The Road to a Real-Time In Situ Monitoring System

Denise K. MacMillan Engineer Research and Development Center Environmental Laboratory 420 S 18th Street Omaha, NE 68102

Conference on Accelerating Site Closeout, Improving Performance, and Reducing Costs Through Optimization

Long Term Monitoring Focus Area

- Long Term Monitoring (LTM) of groundwater :
 - Required component of closure on many DoD sites undergoing restoration.
 - All military services, other Federal agencies (e.g., DOE), states, and responsible parties share similar responsibility.
 - Costs associated with sampling and laboratory analysis over 10 years estimated to approach \$500M.
 - Sample collection and laboratory analysis
 - 70% of the total monitoring cost.
 - 50% of the total investigation cost.

Long Term Monitoring Focus Area

- Field analytical methods could reduce costs
 - Eliminate sample transport
 - Replace expensive fixed laboratory analytical costs

- Available field analytical methods may not be appropriate
 - Screening data produced
 - Delicate instrumentation unable to tolerate harsh conditions
 - Instrument operation requirements not compatible with field use
 - Inadequate for chemicals important to military

Focus Area Requirements

- A(1.1.a) EQT Operational Requirements Document (EQT-ORD)
 - Reduce LTM costs from 25 50%
 - Applicable to HMX, 1,3-DNB, NB, 3NT, 4NT, ClO₄⁻, DU, propellants, pyrotechnics, and degradation products
 - Definitive data
 - 4 hour TAT
 - Portable or in situ
 - Easy to operate
 - Capable of remote operation
 - Comparable data to laboratory analysis
 - Meets requirements of & accepted for SW-846

Focus Area Project Delivery Team

- ERDC S&T (BA1-BA3)
 - Dr. M. John Cullinane Manager for S&T effort.
 - Dr. Denise MacMillan S&T Focus Area Manager
- AEC T&E (BA4-BA6)
 - Mr. James Daniels Manager for T&E effort
 - Mr. William Houser T&E Focus Area Manager
- ERDC Principal Investigators
 - Environmental Laboratory
 - Cold Regions Research Laboratory
 - Construction Engineering Laboratory

✓ Interim Improvements

Leap Ahead Technologies

Special Analytical Method Development

Long Term Monitoring Focus Area

COT/GOTS

POC: Dave Splichal – EL, ERDC

- ✓ 2004 ERDC Technical Report
 - ✓ Sampling Devices
 - ✓ Field Instrumentation GC/MS

✓ Sensors

- Applicability to LTM
 - Detection Limits
 - ✓ Quality Control
 - ✓ Cost Savings

QA Processes & Protocols

POC: Denise MacMillan – EL, ERDC

Key Component of LTM Technologies is Ability to Generate Definitive Data

- ✓ Identify Essential QA/QC for Field Analytics
- ✓ Identify Reduced Cost Steps for Fixed Lab
- Evaluate Proposed Processes & Protocols
- ✓ 2004 ERDC Technical Report

In Situ Extraction Technologies

POC: Dave Splichal – EL, ERDC

In Situ Extraction Technologies

INSTED with Spiked Standards

	Method 8330 Contro				
<u>Analyte</u>	<u>% Recovery</u>	Chart, % Recovery			
HMX	100	39-126			
RDX	72	35-119			
Tetryl	131	14-120			
TNT	92	71-117			
2,4-DNT	99	76-110			

In Situ Extraction Technology

INSTED with Real World Samples

	INSTED	Method 8330	
<u>Analyte</u>	<u>ug/L</u>	<u>ug/L</u>	<u>% Diff</u>
RDX	153	159	3.8
HMX	21.4	21.6	0.93
MNX	1.99	2.26	13
4-A-DNT	1.53	1.49	2.6

Direct Push Wells & Samplers

POC: Louise Parker – CRREL, ERDC

Jar-Type Sampler Study

Day 7	<u>Control</u>	<u>Sampler</u>	Difference	
НМХ	1.63	1.55	-4.8	
TNB	14.6	14.2	-2.7	
RDX	9.20	8.90	-3.3	
1,3-DNB	0.635	0.619	-2.4	
TNT	2.66	2.58	-3.2	
2,4-DNT	0.095	0.092	-2.8	
Day 35				
HMX	1.46	1.46	0	
TNB	TNB 13.3		-1.5	
RDX	8.18	8.22	+0.5	
1,3-DNB	0.564	0.564	0	
TNT	2.32	2.32	0.1	
2,4-DNT	0.080	0.078	-2.6	

Snap Sampler

✓ Spring activated
✓ No sample transfer
✓ VOCs, explosives, pesticides

In Situ Extraction/ Mini-Analyzer

POC: June Mirecki & Dave Splichal – EL, ERDC

- ✓ Develop Field Analytical Capability for Twister[™] & SPME
- ✓ Perform Lab & Field Studies for Explosives Detection
 - ✓ Characteristic Spectra (GC/MS)

