Phytoremediation Applications for Arsenic Contaminated Soil and Water

Michael J. Blaylock, Ph.D.

Edenspace Systems Corporation
15100 Enterprise Court, Suite 100

Dulles, Virginia

Tel. 703 961-8700, Fax 703 961-8939 www.edenspace.com

edenspaceTM

Arsenic in Soils

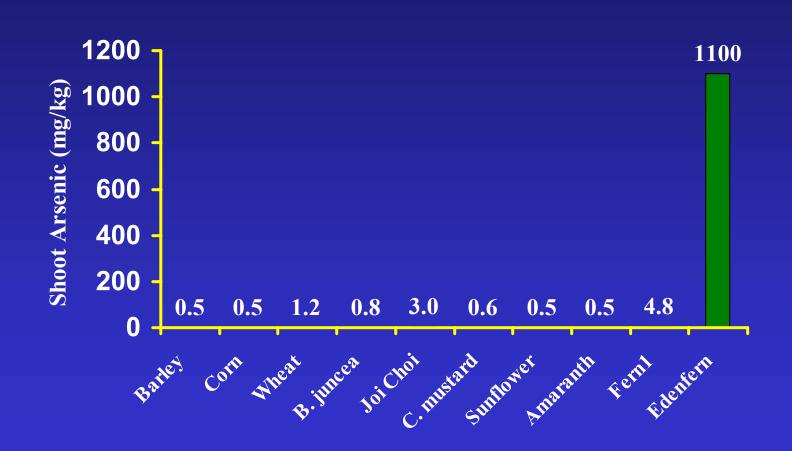
- Arsenic was used extensively as an agricultural pesticide (lead arsenate, arsenic trioxide, calcium arsenate) and as a wood preservative (CCA).
- Soil arsenic is increasingly receiving more attention due to housing developments on former agricultural lands.
- Traditionally remediated through excavation and disposal.
 - Effective for small areas, cost prohibitive for large areas
- Arsenic exists in oxidized soils primarily as an anion (arsenate).
 - Low solubility
 - Primarily surface soil (0-15 cm) contamination.
 - Relatively low regulatory limits ranging from less than 1 mg/kg to approximately 20 mg/kg

Arsenic in Drinking Water and Groundwater

- Groundwater and drinking water contamination is largely due to natural sources.
- Recent decreases in the arsenic limits for drinking water to 10 μg/L has caused demand for alternative treatments for small drinking water systems.
- Widespread arsenic contamination of water supplies in other countries (i.e., Bangledesh) has increased attention given to arsenic.

edenspace[™]

edenfern Discovery and Development


- Ferns in *Pteris* genus reported as hyperaccumlators demonstrating shoot arsenic concentrations greater than 20,000 mg/kg (Ma et al., 2001).
- Effectively accumulates arsenic at low and high soil concentrations.
- University of Florida filed U.S. and International patents, exclusively licensed to Edenspace for phytoremediation.
- Field demonstrations conducted at two sites (New Jersey and North Carolina.

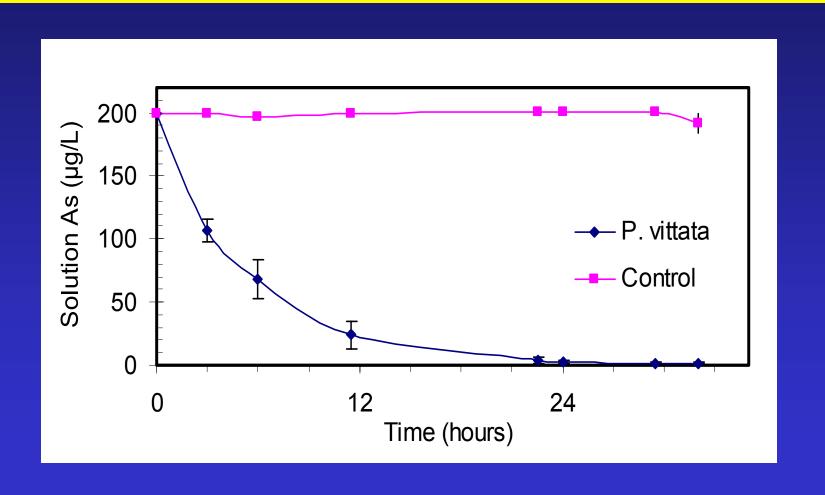
Arsenic Uptake by *P. vittata* from Contaminated Soil

