A Review of Emerging Sensor Technologies for Facilitating Long-Term Ground Water Monitoring of Volatile Organic Compounds

> Doug Sutton, Ph.D., GeoTrans, Inc. Kathy Yager, EPA-OSRTI

Accelerating Site Closeout, Improving Performance, and Reducing Costs through Optimization Dallas, TX – June 15-17, 2004

• This presentation is based on the following EPA report

A Review of Emerging Sensor Technologies for Facilitating Long-Term Ground Water Monitoring of Volatile Organic Compounds (August 2003) EPA 542-R-03-007

• Prepared by GeoTrans for EPA OSRTI

• Information gathered by

- Interviewing environmental consultants
- Reviewing publicly available literature
- Interviewing research and/or commercial teams of each technology

Downloaded the report from www.cluin.org

Presentation Topics

- Current long-term ground water monitoring practices
- Requirements for an effective sensor-based instrument for long-term monitoring of ground water quality
- Emerging sensor-based technologies
 - In-situ sampling and analysis
 - Commercialized technologies for automated sampling with above-ground analysis
 - Hand-held or otherwise portable analytical units
- Considerations for implementing these technologies
- Conclusions

Current Practices

• Field work

- Measure water elevation in the well
- Sample
 - Three-well purge
 - Low-flow sampling
 - Passive diffusion bags
- Prepare and ship samples (including QA samples)
- Decontaminate equipment

• Analytical work

- Independent laboratory
- Standard methods (e.g., 8260b, 8021b, etc.) with backup
- Standard turnaround times ranging from 2-3 weeks
- Provide data in electronic format

Current Practices

• Approximate sampling cost (assume 20 monitoring wells)

- Three-well purge or low-flow sampling
 - \$3,000 to \$8,000 per event
- Passive diffusion bags
 - \$2,000 to \$3,000 per event
- Approximate analytical cost (assume 20 monitoring wells)
 - \$2,500 per event (including analysis of QA samples)
- Sensor technologies would attempt to
 - Reduce labor and costs
 - Provide real-time data
 - Reduce errors associated with collecting and transporting samples

Requirements for an Effective Sensor-Based Instrument

- An effective sensor-based instrument would...
 - Have the necessary detection limit
 - Be accurate and precise
 - Revert to a common baseline for each sample)
 - Provide results in a reasonable time frame
 - Withstand field conditions
 - Require little maintenance
 - Be easy to use and calibrate
 - Distinguish one VOC from another
 - Be cost-effective
 - Be acceptable to regulators and other stakeholders

• In-situ sampling and analysis

- Most sensors in this category are in the research and development phase with operational and testable prototypes
- Most are designed to analyze for one constituent or one family of constituents
- Some sensors conduct analysis in the vapor phase, rely on VOCs to partitioning according to Henry's Law
 - Chemiresistors
 - Quartz crystal microbalance
 - High resolution ion mobility spectrometry (IMS)
- Other sensors make the measurement directly in the aqueous phase
 - Resonance Enhanced Multiphoton Ionization (REMPI)
 - Wave-guides
 - Mid-infrared fiberoptic sensors

• Commercialized automated sampling with above-ground analysis

- VOC Monitor (Waste Technologies of Australia)
 - Measures total VOCs
 - Detection range of 100 ug/L to 20,000 ug/L
 - Approximately \$4,000 per well (assumes one system for 4 wells)
 - Improvements in detection range, selectivity, and cost reduction underway
 - <u>www.wastetechnologies.com</u>
- Burge Environmental Sampling System and TCE Optrode
 - Measures TCE or chloroform (other constituents under development)
 - Detection range (1 ug/L for TCE)
 - Calibration, QA sampling, etc. is automated
 - Approximately \$5,000 per well (assumes one system for 6 wells)
 - <u>www.burgenv.com</u>

• Hand-held analytical technologies

- μChemlabTM miniaturized GC and surface acoustic wave (SAW) sensor
 - Similar in size to a personal digital assistant (PDA)
 - Separate unit required for analyzing aqueous samples
 - Sample time is approximately 2 minutes
 - Detects multiple constituents in a single sample (DL is < 5 ug/L for TCE)
 - In prototype stage, has commercialization partner
 - Cost might be under \$5,000
 - <u>www.sandia.gov/microchemlab</u>

