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M otlvation

» Thereis growing interest in optimizing remedial
actions to reduce costs, accelerate cleanup and
Improve performance

» Optimization means different things to different
people
— Professional assessment and improvement of
operations
— Tria and error searching for better solutions

— Mathematical optimization, which is the focus of this
talk




M athematical
Optimization

» Uses a computer to automatically search for the
best solution to a problem that you specify

— Finding the best well locations and pumping rates for
awell-based remediation system

— Finding the best monitoring locations

» Useful tool when many possible solutions exist
and It’ s too time-consuming to examine all of
them

» From this point forward, “optimization” refersto
mathematical optimization




Optimization Applications |1 [ESHINEIR

» Optimization has been applied to find improved
solutions at numerous field sites

— Pump-and-treat design (containment or treatment)
— Monitoring design
— Calibrating ssmulation models

» Consistently found lower cost, more effective
solutions
— Often “out of the box” solutions

— Savings over trial-and-error optimization in a recent
ESTCP transport optimization project ranged from 5
to 50%, with atypical improvement of 20%




Mathematical
Optimization Process

» Start with areal-life problem for which you are seeking
the “best” or “optimal” solution

» Develop an “optimization formulation” that describes the
essential elements of the real world problem in
mathematical terms

» Select and apply an appropriate methodology to search
the potential solution space for an “optimal” solution




Formulation for Optimizing |7 AERRARNEIR
a Groundwater P& T System PRy O e A s

» Decision variables
— Locations of extraction/injection wells
— Rates at each extraction/injection well over time

» Objective functions could be
— Minimize cost
— Minimize cleanup time




Formulation for Optimizing a [T 1INOIS
Groundwater P& T System Ml S s

» Potential constraints
— Limits on pumping rates at specific wells
— Limits on total pumping rates
— Limits on contaminant levels at target times

» Evaluating these constraints requires running a
numerical model

— If objectives and constraints only involve controlling
flows, only need aflow model is needed

— Otherwise need a transport model also




Formulation for Optimizing a
Groundwater Monitoring
System

» Decision variables

— For each monitoring well in each period, whether or
not to take asample

» Objective functions could be
— Minimize cost
— Minimize error in the decissons made from the data




Formulation for Optimizing a
Groundwater Monitoring
System
» Potential constraints
— Limitson allowable errors
— Maximum sampling budgets
» Evaluating errors requires a model of how the
datawill be used

— E.g., an interpolation model to estimate concentrations
or heads with and without particular samples




Solving the Optimization
Problem

» Numerous optimization methods exist to search
for optimal solutions

» \Which one Is best depends upon the problem
you' ve formulated

» Most field-scale applications have used heuristic
approaches such as

— Genetic agorithms (GAS)
— Simulated annealing
— Tabu search




What’s Coming In
Optimization?

» More field applications and demonstrations
» User-friendly software

— MODMAN for flow control optimization with
Modflow

— SOMOS (Peralta) and MGO (Zheng) for transport
optimization with Modflow and MT3DMS

» More training short courses

» New applications and improved approaches from
the research community




New Applications

» Optimizing other remediation technologies
— Bioremediation
— S0il vapor extraction
— Surfactant flushing
— Thermal oxidation with pump and treat

» Selecting among multiple possible technologies




mproved Approaches ILLINOILS

» Getting solutions faster and more effectively
» Handling multiple objectives

» Considering uncertainty

» | ncorporating expert knowledge



Getting Solutions Faster
and M or e Effectively

» Optimizing remediation systems can sometimes
be a challenging process
— Formulating the problem appropriately

— Figuring out what optimization approach to use and
Now to set Its parameters

— When simulation models are time consuming,
optimization can take along time
 Inthe ESTCP transport optimization demonstration project,

— Simulation models took 10 minsto 2 hrsfor each
simul ation

— Optimization requires 100'sto 1,000’ s of simulation
runs




Getting Solutions Faster and
Mor e Effectively, contd.

» Like numerical modeling, tackling these
complexities requires training and expertise
» New approaches are being developed all the time

— The solution you need may already exist in aresearch
lab

— Following are some highlights of recent findings from
our lab

e More details can be found at
http://cee.uiuc.edu/emsa/research




Case Study: Umatilla Chemical T———
Dot Her miston, Oregon E LLLINOIS
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» Pump & treat system to treat RDX and TNT
» First site in the ESTCP transport optimization demo




Hybrid Genetic Algorithm ILLINOIS
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Multiscale Genetic 1
Algorithm
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Adaptive Neural Networ k [T1INOIS
Genetic Algorithm e
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Guidancefor Setting GA lLL.lN()l.S

» Setting optimization parameters appropriately can
make the difference between success and failure
of the optimization effort

» T0 help practitioners better set their parameter
values, we developed guidance based on GA
theory

— See http://cee.uiuc.edu/research/emsafor details




Handling Multiple
ODbjectives

» Many remediation problems have multiple
objectives. For example, at Umatilla,
— Two objectives are important:
e Minimize cost
e Maximize mass removal to cleanup levels
» New multi-objective genetic algorithms allow
tradeoffs among multiple objectivesto easily be
considered




Optimal Tradeoffs Among [T 1INOIS
Umatilla Objectives Bl e e
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Considering Uncertainty |1 [ESSISNIIE

» Optimization efforts are usually based on models,
which can have substantial uncertainty

Hydraulic conductivities
|ocations of source areas

Preferential flow paths, such as root holes

» Many optimization approaches exist that can find
solutions that will be more robust to uncertainty
that can be quantified




Characterizing
Uncertainty

» Finding optimal solutions that consider
uncertainty reguires that the uncertainty be
characterized

» Can range from simple approaches to highly
complex

— Simple: Create multiple parameter values or models
that represent the expert’s best judgment

— Complex: Full stochastic groundwater models, with
conditional simulation




Multi-Objective Results
Under Uncertainty
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| ncor porating Expert
Knowledge

» Many problems have objectives or constraints
that cannot be put into mathematical form
— Hydrogeologic insight
— Social or political issues

» Emerging interactive approaches allow experts to

guide the search to meet these and more
traditional objectives

— Rate initial solutions that optimizer finds
o Optimizer learns what types of solutions meet objectives

— Suggest alternative solutions to the optimizer




| ncor porating Expert
Knowledge, contd.

»\We are in the early stages of exploring how these
approaches can be used most effectively for
remediation optimization
— Applying to long-term monitoring optimization and

mode! calibration

» Has been successfully used for many other
applications.

— Criminal face recognition "

_ Hearing aid fitting &

— Jazz improvisation — hear amusician “trading eights’
with the computer (8 measures)




Conclusions

» Mathematical optimization has been shown to provide
substantial benefit for remediation design

» These approaches are meant to be another tool in the
analyst’ s toolbox, but not to replace the analyst!

» New software and emerging methods will bring exciting
opportunities for further improvements in the future

— Want to know more? Come to the annual Environmental &
Water Resources I nstitute World Water and Environmental
Resources Congress (Salt Lake City 6/28-7/1/04, Anchorage
2005)
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