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MotivationMotivation

There is growing interest in optimizing remedial 
actions to reduce costs, accelerate cleanup and 
improve performance
Optimization means different things to different 
people
– Professional assessment and improvement of 

operations
– Trial and error searching for better solutions
– Mathematical optimization, which is the focus of this 

talk



Mathematical Mathematical 
OptimizationOptimization

Uses a computer to automatically search for the 
best solution to a problem that you specify
– Finding the best well locations and pumping rates for 

a well-based remediation system
– Finding the best monitoring locations

Useful tool when many possible solutions exist 
and it’s too time-consuming to examine all of 
them
From this point forward, “optimization” refers to 
mathematical optimization



Optimization ApplicationsOptimization Applications

Optimization has been applied to find improved 
solutions at numerous field sites
– Pump-and-treat design (containment or treatment)
– Monitoring design
– Calibrating simulation models

Consistently found lower cost, more effective 
solutions
– Often “out of the box” solutions
– Savings over trial-and-error optimization in a recent 

ESTCP transport optimization project ranged from 5 
to 50%, with a typical improvement of 20%



Mathematical Mathematical 
Optimization ProcessOptimization Process

Start with a real-life problem for which you are seeking 
the “best” or “optimal” solution
Develop an “optimization formulation” that describes the 
essential elements of the real world problem in 
mathematical terms
Select and apply an appropriate methodology to search 
the potential solution space for an “optimal” solution 



Formulation for Optimizing Formulation for Optimizing 
a Groundwater P&T Systema Groundwater P&T System

Decision variables
– Locations of extraction/injection wells
– Rates at each extraction/injection well over time

Objective functions could be
– Minimize cost
– Minimize cleanup time



Formulation for Optimizing a Formulation for Optimizing a 
Groundwater P&T SystemGroundwater P&T System

Potential constraints 
– Limits on pumping rates at specific wells
– Limits on total pumping rates
– Limits on contaminant levels at target times

Evaluating these constraints requires running a 
numerical model
– If objectives and constraints only involve controlling 

flows, only need a flow model is needed
– Otherwise need a transport model also



Formulation for Optimizing a Formulation for Optimizing a 
Groundwater Monitoring Groundwater Monitoring 
SystemSystem

Decision variables
– For each monitoring well in each period, whether or 

not to take a sample

Objective functions could be
– Minimize cost
– Minimize error in the decisions made from the data



Formulation for Optimizing a Formulation for Optimizing a 
Groundwater Monitoring Groundwater Monitoring 
SystemSystem

Potential constraints 
– Limits on allowable errors
– Maximum sampling budgets

Evaluating errors requires a model of how the 
data will be used
– E.g., an interpolation model to estimate concentrations 

or heads with and without particular samples



Solving the Optimization Solving the Optimization 
ProblemProblem

Numerous optimization methods exist to search 
for optimal solutions
Which one is best depends upon the problem 
you’ve formulated
Most field-scale applications have used heuristic 
approaches such as
– Genetic algorithms (GAs)
– Simulated annealing
– Tabu search



What’s Coming in What’s Coming in 
Optimization?Optimization?

More field applications and demonstrations
User-friendly software
– MODMAN for flow control optimization with 

Modflow
– SOMOS (Peralta) and MGO (Zheng) for transport 

optimization with Modflow and MT3DMS
More training short courses
New applications and improved approaches from 
the research community



New ApplicationsNew Applications

Optimizing other remediation technologies
– Bioremediation
– Soil vapor extraction
– Surfactant flushing
– Thermal oxidation with pump and treat

Selecting among multiple possible technologies



Improved ApproachesImproved Approaches

Getting solutions faster and more effectively
Handling multiple objectives
Considering uncertainty
Incorporating expert knowledge



Getting Solutions Faster Getting Solutions Faster 
and More Effectivelyand More Effectively

Optimizing remediation systems can sometimes 
be a challenging process
– Formulating the problem appropriately
– Figuring out what optimization approach to use and 

how to set its parameters
– When simulation models are time consuming, 

optimization can take a long time
• In the ESTCP transport optimization demonstration project,

– Simulation models took 10 mins to 2 hrs for each 
simulation

– Optimization requires 100’s to 1,000’s of simulation 
runs



Getting Solutions Faster and Getting Solutions Faster and 
More Effectively, contd.More Effectively, contd.

