Rhizosphere-Enhanced Treatment of PAHs at Cold, Remote Locations; Challenges of Application and Monitoring

Federal Cold Region Sites

High Input Systems

Low Input Systems

Phytoremediation / Rhizosphere enhancement

Dig and haul
Incineration
Low-temperature thermal desorption
Soil washing
Bioslurry reactors
Composting
Air sparging and bioventing
Landfarming

Natural attenuation

Impact of Limitations

Microbial activity in soil is not constant –but starts and stops many times f (temperature, moisture, carbon additions, ???)

Stimulating Microbial Activity via the Rhizosphere Effect

- Analog enrichment (natural forced molecular evolution)
- Stimulated microbial #s & activity
- Reduced M-T limitations, pseudomixing
- Carbon-enriched environment
- Not necessarily plant uptake
- Increased OM Humification

???

Measuring Contaminant Loss is Difficult

Landfarm at Fairbanks Airport

- Tilled ~ weekly
- Fertilized and limed
- Irrigated
- Periodically, composite samples taken near 25 nodes
- Calculated half-lives varied ~7-X

Half Life Distribution (days)

Variability in Contaminant and Product concentrations makes their routine use for monitoring difficult, and this is exacerbated for:

- Surface soils
- Non "brute-force" treatment methods
- Most situations whether implementation, regulatory monitoring, or research studies

Replicated
Grasses, Nutrients, Both, Control
"Soil sock" approach
Crude and Diesel

The rhizosphere-effect really does work ... Fairbanks data

Lab study Alaska soil Winter rye

TPH Changes

No nutrients added

Hexadecane

Easy to degrade, Little difference

Pyrene

Recalcitrant, big difference

Selected Compounds Non-vegetated

Selected Compounds Non-vegetated

Selected Compounds Vegetated

We can subtract Vegetated from Non-Vegetated to visual rhizosphere effect

Benefit due to Rhizosphere Effect
[Non-veg] - [Vegetated]
is f (Compound and Time)

Rhizosphere effect has <u>Time</u> and <u>Compound</u> Component s

Biomarkers...

Petroleum - a Complex Mix of hydrocarbons

Generalized Composition of Crude Oil

Compositional Variability

- May consist of 100s to 1000s of hydrocarbons
- Natural or remediation-enhanced weathering of hydrocarbons in soil substantially alters its composition
- Chromatographic methods yield most accurate measures of extractable hydrocarbons
- Inherent variability in TPH can be minimized by normalization to a recalcitrant marker compound

Biomarkers...

Benefits to Normalizing TPH to Hopane

- Precision (concentration data) can be increased when data are normalized to internal marker such as hopane
 - Raw TPH soil data has inherently high variability
 - Concentration data can become more variable as petroleum weathers
- Normalizes TPH concentration data

Assumes that contaminant at a site has uniform composition at t=0

In addition to TPH, we can normalize other compounds w.r.t a biomarker

Two Field Demo Sites in Korea

Not cold sites, but in practice similar problems to cold regions

Factorial
Ryegrass (Yes / No)
Nutrients (Yes / No
4 reps
Composite samples

Korea - Site 1

16 graphs (1 per soil sample) of previous graphs "stacked" together

Recalcitrant

Easy

Depletion data from 4 reps of 4 trts

Monitoring Rhizosphereenhanced remediation...

- Petroleum
 - 1000s of compounds
 - biodegrade at different rates
 - by different enzymes
- We can exploit differential rates
 - confirm degradation
 - compare treatments
- And it may also give us better insight

Benefit due to Rhizosphere Effect is *f* (Compound and Time)

- ★ Data also suggest that for effective monitoring, you must know:
 - How to sample
 - What to look for
 - When to look for it...
 - and when is f (microbial processes), not our calendars
 - ... and microbial processes are f (conditions)...{H2O, Temp., Carbon additions}

How can we do this?

- Weathered at t=0
- "Polishing"
- Most effect is with PAHs

Campion – PAH Depletions

Annette Island – TPH Depletions

C

- Non-uniform composition
- Nutrients and (Nutrients and Plants) starting to respond

Barrow - TPH Depletions

Rhizosphere effect improves degradation...and Contaminant decreases are related to microbial shifts Control Vegetated

How can we characterize microorganisms in soil???

Phenotype

<u>PLFA</u> (Phospholipid fatty acids)

- Biomass
- Community Composition
- Physiological Status

- Almost an expression of activity - Use DNA fragments for in situ estimate of activity
- Soon use RNA fragments for in situ estimate of gene expression → enzyme synthesis

PCR (Polymerase Chain Reaction)

RNA

protein

<u>t-RFLP</u> (Terminal Restriction Fragment Length Polymorphism)

Enzvme

<u>TGGE and DGGE</u> (temperature/density gradient gel electrophoresis)

RT-PCR (real-time or quantitative PCR)

Selective Media & FAME

- ➢ CFUs/g
- Identification of culturable organisms

Summary

- It's a system
- We can adjust fertilizer and select plant species
- Water and temperature more difficult to alter

Monitoring ...??

- "Standard" methods may not be appropriate
- Multiple lines of evidence
 - More "selective" chemical techniques
 - Possibly microbial techniques?
- The best response variable for monitoring may <u>change</u> with "status" of the system
- Phyto
 - Generally
 ≅ fertilizer initially
 - Phyto > fertilizer as recalcitrance ↑
 - Fits well with concept of root-released carbon

