

COMPARISON OF SPMDs AND BIOTIC SAMPLERS USING GNOSTIC ANALYSIS

Institute of Public Health, Ostrava, Czech Republic National reference laboratory for POPs

Tomas Ocelka, Pavel Kovanic

Tomas.Ocelka@zuova.cz

l

TOPICS

- Sampling methods to be compared
- Objects of measuring
- Problems of analysis
- Gnostic analysis
- Methods' features to be compared

Results of comparison

Centre laboratories, accreditation

- Personnel: over 140, 5+2 workplaces
 According to ČSN EN ISO/IEC 17 025 Over 200 parameters, PCDD/Fs, PCBs, OCPs, PBDE, Recognized by ILAC, EA, IAF
- Sampling and Testing
 - Integral water

 SPMDs

 - DGTs
 - POCIS
 - Biotic organisms
- Intercalibration
 - Czech + International
- Data analysis (univariate/multivariate)
 - Statistical
 - Gnostic

Data source for comparison of methods

- All rivers within Czech Republic scale (15)
- 21 sampling profiles
- Complementary to biotic sampling system (since 1999) with abiotic (SPMDs, DGTs, POCIS) since 2003
- Aims
 - Pilot application 2 years before routine application
 - Parallel exposure of Dreissena Polymorpha, Benthos, Plants
 - POPs (basic: OCPs, PCBs)
 - POPs (other: PCBs cong., PCDD/Fs, PAHs, PBDEs)

SAMPLING METHODS TO BE COMPARED

Three biotic methods:

- Bentos
- Dreissena
- Plants

One abiotic method: SPMD

(Semipermeable Membrane Measuring

Device)

The selection

Concentrations of selected permanent organic pollutants (POPs) in several locations of Elbe river in Czech Republic: p.p.DDE, PCB138, PCB180, PCB101, PCB28.31, p.p.DDT, p.p.DDD, PCB52, PCB118

PROBLEMS OF ANALYSIS

- □ Small data samples
- □ Different mean concentrations
- □ Strong variability
- □ Different length of data vectors
- □ Data censoring (eg data below the LOD)
- □ Non-homogeneous and outlying data

SPECIFICS of MATHEMATICAL GNOSTICS

- Theory of individual data and small data samples
- Realistic assumptions
- Uncertainty: a lack of knowledge
- "Let data speak for themselves"
- □ Results maximizing information
- Natural robustness

OT NIOSES OF SOLUTION OF SOLUT

GNOSTIC DISTRIBUTION FUNCTIONS

- No a priori model (everything from data)
- Maximum information
- Robustness in estimation of probability, quantiles, scale and location parameters, bounds of data support, and membership interval

Robust correlations

GNOSTIC DISTRIBUTION FUNCTIONS II

- Data homogeneity tests
- Marginal cluster analysis
- Cross-section filtering
- Applicability to censored data

Applicability to heteroscedastic data

QUALITY OF METHODS TO BE COMPARED

- □ Relative sensitivity (treshold, range)
- ☐ Homogeneity of results
- □Consistency of results
 - Internal (of method's own results)
 - External (mutual consistency of methods)
- □Informativeness of results
- Precission

RELATIVE SENSITIVITY

Method's relative sensitivity depends:

- On the pollutant's concentration
- □ On the method's measuring domain $RS = (1 NC/N) \times 100 (\%)$

NC ... number of data in the interval [sensitivity threshold, max(range)]N ... all data of the sample

HOMOGENIZATION

TO BE OR NOT TO BE?

Homogeneous data:

the same origin of true values the same nature of the uncertainty To homogenize?

