Geostatistical LTM Optimization Using GTS

Kirk Cameron, Ph.D.

MacStat Consulting, Ltd.

Colorado Springs, CO

What Kind of Optimization?

- Highly statistical, data-driven
 - Not linked to fate/transport models
 - What do observed sampling measurements tell us?
- Minimize waste; maximize usefulness of data collected
 - Look for redundant sampling information
- Geostatistical Temporal/Spatial (GTS) algorithm looks at two areas:
 - Monitoring network locations
 - Sampling frequencies in network

Other Applications

- Optimization of treatment systems
 - Example: sampling frequencies of influent/effluent for pump & treat operations
- Characterization & mapping of sites
 - Change in contamination patterns over time
 - Hydrogeologic parameters needed for flow-based geophysical or fate/transport models
 - Determining optimal locations for new sampling or drilling

GTS Algorithm

- Designed with decision-logic framework
 - Version 2.0 available by end of July
- Separate identification of temporal & spatial redundancy
- Uses geostatistical and trend optimization methods
 - Variogram = spatial correlation measure
 - Kriging = spatial interpolation = spatial regression
 - Locally-Weighted Quadratic Regression (LWQR)

Note on Redundancy

- Practical definition: What happens when data removed from current system?
- Temporal
 - Can trends be re-constructed?
 - Do consecutive sampling events become uncorrelated?
- Spatial
 - Can surface map be re-constructed?
 - Plume extent and intensity

Optimality vs. Redundancy

- Redundancy a misnomer
 - All unique data points valuable
 - Always have loss of information if removed
- Must balance tradeoff between cost savings and loss of accuracy
 - Optimal system = minor information loss but large gain in resource savings

Optimality (cont.)

- Common strategy
 - Use existing data to estimate baseline
 - Remove some data (wells, sampling events)
 - Re-estimate baseline with reduced data set
 - Measure relative error incurred
 - Examine cost-accuracy tradeoff

Key Steps to Optimality

- Exploration/Screening
- Temporal Optimization
 - Too many sampling events at individual wells?
- Spatial Optimization
 - Too many wells in network?

Exploration & Screening

- COC analysis
 - Statistical summaries of detections, hits above regulatory limits
 - Spatial spread & intensity
 - Post-plots of wells by detection, regulatory status
- Horizon analysis
 - 2-D or 3-D?
 - Compute spatial spread & intensity for each horizon
 - Overlay horizon-specific correlograms

Temporal Optimization

- Two approaches
 - Temporal variogram to estimate average correlation between sampling events
 - Iterative "thinning" of individual wells to adjust well-specific sampling frequencies

Temporal Variogram

- Measures correlation between sampling events over time
- Variogram maps inverted correlation against sampling interval (∆t)
 - High correlation leads to low variogram, & vice-versa

Ideal Variogram

Temporal Variogram (cont.)

- Advantages of temporal variogram
 - Useful with irregularly spaced data
 - Data from multiple wells can be included
 - Single graph shows optimal global sampling interval
- Just need to determine sill and where it begins ("range")
 - Range can be taken as minimum global sampling interval

TCE Temporal Variogram

Temporal Variogram Requirements

- Sampling events from ≥3-4 yr period for some wells; others can have few as two events
- All wells contribute to overall variogram
 - Except if dominated by NDs
 - Data re-scaled to put all wells on equal statistical footing
- LWQR used to estimate overall pattern & range

Iterative Thinning

- Adjust individual well sampling frequencies
 - Global sill might not be evident
 - Key wells in network might behave differently
 - Operational target frequency = median of individual wells
- Iterative thinning approach: overview
 - Estimate baseline trend
 - Randomly "weed out" data points
 - Re-estimate trend

Iterative Thinning Details

- At least 8 sampling events per well
- NDs set to common imputed value
 - Guards against 'apparent' trend from varying DLs
- Complex trends, seasonal patterns OK
 - LWQR fits non-linear trends

Iterative Thinning Example 1

Iterative Thinning Example 2

Iterative Fitting Diagnostics

Spatial Optimization

- Create base map, then series of "reduced-data" maps
 - LWQR used instead of kriging
- Spatial analysis
 - Estimate typical contribution from each well to site/plume maps (global regression wgts)
- Wells tagged for removal if their contributions are essentially duplicated by nearby wells
 - Redundant wells have low regression wgts

Basic Approach

- Baseline map uses all available data
- Iteratively remove lowest contributing wells; re-estimate map
- Measure loss of map quality/accuracy compared to baseline
 - Stop when maps deteriorate too much

Spatial Comparison

Features of Spatial Algorithm

- Advantages to LWQR approach
 - A priori spatial model not required
 - Smoother, not an interpolator
- Can build site maps either in:
 - 3-D space
 - Separately by depth horizon or geologic unit
 - Separately by regulatory or geographic unit
 - As long as enough data available per unit

Features (cont.)

- Semi-objective spatial optimization
 - Iterative "removal" of lowest contributing wells/sampling locations
 - At each stage, measure:
 - Differences in site maps from baseline
 - Increases in global uncertainty and average bias
 - Prevalence of areas of high local uncertainty
 - Misclassification bias

DCA11, 10% Removal

DCA11, 30% Removal

DCA11, 55% Removal

DCA11, 70% Removal

Spatial Requirements

- At least 20-30 regularly-monitored wells
 - Irregular sampling schedules OK
- Best COCs have:
 - Higher detection frequencies
 - Greater spatial spread & intensity
- Good to have 2-3 years of most recent monitoring data at each well
 - Data broken into 'time slices' (sampling date ranges); each time slice separately estimated
 - Multiple "snapshots" account for changing plumes

Robust Estimation Method

- Data never ideal, but method guards against skewness, transformation bias, impact of NDs
- Observed concentration range chopped into deciles; cutoff levels chosen
- Raw data converted to indicators at each cutoff
 - 0 or 1 according to whether cutoff exceeded
 - Logit link function
- Updated probability distribution (CCDF) created at each unknown location
 - Combines estimated probabilities of non-exceedance at each cutoff
 - CCDF used to construct site maps

Some Recent Results

	Edwards	Loring	Pease
Original Interval	Annual	Qtrly	Annual
Optimized Interval	Every 7 Qtrs	Every 2-3 Qtrs	Biennial
Redundant Wells	20-34%	20-30%	10-36%
Cost Reduction	54-62%	33-39%	49-52%
Annual Cost Savings	\$230 K- \$266 K	\$306 K- \$358 K	\$85 K- \$89 K

Summary: GTS Advantages

- Flexible strategies for optimizing sampling frequencies
 - Iterative thinning for individual wells
 - Temporal variogram for broad selection of sampling locations
- Objective criterion for ranking well locations according to redundancy
 - Global regression weights remove most subjectivity from process

Advantages (cont.)

- Emphasis on visual/graphical output
 - Graphs of temporal variograms
 - Site maps of concentration levels
 - Maps of local uncertainty
 - Plots of redundant and essential sampling locations

Toward the Future

- GTS uses geostatistical & spatial tools in a novel manner
- "Plug-in" architecture, flexibility
 - Temporal, spatial, or both
- Cost savings on order of at least 20-40%
- Stand-alone software coming

