Oxidation of sediments by Spartina marsh grasses: Potential facilitation of pollutant degradation

> Ray Lee School of Biological Sciences Washington State University

Marsh grasses may transport oxygen to the rhizosphere that can facilitate aerobic degradation of organic pollutants

Oxidized zone

Anoxic zone

 O_2

Oxidation of sediments by *Spartina* marsh grasses: Potential facilitation of pollutant degradation

- Introduction a highly vigorous plant
- Gas conducting tissues
- Gas transport
- Testing for accelerated degradation

Spartina alterniflora and *Spartina anglica*

- Saltmarsh grasses native to the Eastern U.S. (*S. alterniflora*) and British Isles (*S. anglica*).
- Invasive species in Puget Sound and Willapa Bay in Washington State.

Spartina are physiologically resilient and vigorous

- Physiological tolerance
 - Wide range of salinities
 - Waterlogged soils
 - Anoxia
 - Hydrogen sulfide
- Fast rate of spread average 10-20% per year (can be much greater)

One Year-old Seedling

Two Year-old Seedlings

Ten Year-old Meadow

Three to Four Year-old Clone

Willapa Bay

- Spartina alterniflora
- 10,000 to 25,000 acres affected
- Nearly 4000 solid acres

Puget Sound

- Spartina anglica
- ≈7000 acres affected
 - Solid acres:
 - Pink=<1
 - Peach= 1-5
 - Blue=6-100
 - Red=>100

Quantification of gas conducting structures

Tolerating anoxic sediments

• Aerenchyma

 Anaerobic metabolism

 Alcohol dehydrogenase

• Sulfide oxidation

Spartina anglica root

Root Structure During Flooding

- During flooding roots are deprived of oxygen
- An aerenchyma system is developed to overcome deficiencies
- Root samples were taken from various treatments of plants, and fixed for microscopy
- Roots were sectioned serially, and examined by light microscopy

Spartina anglica Root Structure

1 cm from root tip

2 cm from root tip

Spartina anglica Root Structure4 cm from root tip6 cm from root tip

Spartina anglica Root Structure8 cm from root tip10 cm from root tip

Digital quantification of aerenchyma

Percent aerenchyma equals the number of pixels in "d" divided by the number of pixels in "c."

S. alterniflora develops more aerenchyma when flooded

S. anglica does not develop more aerenchyma when flooded

Root Structure Results

- *Spartina alterniflora* roots become stressed with the onset of flooding and form more aerenchyma.
- *Spartina anglica* plants were not stressed by flooding! They do not form aerenchyma even when confronted with flooding stress.

Quantifying oxygen transport

S. anglica respirometry experiments

- Use automated flowthrough respirometry system
- Quantify root O₂, H₂S, CO₂, NH₃ fluxes
- Aerenchyma gas transport
- Sulfide detoxification

Flow-through respirometry

Compare plants grown under different conditions

flooded

drained

Flooded plants consume less oxygen from the medium

Rates of root oxygen flux in *Spartina anglica* grown under drained and flooded conditions. Negative fluxes denote uptake from the medium. Values given are mean \pm SD (n).

\mathbf{O}	7	/ 1	1	1 1
	111X ((µmol	σ^{-1}	h^{-1}
\mathbf{U}_2	IUA	(MIIIOI	\mathbf{S}	·· /

Flooded

Drained

 -0.02 ± 0.49 (16)

 -0.70 ± 0.50 (8)

Quantifying aerenchyma O₂ transport

• Aerenchyma O_2 transport is high (0.6 μ mols g⁻¹ h⁻¹) in flooded plants and negligible in plants grown under drained conditions

Summary of respirometry results

Gas Fluxes to the Rhizosphere*

Species/Treatment

Air atmosphere $(\mu mols g^{-1} h^{-1})$

sealed N₂ atmosphere $(\mu mols g^{-1} h^{-1})$

O₂ flux

Spartina anglica flooded

Spartina anglica drained

Spartina alterniflora flooded

 0.110 ± 0.324 (13) -0.830 ± 0.083 (3)

 -0.523 ± 0.355 (5) -0.826 ± 0.302 (4)

 -2.689 ± 1.512 (6) -2.562 ± 1.612 (6)

Oxygen transport appears to be more effective in *S. anglica* compared with *S. alterniflora*

- S. alterniflora do not exhibit net release of oxygen to the medium (Howes and Teal, 1994)
- Possible implications for success of *S*. *anglica* as an invasive species?

Additional species vs. S. anglica

treatment

S. anglica sediment oxidation

Treatment/Habitat	Sediment Redox	Porewater Sulfide (µM)
	Potential (mV)	
Intact S. anglica	-183.38 ± 170.82 (8)	$643.55 \pm 539.61 \ (10)$
Bare Mudflat	-291.67 ± 56.61 (3)	737.14 ± 1296.50 (6)
Mowed to Mud	-326.00 ± 68.07 (5)	747.58 ± 473.03 (8)
Mowed to Stubble	-316.60 ± 27.63 (5)	2205.80 ± 975.20 (8)
Mowed Previous Year	-193.33 ± 232.41 (3)	1114.37 ± 766.46 (3)

What substrate to use?

- Commercial availability of labeled compound
- Oxygen required for degradation
- low vapor pressure
- oxidation to carbon dioxide

Acknowledgments

- Brian Maricle Ph. D. student
 - aerenchyma measurements, some respirometry, environmental measurements
- EPA joint program in phytoremediation/Mitch Lasat
- NSF development of respirometry system

Distribution of hydrogen sulfide in sediments

Oxidized zone No hydrogen sulfide

Anoxic zone Hydrogen sulfide-rich

Checking for oxygen transport

- A plant can be sealed into a flask of N₂flushed water
- An oxygen-sensing probe can be used to monitor the water--any increase in O₂ must have come through the plant

Flow-through chambers

•Quantify O₂ consumption and transport

- •Upper enclosure allows plant to be subjected to numerous conditions:
 - •Normal air (~21% O_2)
 - •N₂ gas (0% O₂)
 - •Under water

