Financial Aspects of Optimization

Estimating Cost Savings from the Optimization of Long-Term Monitoring Programs at U.S. Air Force Bases

Robert B. Stewart Science Applications International Corporation Reston, Virginia

> Todd Doley, SAIC Phil Hunter, AFCEE/BCE

> > June 16, 2004

Overview

- Optimization approaches used at USAF Sites
- Methodology for estimating cost savings under an optimized monitoring program
- Case studies and examples
- Lessons learned and next steps
- Questions and answers

LTM Optimization Approaches Used at Air Force Sites

- AFCEE Long-Term Monitoring Optimization Guide
 provides general guidance on conducting LTM optimization studies
- Monitoring and Remediation Optimization System (MAROS) - a decision support software tool that uses statistical methods applied to site-specific data
- Geostatistical Temporal/Spatial (GTS) Algorithm used to identify spatial and temporal redundancies in existing monitoring networks

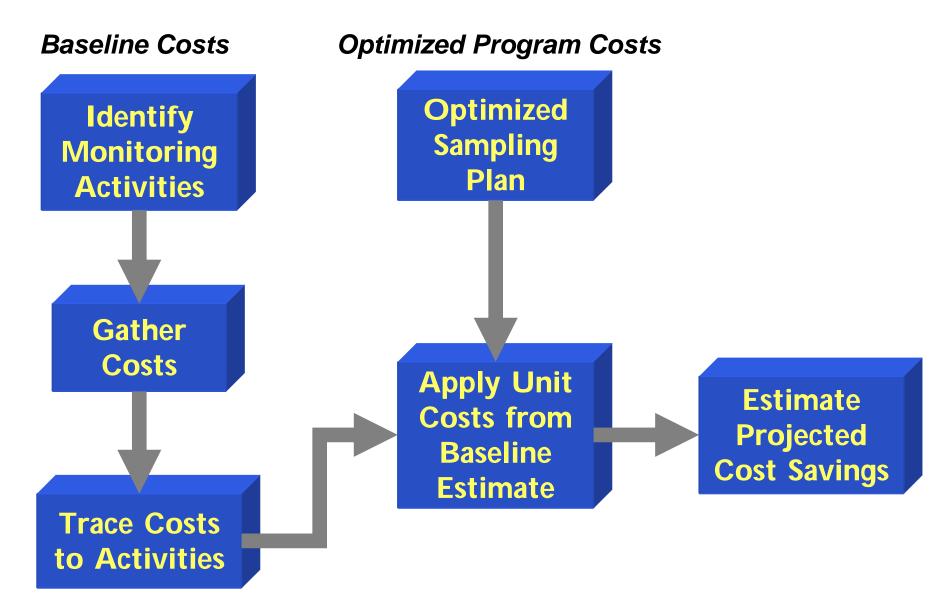
Other methods

Geostatistical Temporal/Spatial (GTS) Algorithm

- Inputs Site- or plume-specific information such as:
 - Well ID and location
 - Sample date
 - Constituents of concern, measurement value, and quantitation limit
 - Screen depth, interval, aquifer zone and
 - Other relevant information.
- Process Use statistical and geostatistical methods to identify spatial and temporal redundancies in an existing monitoring network
- Outputs Optimized monitoring plan that indicates specific wells to be sampled and their sampling frequency
- Cost Savings 30 to 60 percent

Estimating Cost Savings

Objective


 Estimate cost savings – on an average annual basis projected under the optimized monitoring program

Estimating Baseline (Current) Monitoring Costs

Inputs and Cost Categories

- List of wells monitored
- Samples collected annually at each well (including QC samples)
- Non-labor costs
 - Analytical costs (broken down by analyte and method used)
 - Materials and equipment costs (e.g., rentals and expendable items)
 - Sample shipping costs
- Labor costs for ...
 - Field sample collection and field measurements

 - Chemistry data management
 Updating/revising documents/databases

 - Meetings and preparing reports
 Professional site visits and QA/QC audits
 - Project management and administration

Response of Unit Costs to Changes in Sampling

Total Baseline Cost = Variable Cost + Fixed Cost

- "Variable" costs change in proportion to the level of sampling and analysis activity. Variable costs are unitized (e.g., on a per well or per sample basis)
- "Fixed" costs generally are associated with project management and reporting activities. Some costs are accounted for as "semi-fixed" costs – they are less sensitive to changes in monitoring activity.

