

Laboratory Calibration and Field Deployment of the Polar Organic Chemical Integrative Sampler (POCIS) for Pharmaceuticals and Personal Care Products

Sherri L. MacLeod and Charles S. Wong Department of Chemistry

Pharmaceuticals as Pollutants

- numerous drugs
- intended biological effects in target organisms
- portions excreted unchanged
- sewage treatment removes pathogens
- continuous unregulated discharge
- non-target organisms chronically exposed

Daughton & Ternes Environ. Health Perspect. 107 (1999) 907. http://www.ehponline.org/members/2005/113-10/spheres.html.

Non-target Organisms

from a recent review

(Fent et al. 2006 Aquatic Toxicology)

- acute effects
 - scenario unlikely unless a concentrated spill
- effluent/surface concentrations
 - generally 100x < chronic LOEC in lab organisms
- → chronic effects not extensively studied

http://www.galab.de/laboratories/services/environment/pharmaceuticals.html

http://www.galab.de/laboratories/services/environment/pharmaceuticals.html

Characterizing Exposure

- grab/composite water samples
 - laborious
 - captures snapshot
 - may miss important events
- passive sampling
 - low maintenance
 - provides time weighted average
 - characterizes chronic exposure

SPMD for nonpolar organics

http://www.est-lab.com/img/spmd_onspider_250.jpg

Polar Organic Chemical Integrative Sampler (POCIS)

- sequesters polar organics from water
 - pharmaceuticals & pesticides
- field usage mainly qualitative (ng/POCIS)
- requires calibration to be quantitative

← single POCIS

Alvarez, Doctoral Thesis, University of Missouri Columbia, Columbia, MO, 1999. U.S. Patent 6,478,961 – Petty, Huckins, Alvarez, November 12, 2002. Alvarez et al. Environ. Toxicol. Chem. 23 (2004) 1640. Jones-Lepp et al. Arch. Environ. Contam. Toxicol. 47 (2004) 247. Polar Organic Chemical Integrative Sampler (POCIS)

- calibrated for uptake of 6 drugs
- aqueous boundary layer controlled uptake
- resistant to biofouling

Alvarez et al. Environ. Toxicol. Chem. 23 (2004) 1640. Jones-Lepp et al. Arch. Environ. Contam. Toxicol. 47 (2004) 247. Alvarez et al. Chemosphere 61 (2005) 610. **Research Goals**

- 1) to carry out lab based calibration of POCIS to characterize uptake of several common pharmaceuticals and personal care products (PPCPs)
- 2) to use field deployments for demonstration of the utility of the calibrated sampling rates

7

Calibration Experiment

POCIS exposed to 33 common PPCPs

- **A) flowing conditions** (25 days, 4 renewals)
- **B) quiescent conditions** (29 days, 3 renewals)

setup:

- 3L water per vessel (spiked at 1 ng/mL)
- 3 separate vessels per condition
- protected from light
- regular water samples analyzed to monitor uptake

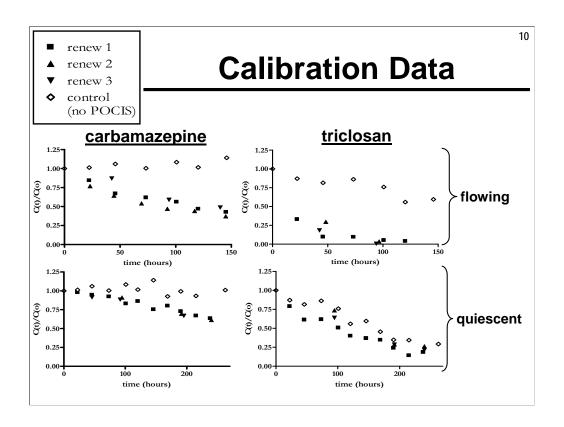
controls:

- **1. no drug** (monitor for contamination)
- 2. no POCIS (monitor for dissipation)

Alvarez, Ph.D. Thesis, University of Missouri-Columbia, Columbia, MO, 1999.

