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Abstract 

Mass spreading of non-reactive tracers in fractured bedrock can be described by a combination of molecular 

diffusion, hydrodynamic dispersion, and heterogeneous advection. These spreading mechanisms are fundamentally 

different in their behavior and, therefore, must be measured separately for reliable predictions of transport to be 

made.  To separate the influence of these mechanisms, to the extent possible, specially designed tracer experiments 

can be conducted.  To isolate the effect of molecular diffusion, tracers of different diffusion rates can be compared.   

Because molecular diffusion occurs at a rate independent of fluid velocity, repeating experiments at different 

velocity will also highlight the influence of molecular diffusion.  Distinguishing hydrodynamic dispersion and 

molecular diffusion is best accomplished by isolating molecular diffusion and heterogeneous advection.  

Heterogeneous advection is conceptualized here as spreading caused by variable transport rates in media of different 

hydraulic conductivity.  Heterogeneous advection is distinguished from hydrodynamic dispersion, therefore, by 

reversing the flow field during a tracer experiment.  This should result in the nullification of the influence of 

heterogeneous advection and leave only the influence of dispersion and diffusion on the breakthrough curve. A 

flow-field reversal results during a push-pull tracer experiment, for example.  It is important to realize, however, that 

advection, dispersion, and diffusion are coupled processes so that experimental separation is never complete and is 

meaningful only with respect to a particular theoretical transport model.   
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Introduction 

The spreading of a dissolved mass as it moves with ground water has been traditionally ascribed to three 

different mechanisms: molecular diffusion, hydrodynamic dispersion, and macrodispersion.  This description of 

mass spreading has served well in relatively homogenous unconsolidated media because usually one mechanism 

dominates over the other two, depending upon the length scale of investigation.  At the pore scale, for example, 

diffusion is the most important mechanism of mass spreading, at local scales  (1-10 m) hydrodynamic dispersion is 

usually most significant, and at larger scales (>10-100 m) spreading is largely controlled by the variable advection 

through sediment facies with varying hydraulic conductivities, often called macrodispersion but termed here as 

heterogeneous advection.  In this article, the meaning of these terms in fractured rock are explored, along with 

empirical approaches to separating the corresponding mechanisms using tracer experiments. 

Fractured rock is set apart from heterogeneous unconsolidated media by both the magnitude and the geometry 

of the hydraulic conductivity distribution.  Slug-test measured transmissivity  in a single fractured rock formation 

may vary over seven orders-of-magnitude (Shapiro and Hsieh, 1998).   This is a much larger range than is normally 

encountered even in highly heterogeneous glacial deposits.  More importantly, these transmissivity variations can 

occur over the scale of millimeters.  A fracture in granite, for example, may have a hydraulic conductivity many 

times greater than the adjoining rock matrix.  The implication of these hydraulic conductivity contrasts is that the 

fluid velocity field is also extremely variable.   Mass-spreading mechanisms that are important at one location, may 

be insignificant in the immediate vicinity.  Coupling of one or more of these mechanisms may lead to unexpected 

transport behavior.  For example, Wood et al. (2004) recently showed how diffusion of X to fracture surfaces is 

coupled with advection in fractures to yield radon transport well beyond what would be expected if only one 

mechanism dominated transport. 

Spreading in ground-water has traditionally been predicted using the advection-dispersion equation 

parameterized with composite terms that quantify both diffusion and hydrodynamic advection (see for example 

(Freeze and Cherry, 1979)):  
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In Equation 1, D*  is the coefficient of molecular diffusion, v is the average linear velocity, DL , DT are the 

coefficients of longitudinal and transverse dispersion, respectively, and �L and �T  are the longitudinal and 

transverse hydrodynamic dispersivities, respectively.  This approach requires an assumption of “Fickian” transport 

behavior, meaning spreading that resembles, mathematically, molecular diffusion.  Although there have been recent 

attempts to generalize the advection-dispersion equation for application in fractured rock (see the review by 

Berkowitz (2002)), the more serious problem is that diffusion, dispersion, and heterogeneous advection are 

physically very different transport mechanisms.  Unless they can be separated, any analysis based upon 

interpretation of transport using the advection-dispersion equation is suspect.   

