fe(III) and humic-substance reduction, aerobic bioremediation, molecular microbial ecology, and isolating bacterial pure cultures.
GeoSyntec Inc.
629 Massachusetts Avenue
Boxborough, MA 01719
Phone: 978-263-9588
Fax: 978-263-9594
e-mail: KFinneran@GeoSyntec.com
Paula Chang
Paula Chang, M.S.E is an environmental engineer for GeoSyntec Consultants with 12 years of experience in site characterization, remedial technology feasibility assessment, and design of enhanced in-situ bioremediation systems. Ms. Chang currently manages several enhanced in-situ bioremediation pilot tests for treatment of chlorinated ethenes and ethanes in groundwater.

GeoSyntec Inc.
629 Massachusetts Avenue
Boxborough, MA 01719
Phone: 978-263-9588
Fax:978-263-9594
e-mail: Pchang@GeoSyntec.com

Peter Zeeb
Peter Zeeb, Ph.D., P.G., L.S.P. is the Northeast Regional Manager for GeoSyntec Consultants and is based in the Boxborough, Massachusetts office. He is a hydrogeologist and environmental geochemist with 15 years of experience in site investigation, fate and transport analysis and modeling, regulatory negotiation, remedial alternatives analysis, and remedial design.

GeoSyntec Inc.
629 Massachusetts Avenue
Boxborough, MA 01719
Phone: 978-263-9588
Fax:978-263-9594
e-mail: PZeeb@GeoSyntec.com

Barbara Sherwood Lollar
Dr. Barbara Sherwood Lollar (Harvard University; PhD University of Waterloo) is a Professor in Geology, Adjunct Professor with the Department of Chemistry, and Director of the Stable Isotope Laboratory. She is a member of NSERC Council, and has served on the University of Toronto Academic Board since 2001, and on Governing Council since 2003. She has been an NSERC E.W.R. Steacie Fellow, Canada Council Killam Fellow and was profiled as one of TIME Magazine’s “Leaders for the 21st Century” based on her research on innovative techniques for tracking organic contaminants in groundwater.

Stable Isotope Laboratory, University of Toronto
22 Russell St.
Toronto, ON, Canada M5S 3B1
Phone:(416) 978 0770
Fax:(416) 978 3938
e-mail: bslollar@chem.utoronto.ca