

Defensible Statistical Sampling Design and Geophysical Data Analysis for Site Characterization

Jen Huckett, Lisa Newburn & Fred Day-Lewis

Pacific Northwest National Laboratory

PNNL-SA-185087

PNNL is operated by Battelle for the U.S. Department of Energy

Data Analysis and Statistical Sampling for Site Characterization

- Statistical sampling and analysis methods for later phases of site remediation are well established
 - Often required by regulations and guidance
 - Data collection driven by statistical requirements
- Challenges of characterization phase
 - Various vintages, sources and types of data
 - Conceptual site model (CSM) is continually evolving
 - Analysis is often subjective / qualitative and not reliant on external criteria
- Systematic planning, data quality assurance (DQA), geophysical data analysis, and statistical sampling design can assist in site characterization

Site Characterization and CSM Refinement

Integrated Site Characterization

3.7

Pacific

Northwest

NATIONAL LABORATORY

(ITRC 2015b) https://rmcs-1.itrcweb.org/4-adaptive-site-management/

Data Available for Survey Planning

Data source	Data set descrip
Previous to RSSI	Engineering drawings (facilities, structures, e background geophysical data (surface/subsu characterization and climate data for Concep development
HSA	Risk assessment, hazard assessment, RCRA/C soil/rock core sample data as appropriate), N appropriate), Source term quantification mo sites, Contaminant fate and transport model
Scoping	RI/FS or FI/CM reports, updated CSMs, speci types/design/media/location, proposed stati characterization of potential contaminant pl
Characterization	Geologic maps, soil maps, drillers logs, maps of groundwater levels, hydraulic tests, soil or GIS, visualizations, and maps for the site, Sur previous remediation activities (if applicable modeling results,
Remediation	Characterization of plume structure and compossibly computer models of flow and transport or prior relevant work demonstrating the featmonitoring data to assess performance of the sampling of contaminant concentration and effects.
Geophysical data	Borehole, cross-hole, surface, or remote sen electrical techniques (e.g., electrical resistivit polarization), electromagnetic methods (e.g. electromagnetic induction, magnetotellurics seismic methods (e.g., reflection seismology, tomography), gravity techniques (e.g., gravin magnetic techniques (e.g., magnetometers), fiber-optic distributed temperature sensing) methods.
Groundwater model	Deterministic or stochastic subsurface nume in the vadose zone, saturated zone, or a com model calibration results, and predictive resu describing the hydrogeology and forming the Model.
Authorized limit data	Authorized limit(s) based on DOE Order 458. required to translate regulatory limits to authydrologic parameters (i.e. soil density, prec based from pre-described risk approach, and RESRAD computer code.

tion(s)

etc.), operations logs, GIS maps, irface), water resource otual Site Model (CSM)

CERCLA documentation (including NEPA documentation (as Ideling/estimates for relevant ling

fication of sampling istical methods, identification and umes

of site infrastructure, collection r rock cores, and development of a rveillance monitoring data from), geophysical and hydrogeological

nposition, conceptual site model, port for the site, feasibility studies asibility of amendments, ongoing he remedy, including routine signatures of the remedy and its

sing collection of data through ty tomography, induced ., frequency and time domain s, ground penetrating radar), , seismic refraction, seismic metry and gravity gradiometry), thermal methods (e.g., infrared, or multi-spectral/hyperspectral

rical models of flow and transport abination, including input files, ults. Geo-framework model e basis for a Conceptual Site

.1 (DOE 2011, 2017) or data horized limit(s), including ipitation, irrigation) human health d other default params in the

Data Quality Assurance (DQA)

EPA QA/G-9 (https://www.epa.gov/sites/default/files/2015-06/documents/g9-final.pdf)

DATA ANALYSIS FOR CHARACTERIZATION

Geophysical Characterization

- Geophysical methods
 - Fill gaps in space (or time) between measurements
 - 2D or 3D imaging of subsurface properties
 - Indirect requires petrophysical conversion or correlation
 - Potentially valuable conditioning data for geostatistical methods
 - ✓ Quantitative estimation
 - ✓ Uncertainty reduction and quantification

 Credit: Tim Johnson (ERT); Piyoosh Jaysaval (EM)

Tomographic Image

Example 1: Static ERT Imaging of Subsurface Structure

Pseudocolor DB: march.exo Time:301.004 Var: 110

-1.000 -1.500

--2.000

-2.500

-3000

Max: 0.0000 Min: -3.518

Hanford Site 300 Area 2D ERT Image

Pacific

Northwest

3D ERT Image Around Cooling Water

Discharge Pipes at an Operating Nuclear Power Plant

Example 2: Static Imaging of Vadose Zone Contaminant Plumes

Hanford Site B-Complex

Northwest

Pacific

Example 3: Using Geophysics for Estimation

Example: Water quality in areas of oil & gas development in CA

- Indicator simulation of TDS based on:
 - Hard data
 - Soft geophysical data (EM logs)
- Framework can:
 - Combine different data types
 - Use prior probabilities based on ML analysis

Terry, Day-Lewis et al., 2022, Groundwater.

SITE STATISTICAL ANALYSIS FOR **CHARACTERIZATION**

Pacific Northwest Visual Sample Plan (VSP)

VSP available on PNNL website (link)

	-	
		- 8 ×
		_
al guidelines for conducting		
groundwater, etc.) and how to		
plan.		
field and a table that lists		
ment samples, or 3) selecting		
se sample areas contain the		
e site.		
an explanation of the costs		
al Sample Pl		
Example 1		
Example 1/		
7		
//		
//		
//		
/		
		-1
Watch here for user input	X=-0.05 Y=0.00	
watch here for user input	A=-0.00 1=0.00	

Screenshots from Visual Sample Plan

- VSP is a software tool to...
 - Design a statistically-based sampling strategy
 - ✓ How many samples should be collected, and where?
 - ✓ Based on the Data Quality Objectives (DQO) process

- VSP is a software tool to...
 - Design
 - Analyze data to support decisions
 - ✓ Statistical tests
 - ✓ Graphs, plots and summary statistics

- VSP is a software tool to...
 - Design
 - Analyze
 - Visualize maps, buildings, planned sample locations, and results
 - ✓CAD and GIS file import
 - ✓Map imagery download
 - ✓ 3D room and equipment modeling and visualization

- VSP is a software tool to...
 - Design
 - Analyze
 - Visualize
 - Guide users who don't have statistical expertise
 - ✓ Decision-driven and plain (jargon-free) language
 - ✓ Automatically generated reports documenting steps and assumptions
 - ✓Thorough documentation and references

	🏶 Visual Sa	mple Plan - [MarssimSign-	Soil-Unity	/-Data]
	🕏 <u>F</u> ile <u>M</u> a	ap <u>E</u> dit <u>S</u> a	mpling Goals	<u>T</u> ools	<u>O</u> ptions
	0 🗯 쮈		× 💏 🖌	2 💵	Z 💲 📰
ſ	Nuclide	s Analyzed	by Study		
	Nuclide	DCGL _₩ pCi/g	DCGLEMC		
	Am-241	2.1	9.4		
	Cs-137	11	18.7		
	SrY-90	1.7	56.2		

.

Number of Total Samples: Calculation Equation and Inputs The equation used to calculate the number of samples is based on a Sign test (see PNNL 13450 for discussion). For this site, the null hypothesis is rejected in favor of the alternative one if the median(mean) is sufficiently smaller than the threshold. The number of samples to collect is calculated so that if the inputs to the equation are true, the calculated number of samples will cause the null hypothesis to be rejected.

The formula used to calculate the number of samples is:

$$n = \frac{\left(Z_{1-\alpha} + Z_{1-\beta}\right)^2}{4(SignP - 0.5)^2}$$

 $SignP = \Phi\left(\frac{\Delta}{C}\right)$

- Φ(z) is the cumulative standard normal distribution on (-∞,z) (see PNNL-13450 for details) is the number of samples.
- is the width of the grav region. Δ
- Z1-0

Z1-8 is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1.6}$ is 1-8

Note: MARSSIM suggests that the number of samples should be increased by at least 20% to account for missing or unusable data and uncertainty in the calculated value of n. VSP allows a user-supplied percent overage as discussed in MARSSIM (EPA 2000, p. 5-33).

The values of these inputs that result in the calculated number of sampling locations are:

		"b	"°			Pa	aran	neter	
	ľ	ľ	ľ	S _{sof}	Δ	α	ß	Z _{1-æ} b	Z _{1-β} °
	25	61	74	0.36	0.3	0.05	0.1	1.64485	1.28155
l									
F	or H	elp	pres	s F1					

<u>R</u> oom	<u>V</u> iew	<u>W</u> indow	<u>H</u> elp				
		0 0 C	27.	m çı	-2	N?	MONE

is the estimated standard deviation for the sum-of-fractions as defined in the Unity Rule section below

is the acceptable probability of incorrectly concluding the site median(mean) is less than the threshold, is the acceptable probability of incorrectly concluding the site median(mean) exceeds the threshold, is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1,\alpha}$ is 1- α

Current VSP Applications

- Environmental Characterization and Remediation
- Decontamination and Decommissioning
- Indoor or Outdoor Bio/Chem/Rad Terrorist Event
- Long-Term Legacy and Groundwater Monitoring
- Identification, Delineation, and Remediation of UXO Sites
- Natural Disaster Assessments
- Clean-Room Verification
- Item Audits and Surveillance

Wherever Sampling Is Used to Support Decisions

214,93" W slav 141

History and Sponsors

- Development sponsored by multiple agencies since the 1990s
 - U.S. Nuclear Regulatory Commission (NRC)
 - U.S. Dept. of Energy (DOE)
 - U.S. Dept. of Defense (DoD)
 - U.S. Dept. of Homeland Security (DHS)
 - U.S. Centers for Disease Control (CDC/NIOSH)
 - U.S. Environmental Protection Agency (EPA)
 - UK Atomic Weapons Establishment
 - UK Government Decontamination Services
 - UK Department of Food and Rural Affairs
- Integrated development into a single freely available tool means investments are effectively leveraged into multiple spaces by varied users

Data Quality in VSP

- Current capabilities
 - Outlier detection
 - Tests of distributional assumptions
 - Retrospective power curves for Sign and Wilcoxson Rank Sum (WRS) tests
 - Data visualization
 - Interpolated maps and contours
 - Area delineation
 - Remediation estimation

Site Characterization Scenario: Hanford BC Controlled Area

Historical Site Assessment of the Surface Radioactive Contamination of the BC Controlled Area; WMP-18647

Contamination Events

- The trenches were covered with soil, but initially, burrowing native animals intruded into the trenches and used the waste as a "salt lick"
 - Badgers, rodents, primarily jackrabbits
 - The animals defecated and urinated in the vicinity
 - Predators (coyotes) also ate the rabbits and further spread scat and urine
 - Also, deep-rooted tumbleweeds and subsequent grasses added to the distribution
- This was discovered in 1958-1960; the holes were filled in 1965 and the trenches covered with asphalt. Additional gravel was added in 1969
- A total of ~10 km² (4 square miles) was directly impacted

Historical Site Assessment of the Surface Radioactive Contamination of the BC Controlled Area: WMP-18647

The Extent of the Contamination

Historical Site Assessment of the Surface Radioactive Contamination of the BC Controlled Area; WMP-18647

Characterization Examples

- The following examples show possible sampling and analysis objectives before remediation via soil removal
- Specific details, contamination values and the sampling plans created are for illustrative purposes and have been simplified / modified

On Scene Coordinator Report FY2010 and FY2011; DOE/RL-2011-101

objectives created are for

Decision Units

- Zone A (orange): Region of elevated contamination prior to remediation
- Zone B (green): Some areas of elevated contamination but lower risk

mediation wer risk

Example 1: Unbiased Mean Estimation for Differing Strata

- Suppose that prior to remediation, stakeholders want estimate the overall Cs-137 average for both Zone A and Zone B
 - Planning for handling and disposal of removed soil
- The two zones differ in
 - Average concentration
 - Standard deviation of concentration
 - Size

	Zone A	Zone B
Area	230 acres	3,970 acres
Average concentration	950 pCi/g	200 pCi/g
Standard deviation	475 pCi/g	100 pCi/g

Stratified Sampling

- What is Stratified Sampling?
 - Divide a heterogeneous population into nonoverlapping groups (strata) that are internally more homogeneous
 - Use random or systematic sampling in each stratum
- Advantages
 - Provides more accurate estimates of the mean or percentiles of the heterogeneous population than if simple random sampling is used over the entire site without stratification
 - Better allocation of samples

Stratified Sampling: Mean Estimation

- Objective is to obtain an unbiased, sufficiently precise estimate of the mean
- Allocates samples by size of area and standard deviations
- Provides weighted estimate of mean and standard error

Stratified Sampling Design Dialog

- Enter strata parameters
- Select optimization method
- Sample size, distribution and total cost calculated
- 65 samples total
 - 14 in Zone A
 - 51 in Zone B

Stratified Sam	npling		
Sample Mean S	ample Placemen	t Data Analysis Ana	lytes
Determine Tota Method: Minin	INumber of San	For Help, highlight nples in All Strata quired Standard Deviatio	an item and pro
Specify Requi	red Standard De	viation: 15	
	All Number of 5		
Number of Strata		Note: Each sample are is considered to be a s	ea selected on tratum.
Number of Strata	a: 2 Area Size (square	Note: Each sample are is considered to be a s Estimated Standard Deviation	ea selected on tratum. Number of Samples
Number of Strata Sample Area Zone A Zone B	a: 2 Area Size (square 937888.000 16075000	Note: Each sample are is considered to be a s Estimated Standard Deviation 475 100	ea selected on tratum. Number of Samples 14 51
Number of Strata	a: 2 Area Size (square 937888.000 16075000	Note: Each sample are is considered to be a s Estimated Standard Deviation 475 100 Total Samples:	ea selected on tratum. Number of Samples 14 51 65
Number of Strata	a: 2 Area Size (square 937888.000 16075000	Note: Each sample are is considered to be a s Estimated Standard Deviation 475 100 Total Samples:	ea selected on tratum. Number of Samples 14 51 65

ress F1 Mean 💌

n the map

Collection Cost per Sample	Analytic Cost per Sample	Total Cost
\$100.00	\$400.00	\$7000.00
\$100.00	\$400.00	\$25500.00
	Subtotal:	\$32500.00
	Grand Total:	\$32500.00

Optimization Methods

- Minimize Standard Deviation of Sample Mean for Fixed Cost
 - Fixed budget, minimize uncertainty on mean estimate
- Minimize Cost for Required Standard Deviation of Sample Mean
 - Fixed required uncertainty on mean, minimize overall cost
- Predetermined Number
 - Fixed number of samples, optimize allocation across strata

nine Total Number of Samples in All Strata

d: Minimize Cost for Required Standard Deviation of Sample Mean 📼

Minimize Standard Deviation of Sample Mean for Fixed Cost

Minimize Cost for Required Standard Deviation of Sample Mean Predetermined Number

Cost Information

- Cost per sample and per analysis can be specified for each stratum
- Example: Suppose collection costs were greater for Zone A (due to radiological controls, PPE, etc.)
 - If optimizing cost, total sample size and sample allocation will be adjusted (shown on next slide)

tratum lue to iusted (shown or

Cost Information

Sample Area	Area Size (square	Estimated Standard Deviation	Number of Samples	Collection Cost per Sample	Analytic Cost per Sample	То
Zone A	937888.000	475	14	\$100.00	\$400.00	S
Zone B	16075000	100	51	\$100.00	\$400.00	\$2
		Total Samples:	65		Subtotal:	\$3
					Grand Total:	\$32
1						

Sample Area	Area Size (square	Estimated Standard Deviation	Number of Samples	Collection Cost per Sample	Analytic Cost per Sample	Total Cost
Zone A	937888.000	475	11	\$600.00	\$400.00	\$11000.00
Zone B	16075000	100	56	\$100.00	\$400.00	\$28000.00
		Total Samples:	67		Subtotal:	\$39000.00
					Grand Total:	\$39000.00

Sampling Plan

Data Results (notional)

3.7

Data Analysis: Calculating Estimated Mean

• Estimated site mean (all strata combined) $\overline{x}_{st} = \sum_{h=1}^{L} W_h \overline{\chi}_h$

> \overline{X}_{h} = estimated mean of data in stratum h where W_h = proportion of site in stratum h

Standard error (standard deviation of estimated site mean)

$$S(\overline{x}_{st}) = \sqrt{\sum_{h=1}^{L} W_h^2 S_h^2 / n_h}$$

Data Analysis: Calculating Estimated Mean

- Unbiased estimate of mean: 257.53 pCi/g
 - Simple average of all values: 402.2 pCi/g

Stratified Sampling	cement Da	ata Analysis Analytes	1	
Data Entry Summary S	tatistics Te	ests Plots		
Cs-137	•	A	All Data	-
Lilliefors Test Statistic: Lilliefors 5% Critical Value:	o. 17692 0. 12406	Significance Level Data are sufficient to 95% confidence that not normally distribut	: 5% • o conclude wi t the data are ted] ith e
Sample Area	Samples	Standard Deviation	Mean	Standard Error
Zone A	14	424.85	1110.50	
Zono P	51	134.86	207.76	
Zone b				

