Demonstration of Two Long-Term Monitoring Optimization Methods

Kathleen Yager
Office of Superfund Remediation and Technology Innovation

Optimization Conference
June 15, 2004
Project Overview

- EPA, AFCEE, and USACE project to showcase 2 methods for optimizing ground water monitoring

- Goals:
 - Improve understanding of statistical and geostatistical methods for LTMO
 - Provide case study examples
 - Understand differences between methods
Project Team

- Kathy Yager, US EPA OSRTI
- Dave Becker, US ACE HTRW CX
- Javier Santillan, AFCEE
- John Anthony, Mitretek Systems
- Carolyn Nobel, Parsons
- Julia Aziz, GSI
LTMO Methods

- Monitoring and Remediation Optimization Software (MAROS)
 - Free software developed by AFCEE and GSI
 - Employs spatial and temporal data analysis techniques
 - Objectives are to minimize monitoring locations and reduce sampling frequency without significant loss of information
 - Spatial analysis based on 2-D sampling reduction method (Delaunay method)
 - Temporal analysis based on a modified Cost Effective Sampling (CES) method – developed by LLNL
 - Can be used by individual with basic statistical knowledge
LTMO Methods

- Parsons’ 3-Tiered Monitoring Network Optimization (3-Tiered LTMO)
 - Employs a 3-tiered approach
 - Qualitative evaluation (hydrostatigraphy, locations of potential receptors, direction and rate of contaminant migration)
 - Mann-Kendall statistical analysis to determine trends in each well (combined with decision tree to retain/remove/reduce)
 - Spatial analysis using geostatistical kriging error predictions
 - 3 tiers are combined for recommended sampling network
 - Requires trained hydrogeologist and geostatistician
 - Has been applied at multiple AF sites across country
LTMO Methods

- Primary differences between MAROS and MNO
 - MNO incorporates a qualitative review as a preliminary step in screening data
 - Geostatistics in MNO could be considered more robust
 - MNO considered to be more flexible because a trained geostatistician and hydro make final recommendations
 - MAROS designed to be simple and easy to use – MNO must hire geostatistician/hydrogeologist
 - MAROS also evaluates data sufficiency, plume trend, size, shape, and movement
Project Design

- Two long-term ground water monitoring optimization methods showcased

- Two methods attempt to answer the following questions
 - how many wells are required (spatial)?
 - how frequently should wells be sampled (temporal)?
 - e.g., define plume boundary or otherwise meet data quality objectives
Project Design

- 3 sites with existing GW monitoring networks evaluated
- Fort Lewis Army Depot in Washington
 - GW sampling since 1995, CVOCs
 - 72 monitoring wells
- McClellan Air Force Base OUD in California
 - GW sampling since 1984, CVOCs
 - 51 monitoring wells
- Long Prairie Superfund Site in Minnesota
 - GW monitoring since 1996, CVOCs
 - 44 monitoring wells
Project Design

- Evaluation of site data and consolidation of ground water monitoring data
- Meetings with site managers and regulators to discuss objectives and ground rules for optimization of well network early in process
- Each optimization team worked independently to evaluate GW monitoring network
- Teams evaluated both redundancy and data deficiency
Results, Spatial Analysis (number of wells per site)

<table>
<thead>
<tr>
<th>Site</th>
<th>Original Number of Wells</th>
<th>Parson’s Result (percent reduction)</th>
<th>MAROS Result (percent reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Lewis</td>
<td>72</td>
<td>69 (4 %)</td>
<td>57 (21 %)</td>
</tr>
<tr>
<td>McClellan</td>
<td>51</td>
<td>21 (59 %)</td>
<td>41 (20 %)</td>
</tr>
<tr>
<td>Long Prairie</td>
<td>44</td>
<td>26 (41 %)</td>
<td>32 (27%)</td>
</tr>
</tbody>
</table>
Results – Reduction in Total Sampling Events Per Year

<table>
<thead>
<tr>
<th>Site</th>
<th>Original Sample Frequency (events/yr)</th>
<th>Parsons Results (percent & cost reduction/yr)</th>
<th>MAROS Results (percent & cost reduction/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Lewis</td>
<td>180</td>
<td>110 (39% & $36,500)</td>
<td>113 (37% & $34,600)</td>
</tr>
<tr>
<td>McClellan</td>
<td>34</td>
<td>17 (50% & ?)</td>
<td>31.5 (7% and ?)</td>
</tr>
<tr>
<td>Long Prairie</td>
<td>51</td>
<td>36 (30% & $4,000)</td>
<td>24 (53% & $6,700)</td>
</tr>
</tbody>
</table>
Summary and Observations

- Two methods identified potential for significant reduction in monitoring well networks – average of 36% reduction

- Cost savings lower on a percentage basis (because many monitoring costs are fixed)

- Based on initial feedback from regulators & facilities, results appear reasonable and have potential for being implemented

- Some reluctance to implement due to other perceived concerns (co-located plumes, negotiation with regulators, implementation costs)
Summary and Observations

- Costs for performing LTMO relatively low ~ $10K per site with 30 wells (both methods)

- Methods have potential for increasing certainty that monitoring network is adequate (by evaluating both over sampling and undersampling)

- No consistent differences between methods identified: qualitative review may be most significant difference

- Some problems identified with MAROS plume trend analysis (consistent at all sites, but minor problem)
Lessons Learned

- Larger sites with more wells more likely to benefit
 - Minimum of 20-30 wells in each aquifer layer required
 - Minimum of 4 sampling events required

- Methods show promise, have not been widely used

- Methods need broader regulatory acceptance

- Data consolidation time consuming

- Future LTMO simplified once initial data consolidation complete. Provides consistent storage of future data
Next Steps

- Final report expected this summer
- Internet seminar on project results this fall
- Potential LTMO workshops
- Follow-on project – LTMO Roadmap
 - Overview of all LTMO methods
 - Explanation of method applicability (which method should I use at my site?)
 - Information on common red flags with the methods
 - USACE, USEPA, Parsons, Mitretek
 - Draft roadmap this summer

All reports available at cluin.org and frtr.gov/optimization
Discussion