HAPSITE

- ✓ Sensitive and Precise
- ✓ Quality Control

Catalytic DNA Sensors

POC: Don Cropek – CERL, ERDC

Collaboration with Dr. Yi Lu, University of Illinois

- Specific Reacts with a single chemical, reliable without false positives
- ✓ Sensitive Ultra-low concentration
- ✓ Flexible Detector for many different compounds
- Convenient Fast, small sensor array

Catalytic DNA Sensors

Land Mine

Catalytic DNA Sensors

Nanofluidic Molecular Gate Membranes

Expanded view of the microfluidic channels and the nanofluidic molecular gate membrane

Miniature Mass Spectrometer

POC: Denise MacMillan – EL, ERDC

Collaboration with Dr. Graham Cooks, Purdue University

Microfluidic Biosensors

POC: Shana Dalton & Denise MacMillan – EL, ERDC

Biosensor: Sensor that uses biochemicals to detect chemicals

Bioprobe: Sensor that detects biochemicals

 Develop Sensitive & Selective in situ Detection Capability for Explosives with Antibody Capture Technology

 Identify & Develop Biosensor Technology for Perchlorate

Microfluidic Biosensors

- Immunoassays with commercially available RDX and TNT antibodies immobilized on magnetic beads
- ✓ Expand the number of antibodies to MUCs
 - Developing antibodies to HMX and 2, 4-DNT with Strategic Biosolutions (~ 9 months / analyte)
- Collaborate with other laboratories currently developing immunoassay-based technologies

Microfluidic Biosensors

CANARY (<u>C</u>ellular <u>A</u>nalysis & <u>N</u>otification of <u>A</u>ntigen <u>R</u>isk & <u>Y</u>ields)

- ✓ Developed at MIT-LL
- ✓ Excellent for Biological Agents
 - ✓ Bacillus anthracus (anthrax)
 - ✓ Yersinia pestis (plague)
 - FMD (Foot and Mouth Disease) virus
 - ✓ E. coli
- Highly sensitive response in seconds
- Detection of Toxins Developmental Stage

Signature Gene Expression

POC: Ed Perkins – EL, ERDC

- Expose Daphnia to contaminant
- ✓ Characterize signature gene response
- ✓ Immobilize Daphnia in microchip flow cell

- Mixture separation by micro-chromatography
- Amplify signal with micro-PCR

Special Analytical Methods

Nitrocellulose

- Gun cotton, pyroxilin, ~12% N
- Occurs with NG at firing points
- Differential solubility method & pyrolysis method
- Used primarily as a solid rocket fuel
- Through soils with little, if any, adsorption occurring
- Little literature evidence to support hypothesis
- Competes with iodine in thyroid low action level expected

Perchlorate

Special Analytical Methods

✓ Soils utilized in the project ✓ "Average" Soil ✓ Sandy Soil ✓ High Iron Soil ✓ High pH Soil ✓ High Total Organic Soil Experimental Conditions ✓ Oxic ✓ Anoxic ✓ Controls ✓ No Soil ✓ No Perchlorate

Soil Characteristic	Average Soil [wes Reference]	Sandy Soil [Ottawa Sand]	High Fe Soil ^{[Telleco} Loam]	High pH Soil [Crot Sandy Loam]	High TOC Soil
UCS Classification	Clay (CH), Brown	SP	Sandy Clay (CL), Red	Sandy Clay (CH) Grey	
Total Ca (mg/kg)	1440	<20	416	59500	
Total Fe (mg/kg)	21100	103	51600	13500	
Total Mg (mg/kg)	2090	<25	1050	15000	
TOC (mg/kg)	5320	13.85	6033	4746	
Percent sand	0.5	97.6	30.9	49.1	
Percent Fines	99.5	2.4	69.1	50.9	
pH of 20% Slurry	4.97	6.2	4.28	9.73	

Special Analytical Methods

Perchlorate Distribution

Preliminary Data ➢ Most ClO₄⁻ recovered from exposure solution; trace in NaOH wash No differences between soil type or O_2 conditions Results must be corrected for pore water

Total (Perchlorate) = sum of the three different fractions

Future Plans

- Sensor arrays & additional analytes
- ✓ Robotics
- Data processing and communication
- ✓ Systems integration
- Dual use with Homeland Security
- ✓ Field evaluation
- Demonstration and validation

Acknowledgements

Agnes Hindemith Glenda Miller John Shannon Laura Percifield **Doug Taggart Steve Schnitker Prem Arora**

Dan Sanders Rich Meyer Lynn Escalon Jim Elwell

Scott Waisner

Tony Bednar

Anne Weathersby