Like numerical modeling, tackling these 
complexities requires training and expertise
New approaches are being developed all the time
– The solution you need may already exist in a research 

lab
– Following are some highlights of recent findings from 

our lab
• More details can be found at 

http://cee.uiuc.edu/emsa/research



Infiltration Basins

Extraction Wells

TNT Plume

RDX Plume

Case Study: Umatilla Chemical Case Study: Umatilla Chemical 
Depot, Hermiston, OregonDepot, Hermiston, Oregon

Pump & treat system to treat RDX and TNT
First site in the ESTCP transport optimization demo 

Military 
reservation used 
for storage and 
handling of 
munitions 1960s



Hybrid Genetic AlgorithmHybrid Genetic Algorithm
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Adaptive Neural Network Adaptive Neural Network 
Genetic AlgorithmGenetic Algorithm
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Guidance for Setting GA Guidance for Setting GA 
ParametersParameters

Setting optimization parameters appropriately can 
make the difference between success and failure 
of the optimization effort
To help practitioners better set their parameter 
values, we developed guidance based on GA 
theory
– See http://cee.uiuc.edu/research/emsa for details



Handling Multiple Handling Multiple 
ObjectivesObjectives

Many remediation problems have multiple 
objectives. For example, at Umatilla,
– Two objectives are important:

• Minimize cost
• Maximize mass removal to cleanup levels

New multi-objective genetic algorithms allow 
tradeoffs among multiple objectives to easily be 
considered



Optimal Tradeoffs Among Optimal Tradeoffs Among 
Umatilla ObjectivesUmatilla Objectives
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Considering UncertaintyConsidering Uncertainty

Optimization efforts are usually based on models, 
which can have substantial uncertainty
– Hydraulic conductivities
– Locations of source areas
– Preferential flow paths, such as root holes

Many optimization approaches exist that can find 
solutions that will be more robust to uncertainty 
that can be quantified



Characterizing Characterizing 
UncertaintyUncertainty

Finding optimal solutions that consider 
uncertainty requires that the uncertainty be 
characterized
Can range from simple approaches to highly 
complex
– Simple: Create multiple parameter values or models 

that represent the expert’s best judgment
– Complex: Full stochastic groundwater models, with 

conditional simulation



MultiMulti--Objective Results Objective Results 
Under UncertaintyUnder Uncertainty
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Incorporating Expert Incorporating Expert 
KnowledgeKnowledge

Many problems have objectives or constraints 
that cannot be put into mathematical form
– Hydrogeologic insight
– Social or political issues

Emerging interactive approaches allow experts to 
guide the search to meet these and more 
traditional objectives
– Rate initial solutions that optimizer finds 

• Optimizer learns what types of solutions meet objectives
– Suggest alternative solutions to the optimizer



Incorporating Expert Incorporating Expert 
Knowledge, contd.Knowledge, contd.

We are in the early stages of exploring how these 
approaches can be used most effectively for 
remediation optimization
– Applying to long-term monitoring optimization and 

model calibration
Has been successfully used for many other 
applications: 
– Criminal face recognition
– Hearing aid fitting
– Jazz improvisation – hear a musician “trading eights” 

with the computer (8 measures)



ConclusionsConclusions

Mathematical optimization has been shown to provide 
substantial benefit for remediation design
These approaches are meant to be another tool in the 
analyst’s toolbox, but not to replace the analyst!
New software and emerging methods will bring exciting 
opportunities for further improvements in the future
– Want to know more? Come to the annual Environmental & 

Water Resources Institute World Water and Environmental 
Resources Congress (Salt Lake City 6/28-7/1/04, Anchorage 
2005)
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