U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Search Result

OPTIMIZATION OF COMBINED PHYTOREMEDIATION FOR HEAVY METAL CONTAMINATED MINE TAILINGS BY A FIELD-SCALE ORTHOGONAL EXPERIMENT
Li, X., X. Wang, Y. Chen, X. Yang, and Z. Cui.
Ecotoxicology and Environmental Safety 168: 1-8(2019)

The combined application of plant, microorganism, and amendment on the phytoremediation of heavy metals was optimized as a remediation technique for mine tailings by a field-scale orthogonal experiment aimed to achieve the maximum phytoremediation effect. Soybean, Mucor circinelloides, and A3 amendment were used as the plant, microorganism, and amendment materials. With the application, effective fractions of copper, zinc, lead, cadmium, and manganese were immobilized for decreased bioavailability, indicating the phytostabilization served as a major repair pathway. Plant length and biomass in the treatments were significantly higher than that in the control, indicating their phytoremediation potentials were enhanced. The final contents of heavy metals in soil were decreased, and the removal rates of soil heavy metals were in the order of Pb > Cd > Cu > Zn > Mn. Temporal variations of soil microorganism populations indicated that the abundance of soil microorganism in the treatments was significantly higher than that in the control, and bacteria became the dominant microbial species.



The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund Remediation and Technology Innovation at adam.michael@epa.gov or (703) 603-9915 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience.