Define End-State and Optimize Monitoring Program Using High-Performance Computing

DOE-EM Sites: Progress

Challenges

Remaining sites....

- Complex contamination
 - Multiple radionuclides, heavy metals (Hg)
 - VOC and other organic compounds
- Hard/expensive to access
 - Deep vadose zones
 - Increased drilling cost
- Large volume with low contamination
 - Not practical to remove soil (too much \$\$/waste)
 - Treatment/removal technologies are not effective

Environmental Monitoring

- Ensure public safety
- Prepare for liability issues

Good example: Monitoring data proves that the site is safe to dismiss false claims

Beneficial for both residents and site operators

Bad example: Data anomaly cannot be explained → extra >\$100M

Research Goals

- Transition from active to passive remediation and monitored natural attenuation
 - SRS F-Area (2004) \$12M/yr → \$1M/yr
- Improve long-term monitoring
 - Great portion of life cycle cost (>\$10M/yr)
 - Detect new leaks/migration
- Ensure long-term stability of plumes
 - Climate change?

New Paradigm of Long-Term Monitoring

- In situ sensors, wireless network, cloud computing
 - → Autonomous continuous monitoring

Electrical Conductivity (EC)

Big Data

Data Analytics for Monitoring

- Big Data analytics
 - e.g., Principle component analysis (PCA)
 - System understanding
 - Master variables vs contaminant conc.

Kalman filtering

 In situ real-time estimation of contaminant concentration

Big Interest in Environmental Monitoring

Modeling for Supporting Monitoring

- Confirm the correlations: Master variables vs contaminant concentrations
- Climate resiliency: how to place monitoring wells or what to expect in the response to climate changes
- (In development) Monitoring well placement based on simulated plume evolutions

Demonstration: SRS F-Area

Disposal activities:

- Disposal of low-level radioactive, acid waste solutions (1955– 1989)
- Acidic plume with radionuclides (pH 3–3.5, U, ⁹⁰Sr, ¹²⁹I, ⁹⁹Tc, ³H)

Remediation approaches

- Pump & treat (\$12M/yr) → Passive remediation (funnel-gate system for pH neutralization; \$1M/yr)
- Natural attenuation: long-term remediation alternative

Virtual Test Bed: ASCEM Overview

Advanced Simulation Capability for Environmental Management

Geochemistry Development

Complex geochemistry

- pH Dependent
- Aqueous complexation
- Surface complexation
- Mineral dissolution/precipitation
- Cation exchange
- Decay

		log ₁₀ K (25° C)
(1)Equilibrium Surface Complexation		
$(>SO)UO_2^+ \leftrightarrow >SOH - H^+ + UO_2^{2+}$		-0.44
(2)Cation Exchange		K (25 C)
$NaX \leftrightarrow Na^+ + X^-$		1.0
$CaX_2 \leftrightarrow Ca^{2+} + 2X^{-}$		0.316
$AIX_3 \leftrightarrow AI^{3+} + 3X^{-}$		1.71
HX↔H ⁺ + X		0.025
	log ₁₀ K (25° C)	Ref.
Quartz \leftrightarrow SiO ₂ (aq)	-3.7501	(1)
Kaolinite $\leftrightarrow 2\text{A1}^{+3} + 2\text{SiO}_2(\text{aq}) + 5\text{H}_2\text{O} - 6\text{H}^+$	7.57	(2)
Goethite \leftrightarrow Fe ⁺³ + 2H ₂ O – 3H ⁺	0.1758	
Schoepite \leftrightarrow UO ₂ ⁺² +3H ₂ O -2H ⁺	4.8443	(1)
Gibbsite \leftrightarrow A1 ⁺³ +3H ₂ O -3H ⁺	7.738	(3)
Jurbanite \leftrightarrow Al ⁺³ +SO ₄ ⁻² +6H ₂ O-H ⁺	-3.8	(4)
Basaluminite $\leftrightarrow 4\text{Al}^{+3} + \text{SO}_4^{-2} + 15\text{H}_2\text{O} - 10\text{H}^+$	22.251	(4)
$Opal \leftrightarrow SiO_2(aq)$	-3.005	(5)
Aqueous complexinting	log ₁₀ K (25° C)	
$OH^- \leftrightarrow H_2O - H^+$	13.99	
$AIOH^{2+} \leftrightarrow AI^{3+} + H_2O - H^+$	4.96	
$Al(OH)_2^+ \leftrightarrow Al^{3+} + 2H_2O - 2H^+$	10.59	
$Al(OH)_3(aq) \leftrightarrow Al^{3+} + 3H_2O - 3H^+$	16.16	
$AI(OH)_{4}^{-} \leftrightarrow AI^{3+} + 4H_{2}O - 4H^{+}$	22.88	

(and more)

Flow/Transport Model

3D Mesh Development

Uranium Plume Evolution

ASCEM Modeling Results

user: user Sun Apr 14 10:34:15 2019

Validation with Observations

Good agreement with observations

In situ Monitoring: Master Variables vs U Conc.

Measured

log-Nitrate, mol/L

pH

Resiliency to Climate Disturbances

Extreme Events

- Flooding
- Drought

Savannah River Flooding, 2016

What will happen to residual contaminants?

Technical Initiative in SURF and ITRC

- How to prepare for climate change in sustainable remediation

Resiliency to Climate Disturbances

Journal of Communicant Hydrology 226 (2019) 103518

Contents lists available at ScienceDirect

Journal of Contaminant Hydrology

Climate change impact on residual contaminants under sustainable remediation

Arianna Libera^{a,e}, Felipe P.J. de Barros^a, Boris Faybishenko^b, Carol Eddy-Dilek^c, Miles Denham^d, Konstantin Lipnikov^e, David Moulton^e, Barbara Maco^f, Haruko Wainwright^b

- * Sonny Astani Dept. of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Savannah River National Laboratory, Aiken, SC, USA
- ^d Panoramic Environmental Consulting, LLC, Aiken, SC, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
- Wactor & Wick LLP Environmental Lawyers, Oakland, CA, USA

Flooding, Drought Impact

+/- Precipitation/Temperature > Infiltration, ET

Trade off: Mobility vs Dilution

Climate Scenarios: Flooding

Flooding Event Effect

- Increase in precipitation of ONE year: x1.5 x 10 in 2020
- Dilution then Increase
- Effect can linger for two decades
- Source zone wells important to detect remobilization
 - Export to the river doesn't change significantly

Monitoring Optimization

- How can we identify key monitoring locations, using increasingly available spatially extensive data?
 - Geophysical plume mapping
 - Simulated plume evolution
 - Airborne gamma mapping

Fukushima Radiation Mapping

- Integrate various types/footprints of data
- Uncertainty quantification
- Adopted by Nuclear Regulatory Agency

Wainwright H.M et al., (2016), A Multiscale Bayesian Data Integration Approach for Mapping Air Dose Rates around the Fukushima Daiichi NPP, J. of Env. Radioactivity

Monitoring Post Optimizations

Interpolation Error Reduction

- Identified 100 locations that capture the variability of air dose rates
- Extending to simulated plume at the F-Area

Summary

Cost effective strategies for long-term monitoring

- In situ sensors for continuous monitoring
- Reduce cost while enhancing the safety
- Data analytics: Kalman filter etc

Modeling for supporting monitoring

- Confirming in situ monitoring strategies
 - Correlations between master variables and contaminant concentrations: Now and future
- Climate change: what to expect, where to monitor?
- Optimizing monitoring locations based on spatially extensive data (mapping data or simulated data)