
Evaluating Remediation Completeness and Effects on Site Management Using CLOSES^M

~ presenter ~

Anthony Pennino/CH2M HILL

U.S. ARMY - Garrison ALASKA (USAG-AK)

Acknowledgments

Co-authors:

- Therese Deardorff/U.S. Army
- Cristal Fosbrook/U.S. Army
- Timothy Gould/CH2M HILL

Technical contributors:

- Larry Acomb/Geosphere
- Bob Allen/Voom Engineers

Today's Discussion

- Case study of source area remediation progress data
- Demonstrate a weight-of-evidence approach using site monitoring data and screening-level models to assess remediation completeness

Summary of the CLOSES^M Process

- CLOSES^M Cleanup Operations and Site Exit Strategy
- An approach for evaluating remedial processes at contaminant source areas
- A "tool box" of screening-level models and statistical evaluations
- Provides a basis for deciding when to turn systems off

Remediation Process Tools – TTCU Models

- Screening level tools that predict the effects of treatment in contaminant source areas
- Phase-partitioning calculations for hydrocarbon mixtures
- Predict changes in groundwater and soil contamination concentrations in response to treatment

TTCU = Time to Clean Up

Site Monitoring Tools

- Mann-Kendall trend analysis
- Cost-Effective Sampling (CES)
- Provide information used to improve monitoring program (monitoring frequency and location)

Site Background – Operable Unit 5

meters

River

Chena

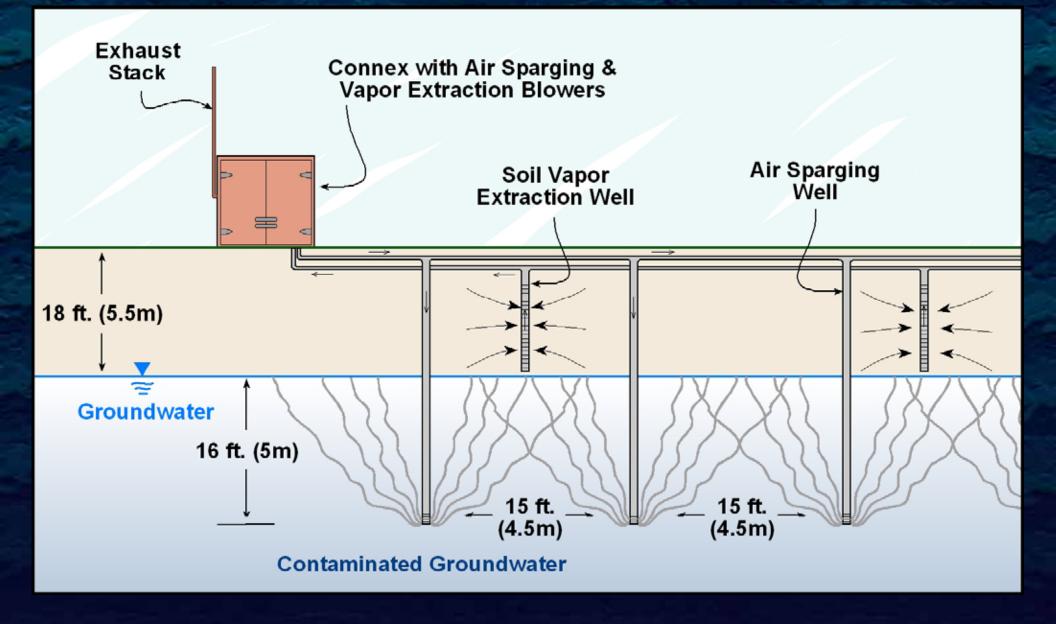
Dissolved-Phase Plume (Benzene, 5 µg/L) -

Gaffney

K = 200-400 ft/day (1x10⁻¹ cm/sec) V = 1-2 ft/day (0.4 m/day) Gradient = 0.0002

Road

Regional Groundwater Flow Direction


Soil Source

Area

Summary of Treatment and Remediation Goals at OU5

- Remedial objective protect the Chena River from influx of contaminants of concern
- Remedial approach active treatment and natural attenuation
- Remediation goals
 - Benzene 5 μg/L
 Toluene 1,000 μg/L
 GRO 1,300 μg/L
- Treatment of groundwater and soil by AS/SVE (386 AS and 70 SVE wells)

Air Sparging & Vapor Extraction

Expected Treatment Results

- Active treatment to remove volatile organic hydrocarbons
- Low volatility hydrocarbons not removed
- Significant residual hydrocarbon following active treatment

Comparison of Expected and Actual Remediation Costs

	ROD	Costs Updated
Cost Item	Estimate (2002 \$\$)	for IRAR (2002 \$\$)
Capital cost	5,282,168	3,978,126
Annual operating cost	6,700,425	10,738,500
Total cost	11,982,593	14,716,626

IRAR = interim remedial action report

Monitoring Data Evaluations

- Source Area 619 soil samples from 169 borings – pre-treatment
- NAPL 4 samples pre-treatment and 4 after one year of treatment
- Soil 3 rounds of 16 comparative borings
- Vapor 134 offgas samples during treatment
- Groundwater 295 samples from 64 wells

Media-Specific Evaluations

- Source Area
- NAPL
- Vapor
- Soil
- Groundwater

Source Area Assessment

- Estimation of areal extent of source area
- Calculation of contaminant mass present in source area
- 619 soil samples from 169 borings
- 295 water samples from 64 wells (over 10 years of sampling)
- Development of conceptual site model

Conceptual Site Model

0'

12'

Y

18'

LNAPL Residual

Seasonal High Groundwater

chena Rive

Seasonal Low Groundwater

> Chena River Stage

Source Area Assessment Results

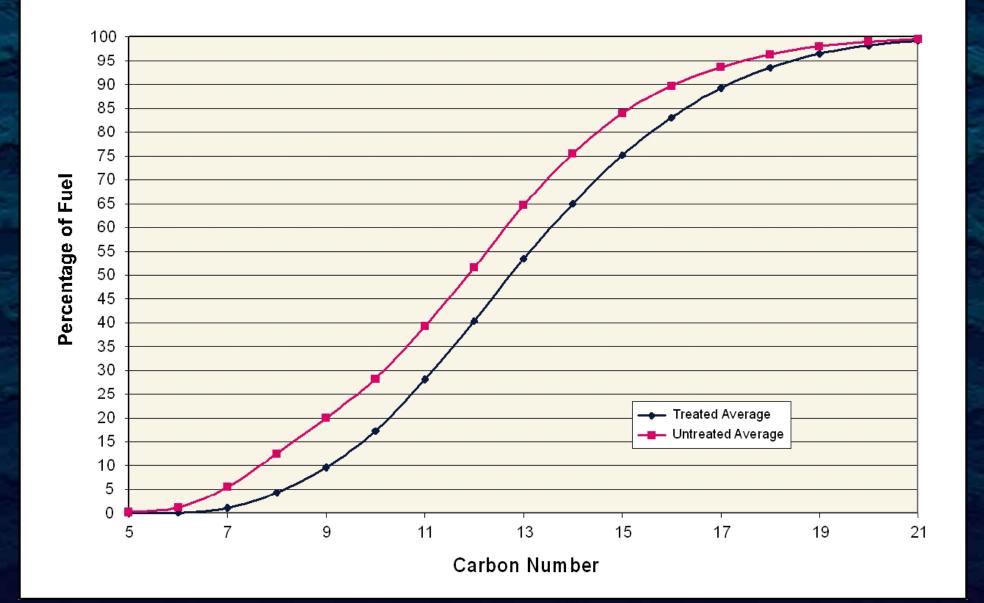
- Extent of soil source area 3.2 hectares (8 acres)
- Volume of contaminated soil 100,000 m³ (130,000 yds³)
- Mass of total petroleum hydrocarbons 900,000 kg (2,000,000 pounds)

NAPL Assessment

Characterization of pre-treatment NAPL

 Changes in NAPL chemistry because of treatment

NAPL Characterization


> Fourteen different aromatic and aliphatic carbon groups

and a second discourse where the 'Hilden's	Disk sali	ALC: NO.	30.0 12								172 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1
	C5 C	7 C8	8 C9	C10		C13		C16	C	19	C24
Aromatics 18% in product	0.01% B	0.08% T	0.45% 1 E&X C9		6.0% C10 - C13		6.5% C13 - C16		2.69% C16 - C19		0.0% C19 - C24
Aliphatics 82% in product	C5-C7 0.66%	C	07 - C10 12.5%		C10 - C13 25.5%		C13 - C16 27.2%		C16 - C19 11.9%		C19 - C24 3.8%

15% GRO

85% DRO

NAPL Changes Due to Treatment

NAPL Assessment Results

- Treatment of source has reduced volatile portion of NAPL
- Product is no longer detected in wells
- Both of these trends show that treatment systems are operating as expected

