

GTS Algorithm

- Designed with decision-logic framework
- Allows for separate identification of temporal & spatial redundancy
- Uses geostatistical and trend optimization methods
 - Variogram = correlation measure
 - Kriging = spatial interpolation = spatial regression
 - Locally-Weighted Quadratic Regression (LWQR)

Case Studies

- 3 AF sites with varied geology
 - Pease AFB, New Hampshire
 - Site 49, TCE plume from underground storage tank
 - Fractured bedrock; varied overlying geology
 - 67 wells used as baseline

Pease AFB Site 49 Plan View

Case Studies (cont.)

- -Loring AFB, Maine
 - Site OU-12, 30 contaminant sources, including BTEX, TCE
 - Lightly to heavily-fractured bedrock; 3 distinct overburden units
 - 115 wells used as baseline

Well Locations

Case Studies (cont.)

- Edwards AFB, California
 - Sites 133, 37; Contamination due to storage & waste disposal practices
 - Fractured crystalline bedrock; weathered bedrock overlay
 - 140 wells used as baseline
- Question: could GTS be adapted to these situations?

Edwards Site 133 Plan View

Note on Redundancy

- Practical definition: What happens when data removed from current system?
- Temporal
 - Can trends be re-constructed?
 - Do consecutive sampling events become uncorrelated?
- Spatial
 - Can surface map be re-constructed?
 - Plume extent and intensity

Optimality vs. Redundancy

- Redundancy a misnomer
 - All unique data points valuable
 - Always have loss of information if removed
- Must balance tradeoff between cost savings and loss of accuracy
 - Optimal system = minor information loss but large gain in resource savings

Optimality (cont.)

- Common strategy
 - Use existing data to estimate baseline
 - Remove some data (wells, sampling events)
 - Re-estimate baseline with reduced data set
 - Measure relative error incurred
 - Examine cost-accuracy tradeoff

Temporal Optimization

- Examine temporal redundancy
 - Too many sampling events at individual wells?
- Two approaches
 - Temporal variogram to estimate average correlation between sampling events
 - Iterative "thinning" of individual wells to adjust well-specific sampling frequencies

BZ Temporal Variogram

Iterative Thinning

- Adjust individual well sampling frequencies
 - Global sill might not be evident
 - All wells may not behave the same way
 - Operational target interval = median of individual well sampling intervals
- Iterative thinning approach: overview
 - Estimate baseline trend
 - Randomly "weed out" data points
 - Re-estimate trend

Iterative Thinning: Loring AFB

Spatial Optimization

- Spatial redundancy
 - Too many wells in network?
- Spatial analysis
 - Use LWQR to estimate typical contribution from each well to plume maps (global regression wgts)
- Wells tagged for removal if their contributions are essentially duplicated by nearby wells
 - Redundant wells have low regression wgts

Features of Spatial Algorithm

- Advantages to LWQR approach
 - A priori spatial model not required
 - Smoother, not an interpolator
- Can build site maps either in:
 - 3-D space
 - Separately by depth horizon or geologic unit
 - Separately by regulatory or geographic unit
 - As long as enough data available per unit

Edwards AFB: Base Map

Features (cont.)

- Semi-objective spatial optimization
 - Iterative "removal" of lowest contributing wells/sampling locations
 - At each stage, measure:
 - Differences in site maps from baseline
 - Increases in global uncertainty and average bias
 - Prevalence of areas of high local uncertainty
 - Misclassification bias

Case Study Results

	Edwards	Loring	Pease
Original Interval	Annual	Qtrly	Annual
Optimized Interval	Every 7 Qtrs	Every 2-3 Qtrs	Biennial
Redundant Wells	20-34%	20-30%	10-36%
Cost Reduction	54-62%	33-39%	49-52%
Annual Cost Savings	\$230 K- \$266 K	\$306 K- \$358 K	\$85 K- \$89 K

Edwards: Optimized Wells

Loring: Optimized Wells

Pease: Optimized Wells

Pease AFB, Site 49, Spatial Optimization Results

Summary (cont.)

Flexible temporal optimization

- Iterative thinning for individual wells
- Temporal variogram for broad selection of sampling locations
- Edwards AFB
 - Not enough historical data for iterative thinning
 - Temporal variogram reduced sampling from annually to once every 7 quarters
- Loring AFB
 - Both iterative thinning and temporal variograms suggested once every 2-3 quarters