Measuring Uptake

assuming first order kinetics for uptake:


$$C_{\mathsf{w}}(t) = C_{\mathsf{w}(\mathsf{o})} e^{-kt}$$

 $C_{\mathbf{w}}(t)$ = aqueous concentration of PPCP at time,t $C_{\mathbf{w}(\mathrm{o})}$ = initial aqueous concentration of PPCP

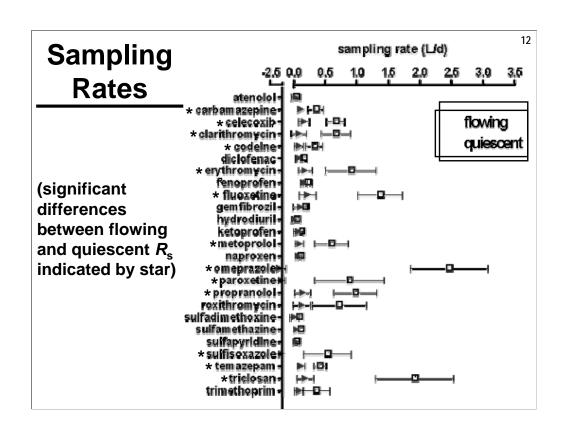
uptake rate constants

obtained for each renewal period averaged for each condition (flowing and quiescent)

dissipation rate constants similarly obtained for "no POCIS" control subtracted from uptake rate constants

carbamazepine, a commonly used anti-epileptic drug, poorly eliminated in WWTP thus frequently found in surface waters

AND


triclosan, a commonly used antimicrobial agent, also commonly found in surface waters

Sampling Rates

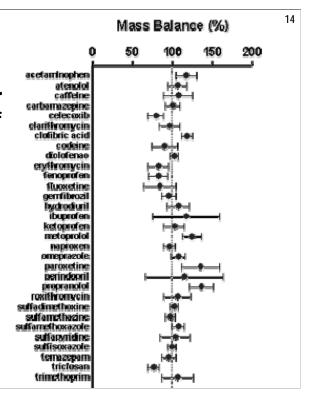
sampling rate = $R_s = kV$

where V = 3L water in vessel

- rate = effective L water sampled per day
- 3 flow rates investigated
 - inconclusive for $R_{\rm S}$ dependence on flow rate
- POCIS calibrated for 25 of 33 drugs
 - reliable data over course of experiment
 - reproducible uptake curves
 - 13 of 25 show boundary layer controlled uptake

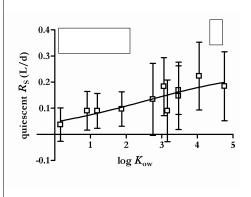
Undetermined Sampling Rates

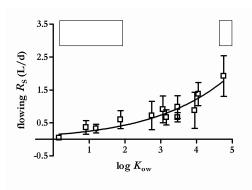
caffeine

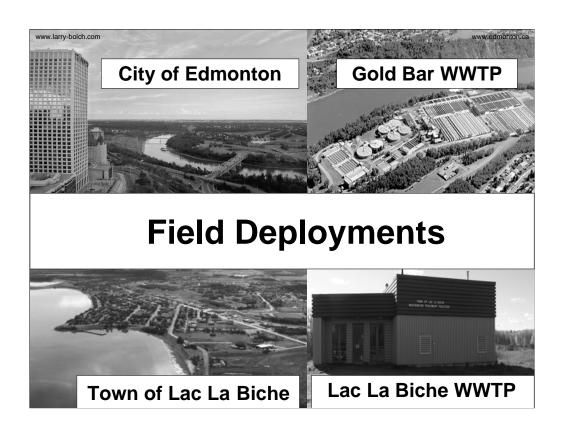

- only 3% dose sequestered
- uptake data scattered
- POCIS not suitable based on this data set

omeprazole, paroxetine, sulfisoxazole

- dissipation comparable to quiescent uptake
- reliable sampling rate could be determined for quiescent water conditions




