New EPA Guidance on Cost-Effective Design of Pump and Treat Systems

> Kathy Yager EPA - OSRTI

Peter Rich, Doug Sutton, and Rob Greenwald GeoTrans, Inc.

Accelerating Site Closeout, Improving Performance, and Reducing Costs through Optimization Dallas, TX – June 15-17, 2004

Presenters

- Kathy Yager
 - EPA Office of Superfund Remediation and Technology Innovation (OSRTI)
 - yager.kathleen@epa.gov
- Peter Rich, P.E.
 GeoTrans, Inc.
 prich@geotransinc.com

Presentation Objective

• Introduce the new EPA fact sheet titled

Cost-Effective Design of Pump and Treat Systems

OSWER 9283.1-20FS, EPA 542-R-04-004 (Coming Soon!)

Presentation Objective

• Please note that there are three other new companion EPA fact sheets

- Elements for Effective Management of Operating Pump and Treat Systems
 - OSWER 9355.4-27FS-A, EPA 542-R-02-009, December 2002
- O&M Report Template for Ground Water Remedies with Emphasis on P&T Systems
 - OSWER 9283.1-22, EPA 542-R-04-003, Coming Soon!
- Effective Contracting Approaches for Operating Pump and Treat Systems
 - OSWER 9283.1-21FS, EPA 542-R-04-005, Coming Soon!

Look for all of the fact sheets at www.cluin.org/optimization EPA

Background

- All of these fact sheets were inspired by the results of a nationwide pilot to optimize operating Fund-lead P&T systems
 - 20 optimization evaluations (RSEs) were conducted
 - RSEs identified a number of useful practices
 - RSEs also identified over 200 opportunities for improvement
 - Over 60 related to improving or evaluating protectiveness
 - Over 60 related to cost reduction

Results suggested need for more specific guidance on P&T design and O&M

Background

- These fact sheets are intended to
 - Demonstrate the need for active management during O&M
 - Outline primary responsibilities during O&M
 - Provide general information, tools, and "rules of thumb" for addressing those responsibilities
- They are NOT intended to
 - Replace hydrogeological or engineering expertise
 - Replace the need for external or independent optimization evaluations

Cost-Effective Design of Pump and Treat Systems

Topics

- Remedy Goals and Performance Monitoring
- System Design Parameters
- The Extraction System
- Selecting the Appropriate Treatment Technology
- Discharge Options
- Controls/Redundancy/Failsafes

General Themes

- Use the appropriate design parameters
- Avoid redundant treatment components and treatment trains
- Avoid costly items (consider both capital and O&M costs) and plan for the long-term
- Weigh all of your options
 - Treatment components
 - Discharge options
 - Etc.

System Design Parameters

• Flow rate

- Design extraction rate base it on pumping data and perhaps modeling
- Hydraulic capacity design extraction rate × a factor of safety

• Design concentration

- Determine for each constituent
- Base it on samples collected during sustained pumping
- Do NOT base it on maximum concentration from RI
- Design mass removal rate
- NAPLs
 - LNAPL, DNAPL, etc.
 - Is it recoverable?

System Design Parameters

(Expected Sustained Pumping Rate from each Extraction Well)

Do NOT use the maximum RI concentration for design concentration!!!

System Design Parameters

Perform and interpret process monitoring, for example...
 Calculate mass loading/removal rate in influent water

• Compare results to design specifications for system and system components

Treatment Technologies

Technology	Example Comments
 For removing NAPL Phase separators Oleophilic filters Dissolved air flotation 	 Easy to maintain, do not remove emulsified product Remove emulsified product, costly for large volumes Removes neutral NAPL, costly to operate
 Treating organic compounds Air stripping GAC Polymeric resin Biological treatment UV oxidation 	 Good for most VOCs, low operator requirements Good for many organics, low operator requirements Effective for high concentrations, compound specific Useful for ketones, requires more operator attention Destroys most organics, high energy costs
 Treating inorganic compounds Filtration Settling and/or metals precip. Ion exchange 	 Low operator requirements, removal may not be sufficient Effective and reliable, operator and material intensive Low operator requirements, compound specific

These and other provided comments are general "rules of thumb". EPA

Treatment Technologies

• Preliminary design estimates for GAC

- Determine influent concentration
- Determine mass loading rate
- Determine ratio (R) for pounds of contaminants to pounds of GAC

$$R = \frac{1}{1,000} \times K \times C^{1/N}$$

C is concentration in mg/L

Compound	PCE	TCE
K (mg/kg)(L/mg) ^{$1/N$}	51	28
1/N	0.56	0.62

- Calculate GAC usage (mass loading rate / R) and associated cost per year
- Calculate vessel size based on usage and empty bed contact time

Treatment Technologies

• Consider ALL of your options before selecting a remedy, particularly if the presumptive remedy is known to be costly. Consider the following example decision tree for addressing metals in extracted groundwater

Treatment Technologies Continued

Discharge Options

Pros

Cons

Controls, Failsafes, and Automation

• General guidelines for labor typically required at various types of treatment plants

Treatment Train	Estimated Labor
Air stripping	• Weekly checks by local operator (8-12 hrs/wk)
Vapor phase GAC for offgas treatment	• Quarterly checks by engineer
GAC	• Weekly checks by local operator (8-12 hrs/wk)
	• Quarterly checks by engineer
Filtration	• Weekly or semi-weekly checks by local
UV/Oxidation	operator (8-16 hrs/wk)
GAC	• Quarterly checks by engineer
Metals removal	• One operator full time with potential for part
Filtration	time assistance (40 - 60 hours/wk)
(perhaps including air stripping, GAC,	
biotreatment, or UV/Oxidation)	

Discussion

