Using Monitoring Data to Assess Remedy Progress: Using Temporal Changes in Plume Metrics

David A. Wilson
U.S. EPA Region 5
GEOS Team Leader
77 W. Jackson Blvd.
Chicago, IL, 60604
312-886-1476
wilson.david@epa.gov

David E. Dougherty
Subterraneaen Research, Inc.
33 Enterprise Place, Suite 5
Duxbury, MA 02332
781-934-7199
ddougher@subterra.com
Problem

-How to evaluate the effectiveness or progress of a clean-up?
-How to process and understand the voluminous amount of monitoring data that increases with each passing year?

GEOS Solution

-Collection: Obtain data in a standardized electronic format (Region 5 EDD, Multimedia EDD)

-Assembly: Assemble all info relevant to site cleanup in a “Remedy Performance and Compliance (RPC) Report”

-Analysis: Perform standardized and normalized analyses that management and staff can use to evaluate Superfund remedy progress and cleanup effectiveness
Remedy Performance Issues

- No standard EPA method for determining if contaminant plumes have gotten better
- No standard EPA method for determining if progress of long-term cleanups are progressing as planned
Remedy Performance Issues

TCE East & West Plume at Bendix Superfund Site
St. Joseph, MI
Remedy Performance Issues

What is happening here?

12 snapshots of a TCE East & West Plume at Bendix Superfund Site St. Joseph, MI from 2000 to 2003
Traditional Method

- Perform a variety of statistical methods on individual monitoring wells

<table>
<thead>
<tr>
<th>Contaminants and Wells</th>
<th>Well Location</th>
<th>UCL</th>
<th>Standard (MDEQ Residential Criteria)</th>
<th>Exceed Standard</th>
<th>Worse or Better?</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td>200 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWE-1</td>
<td>Center line of East Plume</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td></td>
</tr>
<tr>
<td>PGCE-3</td>
<td>Upgradient of discharge point of East Plume</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td></td>
</tr>
<tr>
<td>BDW-1</td>
<td>West Plume boundary</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td>Increasing</td>
</tr>
<tr>
<td>BDW-2</td>
<td>West Plume boundary</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td>Decreasing</td>
</tr>
<tr>
<td>MWW-1</td>
<td>Center line of West Plume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCW-1 A</td>
<td>Upgradient of discharge point of West Plume</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td></td>
</tr>
<tr>
<td>POCW-3B</td>
<td>Upgradient of discharge point of West Plume</td>
<td></td>
<td></td>
<td></td>
<td>Worse</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td></td>
<td>7 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWE-1</td>
<td>Center line of East Plume</td>
<td>27.367</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STE-2</td>
<td>Upgradient of East Plume POC wells</td>
<td>10.000</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWW-2</td>
<td>Center line of West Plume</td>
<td>287.196</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Emerging Complementary Method

Analyze the contaminant plume as a whole

- Translate the data-driven estimate of a plume into metrics
- Tracked and compared metrics over time
Metrics Include:

- Size of the plume (plume mass and volume)
- Distribution of areas of high or low concentration
- Location of the plume (center of plume mass)
- Shape of the plume (plume spread)
- Plume orientation (center line of plume)
Metrics Include:

Determining Moments above Specified Cutoff Concentration Value

\[n \text{ porosity} \]

\[c(x, y, z, t) \text{ concentration at point in space, time} \]

\[\gamma(c - \hat{c}) = \begin{cases} 1 & \text{if concentration} > \text{cutoff value} \\ 0 & \text{if concentration} < \text{cutoff value} \end{cases} \]

\[V_{c > \hat{c}} = \iiint_{V_{aquifer}} n \gamma \, dx \, dy \, dz \quad \text{Volume} \]

\[M_{c > \hat{c}} = \iiint_{V_{aquifer}} c \, n \gamma \, dx \, dy \, dz \quad \text{Mass} \]

\[\bar{x}_{c > \hat{c}} = \frac{\iiint_{V_{aquifer}} x \, c \, n \gamma \, dx \, dy \, dz}{M_{c > \hat{c}}} \quad \text{Center of Mass} \]

\[S_{xx|c > \hat{c}} = \left[\frac{\iiint_{V_{aquifer}} (x - \bar{x})^2 \, c \, n \gamma \, dx \, dy \, dz}{M_{c > \hat{c}}} \right]^{1/2} \quad \text{Spread (xx)} \]
Metrics Include:

- Size of the plume (plume mass and volume)

Determine the 3D mass/volume of target contaminants for each round of data

Amount of dissolved contaminant is indicator of

- Initial problem
- Current problem
- Cleanup progress
- Risk Reduction
Trends present in metric?

Is plume mass trending up or down over time?

Issues: Number of well sampled can effect mass/volume
Trends present in metric?

Is plume mass trending up or down over time?

Bendix, West Plume, Dissolved TCE Mass

Bendix, West Plume, Dissolved 1,1-DCE Mass

Bendix, West Plume, Dissolved VC Mass

Is plume volume trending up or down over time?

Bendix, West Plume, Dissolved TCE Plume Volume

Bendix, West Plume, Dissolved 1,1-DCE Plume Volume

Bendix, West Plume, Dissolved VC Plume Volume

TRENDS (99%)

- Increasing
- Decreasing
- None/Indeterminate
Metrics Include:

- Distribution of areas of high or low concentration

What is 3D mass/volume within each 3D Iso-concentration band?
Trends present in metric?

➢ Trend in mass distribution within areas of high or low concentration (Iso-bands)
Trends present in metrics?

➢ Trend in volume distribution within areas of high or low concentration (Iso-bands)

Bendix, West Plume, Dissolved TCE Plum

Bendix, West Plume, Dissolved 1,1-DCE Plum Volume

Bendix, West Plume, Dissolved VC Plum Volume
Metrics Include:

Trends present in metric?

Center of plume mass. Is plume migrating?

This plot is obtained by comparing centers of mass in 2 consecutive sampling events, and dividing by the number of days between them.

The blue star is the median of those values (of both magnitude and direction).
Metrics Include

Trends present in metrics?

Shape of the plume or plume spread (Max and min axis of the second moment ellipsoid)

![Graphs showing trend in Tce-2dmaxspread and Tce-2dminspread for location WESTERN PLUME]
Metrics Include

- Plume orientation/center line (Bearing of max axis of the second moment ellipsoid)
Tools to used to determine and analyze metrics

EVS/MVS by CTech
Used for: 3D mass/volume, iso-volumes, and center of mass

CarStat by Discerning Systems
Used to: calculate the presence of trends

PAM (Plume Assessment Metrics) by Subterranean Research
Used to determine: a trend’s rate of change, plume spread and center line of plume

MAROS By USAF-Groundwater Services
Can determine: trends in changes over time for mass, center of mass, and plume spread,
Objective should include effect on
- Plume mass
- Plume volume
- Plume rotations/shifting
- Outer perimeter of plume edge “foot print” (size above cleanup standard) need non-detects to help define the edge
Conclusions

Moving to Post-construction/Long-term monitoring stage

Managing periodic or episodic data sets

Collection—move to standards-based electronic reporting

Assembly---ensure reports are sufficiently comprehensive

Analysis---investigate performance with compliance

What is current state of system? What was anticipated state of system? What is anticipated end-point and “roadmap”? Is current state compatible with these?

New tools leverage characterization/design work products