Soil Assessment

 Trends in soil concentrations due to treatment

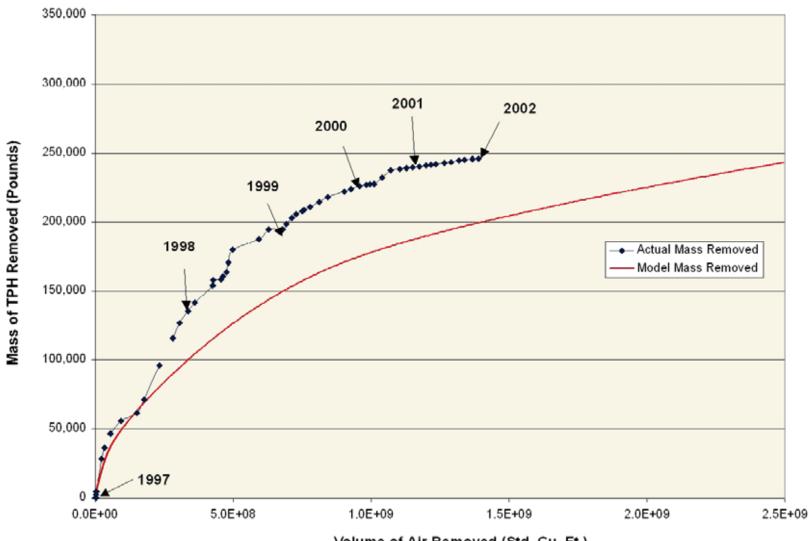
Reductions in vadose and saturated zones

Soil Assessment

Changes in Average Soil Concentrations Over Time of Treatment (mg/kg)

	GRO	BTEX	DRO
Pre-Treatment	1,800	250	6,900
3 Years Treatment	100	<4	3,000

Soil Assessment Results

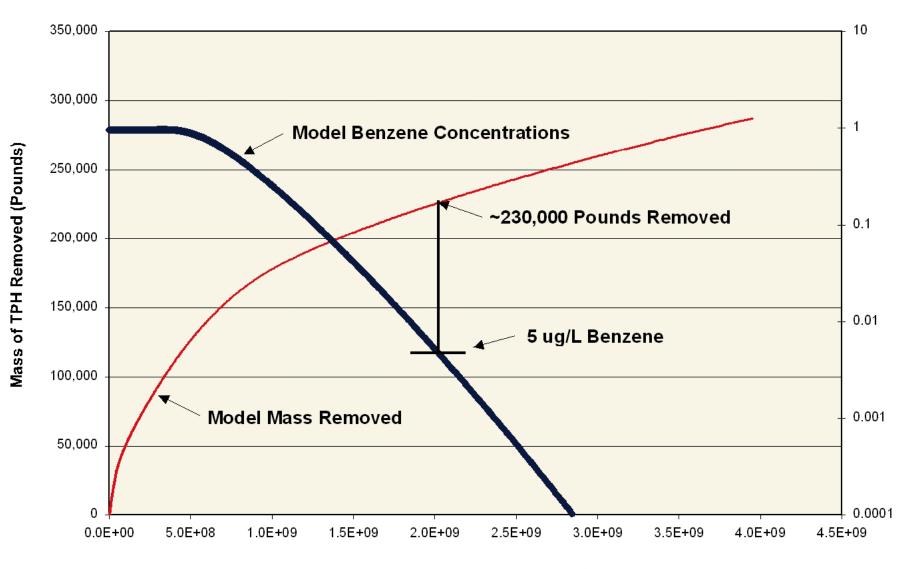

- Trends from 16 comparative borings show GRO and VOCs reduced >95%
- DRO reduced by >65%
- Reductions in both vadose and smear zones

Vapor Assessment

 Remedial progress based on contaminant removal

 Comparison of actual versus predicted mass removal concentrations

Vapor Assessment


Volume of Air Removed (Std. Cu. Ft.)

