A Review of Emerging Sensor Technologies for Facilitating Long-Term Ground Water Monitoring of Volatile Organic Compounds

Doug Sutton, Ph.D., GeoTrans, Inc.
Kathy Yager, EPA-OSRTI

Accelerating Site Closeout, Improving Performance, and Reducing Costs through Optimization
Dallas, TX – June 15-17, 2004
This presentation is based on the following EPA report:

EPA 542-R-03-007

Prepared by GeoTrans for EPA OSRTI

Information gathered by:
- Interviewing environmental consultants
- Reviewing publicly available literature
- Interviewing research and/or commercial teams of each technology

Downloaded the report from www.cluin.org
Presentation Topics

- Current long-term ground water monitoring practices
- Requirements for an effective sensor-based instrument for long-term monitoring of ground water quality
- Emerging sensor-based technologies
 - In-situ sampling and analysis
 - Commercialized technologies for automated sampling with above-ground analysis
 - Hand-held or otherwise portable analytical units
- Considerations for implementing these technologies
- Conclusions
Current Practices

- **Field work**
 - Measure water elevation in the well
 - Sample
 - Three-well purge
 - Low-flow sampling
 - Passive diffusion bags
 - Prepare and ship samples (including QA samples)
 - Decontaminate equipment

- **Analytical work**
 - Independent laboratory
 - Standard methods (e.g., 8260b, 8021b, etc.) with backup
 - Standard turnaround times ranging from 2-3 weeks
 - Provide data in electronic format
Current Practices

- **Approximate sampling cost (assume 20 monitoring wells)**
 - Three-well purge or low-flow sampling
 - $3,000 to $8,000 per event
 - Passive diffusion bags
 - $2,000 to $3,000 per event

- **Approximate analytical cost (assume 20 monitoring wells)**
 - $2,500 per event (including analysis of QA samples)

- **Sensor technologies would attempt to**
 - Reduce labor and costs
 - Provide real-time data
 - Reduce errors associated with collecting and transporting samples
Requirements for an Effective Sensor-Based Instrument

- An effective sensor-based instrument would...
 - Have the necessary detection limit
 - Be accurate and precise
 - Revert to a common baseline for each sample
 - Provide results in a reasonable time frame
 - Withstand field conditions
 - Require little maintenance
 - Be easy to use and calibrate
 - Distinguish one VOC from another
 - Be cost-effective
 - Be acceptable to regulators and other stakeholders
Emerging Technologies

In-situ sampling and analysis
- Most sensors in this category are in the research and development phase with operational and testable prototypes
- Most are designed to analyze for one constituent or one family of constituents
- Some sensors conduct analysis in the vapor phase, rely on VOCs to partitioning according to Henry’s Law
 - Chemiresistors
 - Quartz crystal microbalance
 - High resolution ion mobility spectrometry (IMS)
- Other sensors make the measurement directly in the aqueous phase
 - Resonance Enhanced Multiphoton Ionization (REMPI)
 - Wave-guides
 - Mid-infrared fiberoptic sensors
Emerging Technologies

- Commercialized automated sampling with above-ground analysis
 - VOC Monitor (Waste Technologies of Australia)
 - Measures total VOCs
 - Detection range of 100 µg/L to 20,000 µg/L
 - Approximately $4,000 per well (assumes one system for 4 wells)
 - Improvements in detection range, selectivity, and cost reduction underway
 - www.wastetechnologies.com

 - Burge Environmental Sampling System and TCE Optrode
 - Measures TCE or chloroform (other constituents under development)
 - Detection range (1 µg/L for TCE)
 - Calibration, QA sampling, etc. is automated
 - Approximately $5,000 per well (assumes one system for 6 wells)
 - www.burgenv.com
Emerging Technologies

- Hand-held analytical technologies
 - μChemlab™ – miniaturized GC and surface acoustic wave (SAW) sensor
 - Similar in size to a personal digital assistant (PDA)
 - Separate unit required for analyzing aqueous samples
 - Sample time is approximately 2 minutes
 - Detects multiple constituents in a single sample (DL is < 5 ug/L for TCE)
 - In prototype stage, has commercialization partner
 - Cost might be under $5,000

