Reducing Time and Costs to Site Closeout Through DNAPL Removal

- By Daniel L. Briller, P.E.
- Booz Allen Hamilton
- Presented at the Conference on Accelerating Site Closeout, Improving Performance, and Reducing Costs Through Optimization
- ▶ June 16, 2004
- Dallas, Texas

Introduction and Overview

- Existing Situation at Many Sites
 - Early remedies have focused on stabilizing the groundwater plume
 - Contaminant mass reduction is not occurring quickly enough to advance toward site closure
 - Life-cycle operating, maintenance, and monitoring (OMM costs) could be very large
- Goal
 - Implement a technology or approach to remove or destroy DNAPL from source areas
- Presentation Topics
 - Methodology
 - Sources of information
 - Time savings analysis
 - Cost savings analysis
 - Conclusions

Key Questions for Site Managers

- ▶ Is DNAPL removal likely to provide significant benefits at my site?
- What is the expected reduction in time to attain closure criteria once the DNAPL removal technology is implemented?
- How long should the system be operated?
- How much DNAPL mass should be removed?
- What are the cost implications (positive or negative) associated with DNAPL removal?

Technologies

- Technologies initially selected for analysis
 - Surfactant flushing
 - Thermal treatment (steam and/or electrical resistance heating)
 - In situ chemical oxidation (ISCO)
 - *In situ* biochemical enhanced reductive dechlorination (ERD)
- Rationale
 - These are the technologies most frequently applied at DNAPL source areas to date
 - Expected to have the largest body of available data

Case Histories

- Criteria for use
 - Confirmed DNAPL in the aquifer or significant probability (e.g., concentrations above 1% of solubility)
 - Pilot- or full-scale projects
 - Actual and detailed groundwater sampling data present in the literature
- Primary source
 - Cost and Performance Reports compiled by the Federal Remediation Technologies Roundtable (FRTR) and the U.S. EPA's Technology Innovation Program
- Total of 11 sites, various technologies:
 - Thermal methods (3 sites)
 - ERD (4 sites)
 - ISCO (4 sites)
- Common principal contaminants
 - Trichloroethylene (TCE) and "daughter" compounds

Concentration vs. Time, Pinellas STAR Center, Largo, FL / Northeast Site (Technology = Biochemical ERD)

Time (years)

Concentration vs. Time, Ft. Richardson, AK / Poleline Disposal Area A-3, Arrays 4, 5, and 6 (Technology = Thermal)

Comparison of Projected Times to Attain 5 ug/L TCE Concentration

Comparison of Projected Times to Attain 5 ug/L TCE Concentration

Technology	High	Low	Average	
Biochemical ERD	60.1	7.8	22.4	
ISCO	4.9	1.3	3.4	
Thermal	11.4	1.1	5.0	
All Technologies	60.1	1.1	10.7	
Biochemical ERD (without NWIRP Site)	13.0	7.8	9.8	

Additional Considerations

- Operating time is not the only criteria for selecting a technology
- Cost/time tradeoff, active versus passive remedies
- Technical issues
 - Aquifer injection permits
 - Proximity of structures and utilities
 - Existing aquifer conditions (oxidation-reduction potential [ORP], dissolved oxygen, nutrient levels)
 - On-site electrical power, steam, and/or potable water
 - Current and future site uses

Concentration vs. Time, Active DNAPL Remediation Followed by Monitored Natural Attenuation (Hypothetical Site)

Total Project Costs For Case Histories

Capital and OMM Costs for Case Histories

	Pinellas	NWIRP	Texas Gulf	Portsmouth	Pad 34	Pensacola OU 10
Capital Costs	\$135,043	\$168,340	\$600,000	\$443,980	\$670,776	\$97,018
OMM Costs (annual)	\$628,939	\$84,217	\$100,000	\$573,240	\$915,123	\$243,960

Kennedy Space Center Launch Complex 34

- Estimated life-cycle costs of ISCO versus pump and treat
- Operating time frames assumed:
 - ISCO (< 1 year) followed by MNA
 - Pump and treat (30 years)
- Net Present Value (NPV) costs
 - ISCO (\$850,000)
 - Pump and treat (\$1,406,000)
- Projected savings = \$556,000 (≈ 40%)

Concentration vs. Time, Active DNAPL Remediation Followed by Monitored Natural Attenuation (Hypothetical Site)

Costs of Two-Phase Remediation Scenarios

Present Value Costs from Year 5 Forward at Different Annual OMM Costs (Hypothetical Site)

Present Value Costs from Year 5 Forward at Different Annual OMM Costs (thousand \$)

Annual OMM Cost	Case "Blue"	Case "Brown"	Case "Purple"	Case "Green"
\$100,000	\$272	\$302	\$277	\$231
\$300,000	\$817	\$905	\$830	\$692
\$500,000	\$1,362	\$1,509	\$1,383	\$1,153
\$700,000	\$1,906	\$2,112	\$1,936	\$1,614
\$900,000	\$2,450	\$2,716	\$2,489	\$2,075

Key Questions for Site Managers – Insights and Path Toward Resolution

- ▶ Is DNAPL removal likely to provide significant benefits at my site?
 - Site-specific decision, but often the answer will be "Yes"
 - Either mandated or viewed favorably by CERCLA, RCRA, and State programs
- What is the expected reduction in time to attain closure?
 - This research indicated three to 11 years to closure (compared to 20 to 30 years or more for pump and treat)
 - Highly site-dependent, a detailed analysis incorporating local parameters is strongly recommended
- How long should the system be operated?
 - Combination of treatment and MNA extends closure date but may provide cost savings

Key Questions for Site Managers Insights and Path Toward Resolution

- How much DNAPL mass should be removed?
 - Important question; first have to determine if a correlation (other than an intuitive one) exists
 - Not enough site data to perform a thorough evaluation at this time
- What are the cost implications (positive or negative) associated with DNAPL removal?
 - Short-term costs (e.g., capital investment and first several years of OMM) will likely be higher than pump and treat or other conventional treatment approach
 - Life-cycle costs will likely be lower than pump and treat
 - Costs can be optimized by using a two-phase approach (e.g., active treatment followed by MNA)

Conclusions

- There are quantifiable time and cost reductions associated with DNAPL removal
- An important research need is data to correlate mass of DNAPL removed or destroyed to decreases in groundwater concentrations
- Our ability to predict the performance of these technologies will improve as they are optimized in the field
- The methodology described in this paper is flexible and easily extended to site-specific circumstances