Optimization of a Long-Term Monitoring Program at an Arizona Superfund Site

Catherine Schladweiler Malcolm Pirnie

June 15, 2004

Tucson International Airport Area (TIAA) Superfund Site

TARP

- AF Plant 44
- Airport Property
- AZ Air National Guard
- Burr-Brown (now TI)
- West Cap
- West Plume B

Figure provided by Tucson Airport Authority

Current Monitoring Network

TCE primary contaminant of concern

• 61 Wells:

- 7 Production
- ♦ 5 Private
- 9 Extraction
- 40 Monitoring

Goal of monitoring program per Consent Decree
"Evaluate the capture and restoration of the VOC
contaminated groundwater plume"

General Data Review

Seven "Outliers" Identified

- ♦ Out-of-plume
- Inappropriate Screened Interval

Optimization Scope

Goal of the Optimization Study

Determine the most efficient frequency and distribution of sampling points that will allow evaluation of the extraction and containment system

Temporal Analyses

Trend Analyses

- Mann-Kendall Test for Trend
 - Calculate the sign of all possible differences (where $x_2 x_1$, $x_3 x_1$, $x_n x_1$)
 - Calculate the Mann-Kendall statistic, S (# of positives minus # of negatives)
 - S < 0 indicates a downward trend
 - S > 0 indicates an upward trend
 - S = 0 indicates no trend

Example:

Date	3-1-95	3-5-96	3-19-97	3-3-98	n = 4
Conc. (ppb)	2.3	0.8	1.8	0.5	Sum
		-1	-1	-1	-3
			1	-1	0
				-1	-1
					S = -4

Temporal Analyses

- Sens's Slope Estimator Method (to verify Mann-Kendall)
 - Calculate the slope estimate, Q between each time interval
 - If N' is odd
- Q_[(N'+1)/2]
- If N' is even $Q_{[N'/2]} + Q_{[(N'+2)/2]}$
- Given Q, determine the Sen's Estimator (or median slope)

◆ Example:

Date	3-1-95	3-5-96	3-19-97	3-3-98
Time Period	1	2	3	4
Conc. (ppb)	2.3	0.8	1.8	0.5
		-1.5	-0.25	-0.933
			1.0	-0.65
				-2.3
N' = 6		1	2	3

Temporal Analyses

Q	Slope	N' = 6 (even)
1	-2.3	$Q_{[N'/2]} + Q_{[(N'+2)/2]}$
2	-1.5	
3	-0.933	$Q_3 + Q_4 = Q_{3.5}$
4	-0.65	(-0.933 + -0.65)/2 = -0.792
5	-0.25	Negative slope = downward trend
6	1.0	-> Sampling can be reduced

Temporal Analyses

- Used ChemStat 4.1 Software to evaluate 39 wells
- Results:
 - Mann-Kendall

22 wells indicated a decreasing trend in data Sen's

20 wells indicated a decreasing trend in data

Temporal Analyses

Autocorrelation Function

- Indicates the "memory" of a well by tests for patterns in time series data
- Statgraphics Plus program was used to perform this analysis
- Example:
 - 50 wells analyzed (includes ND wells)
 - 45 wells have enough "memory" to reduce sampling frequencies
 - Autocorrelation indicates appropriate sampling frequency

Spatial Analyses - Variograms

- Determine Plume Stability
- Variogram Analysis
 - Evaluates spatial correlation of data in the direction of groundwater flow

Spatial Analyses - Variograms

Best correlation was:

Case Study

♦ 350° (10° west of north

corresponds to gw flow)

- 20° window
- Range (distance with which the data are spatially correlated
 = approximately

4,000 ft

*GMS 3.1 Variogram Editor

Case Study Spatial Analyses - Variograms

Upper Zone vs. Regional Undivided Aquifers

Figure from TIAA Record of Decision

MALCOLM

Case Study

Spatial Analyses

- Correlation range of approximately 4,000 feet in the direction of groundwater flow
- Seven wells could be eliminated based on this information

Case Study

Spatial Analyses – Kriging

Kriging

Evaluates wells outside the areas of directional correlation

- Step 1: Thin the data set by removing the data for the selected well
- Step 2: Using the model variogram created from the variogram analysis, interpolate TCE concentrations in selected area
- Step 3: Compare the interpolated value with the original TCE concentration; if the difference was minimal (less than 10 ppb, the point could be removed).

Well Name	Measured Conc (µg/L)	Interpolated Conc (µg/L)	Absolute Difference
407 T	3.4	1.4	2.0
461P	0.8	0.6	0.2
SS-023B	ND < 0.5	0.9	0.4
WR-084A	1	9.1	8.1
B-085A	ND < 0.5	1.2	0.7

Case Study

Spatial Analyses Check

Interpolated Data Set

Original Data Set

Case Study

Statistical Results

D.435D 4105A ATHA A PARA ARPWTP B.464 X 11-112A 41.074 A SIG.S. wa.237/ Ity ing tan Roa WR.236 WEARS-M IL-OLOA WEALSA 1 4238 WILLISS. ma +175 WR.2.11 WR-4655~ ALUT (TPA-102.163.6 Santa WE-star P Drexel Roa A CIVIL River WE-SITE. \$+2 (Telk) 47P (Le H) WR-DIE A 2.0952 WR.4515 WR-R LECEND Low or Zone Aquifer Monitor Well WR.4 715 nal Undivided Aguifer Extraction Well Valencia Road wali 782 Regional Undivided Acuifer Meniter Well WB. 0 57K WR-035D (Maner Baptici) Regional Undivided Aquifer Freduction We Transitional Zone Aquifer Monitor Well. 407 T (TPA-T) WE.854 C · WR-0715 Upper Lone Aquifer Extraction Well , WR.-0443 SA Upper Zone Aquifer Meaiter Well 475P (Prate WR-0735 Lover Zone Production Well interior River and Wather Teb 2003 TCE Contours WR. HEKE - WR.454A 111 Teb. 2003 Plane Bedy WR. 0711 N Elizain ation I os able 🍅 SC-418A Sampling Programsy Reduction Peraible 🚸 SC 411A Los Beaks Roa Outlier Wells, Elizaination Peralle Note : Results based on Tebruary 1995 -96.0 1100 2760 Test Telguagy 2003 data

• Of the original 61 wells:

- 7 "outliers" were recommended for elimination
- Sampling frequency reduction: 48 wells
- Elimination: 12 wells