 686



 

Experimental Separation of Mass Spreading Mechanisms 

The most direct way to measure mass transport in the field is to conduct an artificial tracer experiment.  An 

artificial tracer experiment is conducted by injecting a known mass of tracer into a forced or natural hydraulic 

gradient and measuring the concentration of tracer as it arrives at one or more detection points.  The history of 

concentration at a detection point is the breakthrough curve, from which transport parameters can be derived by 

matching the breakthrough data to a transport model.  As multiple and distinct transport mechanisms prevail in 

fractured rock multiple transport parameters must be derived from such tests.  The key to separating the influence of 

diffusion, dispersion, and heterogeneous advection, is to design the tracer experiment in such a way that a unique fit 

of the transport model to the breakthrough curve can be obtained.  Tracer experiments must be designed such that 

the physical uniqueness of various mass-spreading mechanisms can be exploited. 

Molecular Diffusion 

Molecular diffusion is the most straightforward spreading mechanism to discern as it is independent of fluid 

velocity.  As diffusion is caused by the random kinetic motion of jostling water molecules, it is truly isotropic.  

Compared to most natural water velocities in permeable geologic media, molecular diffusion works very slowly.  

For this reason, the later-time portion of the breakthrough curve (the breakthrough tail) has been considered 

indicative of diffusive mass exchange between fractures and the surrounding rock matrix.  Maloszewski and Zuber 

(1983; 1985; 1990; 1993), for example, have examined a number of tracer breakthrough curves in fractures to derive 

rates of matrix diffusion.  Such an exercise generally consists of fitting at least three model parameters, so that the 

results may be ambiguous when based upon a single breakthrough curve.  More certain results are obtained when 

tracers of varying diffusivity (different molecular size) are combined in a single experiment.  If all tracers are 

chemically non-reactive and are otherwise transported identically (i.e. by advection, hydrodynamic dispersion, 

heterogeneous advection), then differences in breakthrough may be attributed to the different diffusion rates. 

Garnier et al. [1985] conducted field experiments in a fractured chalk using fluorescein, iodide, and deuterium as 

tracers.  A clear separation in the three breakthrough curves was observed, and was later explained using a matrix-

diffusion model [Maloszewski and Zuber 1990; Moench, 1995].  Sanford et al. [1996] observed similar 

breakthrough separation of gas tracers in a fractured saprolite. 

Caution is warranted in interpreting such experiments, however, because diffusion cannot be decoupled from 

other spreading mechanisms in fractured rock.  Under a relatively homogeneous flow field, diffusion will have little 

impact on hydrodynamic dispersion or heterogeneous advection because each streamline is relatively similar to the 

neighboring streamline.  In fractured rock, however, velocity fields can be so heterogeneous that neighboring 

streamlines may have vastly different velocities.  As a result, diffusion from one streamline to another may have an 

important impact on tracer transport.  Figure 1 presents a tracer breakthrough from a weak-dipole tracer experiment 

conducted in a fractured crystalline rock near Mirror Lake, New Hampshire (Becker and Shapiro, 2000).  The 

diffusivities of deuterated water (HDO), bromide (Br-), and pentafluorobenzoic acid (PFBA) are 2.3·10-5, 2.0·10-5, 
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0.66·10-5 cm2/sec, respectively.  
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Figure 1.  Normalized breakthrough of tracers with different 
diffusivity, in a tracer experiment conducted in fractured crystalline 
bedrock.
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introduction of additional transport parameters.  Often these additional parameters have similar effects on the 

breakthrough curve as hydrodynamic dispersion, making it nearly impossible to separate hydrodynamic dispersion 

from other transport mechanisms based upon a single breakthrough curve. 
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Figure 2.  Tracer experiments repeated between the same two wells, 
but a different pumping rates and hydraulic configuration.  

Because hydrodynamic dispersion is a somewhat loosely defined concept, it is best to distinguish diffusion from 

dispersion by measuring the impact of diffusion.  As stated previously, one way to do this is to employ tracers of 

varying diffusivity.  Another approach is to take advantage of the fact that hydrodynamic dispersion is a function of 

velocity, whereas diffusion is not.  Forced gradient tracer experiments conducted at different velocities, i.e. different 

pumping rates, should express different mass spreading  behavior in the breakthrough curves.  Figure 2. presents 

breakthrough curves collected from the same wells at Mirror Lake shown in Figure 1 (Becker and Shapiro, 2000).  

