Compare Actual Capture Zone to Target Capture Zone

Negative Impact on Protectiveness From "Failed Capture"

This is a schematic that indicates a gap in capture between extraction wells

Horizontal Capture Zone

Vertical capture does not encompass the entire aquifer thickness for this partially penetrating well. The top figure does not convey this, shows the need for 3-D analysis. The greater the vertical anisotropy (Kx >> Kz), the shallower the vertical capture zone will be.

Monitoring Wells for Concentration Measurement

Drawdown and Capture Are Not The Same Thing

Capture for Entire Plume Extent

Capture for Portion of Plume

Complete Horizontal and Vertical Capture

Complete Horizontal Capture Only

Observations Points Without Water Level Estimates at Pumping Wells

Observations Points With Water Level Estimates at Pumping Wells

Target Capture Zone: Should Be 3-Dimensional

Map View

Water Level Interpretation Using Measurement <u>from</u> Extraction Well

Using water level at the extraction well for developing contours biases interpretation to indicate extensive capture...

Water Level Interpretation Using Measurement at Piezometer <u>near</u> Extraction Well

With piezometer data to indicate actual water level in aquifer near the extraction well, no clear-cut capture zone is apparent...