Estimating Monitoring Costs Under the Optimized Program

- Use outputs from optimization study (list of critical wells, COCs, sampling frequency) as inputs to costs estimate.
- Calculate variable costs using unitized costs from the baseline estimate
- Calculate *fixed and semi-fixed costs* using fixed costs from the baseline estimate – making adjustments based on professional judgment and/or in consultation with O&M contractor

Estimating Cost Savings

$\begin{bmatrix} Baseline - Optimized \\ Baseline \end{bmatrix} 100 = \% \text{ Reduction}$

Example Output for Cost Savings Analysis

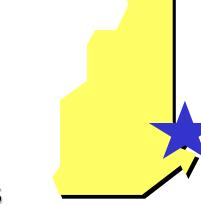
Estimate of Cost Savings			
	Baseline	Optimization 1 (Benzene)	Optimization 2 (All COCS)
Wells Monitored	113	85	97
Samples Collected Annually	3,306	1,690	1,926
Annual Costs			
Analytical Cost for Annual Sampling	\$177,545	\$90,410	\$102,717
Sampling and Analysis Labor Costs	\$184,787	\$94,443	\$107,660
Sample Shipping Costs	\$16,550	\$8,300	\$9,471
Materials and Equipment Costs	\$9,532	\$7,120	\$7,473
Subtotal Sampling and Analysis Costs	\$388,413	\$200,273	\$227,322
Chemistry Data Management	\$223,851	\$114,408	\$130,420
Reports and Meetings	\$127,090	\$107,529	\$110,391
Update & Revise Documents	\$21,500	\$21,500	\$21,500
Professional Site Visits & QA/QC Audits	\$5,180	\$3,870	\$4,062
Project Management and Administration	\$155,406	\$116,095	\$121,846
Total Annual Project Cost	\$921,442	\$563,674	\$615,541
Potential Cost Savings		\$357,767	\$305,901
Percentage Reduction in Annual Monitoring Costs		38.83%	33.20%

Case Study: Massachusetts Military Reservation (MMR) Cape Cod


- GTS optimization study of LTM at two plumes.
- Substantial cost savings projected based primarily on reduction of global sampling frequency
- Projected annual costs savings
 - Fuel Spill-12: 42%
 - Eastern Briarwood Plume: 36%
- Optimization study would pay for itself within one year of implementation

Case Study: Loring AFB, Maine

- GTS optimization study of LTM at Operable Unit 12 (OU-12)
- Cost savings projected based reduction of sampling frequency from three-times per year to twice per year, and reduction of wells sampled from 113 to as few as 87.


- Projected annual costs savings: 33 to 38 percent
- Optimization study would pay for itself within one year of implementation

Case Study: Pease AFB, New Hampshire

- GTS optimization study of LTM at Site 49, a 5-acre former UST site contaminated with 1,1-DCE, PCE, and TCE.
- Cost savings projected based reduction of sampling frequency from annual to every two years, and reduction of number of wells sampled from 67 per year to 30 per year.

- Projected annual costs savings: 49 to 52 percent
- Optimization study would pay for itself within one year of implementation

Case Study: Edwards AFB, California

 GTS optimization study of LTM at Sites 37 and 133. Contaminants include metals, solvents, and BTEX.

- Cost savings projected based on
 - Reduction of sampling frequency from annual to once every seven quarters, and
 - Reduction of number of wells sampled from 150 per year to between 53 and 64 per year.
- Projected annual costs savings: 55 to 62 percent
- Optimization study would pay for itself within one year of implementation

Limitations and Lessons Learned

Limitations

- Estimates are best estimates of average annual costs based on available information and professional judgment
- Estimates of baseline are static and do not attempt to project changes that might occur over time (e.g., to the physical system or due to inflation)

Lessons Learned

- Data collection: start early and involve all affected parties.
- More detailed cost break down yields more accurate estimates.

Summary

- Methodology for developing credible estimates of cost savings from implementing an optimized LTM program.
- Simple cost model can be used to demonstrate the economic benefits of an optimized LTM program
- Outputs expressed in terms of current dollars and percent reduction from baseline.

Next Steps

Questions & Answers

Contact

Robert B. Stewart SAIC Reston, Virginia (703) 318-4654 stewartr@saic.com