Figure 2 compares weak-dipole tests, where 5% of the withdrawn fluid was constantly reintroduced at the injection 

well with a radially convergent tests where tracer mass was introduced as a slug, with no constant injection.  The 

pumping rates for Tests D, A, B, C, were 9.8, 8.3 , 5.2,and 2.9 liters per minute, respectively.  The pumping rate for 

the radially convergent experiment was 4.5 liters per minute.  The breakthrough curves for all experiments are quite 

similar in late time.  It is impossible to distinguish, within measurement error, the difference in breakthrough tails of 

these experiments. It is only the early time behavior that varies, and it varies in a limited way.  The lowest rate 

experiment, Test C, exhibited a very different breakthrough behavior than the other experiments.  There appears to 

be a threshold velocity below which early breakthrough changes markedly.  The advection-dispersion equation 

would predict a gradual change in 

breakthrough curve shape with 

velocity that is not observed in these 

experiments.  It is possible that this is 

related to tracer density, but 

comparisons with tracers of varying 

density suggest this is not the case 

(Becker, 2003).  It is likely, therefore, 

that transport was not dominated by 

hydrodynamic dispersion in these 

experiments.  Transport mechanisms 

other than local mixing and diffusion 

appear to dominate transport. 

 

Heterogeneous Advection 

Spreading of dissolved mass in ground-water can occur at macro-scales, i.e. at scales well beyond the pore 

scale.  Whereas the characteristic length scale predicted from relatively homogeneous unconsolidated geologic 

media is expected to be on the order of grain size, macro-dispersion is expected to have a length scale on the order 

of meters to tens of meters.  At this scale, mass spreading is not easily conceptualized as a “mixing” phenomenon.  
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Rather, it is most often depicted as the summed effect of mass traveling through multiple layers or facies of varying 

hydraulic conductivity.  Unless these layers can be individually monitored downstream, mass arrival is dispersed by 

the staggered arrival of multiple mass transport pathways.  Consequently, the term “heterogeneous advection” is 

preferred here over macrodispersion, and a clear distinction is made between heterogeneous advection and 

hydrodynamic dispersion, at all scales.  

We define the difference between diffusion and heterogeneous advection as follows:  heterogeneous advection 

is reversible, whereas hydrodynamic dispersion is not.   Consider the illustration (Figure 3) of three slugs of tracer 

injected into a homogeneous flow field applied to three layers of differing hydraulic conductivity (time t = 0).  A 

slug introduced into a higher conductivity layers will move faster under the same hydraulic gradient as a slug 

introduced to a lower hydraulic conductivity layer.  As it moves forward, hydrodynamic dispersion will spread the 

slug or plume in both longitudinal and transverse directions (times t = 1, t = 2).  If the flow field was instantaneously 

reversed at time t = 2, the tracer plumes would travel in the opposite direction.  Again the more permeable layers 

will more quickly advect the tracer, now reversing the separation made when the flow field was in the initial 

direction.  Hydrodynamic dispersion, however, always acts in the direction flow and continues to increase local 

spreading.  The individual plumes disperse, while the overall divergence of mass actually contracts.  At the final 

time, t = 4, the influence of heterogeneous advection is completely reversed, while the influence of hydrodynamic 

dispersion remains. 

Reversing a uniform flow field in situ is impractical.  Reversing a radial flow field is done routinely, 
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Figure 3.  Illustration of the difference between hydrodynamic dispersion and heterogeneous advection. 
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however, in “push-pull” tracer experiments.  In a push-pull experiment, a known mass (slug) of tracer is injected 

into a formation sometimes followed by a known volume of tracer-free water (a chaser).  The slug and chaser are 

then withdrawn from the same well, usually at approximately the same rate the fluid was injected.  Under these 

conditions the flow field is reversed from radially divergent to radially convergent.  Consequently, any hetero-

geneous advection caused by tracer flowing along disconnected flow paths should be entirely reversed during the 

withdrawal phase.  Push-pull tracer experiments should, in theory, measure only hydrodynamic dispersion and 

matrix diffusion. 