Example 2: Spatial Analysis

- **Analysis Objective:** Create a spatial estimate of radiological contamination across both areas
- Use geostatistical analysis (kriging) to create an estimate map and delineate contours

Geostatistical Analysis in VSP

- "Easy Button" one-click analysis
- Many options for refining and improving estimates

calculation Settings Calculation Settings Calculation Settings Calculation Settings Calculate Spatial Estimates Analysis complete. Press Apply or OK to transfer the kriged results to the VSP map. Results Preview Image: Spatial Setimates Semivariogram and Fitted Mage Semivariogram and Fitted Ma	Geostatistical Ana	lysis				
Calculation Settings Calculate Spatial Estimates Analysis complete. Press Apply or OK to transfer the kriged results to the VSP map. Results Preview Fesults Preview Fesults Preview Kriged Estimates GSLIB routines used for variogram calculation and kriging	Geostatistical Analysis	Variogram Model	Kriging Options	Post-Processing	g Mapping	Data Analysis
Celculate Spatial Estimates Analysis complete. Press Apply or OK to transfer the kriged results to the VSP map. Results Preview	Calculation Settings					
Calculate Spatial Estimates Analysis complete. Press Apply or OK to transfer the kriged results to the VSP map. Results Preview Image: Complete in the image of the	Create map c	ontours				
Analysis complete. Press Apply or OK to transfer the kriged results to the VSP map. Results Preview	Calculate Spatial	Estimates				
Press Apply or OK to transfer the kriged results to the VSP map. Results Preview	Analysis complete.					
Semivariogram and Fitted M Joint Strate Joint Strate Kriged Estimates GSLIB routines used for variogram calculation and kriging	Press Apply or OK to	transfer the kriged	results to the VSI	^o map.		
GSLIB routines used for variogram calculation and kriging	Krig	ped Estimates	-2000 -1800 -1600 -1400 -1200 -1000 -800 -800 -600 -400 -200			m and Fitted
	GSLIB routines used f	or variogram calcula	ation and kriging			

3.7

Pacific Northwest

NATIONAL LABORATORY

Northwest

Delineating Contours

3.7

Area Delineation

- Delineate Areas: Identify elevated regions
 - Automatic from kriged data
 - Manually
- Statistics and graphs of delineated areas vs. background

No. of Concession, Name of Street, or other Designation, or other								
Survey Geostatistical Analysis								
riogram Model Kriging Options Delineate Area	35 Costs Data Analy							
Color Creation Params								
N/A Auto Krig: 1000 , 10 acres min								
Auto Krig: 1000 , 10 acres min								
	_							
	_							
V Outline V Show Centers	-							
Area: 120.77 Acres	-							
ents in Area: 7								
Kriged Value: 1322.23								
easurement: 846								
easurement: 1340								
easurement: 2217								
Center: 304919.34, 5156085.71								
W Edit Shape Merge Delete Al								
Automatic from Target Markers	t							
	OK Ca							

Remediation Costs Estimation

- Tool for estimating remediation costs based on area size and parameters
 - Depth
 - Remediation cost / volume
 - Fixed startup costs
- Defining remediation layers allows specifying differing costs for portions of the area to be remediated

Geostatistical Analysis | Variogram Model | Kriging Options | Delineate Areas Costs Name Area Remediation Cost Startup Color Depth (meters²) (\$/meters^3) (meters) Hot Area 1 0.028 \$5,000. 488750.00 5.00 Hot Area 2 66250.00 3.00 0.02 \$3,000. Total 555000.00 \$8,000. Hide Remediation Layers Top Depth Bottom Depth Volume Remediation Layer Name (meters) (meters) (meters³) (\$/meters Surface Soil 0.50 0.00 22703.18 0.01 Excavation 0.50 5.00 204328.62 0.03 Total 227031.80 0.028 Define Layers Using Top and Botton Add Laver Delete Layer Click on column header to c OK

Radiological Transect Survey Geostatistical Analysis

			_		×		
Data Analysis							
Costs	Total Cost	Т					
00	\$73,425.00 \$6,975.00						
00	\$80,400.00						
n Cost ^3)	Layer Cost	T					
-,	\$2,443.75 \$65,981.25						
	\$68,425.00						
Depths							
hange measurement units							
	Cancel	A	pply	н	elp		