Vapor Assessment

Mass of TPH to Remove to Prevent Benzene Migration to Groundwater

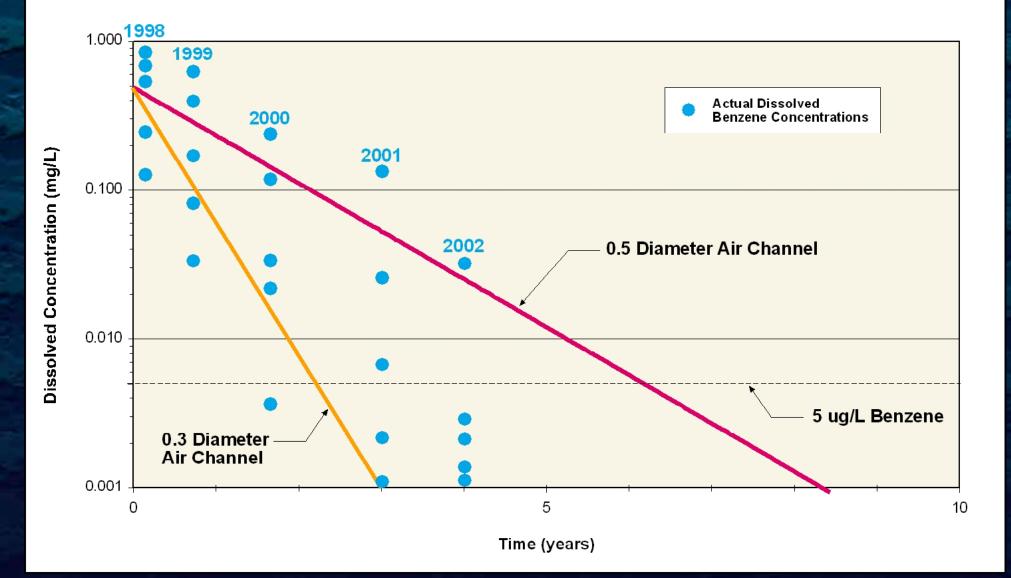
	TPH Mass (lbs)	Soil Concentration (mg/kg)
Starting Mass	2,000,000	9,400
Treatment Required	320,000	1,500
Remaining Mass	1,680,000	7,900

Benzene Vadose Concentrations Vs. Mass Removed

Benzene Concentrations (ug/L

Volume of Air Removed (Std. Cu. Ft.)

Vapor Assessment Results


- 200,000 kg (450,000 pounds) of TPH removed from the source area
- Mass removed greater than predicted to be protective of groundwater
- Actual mass removed is similar to model prediction

Groundwater Assessment

 Trends in groundwater concentrations due to treatment

 Comparison of actual versus predicted groundwater concentrations due to treatment

Benzene Concentrations

Groundwater Assessment Results

- Benzene concentrations in source areas and downgradient decreased by >95%
- Wells treated for >3 years are below cleanup levels
- Actual groundwater concentrations are similar to model predictions

System Monitoring Assessment

- Frequency and spatial orientation of groundwater and soil sampling
- Trends in both groundwater and soil concentrations

Initial Monitoring Network

Chena

Dissolved-Phase Plume (Benzene, 5 µg/L)

Road

Gaffney

Soil Source Area

Regional Groundwater Flow Direction

River

N

Revised Monitoring Network

Chena

Dissolved-Phase Plume (Benzene, 5 µg/L).

Road

Gaffney

Soil Source -Area

Regional Groundwater Flow Direction

River

N

System Monitoring Results

- Discontinued comparative soil sampling ---\$45,000/year
- Reduced groundwater sampling program by more than 40% – \$120,000/year

System Operation Assessment

- Use of results from soil, NAPL, vapor, and groundwater to make system changes
- Use of both field data and supporting model data

System Operation Assessment

- Results from soil and vapor assessment show that SVE treatment is complete after 3 years
- Results from groundwater assessment show that AS treatment is still needed

System Operation Results

- Shut down SVE wells that have operated for 3 years – \$170,000/year
- Shut down subarea WQFS3 AS/SVE system – \$250,000/year
- Continue AS treatment

Summary Cost Savings

Cost Item	2002 IRAR Revised Estimate (1998 \$\$)	2003 Revised Estimate (2002 \$\$)	Cost Savings (2002 \$\$)
Capital Cost	3,978,126	3,978,126	0
Annual Operating Cost	10,738,500	8,145,900	2,592,600
Total Cost	14,716,626	12,124,026	2,592,600

Summary

 CLOSES[®] provides a framework for evaluating site data and making site management decisions

 Consistency between monitoring data and screening models provides confidence that site remedial processes are reasonably well understood

Summary

 Implementing the CLOSES[®] process resulted in regulatory approval for reducing the operation and monitoring effort, and improving cost-effectiveness of the remediation effort

