#### A Roadmap to Long Term Monitoring Optimization and Tools

Carolyn Nobel, Ph.D, PARSONS Dave Becker, USACE June 16, 2004



# Brought to you by...



- US EPA Office of Superfund Remediation and Technology Innovation
- US Army Corps of Engineers Hazardous, Toxic, and Radioactive Waste Center of Expertise

Contributors: Carolyn Nobel, PARSONS John Anthony, Mitertek

#### What's the Point?



A Roadmap for Long Term Monitoring Optimization is being developed to assist managers, regulators, scientists and engineers tasked with reviewing monitoring programs to

- Determine if optimization is appropriate for their existing monitoring program, and,
- If so, what methods are available and appropriate for their programs

#### Outline

- Background and Motivation
- Roadmap Purpose & Scope
- Long Term Monitoring Optimization Steps
- Summary
- Status & Next Steps



#### Background and Motivation

- Long term monitoring represents a significant, persistent, and growing burden
- Often yields "wrong" level of information
- LTMO provides opportunity to identify:
  - Substantial cost savings
  - Identify inadequacies & avoid inefficiencies
  - Prevent potential impacts to public & environment

#### So, LTMO's the way to go... Now what?

- Multiple LTMO tools and methods exist
- Unclear which are most cost and technically effective



Long-Term Groundwater Monitoring: The State of the Art



#### LTMO Roadmap Purpose

- Audience: managers, regulators, scientists and engineers tasked with reviewing monitoring programs
- Goals:



- Understand the steps involved
- Determine if a LTMO assessment is appropriate
- Evaluate which LTMO methods and techniques are appropriate
- Access more information and resources about LTMO tools

### LTMO Roadmap Scope

- Many LTMO Opportunities...
  - Sampling & analytical methods
  - Field protocol
  - Data management
- Established Monitoring Programs
  - Groundwater
  - Long term monitoring
- Focus on Physical Program Optimization
  - Monitoring frequency
  - Spatial distribution of wells
- 15 Pages!



## Roadmap Outline: Steps Involved in an LTMO

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

### Review/Develop Objectives for Monitoring Program

- Establishing a Baseline...
  - What are you measuring?
  - How often and where?
    - What is the current monitoring program?
    - How much does it cost?
  - Why are you measuring?
    - Regulatory drivers?
    - Points of compliance?
    - Remedy performance evaluation?

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### **Examine Existing Data**

#### LTMO Data Requirements Checklist

- Lists data needed, source(s) & purpose
- Examine the amount and types of available data
- Discover data gaps
- Determine what types of analyses will be feasible.
- 1. Review/Develop Objectives
- for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

| Required Information                                                                                   |                                                                                                                                                                              |                                                                                                        |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Description of current<br>monitoring program                                                           | Monitoring program plan, recent monitoring report                                                                                                                            | Establish baseline conditions,<br>purpose of monitoring program and<br>rationale for monitoring wells  |
| Well locations/<br>coordinates                                                                         | Database; well construction<br>information; site Maps                                                                                                                        | Determine spatial distribution of<br>monitoring points                                                 |
| Historical COC<br>analyses/results                                                                     | Database; monitoring reports;<br>site investigation reports                                                                                                                  | Define concentrations of COCs in space and time; Confirm primary COCs                                  |
| Configuration of<br>potentiometric surface:<br>Groundwater flow<br>direction, velocity and<br>gradient | Remedial investigation report<br>(RI report), RCRA Facility<br>Investigation report (RFI<br>report), or similar document<br>providing facility/site<br>information; database | Evaluate direction and rate of<br>groundwater movement and<br>contaminant migration                    |
| Hydrogeologic<br>conditions                                                                            | RI/RFI report or similar<br>document providing facility/site<br>information                                                                                                  | Identify geologic or other controls<br>on occurrence and movement of<br>groundwater and dissolved COCs |
| Well completion<br>intervals/ <u>hydrogeologic</u><br>zone                                             | Database; well construction<br>diagrams                                                                                                                                      | Determine depth of sample<br>collection in groundwater system<br>and potential zones                   |
| Cleanup goals/regulatory<br>limits                                                                     | RI/RFI, Record of Decision (ROD); decision document                                                                                                                          | Establish cleanup limits and areas<br>of concern requiring monitoring                                  |
| Locations of potential<br>receptors/compliance<br>points                                               | RI report, RFI report, or ROD;<br>Site map                                                                                                                                   | Identify areas and/or migration<br>directions of concern                                               |

# Determine if Site is Candidate for LTMO (Threshold Check)

- Established Monitoring Objectives?
- "Long Term Monitoring" Program & Adequately Characterized Site?
- Cost and Size of Current Program Justify
  Optimization?
- Expected Future Status of Remedy?
- Available Resources?
- Adequate Data Availability?
- Flexible Regulatory Environment?

