

CENTER FOR APPLIED GEOSCIENCE

Research Center at the University of Tübingen Department for Applied Geology www.d-site.de

Peter Bayer, Claudius Buerger, Michael Finkel

Implementation and performance of selected evolutionary algorithms

... for the tuning of groundwater remediation systems

Support for this project is provided by the German Department of Education, Science, Research and Technology (BMBF), Contract No. 02WR0195.

- Advective control: heuristic optimization of particle tracking problems
- Binary and real coded decision parameters: SGA vs. DES
- Hydraulic/economic optimization of **Pump-and-Treat** and **Funnel-and-Gate** systems

Capture zone evaluation criteria for pump-and-treat

(cp. Mulligan & Ahlfeld 1999)

"Concentration control"

- (Accurate) Transport model of contaminant site required.
- Evaluation of system performance by logging contaminant concentrations at compliance areas or at hypothetical monitoring wells
- Adaptation of contaminant pumping wells: minimum pumping rate, minimum operation time.

Capture zone evaluation criteria for pump-and-treat

(cp. Mulligan & Ahlfeld 1999)

"Hydraulic control"

- Hydraulic and/or transport model of contaminant site required.
- Evaluation of system performance by ensuring gradient/velocity constraints at selected control points (pre-definition of optimal capture zone, downgradient control hardly possible).
- Adaptation of contaminant pumping wells: minimum pumping rate, minimum operation time.
- Relatively fast method.

Capture zone evaluation criteria for pump-and-treat

(cp. Mulligan & Ahlfeld 1999)

"Advective control"

- Hydraulic model of contaminant site required.
- Evaluation of system performance by tracking particles at selected control points.
- Adaptation of contaminant pumping wells: minimum pumping rate.
- Relatively fast method.

- \rightarrow Only direct method, optimal well configuration not predefined.
- → Source of uncertainty: hydraulic description, delineation of contaminated zone.
- → Can also be used for optimization of wells with time-related capture zones or recharge areas

Problem: natural heterogeneous aquifers lead to highly nonlinear relationship between well positions, pumping rates and the 'degree' of capture.

hydr. conductivity distribution

Minimum pumping rate distribution (1 well)

calculation by (non)linear/economic model containment ? computation by numerical model

 $p = v(q_{1..N}, x_{1..N}, y_{1..N})$

 $\boldsymbol{\nu}$: relative number of captured particles

 $p = 10^{100v}$

e.g., exponential penalty term

- **Objective function is not differentiable**
- Objective function is supposed to have various local optima
- Flexible applicability to high dimensional problems (e.g. 4 wells: D = 12)

Heuristic techniques:

- solve problems with rules-of-thumb or common sense rules
- typically transformed from another science field

Evolutionary algorithms analogies to evolutionary processes Simulated annealing simulation of heating and cooling of metal

Tabu search Inspired by random elements of human behavior

GENETIC ALGORITHM (SGA)

binary

real valued

flipping bits

Mutation follows n-dimensional probability density function with adapted standard derivation (= _____ mutation step size)

 \mathbf{X}_{W}

 \mathbf{q}_{w}

binary

real valued, multi-parent

 X_w

 \mathbf{q}_{w}

(cp. Hansen & Ostermeier 2001; Hansen et al. 2003)

- Features: Self-adaptive mutative step size control; weighted/intermediate multi-parent recombination, `cumulation`; `CMA`
- Applicability: Efficient for non-linear, badly scaled, high dimensional problems
- Questions: Suitable for advective control problem with both discrete & real valued object parameters? Maximum number of iterations? Stop criterion?

Application to example site DES vs. SGA

evolutionary search is stochastic:

50 randomly initialized equal optimization runs with predefined number of model calls

setting of decision variable limits:

pumping rate maximum is set case-specific or automatically (*boundary update*)

objective values:

pre-selected optimal values of pumping rate are set as objective values **fov**

some configurations are called more than once

for the SGA *bookkeeping* is conducted

"*MR*_{fov}" : calculated average model runs required to find a solution for a selected objective value *fov*.

→ Increasing the number of wells reduces the minimum total pumping rate

→ Increasing the complexity leads to a
~ linear increase of required model runs

Funnel-and-gate: Plume capture by advective control

 $Cost = (2 \times \Sigma I_a + \Sigma w_f) \times C_f + 2 \times \Sigma w_a \times C_a + \Sigma (w_a \times I_a) \times C_{reac}$

where

- C_f: C_g: C_{reac}: unit funnel costs
 - unit gate costs
 - unit reactive material cost

plume capture constraint honoured by exponential penalty term:

$$\label{eq:fit} \begin{tabular}{l} \label{eq:fit} fit \end{tabular} = \left\{ \begin{aligned} Cost \times a^{(b \times ((n_{part}/n_{cap})-1))^{c}), \end{tabular} if \end{tabular} n_{cap} \neq 0 \\ \end{tabular} inf, \end{tabular} otherwise \end{aligned} \right.$$

where

- a,b,c > 0: to be selected according to the range of the unit costs
- number of tracked particles n_{part} :
- number of particles captured n_{cap} :

Additional constraint: One design fits all?

- natural aquifer heterogeneity creates uncertain description of flow field
- multiple equiprobable aquifer realizations as part of the objective function

DES results:

dim N=4	1-Gate
y	
	fit _{min} =87427

Advantages of DES

- More robust & efficient, less stochastic & less model runs than SGA
- More suitable for in case of real valued object parameters, applicability in case of discrete object parameters
- Relevance of object parameter limits reduced by self adaptation

Lessons learnt + Outlook

- Number of model runs scales ~linear with problem dimension for DES
- Efficiency of boundary update: additional use of available information
- Limitations for DES in case of "hard" discretisized problem formulations?

→Further inspection of applicability for Funnel&Gates Systems

- Missing: Requirement of stop criterion for practical use