

Systematic Approach to Optimization of a Permanganate In Situ Chemical Oxidation System

Operable Unit 4, Naval Training Center Orlando

Michael J. Maughon, P.E. Southern Division, Naval Facilities Engineering Command N. Charleston, SC

Accelerating Site Closeout - Improving Performance - & Reducing Costs Through June 15 – 17, 2004 ≀allas, Texas

Project Team

Barbara R. Nwokike – RPMMichael A. Singletary, P.E.

Thomas A. Palaia, P.E. Steven N. Tsangaris, P.E.

Michelle L. Crimi, Ph.D Robert L. Siegrist, Ph.D., P.E.

- **Operable Unit 4, Former Naval Training Center Orlando**
- **In situ chemical oxidation (ISCO) design**
- **ISCO performance data**
- **Optimization efforts**
	- ¾**Supporting laboratory work**
	- ¾**Source zone delineation**
- **Optimization alternatives**
- **Conclusions/lessons learned**

NTC Orlando, Operable Unit 4 (OU 4)

- **Building 1100 was industrial dry cleaning facility**
- **PCE detected in groundwater as high as 23 mg/L**
- **PCE detected in soil as high as 2,940 mg/kg**
- **TCE and cis-1,2-DCE detected as high as 13.2 mg/L and 4.6 mg/L, respectively**
- **70-foot saturated thickness of very fine to finegrained silty sand**
- **Hydraulic conductivity = 10 to 100 ft/day**
- **Depth to water = 5 to 6 ft bgs**
- **Total organic carbon (TOC) ranges from 200 to 8200 mg/kg**

ISCO Design

Pilot test conducted in 2000

5 Shallow injection wells

¾**Total shallow injection rate = 10 GPM**

- **2 Deep injection wells**
	- ¾**Total deep injection rate = 5 GPM**

Design MnO4- concentration = 1,000 mg/L

- **Aboveground re-circulation system designed to remove manganese dioxide solids and re-inject permanganate into aquifer**
- **Theoretical permanganate "front" to treat organic compounds (natural and contaminants) in situ**
- **Operational difficulties prohibited use of polymer feed system for enhanced manganese dioxide particle flocculation**

ISCO Re-circulation System

ISCO Equipment

Aboveground Settling Tanks

KMnO₄ Drum Feeders

ISCO Equipment

Extraction Manifold

Bag Filter System

Injection Manifold

Target Treatment Zone

ISCO Well Field

- **Low sustainable injection rates (< 0.5 gpm per well)**
- **Water levels increased in injection wells**
- **Low MnO₄- loading to the aquifer**
- **Erratic subsurface distribution of MnO₄-**
- **Injection well fouling/formation plugging caused by accumulation of manganese** dioxide (MnO₂) particles
- **Excessive downtime caused by O&M activities (e.g. power failure, well redevelopment, feeder operation)**

Shallow Injection Well Performance

SOUTHERN DIVISION

New Filter Spent Filter

Subsurface Distribution of MnO₄-

Soil Coring – Oxidized Zones

Permanganate Staining

Soil Oxidant Demand (SOD)

- **Original SOD estimate was based on 30-minute batch test by permanganate vendor**
- **Field and laboratory batch tests confirmed SOD** ranges from $1 - 10$ g/kg for 1,000 mg/L MnO₄
- **Lab flow-through column tests yielded SOD** estimate of 0.3 to 0.4 g/kg for 1,000 mg/L MnO₄
- **Two methods to minimize natural oxidant demand:**
	- ¾**Lower permanganate concentration**
	- ¾**Faster flow rate (less oxidant contact time with porous media)**
- **Lab column tests with MnO₄⁻ concentration of 250 – 500 mg/L experienced no plugging, pressure increase, or flow reduction**

Soil Oxidant Demand Testing

Field Laboratory Setup

Soil Oxidant Demand Testing

SOUTHERN DIVISION

Total solids in column effluent for each Pore Volume of throughput

Soil Oxidant Demand Testing

Soil Prior to Treatment

1,000 mg/L KMnO4

4,000 mg/L KMnO4

Building Demolition

Building demolition allowed better access to site for detailed DNAPL source zone characterization

- **Goals of Membrane Interface Probe (MIP) investigation were to better define limits of ISCO treatment and evaluate site stratigraphy**
- **46 Points installed to an average depth of 70 ft bgs**
- **MIP and soil conductivity measurements collected at 0.05 ft vertical interval**
- **Soil and groundwater confirmation samples collected**

MIP Investigation Points

MIP Equipment

MIP Investigation

Typical MIP Response

T1-7 in DNAPL Source Area

MIP Results

Reduction in Target Treatment Zone

Option 1 – Optimize Re-circulation System

- ¾**Optimize existing re-circulation system by reducing the permanganate concentration. Injection well field would be designed based on design simulation using permanganate reaction kinetics.**
- **Option 2 – Permanganate Delivery Using DPT Injection**
	- ¾**Based on smaller target treatment zone, focus delivery of permanganate with use of DPT technology. Option would also include enhanced bioremediation as a polishing tool.**

Injection well fouling/formation plugging caused by buildup of manganese dioxide solids resulted in low oxidant loading

- **Inaccurate estimation of natural oxidant demand of porous media**
	- ¾**Oxidant consumed within short distance**
	- ¾**Higher MnO2 solids generated causing fouling**
	- ¾**Reduce oxidant concentration to reduce MnO2**

Overestimation of oxidant transport in design model simulations

¾**Design simulator did not take into account oxidant reaction kinetics**

Improved DNAPL characterization will reduce target treatment zone; improve effectiveness and cost efficiency

Alternate delivery method using DPT technology may be more cost effective

Lessons Learned

Critical design factors:

- ¾**Accurate estimate of SOD**
	- Depends on SOD test method (batch vs. flow through)
- ¾**Accurate source zone characterization**
- ¾**Selection of appropriate reagent delivery method**
- ¾**Account for aquifer geochemistry (e.g high SOD, anaerobic conditions)**
- ¾**Design simulators need to include permanganate reaction kinetics**

Perform optimization reviews at all phases

- ¾**Particularly at FS, RD when optimization can be built in**
- ¾**Involve specialized technical expertise as appropriate**

Questions?