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### Determine the Type of Evaluation

#### Qualitative

 Qualitative evaluation most important, verified and support by quantitative evaluations

#### Quantitative

- Temporal:
  - Monitoring results over time
  - >4 minimum rounds of sampling data required
- Spatial
  - Monitoring results across a region
  - >15 wells with results in similar timeframe

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

## Select the LTMO Methods/Tools: Frequency Optimization

#### • Qualitative

#### MONITORING FREQUENCY DECISION LOGIC

| Reasons for Increasing<br>Sampling Frequency                                                 | Reasons for Decreasing<br>Sampling Frequency                                                                                                                                           |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwater velocity is high                                                                 | Groundwater velocity is low                                                                                                                                                            |
| Change in contaminant concentration would significantly alter a decision or course of action | Change in contaminant concentration<br>would not significantly alter a decision<br>or course of action                                                                                 |
| Well is necessary to monitor source<br>area or operating remedial system                     | Well is distal from source area and remedial system                                                                                                                                    |
| Cannot predict if concentrations will<br>change significantly over time                      | Concentrations are not expected to<br>change significantly over time, or<br>contaminant levels have been below<br>groundwater cleanup objectives for<br>some prescribed period of time |

- Quantitative
  - Rule Based
    - CES/MAROS
    - Three-Tiered
    - Temporal VariogramsGTS
    - Mathematical Optimization
      - Review/Develop Objectives for Monitoring Program
      - 2. Examine Existing Data
      - 3. Determine if Site is a LTMO Candidate
      - 4. Determine the Type of Evaluation
      - 5. Select the Methods/Tools
      - 6. Perform Optimization
      - 7. Assess & Implement Results

## Select the LTMO Methods/Tools: Spatial Distribution Optimization

#### • Qualitative

#### MONITORING NETWORK OPTIMIZATION DECISION LOGIC

| Reasons for Retaining a Well in                                                | Reasons for Removing a Well From           |
|--------------------------------------------------------------------------------|--------------------------------------------|
| Monitoring Network                                                             | Monitoring Network                         |
| Well is needed to further characterize                                         | Well provides spatially redundant          |
| the site or monitor changes in                                                 | information with a neighboring well        |
| contaminant concentrations through                                             | (e.g., same constituents, and/or short     |
| time                                                                           | distance between wells)                    |
| Well is important for defining the lateral or vertical extent of contaminants. | Well has been dry for more than 2<br>years |
| Well is needed to monitor water quality                                        | Contaminant concentrations are             |
| at compliance point or receptor                                                | consistently below laboratory detection    |
| exposure point (e.g., water supply well)                                       | limits or cleanup goals                    |
| Well is important for defining                                                 | Well is completed in same water-           |
| background water quality                                                       | bearing zone as nearby well(s)             |

- Quantitative
  - Geostatistics
    - Weighting schemes
    - Mathematical optimizations

 Review/Develop Objectives for Monitoring Program

- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### LTMO Methods & Tools

- Monitoring and Remediation Optimization System (MAROS 2.0)
- PARSONS 3-Tiered Method
- Geostatistical Temporal/Spatial (GTS) Algorithm
- Multi-objective LTM Optimizer (M-LTMO)



### Roadmap Presentation of LTMO Methods and Tools

- How Qualitative and Quantitative Analyses are Implemented
- Limitations
- What Types of Sites Suited for
- Time & Cost Required
- Resources/Skills Required (Don't try this at home!)
- Other Resources and Approaches:
  - Guidance documents
  - Current Research

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### **Perform Optimization**

- Contact/reference Information for Implementing Tools
- Case Study Discussion & References
- What to Expect: Range of Performance Results
- Other Considerations
  - Sampling methods
  - Analytical methods & list of analytes
  - Data management & reporting

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### **Assess & Implement Results**

- Reality Check Results
- Stakeholder Involvement
  - Review & buy in: early involvement critical
- Implementing Recommendations
  - Checklist of Actions
  - Cost to implement
  - Benefits of flexibility
  - Periodic program evaluation

- 1. Review/Develop Objectives for Monitoring Program
- 2. Examine Existing Data
- 3. Determine if Site is a LTMO Candidate
- 4. Determine the Type of Evaluation
- 5. Select the Methods/Tools
- 6. Perform Optimization
- 7. Assess & Implement Results

#### Summary

- Long Term Monitoring: essential & costly
- Long Term Monitoring Optimization
  - Potential cost savings
  - Improve understanding of site
- But should you?? If so, how...???
- LTMO Roadmap
  - Outlines steps, methods & tools
  - Access to additional resources & information





### Status & Next Steps



LTMO Roadmap

- Draft in August, then out for expert review

- USEPA TIO 3-Tiered & MAROS LTMO Demonstration Project Report
  - Final report expected summer, 2004.
- Internet Seminars & Outreach
  - Fall, 2004
  - Announced on TechDirect & WWW.clu-in.org

#### Thank you! Questions?

#### A Roadmap to Long Term Monitoring Optimization and Tools

For more information, please contact: Kathy Yager: Kathleen.Yager@epa.gov Ellen Rubin: Ellen.Rubin@epa.gov Dave Becker: Dave.J.Becker@nwd02.usace.army.mil Carolyn Nobel: Carolyn.Nobel@parsons.com John Anthony: John.Anthony@mitretek.org