- Hand-held GC – miniaturized GC and a glow-discharge detector (GDD)
 - Similar in size to a brick
 - Accepts gas and liquid samples
 - Detects multiple constituents in a single sample (DL is < 5 ug/L for TCE)
 - Commercialized
 - Cost might be under $30,000
 - www.handheldgc.com
Emerging Technologies

- Field portable analytical equipment
 - Five technologies evaluated by the EPA ETV Program in 1997 for ability to detect chlorinated VOCs in ground water
 - Electronic Sensor Technology (ESTCAL) – EPA 600-R-98-141
 - Inficon, Inc. HAPSITE – EPA 600-R-98-142
 - Innova Air Tech Multi-Gas Monitor – EPA 600-R-98-143
 - Perkin-Elmer Voyager Photovac Monitoring Instrument – EPA 600-R-98-144
 - Sentex Systems Scentograph Plus II – EPA 600-R-98-145
 - Two instruments provided comparable results to an off-site laboratory. Instruments could be used for investigations and routine monitoring.
 - HAPSITE – cost of $76,000, requires a chemist with experience and 3 days of training
 - Scentograph Plus II – cost of $28,000, requires a technician with 1 day of training
Considerations

- **Demonstrating reliability**
 - Sensor reliability
 - Instrument reliability

- **Site-specific conditions**
 - Sensitivity
 - Addressing multiple contaminants
 - Other constituents of ground water (bacteria, turbidity, metals, pH, etc.)
 - Well construction and yield

- **Regulatory approval**
 - Sampling well water vs. sampling aquifer water
 - Precision and accuracy
 - QA/QC measures (calibration, blanks, etc.)
Considerations

- **Cost-effectiveness**
 - Consider the following scenario
 - Site with 20 monitoring wells with quarterly sampling
 - One type of sensor could replace traditional sampling
 - Sensor lasts for 5 years before needing replacement
 - Significant travel is not required

 - Consider the following sensor options
 - Option 1 – one sensor for each well
 - Option 2 – two technicians, each with a probe, sample wells at a rate of one well per hour
 - Option 3 – Automated sampling with above-ground analysis
 - Option 4 – Traditional sampling, but using hand-held or field portable instruments for analysis
Considerations

Summary of Cost-Effectiveness

<table>
<thead>
<tr>
<th>Year</th>
<th>Traditional Low-end</th>
<th>Traditional Upper-end</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$22,000</td>
<td>$42,000</td>
<td>$105,000</td>
<td>$23,000</td>
<td>$78,000</td>
<td>$31,000</td>
</tr>
<tr>
<td>2</td>
<td>$22,000</td>
<td>$42,000</td>
<td>$5,000</td>
<td>$13,000</td>
<td>$3,000</td>
<td>$16,000</td>
</tr>
<tr>
<td>3</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>5</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>Total</td>
<td>$110,000</td>
<td>$210,000</td>
<td>$125,000</td>
<td>$75,000</td>
<td>$90,000</td>
<td>$95,000</td>
</tr>
</tbody>
</table>

Sensor costs also include estimated cost for basic maintenance.
Conclusions

- Permanently installing a sensor-based instrument in each well
 - Might not be cost-effective
 - Would make calibration and maintenance difficult

- Other presented options
 - Might be cost-effective
 - Would make calibration and maintenance easier

- Cost-effectiveness increases with required sampling frequency.

- There are potential linkages between some of the automated sampling technologies and some of the hand-held analytical technologies.
Question and Answer Session
Emerging Technologies

- Chemiresistors
 - Clifford Ho (www.sandia.gov/sensor)
- Quartz crystal microbalance
 - Joel Roark (www.nomadics.com), Joseph Salvo (www.crd.ge.com)
- High resolution ion mobility spectrometry (IMS)
 - Joe Hartman (http://coen.boisestate.edu/sensor/sensorweb.html)
- Resonance Enhanced Multiphoton Ionization (REMPI)
 - University of South Carolina
- Wave-guides
 - Georgia Institute of Technology
 - New Jersey Institute of Technology
- Mid-infrared fiberoptic sensors
 - Boris Mizaikoff (http://asl.chemistry.gatech.edu)