Flexible Cradle to Grave Data Management Tools for Complex Tasks Including Data Visualization, Data Evaluation, Optimization, and Site Closeout

> David Greenberg Jacobs Engineering (865) 220-4828 David.Greenberg@jacobs.com http://otisview.jacobs.com/database.htm

JE JACOBS

Conference on Accelerating Site Closeout, Improving Performance, and Reducing Costs Through Optimization

June 17 2004

Projects without a full featured Data Management System

Fast

Perfect Defensible Reproducible

Projects <u>with</u> a full featured Data Management System

Fast

Perfect Defensible Reproducible

Typical Data Flow

All Data should originate from a single source

- Avoid duplicate data entry/corrections
 Identify Owner/Administrator and be realistic
- If master version of data is another database, then update information frequently

Database information exchange approach

Source Database

Temp Table

LOCID

MATRIX

SACODE

SAMPNO

SMCODE

COCID.

ABLOT

EBLOT

TBLOT

UPUSER

UPDATE

EXTTIME

LCHTIME

COOLER

SBD.

SED

Destination

Database

Case Study: Database Information Exchange at MMR

Populate as much data as possible

The sum of the QA/QC benefit is greater then the sum of the effort
The QA/QC benefit is especially good for dates, depths, and measurements that have relationships
Possibly required for project closeout exports to ERPIMS, ERIS etc

Data Defensibility

Automated QA/QC at each step
Automated log of edit history
Restricted Edit Privileges
Processed on a Proven System

Automated QA/QC is essential on large projects

Example:

At MMR, the working database Site Environmental Evaluation (SEE) that Jacobs uses contains over 300 million data values. This would take someone 417 years of work to make even a single pass through the database to manually check the values if they check one value every 10 seconds.

Project Configurable System Flexibility

- Needs to be compatible with USACE, AFCEE, EPA, DOE, Navy using look up lists and configuration files
- Data driven edit screens and report modules allowing new fields to all tables
- User configurable reports
- User configurable browse/edit screens
 Data review and auto-flagging tools based on project validation criteria

Capacity Issues

 More than just the back end database Interface limits (i.e. lists of 32K+ locations, 128K+ samples, auto spanning of Excel sheets, etc.) • 2 GB output limit on Windows PCs Transfer speed over the web for large queries

Users should be able to choose locations out of thousands using a variety of methods

Location Pick Lis	t including Instant M	ping with ArcGIS by ESRI (IMAGE)	
ocation	Site ID 🔺	Buildings	
03MW0053	140,20C	Roads	
03MW0054A	140,20C		
03MW0054B	140,20C		
03MW0055	140,38C	Base Boundary	The second se
03MW0055A	140,38C	Ponds	
03MW0055Z	14	Streams	
03MW0056	03C,14D		
03MW0057A	140,200		
03MW0057B	140,200		
03MW0057Z	140,200	🗸 Demo Areas 🛛 💿 o S 🖉 🖓 🖓	
03MW0058	140		
03MW0058EFF	14	Z Coastline	S 🔍 II. S F 🔏 🔍 II. 🖊
03MW0059	140		
03MW0059EFF	14		
03MW0060	08C,14C		
03MW0060B 03MW0060IDW	14 14		
	14		≫>N N //•/ @2%" \∀?%
03MW0061	140 200,14C		
)3MW0062)3MW0063			
)3MW0063)3MW0064	200,14C 140,20C		
33MW0064 33MW0065	140,200		
33MW0066	200		
03MW0067	140,380,03		PART K & AN LOT / 7
03MW0068	03C,140		a 🚳 / 💩 🖊 🔧 🏷 🏹 🚺 🖉 🖉 🖉
03MW0069	030,14C		
03MW0070	03C,14C		A A A A A A A A A A A A A A A A A A A
03MW0070A	03C,140		
03MW0070B	03C,140		
33MW0071	03C,140		
33MW0072	200,140	$\exists \mathbf{e} \mathbf{Q} \mathbf{V}$	
03MW0073	140		
03MW0074	03C,140		
3MW0075	03C, 140, 99		LETER OF ALL DEPOSIT
03MW0076	03C,14D,99		
33MW0077	03C,14C		
33MW0078	140		
03MW0079	140	Unselect All Selected Locations Click & Drag Rectangle	Do Noti Cor Camping Zooano
03MW0080	14C	Select All Locations Click & Drag Circle of Int	I ST EUSLAU SAMOUND FINCAUUNS
03MW0081	03C,14D,99	Click on Corners to mak	e an irregular polygon
03MW0082	03C,14D,12	Select/Unselect locations using advanced options	ymbol to toggle selection 🗢 Post Selected Sampling Locati
03MW0083	140,120		I Angle 0 🗧 Posting Symbol Size
03MW0084	140,120	Select/Unselect Locations using spatial layers 📃 Label posting Labe	I Angle 0 🗧 Posting Symbol Size
03MW0085	03C,14D,12	Select/Unselect Locations using location list file 📔 🗖 Separate Very Close Lab	els Label point size
03MW0086	14D,20C		
East: 370115.76	North: 4613006.30	Toggle Location Selections 🛛 🗖 Display cross-hair on cu	rrent location 🛛 🗌 Show Scale 🔹 Clos

"On the fly" Compression Performance Gains

Example: Approximate time to query 1 million records over the Internet with a 512KB connection

File Type	Uncompressed transfer time	Compressed Transfer Time
.CSV	40 Min	3 Min
XML	3 Hrs	12 Minutes

Innovative Technologies developed by Jacobs Engineering

- Relational Browse/Edit data windows joined directly to instant map windows
- Remote Internet users have the same features as local users and "On the fly compression" for fast performance
- Data Review and Flagging Tools (DRAFT)
- Automatic links with other software to create maps and figures

Browse/Edit data windows are linked directly to instant map windows

ч	Location						×	Instant	Manning wi	th ArcGIS by E	CDT /TMACE)	
<u>8</u> 1	Location	Class	Surf_north	Surf_	east	Surf_elev	Totaldia) ick on sampling location to se	eteb ee
Т	03MW0108A	WL	242094.79		351.99		292.00	🔲 Buildings					
t	03MW0108B	WL	242098.39		342.45		3 207.00	Major Roa	is 🖕 📈		. 🔊	♥ /? \	\
t	03MW0109A	WL	241697.50		311.92		287.00	Minor Roa	is 🖌 🖌				$>$ \triangleleft
t	03MW0109B	WL	241697.15		311.87		287.00	Ponds		• • • • • • •	¥. 🏷		× •
t	03MW0110A	WL	239258.28		82.79		282.00	Streams	_ <mark>/₹</mark> * (.		
t	03MW0110B	WL	239258.67		82.68		282.00	I	. 🎽		• • •	$\pi \sim \pi \sim \pi$	
t	03MW0111A	WL	239483.45		43.94		5 293.50	Base Bour	°°a <mark>*~ •</mark>		<u> </u>		.
t	03MW0111B	WL	239479.97		451.54		2 141.00	🔽 Runways	· · · ·			<u> </u>	\ •.
t	03MW0112A	WL	243345.97		451.77		306.00 -	Aerial_tile_	9- <mark></mark>	<u>~~</u>]	.		<u>.</u>
L.		1						🔽 Impact Are	a 🖌 🛛 🥇				
_								Plumes		77			d •
6	5amples						×		- T • 🎝 🏞	🔏 •• 🗟		· · · · · · · · · · · · · · · · · · ·	× 🌮
-		Sample_id	l Date_sampTim	ne_s Sai	ոթ_ոստ	Depth_to	Depth_b	Coastline			•		•
Г	03MW0110B		01/11/99 12				174.00			r: l			
t	03MW0110B	CPWCGN1	01/11/99 12				174.00	FULL LAST					-
t	03MW0110B	CM687N1	10/05/98 11	:50 03MW	0110B-0	2 173.60	173.60	θΘ		_			