– Hand-held GC – miniaturized GC and a glow-discharge detector (GDD)

- Similar in size to a brick
- Accepts gas and liquid samples
- Detects multiple constituents in a single sample (DL is < 5 ug/L for TCE)
- Commercialized
- Cost might be under \$30,000
- <u>www.handheldgc.com</u>

• Field portable analytical equipment

- Five technologies evaluated by the EPA ETV Program in 1997 for ability to detected chlorinated VOCs in ground water
 - Electronic Sensor Technology (ESTCAL) EPA 600-R-98-141
 - Inficon, Inc. HAPSITE EPA 600-R-98-142
 - Innova Air Tech Multi-Gas Monitor EPA 600-R-98-143
 - Perkin-Elmer Voyager Photovac Monitoring Instrument EPA 600-R-98-144
 - Sentex Systems Scentograph Plus II EPA 600-R-98-145
- Two instruments provided comparable results to an off-site laboratory. Instruments could be used for investigations and routine monitoring.
 - HAPSITE cost of \$76,000, requires a chemist with experience and 3 days of training
 - Scentograph Plus II cost of \$28,000, requires a technician with 1 day of training

Considerations

• Demonstrating reliability

- Sensor reliability
- Instrument reliability

• Site-specific conditions

- Sensitivity
- Addressing multiple contaminants
- Other constituents of ground water (bacteria, turbidity, metals, pH, etc.)
- Well construction and yield

• Regulatory approval

- Sampling well water vs. sampling aquifer water
- Precision and accuracy
- QA/QC measures (calibration, blanks, etc.)

Considerations

• Cost-effectiveness

- Consider the following scenario
 - Site with 20 monitoring wells with quarterly sampling
 - One type of sensor could replace traditional sampling
 - Sensor lasts for 5 years before needing replacement
 - Significant travel is not required
- Consider the following sensor options
 - Option 1 one sensor for each well
 - Option 2 two technicians, each with a probe, sample wells at a rate of one well per hour
 - Option 3 Automated sampling with above-ground analysis
 - Option 4 Traditional sampling, but using hand-held or field portable instruments for analysis

Considerations

Summary of Cost-Effectiveness

Year	Traditional Low-end	Traditional Upper-end	Option 1	Option 2	Option 3	Option 4
1	\$22,000	\$42,000	\$105,000	\$23,000	\$78,000	\$31,000
2	\$22,000	\$42,000	\$5,000	\$13,000	\$3,000	\$16,000
3	•••	•••	•••		•••	•••
4	•••	•••	•••	•••	•••	•••
5	•••	•••	•••		•••	•••
Total	\$110,000	\$210,000	\$125,000	\$75,000	\$90,000	\$95,000

Sensor costs also include estimated cost for basic maintenance.

Conclusions

• Permanently installing a sensor-based instrument in each well

- Might not be cost-effective
- Would make calibration and maintenance difficult
- Other presented options
 - Might be cost-effective
 - Would make calibration and maintenance easier
- Cost-effectiveness increases with required sampling frequency.
- There are potential linkages between some of the automated sampling technologies and some of the hand-held analytical technologies.

Question and Answer Session

- Chemiresistors
 - Clifford Ho (<u>www.sandia.gov/sensor</u>)
- Quartz crystal microbalance
 - Joel Roark (<u>www.nomadics.com</u>), Joseph Salvo (<u>www.crd.ge.com</u>)
- High resolution ion mobility spectrometry (IMS)
 - Joe Hartman (<u>http://coen.boisestate.edu/sensor/sensorweb.html</u>)
- Resonance Enhanced Multiphoton Ionization (REMPI)
 - University of South Carolina
- Wave-guides
 - Georgia Institute of Technology
 - New Jersey Institute of Technology
- Mid-infrared fiberoptic sensors
 - Boris Mizaikoff (<u>http://asl.chemistry.gatech.edu</u>)