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Why Optimize Remediation
Designs?

= Groundwater plume migration management
and remediation treatment is a Costly and
time-consuming process. ==

= Life cycle cost savings.
= Up to $72.6M to $100M.
= More effective designs. Bree
= TCE remediation [8 vs. 29 yrs, 40% cheaper].

These results do not indicate that the original designs were necessarily “bad”,
just that it is very difficult to develop optimal remediation schemes without
optimization tools.



i Key Aspects

= Designing of efficient aquifer
management solutions involves:
= The use of simulation models to predict

processes such as subsurface fluid
movement and contaminant transport.

= Optimization algorithms to determine best
design to meet objectives.




Robust Environmental

iSimuIators
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Optimal Estimation of
iSubsurface Conditions

s Subsurface state estimates are
uncertain.

= Optimal estimation Is achieved via:

= Physics models + data models +
geostatistics + information fusing / signal
processing algorithms (Kalman filter or
genetic programming).

Challenge Is to match the reduction in uncertainty with
the project objectives and cost of information.



General Mathematical

iStatement

= Minimize f(x); the cost of the action

= Subject to:
= X e D; the constraints on the solution

= Seemingly simple, it is often difficult or
Impossible to do this completely.

= Function calls to the objective are very
expensive, hours /weeks per call.




Robust Global Optimization

iAIgorithms

= Outer Approximation Method
»« Karatzas & Pinder

= Lipschitz Global Optimization
= Pinter

= VT _Direct
= Watson/He (Virginia Tech)

For additional information, see www.informs.org &
www.dal.ca/~jdpinter/ &
http://www.cs.vt.edu/info/people/vitae/Watson.html




The Concept of the Outer
iApproximation Method.
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iLipSChitz Global Optimization

= Globally convergent methods:

= continuous branch-and-bound (adaptive
partition & search)

» global adaptive randomized search
= multi-start based adaptive random search

= Locally convergent methods:
= exact penalty function approach

Avalilable as callable object from Fortran and C/C++,
linked with Mathematica, Excel, GAMS, peer-reviewed.



The Optimal Remediation
iDeSign Process

= The treatment plant and/or in-situ
remediation system consists of:

= Installation costs
= Operations costs

= Solution must meet the design objectives:
= Point or area of compliance
= Concentration to be met
= Desired time to meet the compliance

s Solution chosen:

= Least cost technology implementation that meets
the design objectives




Simple lllustration of Challenge:
Above Ground Treatment Plant
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Simple lllustration of Challenge:
OIl Field Process Optimization
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Simple lllustration of Challenge:
Groundwater Pollution
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Detalled Example
iSubsurface Remediation

= Source located In drinking water aquifer

= Point of compliance located between
the source as some low flow water
supply wells.

= Stakeholders want to know the likely
costs for various risk-based clean-up
standards to help make an informed
decision.




Detalled Example:
{Flow System
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ilnputs for Optimization

Ponder:

Source location [point, area].

Source strength [fixed, variable].

Area where treatment can occur.

Point or area of compliance.

Treatment technology.

Time for remediation to be complete.

Cost per well [$].

Cost to operate and monitor system [$/yr].

Is it better to pump a little water at high concentration or a lot
of water at low concentration...?



Detalled Example:
One Optimal Solution

T T e T T . #
Ti.'ﬂfi B Lt iy %
ITI*& 'ﬂ.’ﬁf # L '“ﬂfﬁf‘ﬁ ?ﬁf&?
"ﬁ»# AN AN B ,*‘Fﬂ!l )
ﬁ VR, FANLD T E e, A -
i?‘,'* ""!‘.'EE l.l-‘ {’, 4%}
o -nﬁ""ﬂlmﬁ"ﬁ‘
T 2 " YAV AVANANLS ?‘
. ﬁh AVANAY 2VAVAVARAT

N PR R B ﬂ"

AR VA AT AN i T

Existing water supply Wells (5,300 gal/day)

Extraction Well (max 132,000 gal/day each.
Point of Compliance (%)

Injection Well (max 80,000 gal/day.)

Contaminant Source 100%

[ loee o

One Optimal Solution for a Specific Clean-up Level. Note that water
reinjection can occur to conserve this natural resource.



Detailed Groundwater
iRemediation Solution Output

Reduction in Solution Cost
Source
Strength
Needed @
POC
Greater Tl Zone Negotiated
than 80%0
6590 to Active $200K to
80%0 Remediation $9O00K
Less than MNA $150K
65%0

Provides framework to achieve consensus stakeholder approved
solutions



Output

= Best design basis for the remediation system.
= Location, injection / extraction rates.

= Optimal life cycle cost of remediation.

= Sensitivity graphs:

= Clean-up technology vs. Compliance point
locations vs. Compliance concentration levels vs.

Costs.

= EXxcellent tool for stakeholder groups.

= If conflicting design constraints are added, it will
tell you that feasible solution does not exist.

Provides a tool to work towards feasible solutions




Technology Extensions

= The example shows optimization of
groundwater pump and treat system.

= Extensions include capabillity to optimize:
= Bioairsparging systems.
= Design optimization of in-situ redox zones.
= Separate phase [LNAPL, DNAPL] product recovery.
= Soil vapor extraction systems.
= Monitored natural attenuation enhancements, etc.

Extensions comprise of hooking the right combinations of simulator(s)
and optimizer(s) to the specific challenge. Genetic programming used
when fused physics-data models unavailable.



Site-Wide (Global)

iOptimization

= Links:

=« Plume finding

= Plume remediation

= Technical impracticability
= Long-term monitoring

= Into a single comprehensive analysis
framework

See: Deschaine, L. M., Simulation and Optimization of Large Scale Subsurface
Environmental Impacts; Investigations, Remedial Design and Long Term Monitoring.
Journal of "Mathematical Machines and Systems", National Academy of Sciences of

Ukraine, Kiev. No 3, 4. 2003. Pages 201-218.
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i Produces Results

= Blending of physics,

mathematics,
engineering and
construction
produces robust
solutions to
extremely
challenging
problems.

Engineer of Record, Larry M.
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