□ Pros:

More certain main cluster

□ Cons:

Possible loss of information Rule: homogenize and verify

MEASURABILITY

Homogenization ... elimination of outliers

 $Meas = (1 - (NL+NU)/N) \times 100 (\%)$

NL ... number of lower outliers

NU ... number of upper outliers

N ... number of the sample's data

 $N - NL - NU \dots$ data of the main cluster

DIFFERENCES IN METHODS

- □ Different accumulation of pollutants:
 - different mean concentrations
 - different variabilities
- Different relations between means
- □ Rare exception: agreement in PCB118
- □ Impact of outliers to SPMD? **NO!**

METHOD'S CONSISTENCY

Methods are *consistent* when they give similar results

Measuring of similarity:

Correlations, or (more generally)

mean angles between vectors of results $SIMcc = 100 \times correl.coefficient$ (%) $SIMqa = 100 \times (1 - |Ang|/180)$ (%)

GNOSTIC CORRELATIONS

Data error in gnostic: irrelevance

$$ir = (2p - 1)/2$$

p... probability of the data item.

Correlation coefficient of two samples:

$$Gcc(M,N) = cc\{ir(m),ir(n)\}$$

(m in M, n in N), cc{ ..} statist. cor.coef.
Robustness:

$$-1 <= ir <= +1$$

SIGNIFICANCE OF CORRELATIONS

- Problems: false statistical model (normality?!, finite data support), small data samples, unrobustness
- □ Gnostic estimating of significance:
 - fast, auxiliary: using Spearman's robust estimate of significance
 - carefully: distribution function of correlation coefficients

QUANTILE VECTORS

- Make sample's distribution function
- Set a series of probabilities p1,...,pN
- Find quantiles q1,...,qN so that P{qk}=pk
- Take q1,...,qN as a quantile vector

Advantages:

Robustness, making use of censored data, independence of data amount and of mean data value, filtering effect.

EXTERNAL CONSISTENCY

Approaches:

- Correlations
- □ Angles between MD-vectors of means
- □ Angles between quantile vectors
- Conjunction of typical data intervals
- □ Conjunction of data supports

INTERVAL ANALYSIS

- 1) Distribution functions
- 2) Interval analysis:
 - a) Data support (LB, UB)
 - b) Membership interval (LSB, USB)
 - c) Interval of typical data (ZL, UL)
 - d) Tolerance interval (ZOL, ZOU)
- 3) Overlapping:

100xconjunction(I1, I2)/union(I1,I2) (%)

INFORMATIVENESS

- Data sample
- 2) Distribution function
- 3) Probability p of an individual data item
- 4) Information of the data item:

$$Info=(p log(p) + (1-p)log(1-p))/log(1/2)$$

5) Informativeness of a data sample:

100 x Mean(Info) (%)

EVALUATION OF PRECISION

☐ Weak variability:

$$Prec = 100 \times (1 - STD/AVG)$$
 (%) (STD ... standard deviation, AVG ... mean)

□ Strong uncertainty:

0 <= GW <= 1

SUMMARY COMPARISON

	Averige of 14 evaluations			
Method	Non-hom.data	Homog. data		
Bentos	60.9 %	62.7 %		
Dreissena	64.5 %	67.5 %		
Plants	64.2 %	68.9 %		
SPMD	67.5 %	69.5 %		

RATING OF METHODS

Feature	Bentos	Dreiss.	Plants	SPMD
Ext.consistency	4	3	1	2
Int.consistency	4	3	2	1
Informativeness	1	3	4	2
Precission	3	1	4	2
Homogeneity	2	4	3	1
Rel.sensitivity	3	1	2	1
Mean rating	2.8	2.5	2.7	1.5

Conclusions

- Passive sampling, like SPMDs shown the best results; if there are no legal requirements for biota, biotic organisms can be replaced
- Do not forget to analyze data precisely, independently, before your interpretation
 - Do not rely ONLY on functionality of any processing package
 - Statistical approach has some limitations on small data sets (majority of monitoring studies)
- Any headache from analytical tools can be eliminated by experience
 - Try it!

Further intentions

- Finalization of Gnostic analytical tool, with GUI (S-Plus)
- Extension to other platforms by interface
- Linking to databases (LIMS, GIS, ...)
- Training and dissemination
- Projects solutions and participationsJoin us: 2-FUN project, www.2-fun.org

