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Motivation

= Need for identifying cost-effective and reliable
groundwater remedial designs

“/Increased use of natural attenuation (NA),
often combined with active remediation

™ Natural variablility of/and limited data on
system parameters, leading to difficulty In:
* Predicting remediation effectiveness
* Estimating remediation costs
* Designing remediation strategies
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Research Objectives

= Develop and apply Enhanced Multi-Objective
Robust Genetic Algorithm (EMRGA) to
optimize groundwater/;remediation designs

Find cost effective and reliable remediation
designs while considering uncertainty

= Analyze effects of parameter uncertainty on
optimal design of combined natural
attenuation/active remediation systems
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Study Site

= Developed study site
based on OU-1 site
at Eglin AFB, Florida
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= NA observed at site

= Contaminants: Benzene,
TCE, VOCs, PCBs
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Remediation Optimization

= Use combination of active remediation and
NA to reduce benzene concentrations:
e Year 1: active remediation (pump,and treat)
e Years 2-5: natural attenuation (NA)

= ldentify optimal set up extraction wells to
achieve multiple remediation goals

= Account for uncertainty/heterogeneity in:
e Hydraulic conductivity (K)

e Hydraulic gradient (dh/dx)
e First-order decay rate (k)
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Optimization Problem

= Two conflicting objectives:

* Minimize total\active remediation costs:
min Cost = Gpump + Gcarben + Geap,treat + Geap, well

* Minimize maximum concentration:
MIN(Crax)
= Constraints on:
* Hydraulic heads: hj =hy, VjelN
* Pumping rates: Qpin < Qx < Qe VkelK
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Optimization Approach
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Numerical Experiments

Same-average value of each parameter for all cases

Hydraulic Hydraulic Gradient Decay rate
Conductivity (K) (dh/dx) (k)
o4 0.1 Assumed known Assumed known
52=0.25 (h, = 32ft, h, = 23'ft; (k = 0.001/day)
f2-05 dh/dx = 0.00625)
c2=0.1 Low range (h,=31 to 33 ft) Assumed known
02=0.5 Moderate (h,=30 to 34 ft) (k =0.001/day)
High range (h,=28 to 36 ft)
c>=0.1 Assumed known Low range (k=5e-4 to 1.5e-3)
c2=0.5 (hy = 32ft, h, = 23 ft; Moderate (k=1e-4 to 1e-2)

dh/dx = 0.00625)

High range (k=5.6e-5 to 1.8e-2)
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Results:-Uncertainty in/K

= Optimal solution
represented by
trade-off curve
between
conflicting goals

= Each point
represents an
optimal design




Uncertainty in dh/dx and' K
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Uncertainty in k and K
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Comparison: All Cases

T
only K
K+ lowk
K + highk
K+ lowH
K + highH

I
* onlyK
) K+lowk
-+ K+ highk
K+ lowH
S K+ highH

1.5 2 2.5 3 3.5 4
Maximum Concentration or Cmax (pg/L)

0.6 0.8 1 1.2 1.4
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Analysis.of Optimal Designs

= For each case, analyze

selected designs:

e Extreme optimal design
e /Cost-optimal design

o Cmax-optimal design

Analysis through Monte-

: Cmax-optimal design (Cost = $15M)

Carlo simulations /
. : ) Cost-optimal design (Cmax = 1 ug/L)
= Performance measures:
e Cost
e Maximum concentration YN
PY Re“ab'“ty Maximum Concentration or Cmax (ug/L)
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Extreme Optimal Designs
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Threshold Average
Pumping Rate?

Extreme Optimal Designs
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Analysis.of Optimal Designs

= For each case, analyze

selected designs:

e Extreme optimal design
e /Cost-optimal design

o' Cmax-optimal design

Analysis through Monte-

: Cmax-optimal design (Cost = $15M)

Carlo simulations /
. : ) Cost-optimal design (Cmax = 1 ug/L)
= Performance measures:
e Cost
e Maximum concentration YN
PY Re“ab'“ty Maximum Concentration or Cmax (ug/L)

J3] 5 i
EAMU-FSU College of Engineering == i y-
LTSS



Cost-Optimal Designs
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All cases evaluated on same K uncertainty scenarios
Left bars: Analyzed using low K variance (c? = 0.1)
Right bars: Analyzed using high K variance (c? = 0.5)




Cmax-Optimal Design
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All cases evaluated on same K uncertainty scenarios
Left bars: Analyzed using low K variance (c? = 0.1)
Right bars: Analyzed using high K variance (c? = 0.5)
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Conclusions

™ As/uncertainty and heterogeneity increases:
e/ Fewer designs, with lower maximum concentrations
e Differences in trade-off curves increase

@ /Consider parameter uncertainty
e Hydraulic conductivity most important

e Multiple parameter uncertainty significant for cases
with high K uncertainty

= Assuming more uncertainty/heterogeneity
may not produce more robust designs

e Quantify uncertainty and parameter variability
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Comparison: All Cases
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All cases evaluated on same K uncertainty scenarios
Left bars: Low K variance (c? = 0.1)
Right bars: High K variance (c2 = 0.5)
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Reliabtlity of Design

Cost-Qp#fal (Cmax\= 1ug/L)  CriNgx-Optimal (Cogf = $15M)
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Reliability (%)
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All cases evaluated on same K uncertainty scenarios
Left bars: Low K variance (c? = 0.1)
Right bars: High K variance (c2 = 0.5)




