

BASEWIDE GROUNDWATER MONITORING PROGRAM OPTIMIZATION AND VISUALIZATION VANDENBERG Air Force Base

Presented by:

Sally Liu

15 June 2004

Agenda

Introduction

Approach to Optimization

- Optimization of BGMP LTM using AFCEE protocol
- Visualization of plume and groundwater conditions
- Temporal trend analysis of plume movement
- Geostatistical analysis of plume mass, size, and movement

□ Site History of BGMP Sampling

□ Optimization Analyses for 14 Site or Site Clusters

Sites 1, 2, 3, 8/9/10 Cluster, 13/14/28 Cluster, 19, 20 Area 1, 20 Area 2&3, 25/26/39/40 Cluster, 27, 31, 32/35 Cluster, 33, 60

□ Closing Remarks/Questions

VAFB Site 60 Groundwater Monitoring History

Slide 3

VAFB Site 8 Cluster Groundwater Monitoring History

TETRA TECH, INC.

BGMP Optimization

Approach to Optimize VAFB BGMP

Follow Guidance

- Long-Term Monitoring Optimization Guide (AFCEE, 1997)
- Monitoring and Remediation Optimization System (MAROS) (AFCEE, 2000)
- Four main decision rules discussed with AFCEE

Document the Existing LTM Program

- Present sampling history
- Present groundwater conditions
- Document LTM requirements
- Document existing LTM

Decision Rule Process for

- Well elimination
- New well placement
- Optimal sampling frequency
- COC/Analyte elimination

Development of VAFB-Specific Optimization Decision Tree

□ Analytical Support Tools

- Visualization: EMAGIS, AVS
- Time trend analyses: EMAGIS, MAROS
- Geostatistical analyses: Vertical Mapper

VAFB BGMP Optimization Decision Tree

Optimization Decision Tree (cont.)

Groundwater Plume Visualization

 Provide additional/alternative views of existing LTM program data

Process

- Depict the conceptual site model (i.e., well locations, groundwater table, bedrock)
- Present COC plumes with 2-D or 3-D views (e.g., isoconcentration contours, bubble plots, or pie charts)
- Present site groundwater animation

Temporal Trend Analysis

🗆 Goal

- Determine if plume location is stable or moving
- Support decisions on sampling frequency
- Support decisions on COC/analyte elimination

Process

- Perform Mann-Kendall test for trend of COCs in each well
- Perform Sen's slope estimate to determine magnitude of increasing or decreasing trend over time
- Calculate Coefficient of Variation to determine stable trend
- Spatially relate well trends with location within plume
- Apply AFCEE MAROS decision tree for determining sampling frequency

Geostatistical Analysis

🗆 Goal

- Determine if plume mass is increasing or decreasing, if plume location is stable or moving, and if plume size is expanding or shrinking
- Support decisions on sampling frequency
- Support decisions on well redundancy, new well addition

Process

- Use kriging to estimate spatial uncertainty (variance)
 - Areas of low uncertainty may indicate well redundancy
 - Areas of high uncertainty may indicate need for new wells
- Depict plume spatial trends with contour plots, bubble, or pie charts
- Estimate plume mass over time
- Identify center of plume mass (location) and size (variance) of plume

Site 8 Cluster Optimization Analysis

- □ Key COCs
 - TCE, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE

□ Visualization of COC plume

- 3-D visualization of conceptual site model and TCE plume
- Chlorinated solvents pie chart

□ Time Trend Analysis

- Mann-Kendall/Sen's Slope/Covariance
- MAROS decision tree to determine sampling frequency

Geostatistical Analysis

- Estimate spatial uncertainty (variance)
- Determine sampling frequency
- Estimate plume mass over time
- Identify center of plume mass (location) and size (variance) of plume
- Eliminate redundant wells/Identify new well locations

VANDENBERG AIR FORCE BASE Installation Restoration Program Site 8 Cluster Space Launch Complex (SLC) 4 East, SLC 4 West, Spring Canyon Pond

BGMP FALL 2001 TCE DISTRIBUTION IN GROUNDWATER TCE (ug/l) 111.000 1.00 **OBLIQUE VIEW** TCE

PLAN VIEW

AERIAL PHOTOGRAPH

OVERLAYING A DIGITAL ELEVATION MODEL (with 5x vertical exaggeration)

BGMP FALL 2001 GROUNDWATER SURFACE AND BEDROCK SURFACE WITH EXISTING WELL NETWORK

OBLIQUE VIEW

VAFB Site 8 Cluster

Decision Matrix for Determining Sampling Frequency Results Based Upon Time Trend Analysis Only

RATE OF CHANGE

0		High	Medium-High	Medium	Medium-Low	Low
MANN KENDALL TREN	Increasing	2	2	1		
	Probably Increasing		1	1		
	No Trend		1			1
	Stable	5	3	4	7	6
	Probably Decreasing	1				
	Decreasing	1		1	1	

Based upon AFCEE Monitoring and Remediation Optimization System (MAROS) Guidance, 10/16/2000.

Kriging Method of Interpolation

□ Kriging

 Kriging is a weighted-moving-average interpolation method where the set of weights assigned to samples minimizes the estimation variance, which is computed as a function of the variogram model, the locations of the samples relative to each other, and to the point being estimated.

Data Analysis

- Data were log transformed
- Data fit to an exponential variogram model using a nugget of 0.3 and a sill of 2.4 (both log10 concentration), and a range of 1872 (feet)

□ Key Assumptions

- Data are log-normal distributed
- Local means are not necessarily closely related to the population mean
- Exponential variogram is an appropriate data model

VAFB Site 8 Cluster

Estimated Uncertainty at Each Well Location

VAFB Site 8 Cluster Plume Mass and Spatial Variance (plume spread)

BGMP Optimization

POED SPACE WIN

Recommended Monitoring Well Sampling Frequency for VAFB Site 8 Cluster

Well	Туре	Temporal Trends	Spatial Trends	Other Factors (e.g., MCLs, sentry wells)	Recommended Frequency	Winter 2002 Frequency	Comments
9-MW-4	So	A	A	E	Eliminate	Q	Do not need all Site 9 So wells
8-MW-1	CG	A	S	A	A	A	Clean CG well; cis hit in Fall01
8-MW-2	UG/B	S	А	А	A	А	
8-MW-5	CG/B	A	S	A	A	А	
8-MW-6	DG	A	A		A	Q	
8-MW-7	DG	A	A		A	Q	
8-MW-8	DG	A	S		A	Q	
9-MW-1	CG	S	A		A	Q	
9-MW-2	CG/B	A	Q	A	A	А	Nearly clean CG/BG well
9-MW-3	DG	A	A		A	Q	
9-MW-5	DG	A	A		A*	Q	
9-MW-6	DG	A	A		A*	Q	
9-MW-7	DG	A	A		A*	Q	
9-MW-11	DG	Q	A		A	Q	Bedrock well; sporadic hits
9-MW-12	DG	A	A		A*	Q	
9-MW-13	DG	A	S		A*	Q	
9-MW-15	DG	A	А		A*	Q	
9-MW-18	So	A	А	E	A	Q	Use as Site 9 So well #1
10-MW-3	CG	Q	А	A	A	А	Nearly clean CG, slight TCE hits
10-MW-4	CG	Q	Q		A	А	
10-SW-14	DG	S	А		A	А	
10SW14A	DG/S	Q	Q		Α	А	
10-SW-16	DG/S	S	Q		Α	А	
10-SW-17	DG/S	Q	Q		Α	А	
10-SW-18	CG	A	Q	А	A	А	Nearly clean DG/CG well
8-MW-9	UG/B	Q	А	S	S	Q	Nearly clean UG background well
8-MW-10	DG	Q	S		S	Q	
8-MW-11	DG	S	S		S	Q	
9-MW-8	DG	Q	S	S	S	Q	Not a sentry well
8-MW-4	So	S	Q	Q	Q	Q	Only Site 8 source well
8-MW-12	UG/CG	Q	Q		Q	Q	
8-MW-13	DG/G	А	Q	Q	Q	Q	sentry well w/constant, high TCE; Need DG well
9-MW-9	DG/G	А	Q	Q	Q	Q	sentry well w/constant TCE; Need DG well
9-MW-10	DG	Q	A		Q	Q	
9-MW-14	DG/G	Q	S	Q	Q	Q	sentry well
9-MW-17	So	Q	A	E	Q	Q	Use as Site 9 So well #2
9-MW-19	So	Q	Q		Q	Q	Demark vertical extent of source
10-MW-2	DG/S	A	Q	Q	Q	Q	sentry well

Notes:

Well Classification: UG=upgradient DG=downgradient CG=crossgradient B=background S=sentry SO=source E=potential extraction well

A=annual (24 of 38) S= semiannual (4 of 38) Q=quarterly (9 of 38)

A*=annual; return to quarterly for 1 year prior to remediation to establish preremediation conditions

Site 8 Cluster Optimization Analysis

□ Conclusions & Recommendations

- Main plume stable
- Northern plume expanding
- Reduce sampling frequency
 - -24 wells annual sampling
 - 4 wells semiannual sampling
 - -9 wells quarterly sampling
- Eliminate redundant well
 - 9-MW-4
 - Stable time trends
 - Spatially redundant: 9-MW-4 in source area cluster of 3 wells
 - Concentrations correlated to associated cluster wells
- Add wells downgradient of 8-MW-13, 9-MW-9 to define downgradient extent of plume

Closing Remarks/Questions?

- □ Formalization of VAFB BGMP Decision Tree
- Ongoing decision-making on well optimization, as documented in each BGMP quarterly report
- □ Biennial review of BGMP
- □ Open for Questions...

