Ground Water Remediation Optimization: Benefits and Approaches

Dave Becker and Lindsey Lien
USACE Hazardous, Toxic, and Radioactive Waste Center of Expertise

Kathy Yager and Chuck Sands
US Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation
Presentation Overview

- Introduction to New EPA Fact Sheet on Optimization of Ground Water Remediation
- Benefits of Optimization
- What Sites Might Benefit from Optimization
- Holistic Optimization Approaches
- Common Themes
- Detailed Optimization Activities
- Summary
New EPA Fact Sheet on Optimization of Ground Water Remediation

- **Focus:** Holistic Approach to Optimization
- **Purpose:** A Guide to Project Managers
 - Publicize and Promote Optimization Opportunities
 - Related to Other Fact Sheets
- **Form:** Short (~18 Pages), Informational Overview
- **Status:** Final Revisions in Progress
- **Future:** Available via Web at FRTR.gov/optimization and cluin.org/optimization
Benefits of Optimization

- “Market” Potential for Optimization is Large
 - Federal and Private Sectors
 - EPA Annual O&M Costs >$50M for Fund-Lead Projects
 - DOD Will Spend >$1B in O&M over Decades
 - Even Reductions in Time/Costs of 20% is Large Sum
 - Funds Available for other Uses in Society

- Improvement in Performance
 - Evaluation of Performance Assures Effectiveness
 - Shorter Time to Close-Out
What Sites Might Benefit from Optimization?

- Projects with High Operating Costs (>$100,000/Year)
 - Long Expected Durations
 - Large Number of Extraction Wells
 - Large Flow Rates
 - Complex Treatment Processes
 - Large Monitoring Networks (>25 Wells)
What Sites Might Benefit from Optimization?

- Systems with Performance Issues
 - Significant System Down-time
 - Questions Regarding Plume Capture, Remediation Progress
- Projects Due for Periodic Evaluation (5-Year Review) or Long Time Since Last Optimization
- See Screening Process Used for EPA Fund-Lead Sites: EPA-542-R-01-020
Data to Support Optimization

- Data to Be Collected by Operators
 - Well Flow Rates – For Each Injection and Extraction Well,
 - Water Levels (or Pressures) at Each Well for Specific Capacity
 - Contaminant Concentrations – at Each Extraction Well
 - Piezometric Levels – Points Inside and Outside of Plume
 - Well and Treatment System Run Times
 - Rehabilitation, Maintenance, and Repair Records
 - System Flow Rates, Influent, Effluent, Concentrations, Intermediate Concentrations Between Treatment Components

![Graph showing Total Dissolved Chromium](image-url)
Data to Support Optimization

- Data to Be Collected by Owner/Operators
 - Costs for Materials, Labor, Utilities, Waste/Effluent Disposal
 - Conceptual Site Model
Holistic Optimization Approaches

- Remediation System Evaluation (RSE) Process
 - Developed by USACE HTRW CX
 - Used by EPA at >30 Sites

- Remedial Process Optimization – Air Force

- Navy – Optimization of Remedial Action Operation

- Private Sector – Many

- EPA Fact Sheet Discusses These
Common Themes

- Periodic Review of System Performance Required
 - Conditions Change, Technologies Change, Should Revisit System to Assess Implementation and Current Conditions

- Independent Review by Experts
 - Not Previously Involved in Project
 - Experienced Optimization Team Members
 - Professional, Constructive, and Tactful Conduct

- Optimization Considers Both Performance / Effectiveness and Potential Cost Efficiencies - Balance
Common Themes, Continued

- Process Should
 - Assure Clear and Achievable Goals, Including Decision Logic for Making Interim Decisions (e.g., Changes in System, Monitoring, Treatment, etc.)
 - Include Way to Evaluate Progress toward Meeting Goals

- Encouraging Optimization and Tracking Implementation Progress of Recommendations
Follow-on Optimization Activities

- Detailed Engineering
 - Pilot / Bench Testing to Optimize Processes or Test Replacement Techniques
 - Detailed Design
- Re-evaluate Risk, Assure Appropriate Clean-up Goals
- Modeling Optimization
 - Minimize Cost or Time Subject to Constraints
 - Flow – Capture Optimization
 - Flow and Transport Optimization – Cleanup Optimization
- Long-Term Monitoring Optimization
 - Frequency, Network
 - Analytical and Sampling Methods
Summary

- Much to Gain from Optimization
- Expensive, Complex, Problem Sites Benefit Most, but Other Sites Can Benefit as Well
- Require Contractor to Collect Necessary Data
- Various Methods to Perform Holistic Optimization, but These Have Commonalities
 - Periodic, Independent Expert Review
 - Tactful Approach Required
 - Consider Both Performance and Cost
 - Evaluate Path Forward / Exit Strategy
 - Mechanism to Track Optimization Recommendations and Implementation
- Follow-On Activities Include Detailed Engineering, Ground Water Modeling, LTM Optimization