In practice, however, heterogeneous advection and hydrodynamic dispersion cannot be entirely separated.  In 

fractured rock, water is thought to move in a channeled manner through essentially disconnected narrow flow paths.  

Each of these channels are likely to have a different effective hydraulic conductivity dependent upon the inter-

connection of these flow paths through the varying aperture field.  The pathways, therefore, experience a variety of 

average linear velocities.  A variance in average linear velocity will lead to a variance in the effect of hydrodynamic 

dispersion along each of the flow paths, as the coefficient of hydrodynamic dispersion is a function of average linear 

velocity.  Figure 4 shows the result of a push-pull experiment conducted again in the crystalline rock formation near 

Mirror Lake, New Hampshire.  Concentrations are normalized to the injected concentration and time is normalized 

to the duration of the push phase of 

the experiment.  The circles are PFBA 

breakthrough during withdrawal 

phase.  The dashed lines represent 

predicted breakthrough according to a 

radial formulation of the advection-

dispersion equation (Becker and 

Shapiro, 2003).  The mass under each 

of these breakthrough curves is a 

function of the flow rate into 

individual channels which is assumed 

to be a function of the cube of the 

mean aperture according to the so-

called “cubic-law” (Witherspoon et 

al., 1980).  The velocity at which mass 

moves in these channels is a function 

of the square of the mean aperture, agai

channel aperture in the formation, the sum

4.  Only the largest channel, which contr

specific attributes of the formation.  The 

called “multipath” model of transport. 
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Figure 4.  Comparison of PFBA breakthrough from a push-pull 
experiment conducted to a theoretical “channel” model. 
n according to the cubic-law.  Regardless of the assumed distribution of 

 of these individual breakthroughs resemble the solid black line in Figure 

ols the first arrival of tracer, relates the total breakthrough behavior to the 

reader is referred to Becker and Shapiro (2003) for details of the this so-
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The relevant point here is that, although heterogeneous advection is not strictly expressed in the breakthrough 

curve because the flow field was reversed, the interactions between heterogeneous advection and hydrodynamic 

dispersion are evident.  Breakthrough tailing still occurs, but is much less extended than in experiments conducted in 

unidirectional flow fields.  The power-law slope of the breakthrough tails in Figure 2 is –2, for example, while the 

power-law slope of the push-pull breakthrough curve in Figure 4 is –4.5.  Breakthrough tailing in the push-pull 

experiment is thought to be due entirely to hydrodynamic dispersion.  This formation is too impermeable to allow 

significant matrix diffusion over the several hour duration of this push-pull experiment (Becker and Shapiro, 2000).  

In more porous formations push-pull breakthrough curves may relate the combined impact of both hydrodynamic 

dispersion and matrix diffusion. 

Conclusions 

Non-reactive tracers tend to be much more dispersed during transport in fractured rock than in unconsolidated 

geologic media. Mass spreading is due to a combination of diffusion, hydrodynamic dispersion, and heterogeneous 

advection. These spreading mechanisms are fundamentally different in their behavior and, therefore, must be 

measured separately for reliable predictions of transport to be made.  Such a separation may be made if specifically 

designed tracer tests are conducted.  To isolate the effect of molecular diffusion, tracers of different diffusion rates 

should be compared.   Repeating experiments at different velocity will also highlight the influence of matrix 

diffusion as molecular diffusion occurs at a rate independent of fluid velocity.  Distinguishing hydrodynamic 

dispersion and molecular diffusion is best accomplished by using these methods to isolate the effects of molecular 

diffusion and heterogeneous advection.  Heterogeneous advection is conceptualized here as spreading caused by 

variable transport rates in media of different hydraulic conductivity.  Heterogeneous advection is distinguished from 

hydrodynamic dispersion, therefore, by reversing the flow field during a tracer experiment.  This should result in the 

nullification of the influence of heterogeneous advection and leave only the influence of dispersion and diffusion on 

the breakthrough curve.  It is important to realize, however, that advection, dispersion, and diffusion are coupled 

processes so that experimental separation is never complete and is meaningful only with respect to a particular 

theoretical transport model.  Here, it has been assumed that the classic advection-dispersion equation is valid for 

fractured media.  This assumption is a matter of some debate. 
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