Soil	2 Weeks	6 Weeks
Control (6 mg/kg)	755	438
CCA (400 mg/kg)	3,525	6,805
Spiked 50 mg/kg	5,131	3,215
Spiked 500 mg/kg	7,849	21,290
Spiked 1500 mg/kg	15,861	22,630

(Ma et al., 2001)

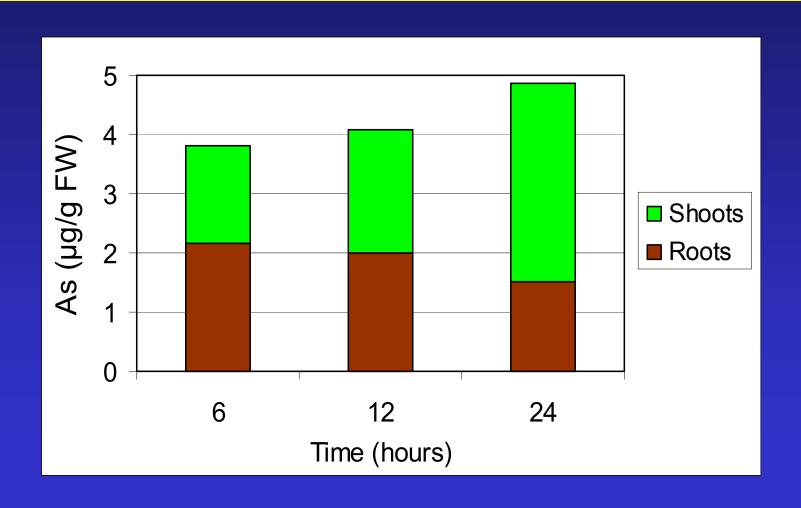
Arsenic Accumulation in Different Crop Plants

edenspaceTM

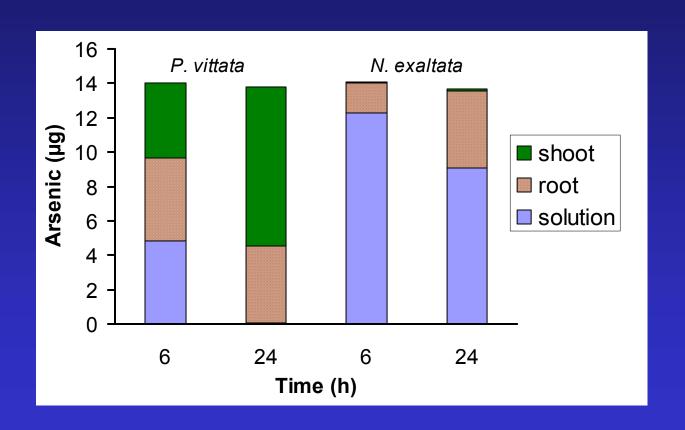

Phytofiltration Studies

- NIH funded research to investigate potential treatment methods for arsenic contaminated drinking water.
- Evaluate arsenic uptake rates and processes at low (< 200 μ g/L) concentrations.

edenspaceTM



Arsenic Removal from Water by P. vittata



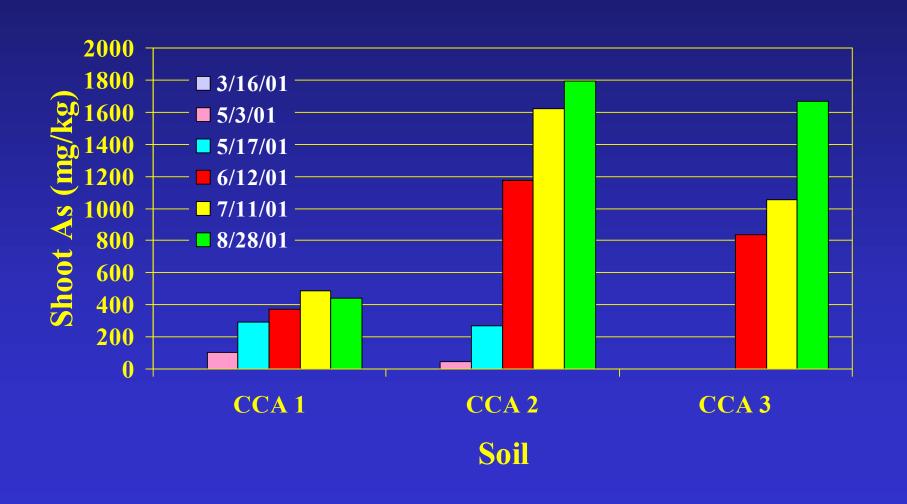
edenspaceTM

Root-Shoot Distribution (*P. mayii*)

