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Why Optimize Investigations 
and Monitoring

Efficient and effective use of information 
gathering resources.
Subsurface aquifer protection

Improved response decisions.
Reduce risk of monitoring network failure.

UXO:
10 million acres, 1400 sites, DOD indicates that 
typically 100 holes dug before a single UXO is 
unearthed.



Corollary Between Military and 
Environmental Applications

Military
Target 
identification
Target location
Target tracking

Environmental
UXO/MineFinder

Plume finder
Long term 
monitoring

Solves the stationary or transitory boundary / 
topology challenge



Overview of Value
Simulators provide a mathematical statement 
of subsurface current and expected future 
conditions.
Optimization guides decisions that are 
defensible.

When is the sampling network good enough?
What is the best mix of low, medium and high 
quality data? Over time?
What data / parameter mix is best?



How Optimization Helps 
Aquifer Investigations

Tells when to stop adding wells to 
delineate a plume.
How to monitor it over time.
When understanding of subsurface is 
supported by data.

See: Deschaine, L. M., Simulation and Optimization of Large Scale 
Subsurface Environmental Impacts; Investigations, Remedial 
Design and Long Term Monitoring. Journal of "Mathematical 

Machines and Systems", National Academy of Sciences of Ukraine, 
Kiev. No 3, 4. 2003. Pages 201-218.



How Optimization Helps UXO 
Discrimination and Remediation

Identifies UXO in less attempts than 
other competing approaches:
Initial prove-out at JPG-IV.

Same data used: transformed “guessing” 
to high accuracy.

Extended prove-out at JPG-V.
Next best required 62% more holes than 
this approach.



Approach:
Optimal Estimation

Integrated algorithms consist of:
Simulation models based on physics.
Simulation models based on data.
Uncertainty handled through 
(geo)statistics.

Information content fusion:
Signal processing (i.e. Kalman Filters, etc.)
Genetic Programming.

Optimal policy design uses a wide assortment of 
algorithms depending on problem formulation.



Fundamental Differences 
between Estimation

Current methods typically gather data, 
calibrate model and use model for 
predictions.

Models break down as physics becomes complex, 
data sparse or input parameters not well known.

This method fuses the information content via 
signal processing / machine learning 
algorithms:

Integrated data/physics model provide optimal 
estimates based on knowledge gain from both the 
physical simulator *and* the data. 



Robust Environmental 
Simulators

SA_MAPS
Stream - Aquifer 
Management and 
Planning Simulator 

BioFT3D/MINTEQ
Flow and Transport 
in the Saturated and 
Unsaturated Zones in 
2 or 3 Dimensions 

BIOSLURP
Multiphase Hydrocarbon 
Vacuum Enhanced 
Recovery & Transport 

MOFAT & NAPL 
2D/3D

Multiphase Flow and 
Transport of 
Multicomponent Organic 
Liquids

For additional information, see rasint.com &
georgepinder.com



Developing Models from Data
Sometimes a simulator has not been 
written for a process, but data is 
available.
Genetic programming is also used to 
develop a model or subroutine from the 
data.

Francone, F. D., and Deschaine, L.M., Extending the Boundaries of Design
Optimization by Integrating Fast Optimization Techniques with Machine-Code-

Based Linear Genetic Programming, Information Sciences Journal, Elsevier Press, 
Vol. 161/3-4 pp 99-120:  2004. Amsterdam, the Netherlands.



Examples:
Developing Models from Data

Hydraulic 
conductivity
Unconfined 
compressive 
strength
Leachability Index
Vapor emissions 
from the ground

Percent fines from 
CPT data
Emissions from 
waste incineration
Soil classification 
from LandSAT
Power plant, etc.





Plume Finding
Finding a plume is like finding a target’s 
boundaries:

Extended approaches of Wiener, 
Kolmogoroff, Kalman, Lindgren and Nordin.
Goal is to reduce the uncertainty in the 
estimation of target’s boundary location, 
it’s fringe.



Plume Finding Technology
USEPA requires certainty in plume 
location in order to evaluate remedial 
options, including.

Monitored natural attenuation.
Active remediation.
Technical impracticability.

USEPA recognizes that the plume fringe 
location is a “zone”, not a line.

Need to perform site investigations in a cost effective manner 
while maintaining accuracy.



Example Solution
Red: Least Plume Fringe Certainty [Best area to install new well(s)]
Green:  Best Plume Certainty [New well provides almost no value.]