T	03MW0110B	CM689N1	10/05/98 11	:50 03MW	0110B-0	2 173.60	173.60		🛛 🔽 Show	Scale 🗸	Post Location	ns Post dot size	3
t	03MW0110B	CM68AN1	10/05/98 11	:50 03MW	0110B-0	2 173.60	173.60		🗌 Label	posting La	abel size 🔽	6 🗧 Label Angle	0
4			10.05.00.11	FO 004		a (n a (a		a	Display	/ cross-hair		•	
										, or oco-riali			
8	Results												
-	Sample_i	1	Analyte	Units	Result	: Lab gua	al Val_gual	D1	Pguant	Dfact Run	Method	Exmcod Anal_end	l Anal
Т	CM689N1		TRICHLOROETHA	NUG∕L	0		U	2.10	-	101	CUOL	METHOI 10/11/98	
t	CM689N1	1,1,2,	2-TETRACHLORO	DE UG∕L	0	U	U	1.80	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,1,2-	TRICHLOROETHA	NUG∕L	0	U	U	2.30	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,1-DI	CHLOROETHANE	UG/L	0	U	U	1.90	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,1-DI	CHLOROETHENE	UG/L	0	U	U	2.10	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,2,4-	TRICHLOROBENZ	ZE UG/L	0	U	U	3.10	10	101	CUOL	METHOI 10/11/98	3 15::
Þ	CM689N1	1,2-DI	BROMO-3-CHLOF	RO UG/L	0	U	R	3.70	10	101	CUOL	METHOI 10/11/98	3 15:
	CM689N1	1,2-DI	BROMOETHANE (EUG/L	0	U	U	2.20	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,2-DI	CHLOROBENZENE	E UG/L	Ø	U	U	2.60	10	101	CUOL	METHOI 10/11/98	
t	CM689N1	-	CHLOROETHANE	UG/L	0	U	U	1.80		101	CUOL	METHOI 10/11/98	
T	CM689N1	1,2-DI	CHLOROPROPANE	E UG/L	Ø	U	U	1.50	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,3-DI	CHLOROBENZENE	E UG/L	0	U	U	2.40	10	101	CUOL	METHOI 10/11/98	3 15:
t	CM689N1	1,4-DI	CHLOROBENZENE	E UG/L	Ø	U	U	2.00	10	101	CUOL	METHOI 10/11/98	3 15:
T	CM689N1	2-HEXA	NONE	UG/L	Ø	U	U	8.70	50	101	CUOL	METHOI 10/11/98	3 15:
T	CM689N1	ACETON	E	UG/L	0	U	R	8.20	50	101	CUOL	METHOI 10/11/98	3 15:
	CM689N1	BENZEN	E	UG/L	Ø	U	U	1.90	10	101	CUOL	METHOI 10/11/98	3 15::
t	CM689N1	BROMOC	HLOROMETHANE	UG/L	0	U	U	2.30		101	CUOL	METHOI 10/11/98	3 15:
	01007111												
•													
•													
•													
•	Chaininf Contro OT-NØ231Ø3		Samp_type	Proj_nur	n Samu	lers	Methods	Da	te_samp	Time_sam	p Matrix	k Location	1

Maps can include both Vector and Raster spatial layers such as Aerial Photos

	cation							×	😸 Instant M	lanning wil	th ArcGIS h	v FSRT ((IMAGE)			
	Location	Class	Surf_nort	th S	Surf_ea	ast {	Surf_elev	Totald			ag rectangle to				na location to	see data
Пя	2MW0001D	HW	232977		85512			177.00	🔲 Buildings	7 1 49000	ag restangle to		Tigit olic		ig loozion to	
	2MW0002	HW	241983		85832			72.00	Major Roads	s Call		C. Company				-
	2MW0002D	HW	232939		85528			177.10	Minor Road:	s		12, 200	100			
	2MW0003	HW	242456		85858			81.50	Ponds		10.00	1.				
	21120003D	HW	232853		85549			178.00	Streams	105		and a	4 3658		- Longer	
	211W0003D	HW	243448		85926			76.00		Carlo and						
_		HW							🔽 Base Bound	ia 💦 🔔 🚽	Contraction of the				AC 19 19-1	-
_	2MW0005		242499		85880			76.00	🔽 Runways		11 7%	10000		2-264		100 1000
-	2MW0006D	HW	232796		85566			178.00	🔽 Aerial tile 9		1 /1==	Star .		Sale and	No K.	-
10	2MW0008	HW	242902	.00	85899	2.00	130.20	81.00 -		- 102 State St /	1 mm	10.20	-	A CONTRACT		1.200
								Þ	🔽 Impact Area		1111	M.	1. A	Ra an		1.1.1.1
<u> </u>								N I	🔽 Plumes		1111	110	- · · ·	7.000		
	mples		D (T •	0		D (1)		🔽 Coastline	and the	1111	1112	18.1	1		
-		Sample_id					Depth_top			1	1		5	-	1 - AN	1000
-		52115D1N1					67.86			7	8410 m	2111	9	-	3 41/	
_		521150RN1					67.86	77.86			11	1	-	30	Marine	ADA .
_		521180RN1					67.86	77.86				R		B 1		A
0	2MW0004	521190RN1	09/06/96	10:26	CS4-M	<i>I</i> -4-01	67.86	77.86						F	1	
										and the second				1	E.	1 EL
										24	in a		/ sug	The fill	10	A P
											Market -		1	3.1	0 25	50
										24	and the set		1	-	1	T 🥼
										STA	and the second	57 75		E Alle B	1.	100
									FULL LAST	1			ALC: N			
									0							
1										Show :	Scale	Iv Post	Location	IS P	ost dot size	4
								-		🗌 🗌 Label p	osting	Label si	ze 🗌	6÷ L	abel Angle	
+														0 +		
1	1								a	🔽 Display	cross-bair			_		
						-			<u>a</u>	🔽 Display	cross-hair		<u> </u>			
	esults								<u></u>	🔽 Display	/ cross-hair		,			0
Re	Sample_id		Analyte			Result		1 Val_qual		Pquant	Dfact				Anal_e	nd Ana
Re 5	Sample_id 21180RN1	ALUMINU	JM _	U	G/L	84.	.8	J	D1 23.9	Pquant 100	Dfact I	1 C2	00.7	FLDFL	09/18/9	nd Ana 96 04:
Re 5	Sample_id 21180RN1 21180RN1	ALUMINU	IM	U) U	G∕L G∕L	84. 5.1	.8	J J		Pquant 100 5	Dfact I 1	1 C2 1 C2	00.7 00.7	FLDFL1 FLDFL1	09/18/9 09/18/9	nd Ana 96 04: 96 03:
Re 5	Sample_id 21180RN1	ALUMINU	IM	U) U	G/L	84.	.8	J	D1 23.9 4.9 1	Pquant 100	Dfact J 1 1	1 C2 1 C2	00.7	FLDFL1 FLDFL1	09/18/9	nd Ana 96 04: 96 03:
Re 5 5 5	Sample_id 21180RN1 21180RN1	ALUMINU	IM	U U	G∕L G∕L	84. 5.1	.8 U	J J	D1 23.9 4.9	Pquant 100 5	Dfact I 1 1 1	1 C2 1 C2 1 C2	00.7 00.7	FLDFL1 FLDFL1 FLDFL1	09/18/9 09/18/9	nd Ana 96 04: 96 03: 96 11:
Re 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC	IM NY C	U U U	G/L G/L G/L	84. 5.1 Ø	.8 U	J J	D1 23.9 4.9 1 1.8	Pquant 100 5 2	Dfact I 1 1 1 1 1	1 C2 1 C2 1 C2 1 C2	00.7 00.7 06.2	FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/9 09/18/9 09/18/9	nd Ana 96 04: 96 03: 96 11: 96 03:
Re 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC BARIUM BERYLLI	IM 12 2 (UM		G/L G/L G/L G/L G/L	84. 5.1 0 56.	.8 U .3	J J U	D1 23.9 4.9 1 1.8	Pquant 100 5 2 5	Dfact I 1 1 1 1 1 1	1 C2 1 C2 1 C2 1 C2 1 C2 1 C2	00.7 00.7 06.2 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/ 09/18/ 09/18/ 09/18/ 09/18/	nd Ana 96 04: 96 03: 96 11: 96 03: 96 03:
Re 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC BARIUM BERYLLI CADMIUN	IM 12 2 (UM 1	U U U U U U	G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0	.8 U .3 U	J J U U	D1 23.9 4.9 1 1.8 .54	Pquant 100 5 2 5 1 3	Dfact J 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2	00.7 00.7 06.2 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/9 09/18/9 09/18/9 09/18/9 09/18/9 09/18/9	nd Ana 96 04: 96 03: 96 11: 96 03: 96 03: 96 03:
Re 5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMOP ARSENIC BARIUM BERYLLI CADMIUN CALCIUN	IM 14 15 1 1 1		G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510	.8 U .3 U U 0	J J U U U	D1 23.9 4.9 1 1.8 .54 1.3 21.4	Pquant 100 5 2 5 1 3 500	Dfact J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2	00.7 06.2 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/9 09/18/9 09/18/9 09/18/9 09/18/9 09/18/9 09/18/9	nd Ana 96 04: 96 03: 96 11: 96 03: 96 03: 96 03: 96 04:
5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC BARIUM BERYLLI CADMIUM CALCIUM CHROMIU	IM 12 2 (UM 1	U U U U U U U U U	G/L G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510 2.9	.8 U .3 U U 0 00	J J U U U J	D1 23.9 4.9 1 1.8 .54 1.3 21.4 1.2	Pquant 100 5 2 5 1 3 500 5	Dfact I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2	00.7 00.7 06.2 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/	nd Ana 96 04: 96 03 96 11: 96 03 96 03 96 03 96 03 96 04 96 04
Re 5 5 5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMOP ARSENIC BARIUM BERYLLI CADMIUN CALCIUN	IM 14 15 1 1 1	U U U U U U U U U U	G/L G/L G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510	.8 U .3 U U 0 00	J J U U U	D1 23.9 4.9 1 1.8 .54 1.3 21.4 1.2 2.6	Pquant 100 5 2 5 1 3 500	Dfact I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2 1 C2	00.7 06.2 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/9 09/18/9 09/18/9 09/18/9 09/18/9 09/18/9 09/18/9	nd Ana 96 04 96 03 96 11 96 03 96 03 96 03 96 04 96 03 96 03
Re 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC BARIUM BERYLLI CADMIUN CALCIUN CHROMIU COBALT	IM 14 15 1 1 1	U U U U U U U U U U	G/L G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510 2.9 2.8	.8 U .3 U U 00 00 8	J J U U U J J	D1 23.9 4.9 1 1.8 .54 1.3 21.4 1.2 2.6	Pquant 100 5 2 5 1 3 500 5 5 5 5	Dfact I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2 1 C2	00.7 00.7 06.2 00.7 00.7 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/	nd Ana 96 04 96 03 96 11 96 03 96 03 96 03 96 04 96 03 96 03
Re 5 5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMON ARSENIC BARIUM BERYLLI CADMIUN CALCIUN CHROMIU COBALT	IM 14 15 1 1 1	U U U U U U U U U U	G/L G/L G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510 2.9 2.8	.8 U .3 U U 00 00 8	J J U U U J J	D1 23.9 4.9 1 1.8 .54 1.3 21.4 1.2 2.6	Pquant 100 5 2 5 1 3 500 5 5 5 5	Dfact I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2 1 C2	00.7 00.7 06.2 00.7 00.7 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/	nd Ana 96 04 96 03 96 11 96 03 96 03 96 03 96 04 96 03 96 03
Re 5 5 5 5 5 5 5 5 5 5 5 5	Sample_id 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1 21180RN1	ALUMINU ANTIMOP ARSENIC BARIUM BERYLLI CADMIUM CALCIUN CHROMIU COBALT	IM 14 15 1 1 1		G/L G/L G/L G/L G/L G/L G/L G/L G/L G/L	84. 5.1 0 56. 0 0 510 2.9 2.8	8	J J U U U J J	D1 23.9 4.9 1 1.8 .54 1.3 21.4 1.2 2.6 1 7	Pquant 100 5 2 5 1 3 500 5 5 5 5	Dfact I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C2	00.7 00.7 06.2 00.7 00.7 00.7 00.7 00.7 00.7	FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1 FLDFL1	09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/ 09/18/	nd Ana 96 04: 96 03: 96 11: 96 03: 96 03: 96 03: 96 04: 96 03: 96 03: 96 03: 96 03: 96 03: 96 03: 96 03:

Here are examples of direct links to contouring and boring log software

View		v until							el mberos						
6		. 9	1	9 7 0.	36		ſ	Ele	vation						
						CHA	ANU.	TE 4	AFB D	raft	Page	1 of 8			
Project	1 Name	LANDE	ILLSF	8		Location	WI	-1058	1				1		
Project Name LANDFILLS RI Location: WL-1058 Project Namber: 355/70703 Northing (b): 1317613.38										Easting (t) 10	39281.66	_			
Drilling	Contra	ctor: Alli	ance E	meronmental						TOC Bevation (1 mai) 73	4.78			
Dritting	tipape	ert Sup	erdrifi	120	1	oute Start	ez 10/	4/99		Date Finished:	10/16/99				
Critics	a Metho	a Sonic				Ictal Sara	ple Core	Deptin	(fi bgs): 68.00	Drilles Depth (H	bgs) 71.(0	1		
Sate	ing Met	hog Sen	ic Con			Soreticie (Dometer	inche	ay 7.00	Well Diameter ()	chee) 2.0	5			
Cons	. Materi	NE SCH	EDUL	E 40 PVC		net Dept	h (T bas			Static Violer (R					
1.099	ed by B. Heffeman Reviewed by					Compl	etion: Above Ground	Date Measured: 08/08/00							
E Depth (ft bg0)	Bitw Counts Par 6 inches	Sample D	OF/OI4	Celor	Moisture	Consistency	USCS Class		Lithologic Descr and Associated Lithog		Constru Diegra	ction and	•		
25 29 113 113 005 -10 -15 -20 -25			0 0 0	64.007.00 DF32 22716 60760 60760 10766	Rofi Bay Bat Rt Rofi	22E Euro Aid	CL 0W		CLAT, not black 6 or d brack more tables (6 or d Start, more tables (6 or d Start), and tables (1 or d Start), and (1 or d sta	oby, Bide Trae carries an size 2.5 in , ang erice, Fill, NI 0.0011: Phase ging trac to 15 Min mark states control, The counts and schares training others, the 15 Min Explored T35 Min Min 1, 17, 11 works		141 141 141 141 141 141 141 141 141 141	5 6 6 6		

🗯 Start 🔯 🕼 😒 🔌 🔯 🔍 🔍 To Counterts 💦 🐉 Windows Media Player 🐰 🐇 Chastan

Automating Spider diagrams to query database results and compare to risk criteria

History of Operations & Modeling Evaluations (HOME)

David Greenberg Jacobs Engineering

(865) 220-4828 David.Greenberg@jacobs.com http://otisview.jacobs.com/database.htm