Arsenic Distribution in P. vittata and N. exaltata

Soil Phytoextraction

- Laboratory Studies
 - Treatability studies (commercial sites)
 - USDA and EPA funded (SBIR) studies to investigate arsenic removal in soils contaminated from CCA and pesticide sources.
- Target soil concentrations less than 100 mg/kg
- Field applications and demonstrations
- Residential applications


Phytometric Parameters

Soil	рН	EC	Water-Soluble [As]	Total [As]
		dS/m	mg/kg	mg/kg
CCA 1	6.9	0.12	<0.6	5
CCA 2	6.5	0.26	1.2	500
CCA 3	6.4	0.49	1.7	2500
NJ 1	5.3	0.22	0.6	46
NJ 2	5.3	0.25	0.9	40

Arsenic Bioavailability

Fraction	CCA 1	CCA 2	NJ 1	NJ 2
	←	% of To	otal As	-
Labile	21	21	16	19
Weakly Sorbed	0	7	38	40
Occluded	35	15	40	36
Organic	20	11	6	5
Residual	24	46	0	0

Plant Uptake of Arsenic from CCA Soil Growth Chamber Study

Arsenic Accumulation in edenfern

(4 weeks after transplanting - growth chamber study)

Fern Species	Fern As Concen	Fern As Concentration (mg/kg)	
	Site B	Site C	
	(Soil As = 46 mg/kg)	(Soil $As = 40 \text{ mg/kg}$)	
P. vittata	418	387	
P. mayii	1270	860	
P. parkerii	1627	1481	

Arsenic Phytoextraction Field Studies

- Studies conducted with US Army Corps of Engineers (Vicksburg)
- New Jersey
 - Former apple orchard (lead arsenate pesticide use)
 - Soil arsenic concentrations up to 150 mg/kg, typically 15 to 60 mg/kg
 - Arsenic is located in the surface soil (0 to 15 cm), distribution follows the tree driplines.
- Wilmington, North Carolina
 - Dredge materials
 - Soil arsenic concentrations average approximately 10 mg/kg

Field Performance of edenfern

12-Weeks Growth (New Jersey - 2001)

	Shoot [As]	Biomass	Soil [As] Recovered in Biomass
	mg/kg	kg/ha	mg/kg
P. vittata	900	13050	5.9
P. mayii	2013	6100	6.1
P. parkerii	1416	5050	3.6

edenspace™

Shoot Accumulation of Arsenic by *P. vittata*New Jersey - 2002

15	cm	ena	cina
		3 pa	cing

7-Jul	7-Aug	5-Sep
Shoot	As (mg/kg)	
67	220	395
201	418	661
		Shoot As (mg/kg) 67 220

30 cm spacing

A	91	216	389
В	183	1062	1739

Wilmington, NC - P. vittata

Fern Growth and Biomass Yields

- Fern growth in New Jersey in 2001 was very good (>13,000 kg/Ha for P. vittata. Growth in 2002 was significantly less.
- Biomass yields in 2002 at the Wilmington site for P. vittata ranged from 4000 kg/Ha (1st year plants) to more than 20,000 kg/Ha (2nd year plants)

	Wilmington, NC - Yield (kg/Ha DW)		
	1st Year Plants 2nd year Plants		
P. vittata	4092	20511	
P. mayii	4105	4357	
P. parkerii	1348	2430	

Residential Arsenic Demonstration

- The National Capital Area Federation of Garden Clubs includes 4,000 individuals and 126 garden clubs in Maryland, Virginia and the District of Columbia.
- Edenspace requested 30 volunteers to test use of the edenferntm in residential soil to remove CCA-derived arsenic.
- A kickoff meeting was held in April, 2002 at the River Farm headquarters of the American Horticultural Society to distribute fern plants and instructions.
- Ferns were planted, tended and sampled by homeowners and gardeners. Plants were sampled at the end of September.
- Samples collected by study participants have shown fern arsenic concentrations as high as 3500 mg/kg

edenspace™

Summary

- The edenfern shows promise as a means to address arsenic contamination in soils and water
- Uptake and translocation occurs rapidly
- Accumulation occurs at low levels of water-soluble As (i.e., < 2 mg/kg) in soil and ppb levels in solution.
- Bioconcentration factors as high as 100 fold at high and low levels of soil arsenic
- Initial field results indicate about 20 mg/kg soil As can be recovered due to plant uptake over an entire growing season.