- indicates portion of experimental dose accounted for
- most ~100%
 - reliable accounting
 - no dissipation once sequestered on POCIS

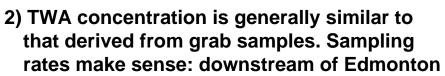


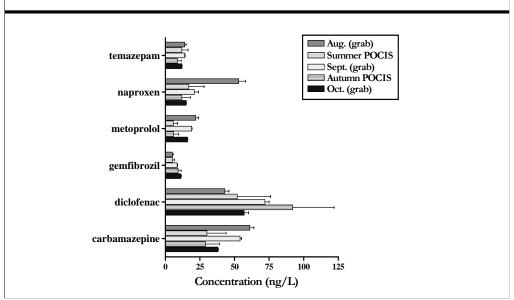
Sampling Rates & PPCP Properties

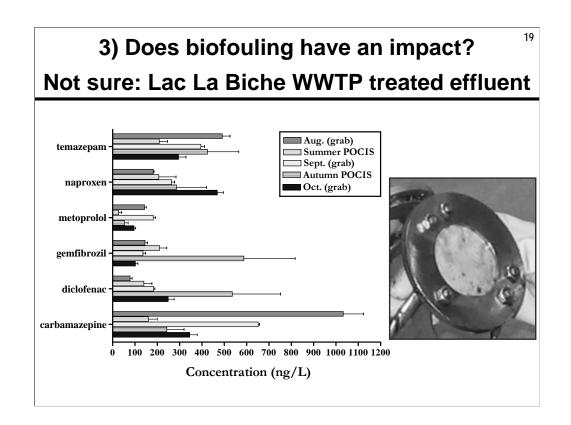
- no correlation with molecular weight
- correlations with log K_{ow} if classified
- example: cations

- grab samples taken at deployment/retrieval
 - range of PPCP concentrations

POCIS in the Field

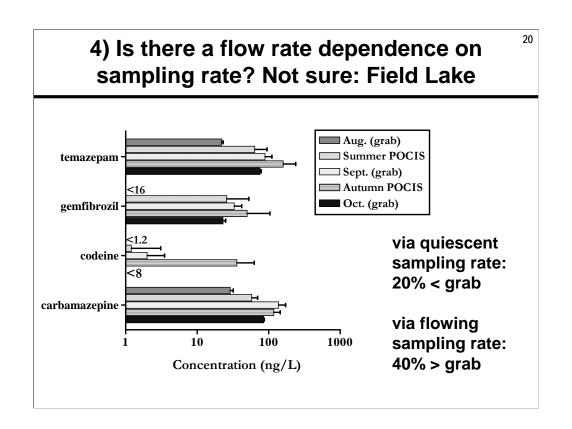

1) POCIS captures information that grab samples may miss.


example: carbamazepine upstream of Edmonton


- grab samples: 1 L

- POCIS: 11±3 L (30 days)

grab (ng/L)	POCIS (ng/L)	grab (ng/L)	POCIS (ng/L)	grab (ng/L)
0.55 ±0.08	0.12 ±0.04	<0.06	0.14 ±0.15	<0.04



EXTRA INFO

potential biofouling potential uptake curve not linear for part of the sampling period

Conclusions & Future Work

- POCIS calibration completed for 25 PPCPs
 - some are boundary layer controlled
 - potential dependence on log K_{ow}
- reasonable for TWA determinations
- unanswered questions
 - dependence on analyte properties?
 - dependence on environmental variables?

Acknowledgements

Wong Group Members & Machine Shop (University of Alberta)

Brian Jackson & Mike Bilyk (Alberta Environment)

Gary Siebold & Maurice Brulhart (Lakeland County & Lac La Biche)

SETAC Early Career Award for Applied Ecological Research sponsored by ACC (CSW)

