Upscaling matrix diffusion coefficients for heterogeneous fractured rocks

Zhenxue Dai, Andrew Wolfsberg, Zhiming Lu, and Paul Reimus

Earth and Environmental Sciences Division, Los Alamos National Laboratory
Los Alamos, NM 87545 (email: daiz@lanl.gov)

Abstract: The scale dependence of the matrix diffusion coefficient (D_m) for fractured media has been observed from variable-scale column experiments to field tracer tests. In this paper, we derive the effective D_m for multimodal heterogeneous fractured rocks using characteristic distributions of matrix properties and volume averaging of the mass transfer coefficient (Dai et al., 2007). The effective field-scale D_m is dependent on the statistics (geometric mean, variance, and integral scale) of laboratory-scale ln(D_m) and on the domain size. The effective D_m increases with the integral scales and is larger than the geometric mean of ln(D_m). Monte Carlo simulations with 1000 realizations of heterogeneous D_m fields were conducted to assess the accuracy of the derived effective D_m.

Reference: