

Tooele Army Ordnance Depot – Continuous Improvement of a Groundwater Model for Remedy and Decision Making over a 25 Year Period

Jon P Fenske, P.E.

USACE-IWR-Hydrologic Engineering Center

Davis CA

Peter Andersen, P.E. Tetra Tech Inc. Alpharetta GA

James Ross, PhD, P.E. HydroGeoLogic Inc. Hudson OH

Tooele Valley, Utah

Map of Industrial Area and Source Locations

Tooele Army Depot

- Groundwater contamination since beginning of depot activities
 - 1942- WWII servicing of military vehicles
 - Primarily TCE
 - Multiple source areas (ditches, lagoons, sumps, landfill)
 - 4 mile long plume(s) extends offsite
- Remedial activities include:
 - Excavation and capping
 - 5400 gpm pump and treat (1994-2004)
 - Largest in Department of Defense
 - Air stripping
 - Source treatment
 - MNA
- Regulatory requirements
 - Monitoring and continued characterization
 - Annual updates to flow and transport model

Tooele Groundwater Flow and Transport Model

- Unique Case:
 - Groundwater Model Updated Annually over 25 Year Period
 - Consistent Modeling Team for Entire Period
- Applications:
 - Definition of Sensitive Parameters/Data Gathering
 - Conceptual Model Development
 - Support for Shut-Down of Pump and Treat System
 - Implementation of Monitored Natural Attenuation
 - Supporting Evidence for Abiotic Degradation
 - Probabilistic Analysis of Plume Migration Reaching Action Boundaries

- 1993 Completion of initial flow model by HEC
 - Evaluation of plume containment by Pump & Treat system
- 1997-2003 Annual Recalibrations
 - Model extent expanded to SW, NE; vertical resolution increased
- 2004 Flow and Transport Model
 - Model extent expanded NE,SE
 - Multiple calibration targets (heads, drawdown, plume migration, etc)
 - Steady state flow, transient transport
- 2007 Transient calibration of water levels from 1942 to present
- 2008 Analysis of uncertainty in model predictions
- 2010 Calibration using parameter estimation (PEST)
- 2016 Evaluation using Ensemble Kalman Filtering (EnKF)
- 2018 Initial implementation of abiotic degradation

Dimensional Changes Versus Time (log scale)

U.S.ARMY

Source Flux By Area: 2003, 2008, 2013 Models

2008

- WWII to Vietnam
- Remediation 1988 present
- Bldg 615 identified as bigger source in 2013 than previously thought

- Definition of Sensitive Parameters/Data Gathering
- Conceptual Model Development
 - Mountain Front Recharge to GW
 - Location of low K Confining Bed
- Support for Test Shut-Down (and Permanent Shutdown) of Pump and Treat System
- Implementation of Monitored Natural Attenuation
- Supporting Evidence for Abiotic Degradation
- Planning Lead Time for Potential Remediation
 - Probabilistic Analysis of Plume Migration Reaching Action Boundaries

Conceptual Model Development - Mountain Front Recharge

• Based on large snowfall, snowmelt event that occurred between March 26 and April 4, 2016

Weather history Tooele march 2016							
Day	High		Precip.	Snow	Snow		
	(°F)	(°F)	(inch)	(inch)	(inch)		
25 mar 2016	55.0	35.1	0.00	0,00	0.00		
26 mar 2016	51.1	28.0	0.46	2.99	0.00		
27 mar 2016	57.9	33.1	0.00	0.00	0.00		
28 mar 2016	57.9	30.0	0.49	2.99	0.98		
29 mar 2016	48.0	30.0	0.30	0.98	0.00		
30 mar 2016	45.0	30.0	0.00	0.00	0.00		
31 mar 2016	50.0	34.0	т	0.00	0.00		
1 apr 2016	52.0	33.1	0.00	0.00	0.00		
2 apr 2016	60.1	34.0	0.00	0.00	0.00		
3 apr 2016	68.0	42.1	0.00	0.00	0.00		
4 apr 2016	71.1	43.0	Т	0.00	0.00		

Upgradient wells near mountain front

D well measurements 3/25/15 to 11/15/16

Downgradient wells further away from mountain front (downgradient of fault)

* Early April water levels "spike" (ft)

2007-12-03

The rate and timing of direct mountain front recharge in an arid environment, Silver Island Mountains, Utah

Gregory T. Carling Brigham Young University - Provo

Conclusion

- SE wells closer to mountain fronts had greatest early April response in water levels.
- Thus, snowmelt and subsequent increased GW recharge from canyons, streams has direct, larger, and faster than expected influence on water elevations than previously anticipated.
- This is contrary to the previous conceptualization that subsurface recharge to model domain from mountain fronts took months/years

Integration of Conceptualization into Numerical Model

The MODFLOW CHD Package adjusted to interpolate greater GW inflows in SP6 – Fall/Winter 2016

	CH1	CH2	CH3	CH4			
SP1	477	364	277	305			
SP2	476	363	276	304			
SP3	475.5	362.5	275.5	303.5			
SP4	474.5	361.5	275.5	302.5			
SP5	473.5	360 5	275.5	301.5			
SP6	476	363	276	304			
SP7	474.5	361.5	275.5	302.5			
SP8	472.5	359.5	274.5	300.5			
Initial							

	CH1	CH2	CH3	CH4			
SP1	477	364	277	305			
SP2	476	363	276	304			
SP3	475.5	362.5	275.5	303.5			
SP4	474.5	361.5	275.5	302.5			
SP5	473.5	360.5	275.5	301.5			
SP6	476	367	276	304			
SP7	474.5	361.5	275.5	302.5			
SP8	472.5	359.5	274.5	300.5			
Final							

FY17 Transient Model Calibration – increasing subsurface inflow from canyons resulted in improved calibration

24

Conceptual Model Development – Confining Bed

25

Hydrogeologic approach based on water levels, response to agricultural pumping

Confining Bed – low K lacustrine deposits

Burk, et al. (2005) of the Utah Geologic Survey performed a study to delineate areas of recharge and discharge to springs and wetlands in the Tooele Valley.

Water balance survey.

The study also delineated location of a fine grained confining bed resulting from lake recession.

A conclusion of their analysis was the existence of a sloping confining layer near the same location as in the Tooele groundwater flow model. **Studies** were completely independent of each other and based on different approaches/data.

Burk et al., (2005)

Figure 7. Wetland unit 14, which includes wet-meadow environment. The photo was taken in August after most of the pond had dried up.

Burk et al., (2005)

Modeled TCE Plume in 1986

Modeled TCE Plume in 1997

Modeled TCE Plume in 2009

note: accurate match with flow gradient resulted in over simulation of transport

35

- Over-simulation of historical and future plume movement at the plume edge suggests that the model is not accounting for physical and/or chemical processes
- Separate sensitivity analysis indicated that simulated TCE degradation could improve the model match to observed plume migration
- These results support the presence of degradation in some areas of the aquifer
- Simulation of this process has potential to improve the calibration of the model and provide grounded predictions more consistent with recently observed trends in concentration
- Supports need for investigation of physical field evidence

Supporting Physical Evidence for Degradation

Magnetic Susceptibility (m³ kg⁻¹)

Figure 2. Rate constant for abiotic degradation of TCE on magnetite, as predicted from magnetic susceptibility.

EPA (2009)

Sediment sample from Tooele Army Depot

Figure 3. Magnetite extracted from core sample AS-8 310-315 with a magnet.

Supporting Physical Evidence for Degradation

- Magnetic susceptibility in core samples at TEAD-N suggest abiotic degradation of TCE
- First line of evidence for TCE degradation
- Measurements of magnetic susceptibility provide <u>broad</u> ranges of degradation
- Defined to be spatially variable via hydrogeologic zonation

Modeled 2017 plume w/o degradation

Updated modeled 2017 plume with degradation at extent of plume boundaries

40

- How long are TCE concentrations likely to remain below 5 μ g/L along the GWMA or 1-mile buffer boundary?
- Initialize predictive plume to reflect both modeled <u>and</u> observed TCE concentrations
 - Minimize uncertainty related to initial conditions
- Employ Monte Carlo analysis
 - Inject stochasticity into calibrated model parameters
 - Mean: Calibrated value
 - 95% confidence interval: ± 20% of mean
 - Randomly sample values from stochastic model parameters (frequency based on probability)
 - Models created by parameter sampling should all represent plausible versions of reality
 - Results should still reflect intended uncertainty while still maintaining relatively high calibration quality

Planning Lead Time for Potential Remediation

5-Year Prediction

Aggregate starting plume combining Kriged and Modeled TCE plumes

Planning Lead Time for Potential Remediation

1-Mile Buffer Boundary

- High likelihood of TCE concentrations remaining **below** MCL along
 - 1-mile boundary within 6 years (100% likelihood)
 - 1-mile boundary within 12 years (82% likelihood)

- The Tooele model has been continuously developed and refined on an annual basis over a 25 year period.
- The groundwater flow and transport modeling team has been largely consistent throughout the past 25 years.
- This has allowed for:
 - Multiple field investigations based on model findings
 - The increased complexity and expanse of the model as data warrants
 - Validation of the model based on studies independent from the modeling effort
 - Developing supporting evidence for abiotic degradation
 - Planning lead time for potential remediation in the future

44

Tooele Army Ordnance Depot – Continuous Improvement of a Groundwater Model for Remedy and Decision Making over a 25 Year Period

Jon P Fenske, P.E.

USACE-IWR-Hydrologic Engineering Center

Davis CA

Peter Andersen, P.E. Tetra Tech Inc. Alpharetta GA

James Ross, PhD, P.E. HydroGeoLogic Inc. Hudson OH

Questions/Comments?