Highest 
Certainty

Lowest 
Certainty



Output:
3D Rendering of Uncertainty

The higher the output value, the more uncertain we are about where the 
plume is, and the more valuable a well is in this location. 

Red is uncertain, green is higher confidence.
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Complex Application
Site investigation area about 9 square miles.
Between 6 & 12 wells deep wells (100’s of 
feet) were considered for installation.
The plume finding technology assessed that 
the existing MW network was already very 
good, and that perhaps 1-2 more wells (if 
any) would satisfy the project’s objectives.
Results presented to DOE, EPA and state 
regulators. Both analysis and conclusions 
were accepted.
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Summary of PlumeFinder Analysis 
Value of Additional Wells, Scale Exaggerated To See Results

[Results of 4000 flow and transport simulations]
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Add One Well [98%] Add 2nd Well 
[98.5%]
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UXO Finding
Initial test conducted on information 
from JPG-IV & extended on JPG-V.
Algorithm tested on blind data 
significantly outperformed other 
methods:

Same data used (no additional data 
collected).
Only change was information / signal 
processing approach.



NAEVA’s
RESULTS

SAIC 
UXO/MineFinder 

using NAEVA’s data

Deschaine, L. M., Hoover, R. A., Skibinski, J. N., Patel, J. J., Francone, F. D., Nordin, P. and Ades, M. J., Using 
Machine Learning to Compliment and Extend the Accuracy of UXO Discrimination Beyond the Best Reported 

Results of the Jefferson Proving Ground Technology Demonstration. Society for Modeling and Simulation 
International’s Advanced Technology Simulation Conference, San Diego, CA April 2002.

UXO/MineFinder – JPG IV Prove-out



Francone, F. D., Deschaine, L. M., Battenhouse, T., Warren, J. J., Discrimination of Unexploded 
Ordnance from Clutter Using Linear Genetic Programming. In Press: The Genetic and Evolutionary 

Computation Conference (GECCO-2004), June 26th – 30th, 2004, Seattle, WA, USA.

UXO/MineFinder – JPG V Prove-out



Long Term Monitoring
Depending on the remedial alternative 
chosen:

Monitored natural attenuation.
Active remediation.
Source control.
Technical impracticable.

Long term monitoring is required to evaluate 
the effectiveness of the decision.

The value of long term monitoring is to provide relevant 
information to the stakeholders to monitor the solution.



Long Term Monitoring 
Like the Plume finding, Long Term 
Monitoring can be optimized:

Location of where to sample.
Frequency of sampling
What to sample.

Like Plume finding, but with time 
added.

Correlated time and space information.



Long Term Monitoring 
Each sampling event provides information 
content:

Sample events that are to close together (in space 
& time) provide redundant [unnecessary] 
information.
Sampling events spaced to far (in space & time) 
apart leave to much uncertainty to what is 
happening.

Optimal LTM design provides the best 
balance of cost and knowledge.



LTM Case Study
Industrial site.

Huge costs.
Desire to do the right thing, and to be efficient 
and effective at the same time.

Solution is that the sampling needs are front-
end loaded:

Most sites have more than ample existing data to 
apply this technique.
Much information collected expected redundant.



Concept for Optimal LTM:
For Point of Compliance Configuration
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Figure 7. Long-term Monitoring Optimization Algorithm Concept.
Note: The uncertainty is a function of both space and time information.



Results of Long Term 
Optimization Analysis

Number of Samples Taken Each Period
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Note: Number of samples increase and decrease with time,  
and generally decrease (Article in Draft form).



Discussion of Results
Note that at the start of the monitoring, many 
samples are taken. 

This is similar to how many monitoring programs 
are started.
Notice also that at the start, to few were taken.

The number and location of samples points 
gets increased and decreased over the 
sampling periods to maintaining optimal 
confidence of plume knowledge with time.

The sampling frequency test period is adjustable.



Summary
Optimization of feature location (plume 
configuration / UXO) is proven effective.
Long-term monitoring policies optimally 
estimate plume topology (concentration 
maps in space & time).
Long-term monitoring policies optimally 
estimate confidence at point(s) of 
compliance is achieved.



Reference Material to Get 
Started

Kailath, T., Sayed, A. H., Hassibi, B., 
Linear Estimation, Prentice Hall, 854 
pp., 2000.
Huyakorn & Pinder, Computational 
Methods in Subsurface Flow, Academic 
Press, 473 pp. 1983.
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