Conclusion

- Areas of Interest for Future Work
 - Further development of statistical models to assist with implementing quantitative, objective characterization methods
 - Implement advanced and 3D geophysical analysis capabilities in VSP
- Support for integrated site characterization:
 - sample design
 - analysis and conceptual understanding
 - uncertainty quantification
 -repeat as needed

5.7

7.94

Thank you

Site Investigation Flow Diagram

3.7

Pacific

Northwest NATIONAL LABORATORY

Figure from NUREG-7021 44

Pacific

Northwest NATIONAL LABORATORY

Figure 3.3 from NUREG/CR-7021

Groundwater/surface water interactions Vadose zone/groundwater interactions

COPC = contaminant(s) of potential concern

Dimensionality of Approach

• Layered approach: model homogeneous 2D/3D layers

- Use when
 - ✓ Layers are well-defined and homogeneous in geophysical properties governing contaminant fate and transport
 - \checkmark Layers can be considered as separate decision units, potentially with unique acceptable limits
 - \checkmark Use geophysical and dose models to identify layers and DCGL for each layer (and whether each layer needs to be considered)

Considerations

- ✓ Layered approach ignores spatial dependence between layers—should not use if vertical correlation present/impacts result
- ✓ Sample sizes governed by layer with highest sample size due to physical constraints of sampling
- ✓ Alternative actions when results differ from layer to layer (e.g., above/below acceptable limits in different layers)

Dimensionality of Approach (cont.)

- Volume approach: model the complex 3D volume
 - Use when
 - \checkmark Intra (between) layer dependence exists
 - ✓ Layers are not well-defined
 - \checkmark Heterogeneity in effects of geophysical properties on contaminant fate and transport
 - \checkmark Layers cannot be considered separate decision units
 - Considerations
 - ✓ Models are more complex—to implement, understand, and communicate
 - ✓ Sample sizes governed by layer with highest sample size due to physical constraints of sampling

Survey Planning

- Leverage historical wells/boreholes in survey design
 - Start with convenience, judgmental, prior information
 - Consider additional locations based on uncertainty
 - Add randomly sampled locations based

Classical approaches (parametric or nonparametric)

- Stratified random/systematic: use risk & geophysical models to identify stratification
 - Vertical strata represent geophysical layers
 - · Horizontal (or vertical) based on risk model
 - Allocate samples based on relative exposure risk and/or proportion of total volume

Geostatistical approaches

- Determine mathematically where to locate samples based on geostatistical uncertainty
- Incorporate geophysics input through
 - Bayesian methods
 - Geospatial/kriging methods that combine various data types
 - Fixed rank kriging to include data from different sensor properties
 - Generalized least squares (GLS) to include geophysical information through covariates
- Uncertainty from such models can guide sample placement
 - Identification of strata, sample allocation across strata
 - More sample locations allocated to regions of higher uncertainty and/or boundaries between high/low contamination

State of AI & ML in Subsurface Applications

- Challenging to collect sufficient data to accurately describe **subsurface** complexities
 - Traditional (point-source based & destructive sampling) methodologies are costly and present potential risk for human exposure
 - Borehole sampling represents state of the system at specific location(s) and time(s) potentially not representative of whole area of concern
 - Large uncertainty in forecasting subsurface system evolution
- Few-shot machine learning in conjunction with remote subsurface sensing techniques and high-performance forward prediction
 - Reliably estimate subsurface property distributions, including permeability, porosity, and hydraulic conductivity, that control transport and fate of radioactive material

 - Address paucity of characterization data and complexities of heterogeneous subsurface systems Advancements will reduce uncertainty of system-scale characterization and radiation rose assessments, minimize costs, and increase worker safety and protection of human health and the environment
- Expect these advancements to be most applicable in characterization & earlier phases

Data Quality in VSP

- Current capabilities
 - Outlier detection
 - Tests of distributional assumptions
 - Retrospective power curves for Sign and Wilcoxson Rank Sum (WRS) tests
 - Data visualization
 - Interpolated maps and contours
 - Area delineation
 - Remediation estimation

Geostatistical Analysis

- In environmental settings, often observe spatially correlated data; samples obtained close to each other are more correlated than samples farther apart.
 - Classical test of hypothesis approaches ignore spatial correlations.
 - Geospatial methods estimate and account for those spatial correlations.

Example 4. Mobile EM Geophysics

- Covers large areas rapidly
- Ground, waterborne or airborne
- Non-invasive

