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Introduction and project objectives
e Site background

 Optimization process

 Results
Conclusions
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Long-term monitoring (LTM) costs can be substantial

e Optimization to eliminate data redundancies can help
reduce costs

 Objectives:

— Demonstrate how mathematical optimization can be used to
reduce LTM costs by eliminating data redundancies.

— Develop an optimized long-term groundwater-monitoring plan
for a BP site in Michigan

 Number and placement of monitoring wells.
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« Remedial Actions began in 1987 when a leaking

pipeline gasket was discovered

e Catastrophic Release - estimates of the volume

released are in the range of 350K gallons

Remediation History

‘*’ No LNAPL observed after 1993

MNA
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Discontinuation of air sparging operation
primarily based on:

— Technical impracticability
— Planned use of groundwater use restrictions
 Natural attenuation provides plume stability with

Institutional controls to address residual
hydrocarbons in source area.

14 years of monitoring data to support plume
stability assertion.
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« MDEQ Response:
— MDEQ will require 30 years of post-closure monitoring
— Costs could reach $400,000 over 30 years

e Optimization can be used to reduce costs of
monitoring by eliminating data redundancy.
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Spatial
— Wells that are spatially redundant provide information (usually

on concentrations) that can be obtained from other nearby
wells without substantially increasing errors

e Temporal

— Temporal redundancy analyses identify reductions in
monitoring frequencies based on redundant information from
the same set of wells

Spatial Redundancy (BTEX) was evaluated in this case

Moir€ Inc.’



LTM Optimization Process

Repeat until
population
converges to
optimal
solution

Define monitoring objectives
and constraints
Create interpolation model
using all data

Create “population” of candidate
monitoring designs with different
combinations of wells

Evaluate population using objectives and
constraints

Apply genetic algorithm operations to
create anew population




ldentify key contaminants of concern (COC)

 Create spatial grid for interpolating COC
concentrations

 Fitinterpolation models

e Test interpolation model fit and choose model
with best performance
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Spatial Interpolation Modeling
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 To test interpolation model, use cross-validation
— Eliminate data from well 1

— Interpolate concentration at well 1 from data at all other
wells

— Compare interpolated concentration with measured
concentration

Repeat for all other wells
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A suite of interpolation approaches were tested
— Ordinary kriging \
— Quantile kriging ' Most recent data only
— Inverse distance weighting j

— Neural network for detrending in time, with quantile kriging for
residual - historical data

 Quantile kriging performed best of first 3 approaches,
with variograms fit to each BTEX constituent and then
summed

 Detrending using historical data provided small increase
In accuracy, but very large computational time increase




e Of the 36 wells, the following numbers of wells were
predicted sufficiently accurately during cross-validation:

— Benzene: 17 (within 5 ppb)
— Toluene: 32 (within 100 ppb)
— EthylBenzene: 28 (within 100 ppb)
— Xylene: 23 (within 100 ppb)
— BTEX: 19 (within 100 ppb)
« Benzene performs quite well, but has a much stricter
acceptability threshold.

« Summing the predictions of the components of BTEX
gives a small boost in accuracy over predicting it
directly.
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o Create Optimization Formulation
— Decision Variables
— Objective Functions
— Constraints (none for this site)
 Use genetic algorithms to search for monitoring

designs that best meet the objective functions and
constraints

— When more than one objective exists, find optimal tradeoffs
among objectives (e.g., cost vs. errors)
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1 if well i is sampled
O otherwise

Optimization problem is to identify values of
the x;, for /=1 to 36 wells

236 = 7x1010 possible sampling plan designs
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Minimize Cost (no. of wells):

n
Minimize ) x
=1

‘Minimize maximum error between actual concentrations and those
estimated with subset of K wells:

Minimize [ME.X {Error :‘cia"t”a' —cia(K)‘}]
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« One error objective for benzene and one for BTEX

— Scaled by maximum acceptable error (5 ppb for
benzene, 100 ppb for BTEX)

 Locations for measuring error are important
— At monitoring well locations only

— Other locations in the interpolation grid have no data
support, so could only compare predictions with
modeled values that have errors themselves
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Optimization process was implemented in Multi-
objective Long Term Monitoring Optimizer Software (M-
LTMO) developed at University of lllinois and Moire

— Automated interpolation model fitting and selection
— Multiobjective optimization to find monitoring designs that best
meet objectives

« For more information and a demonstration of the
software, come to the Long-Term Monitoring
Optimization Methods and Software Workshop
Wednesday evening from 6:30-9 PM
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Optimal Tradeoffs Between Errors and
Sampling Levels
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BTEX Cross-Validation Comparisons

Actual - Predicted (ppb)
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Found good predictions at all well locations using
28-30 wells

— 17 to 22% reduction in sampling costs possible

28-well solution has more difficulty interpolating
correctly in the southeast corner, although this
area is of much less concern than the leading
edge of the plume

M-LTMO software is useful tool for identifying
data redundancies

Further testing at a New Jersey terminal site with
more wells Is underway
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