Sufficiency analysis *before* and *after* detection of a leachate plume from a municipal landfill

> Paula J. Mouser Donna M. Rizzo

Department of Civil & Environmental Engineering University of Vermont

Motivation

Owners/operators

- Establish Cost-Effective monitoring designs
 - Minimum required monitoring wells
 - Minimum samples and analyses
 - Optimized long term monitoring (LTMO)

Regulators

- Establishing monitoring plan that achieves design objectives
 - Sufficient number of upgradient and downgradient wells
 - Sufficient sampling frequency
- Tiered monitoring
 - 40+ regular parameters
 - 100+ supplemental parameters
 - Statistical Comparisons
 - Temporally
 - Spatially

How do we balance monitoring cost and risk?

Typical unlined municipal landfill well design:

Landfill ~10 ha (25 acres)

Groundwater Flow Direction

Site-specific Well Locations

P.F. Hudak (1999)

■ 1.5 ha (3.7 acres)

Wells sited using equidistant approach

 Detection efficiency decreases with increasing cross gradient width [P.F. Hudak, Inter. J. Environ. Studies, 1999]

Worth of Data

Do a sufficient number of monitoring locations exist to determine that a regulatory concentration was not exceeded at specified spatial locations?

1)

2) Is current sampling frequency sufficient (or redundant) at existing monitoring locations?

Site Location

Site Timeline

Outline of Analysis

1. Broke sampling data into two periods

2. Evaluated spatial correlation and estimated concentrations at snapshots in time

3. Calculated the t-test statistic and power

Time Period Characteristics

T1: 1986-1997 Before remediation

Active Landfill

13 wells

6 to 17 sampling events

2 to 500 mg/L Chloride means

T2: 1998-2003

Remediation Pumping
& Barrier Walls Installed

Closed Landfill

28 wells

3 to 23 sampling events

2 to 900 mg/L Chloride means

Spatial Continuity & Estimation

$$\rho(h) = \frac{\frac{1}{N(h)} \sum_{(i,j)|h_{i,j}=h} (v_i v_j - m_{-h} m_{+h})}{\sigma_{-h} \sigma_{+h}}$$

Normalized
between 0-1

 May be applied to less-continuous parameters

Test statistic calculation

One sample t-test (σ unknown)

$$z = \frac{\overline{y} - \overline{\mu}_o}{\frac{\sigma}{\sqrt{n}}}$$

$$H_o: \mu = \mu_o$$
$$H_A: \mu > \mu_o$$

 $\mu_o = 100 mg / L$ $\sigma = 10 mg / L$

Solve for test statistic (z) and p-value

Mean Chloride Concentration for T1

T1: Pre-Closure

Mean Chloride Concentration for T2

T2: Closure/LTM

Power Analysis Review

Probability of Type I Error

T1: Pre-Closure

1.713 × 10⁶ P-Values, Chloride, T1 (1986-1997) > 0.2 0.18 1.7125 0.16 0.14 1.712 0.12 (iii) Buithon N 0.1 0.08 1.711 0.06 0.04 1.7105 0.02 1.71 < 0.001 6.9 6.905 6.91 6.915 6.92 6.925 6.93 Easting (m) x 10⁵

T2: Closure/LTM

P(Type I Error), α typically 0.01

Power calculation

• One sample t-test power calculation (σ unknown)

$$\phi = \sqrt{\frac{n}{2}} \frac{\Delta}{\sigma}$$

$$\Delta = \mu_1 - \mu_o$$

$$\mu_{1} = 200 mg / L$$
$$\mu_{o} = 100 mg / L$$
$$\sigma = 10 mg / L$$

Solve for ϕ and power

Power Analysis $(\Delta = 100 \text{ mg/L})$ T1: Pre-ClosureT2: Closure/LTM

Power = 1-P(Type II Error) typically 0.9, β = 0.1

Conclusions

Do a sufficient number of monitoring locations exist? T1: Pre-Closure T2: Closure/LTM

Changes in Power with Changes in Δ

Summary/Future Work Chloride vs. Other Parameters (Xylene) Low Power to detect changes of 50 mg/L

 Extremely low powers to detect changes in µg/L (ppb)

Multivariate t-tests, can we add power?

Confidence in Hydrochemical Trends

Slope Factors: MAROS

Mean Chloride for two time periods

T1: Pre-Closure

T2: Closure/Remediation

