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The Ng Lab at Pitt

PFAS Toxicokinetics

and Toxicodynamics
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Physiologically
based toxicokinetic
models that
incorporate
protein binding.
Predict tissue
distribution,
biological half-life.
In silico and in
vitro toxicity.
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Proteins and
phospholipids.
Sorbent
development.
Transporter
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PFAS simulations
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* PFAS in seafood

and packaged
foods.

* Pesticides, POPs,

veterinary drugs
in seafood.

e PBDEs in farmed

salmon.

Regional PFAS
Contamination

* McKeesport AFFF
drinking water spill

* Regional industrial
activity (e.g. ethane
cracker plant).

* Regional soil-air
contamination (e.g.
East Palestine
derailment).



Observations for PFAS suggest importance of specific
Interactions
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Preferential
accumulation in
liver and blood
(not storage
lipid).

« Human
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Substantial differences across species and sex.

FFEFEFO
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FFFFFFFF
perfluorooctanoic
acid (PFOA)

Nigam et al. 2015 Physiol Rev

Intracellular

octanoic acid

Fatty acid carriers in
the body:

Serum albumin and
liver fatty acid binding
protein.

Organic anion
transport proteins
and polypeptides in
the liver, kidneys, ...
others?



Simple lipid partitioning doesn’t predict PFAS behavior

6 6
a) Blood b) Liver
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Predicted log BCF
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By incorporating key binding proteins (serum albumin, fatty acid binding proteins)
models are better able to predict bioconcentration potential.

Ng & Hungerbuehler 2013 ES&T



Tissue-specific patterns suggest further interactions
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Key needs to advance understanding:

Build tissue-specific

descriptions including

key phases: proteins, Build in dynamics:

phospholipids. proteins,
transporters.

Build multi-species and
multi-PFAS frameworks.

Andrew B. Lindstrom, Mark J. Strynar ¢

Environment International 159 (2022) 107037

Understanding the dynamics of physiological changes, protein expression,
and PFAS in wildlife

Jacqueline Bangma ™, T.C. Guillette, Paige A. Bommarito °, Carla Ng “, Jessica L. Reiner®,

Factors that
influence proteins

Altered PFAS Tissue
distribution

Change in

phospholipid structural protein physiology

active protein

Protein




PLASMA

J In Silico Framework
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In Vitro Evaluation
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Equilibrium dialysis for
protein-PFAS
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interactions.
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SP, structural protein
FP, functional protein
SL, storage lipid

PL, phospholipid



Protein and Phospholipid Binding: Strong, Complementary

* No strong correlation between
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“Other” Lipids and Proteins: Storage and Structural

Value for PFOA

Phase Estimation Method
(log1oK)
Apparent log Kow, Xiang et al., “Measuring Log Kow
. Coefficients of Neutral Species of Perfluoroalkyl
S Pl Do Carboxylic Acids Using Reversed-Phase High- e
Performance Liquid Chromatography.”
Structural Dow PP-LFERs method from Henneberger, Goss, and Endo, 036
Proteins “Partitioning of Organic lons to Muscle Protein.” '

S University of
Pittsburgh



Drivers of PFAS-tissue Distribution for PFOA

liver

kidney

gut

[ |storage lipids
[ phospholipids

[ structural proteins
[ binding proteins

muscle adiposerest of body

Phospholipids and binding
proteins, as expected, contribute
most to distribution.
Structural proteins are “neutral”.
Storage lipids do not contribute.

Binding proteins in other tissues
remains incompletely studied.



Future needs:
from PFOA to other PFAS
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Next: understanding key differences across species, ecosystems

Which model organism for which
purpose?
Which protein? Which PFAS?

Sequence Alignment to Predict Across Species
Susceptibility

What is SeqgAPASS?

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS), is a fast, online screening tool that allows researchers and
regulators to extrapolate toxicity information across species. For some species, such as humans, mice, rats, and zebrafish, the EPA has a
large amount of data regarding their toxicological susceptibility to various chemicals. However, the toxicity data for numerous other

plants and animals is very limited.

Dr. Carlie Lalone, US EPA, Duluth

Dr. Jon Doering, now faculty at LSU



Understanding key differences

TOXICOLOGICAL SCIENCES, 2021, 1-12

Integrative Computational Approaches to Inform
Relative Bioaccumulation Potential of Per- and

Polyfluoroalkyl Substances Across Species

Weixiao Cheng,* Jon A. Doering,' Carlie LaLone,"? and Carla Ng @*5*2
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Observations on key differences

Which model organism for which
purpose?
Which protein? Which PFAS?

® Humans most sensitive species for LFABP binding
for many PFAS.

® Chicken, zebrafish, rainbow trout LFABP show
similar affinity.

® Japanese medaka and fathead minnow proteins
predicted to bind have lower affinity for most PFAS.

® BUT: all based on a single protein, and a static
picture.
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Environmental Toxicology

From Protein Sequence to Structure: The Next Frontier in
Cross-Species Extrapolation for Chemical Safety Evaluations

Carlie A. LaLone,®* Donovan J. Blatz,>® Marissa A.
Thomas R. Transue,®" Wilson Melendez," Audrey W

Query Sequence
Hit
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Level 1 Primary Amino Acid Sequence

Level 1 Output

1. Protein info FASTA
2. Protein info FASTA
3. Protein info FASTA

6. Protein info FASTA
7. Protein info FASTA
8. Protein info FASTA
9. Protein info FASTA

\Q«A}
Models for further refinement
and advanced in silico approaches

PDB files of

structural models
representing

different species E>

- >

I TASSER Output

7. Protein info Model metrics
8. Protein info Model metrics
9. Protein info Model metrics

PDB files of

query species and
selected species

TM-Align Output

1. Protein info Alignment metrics
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7. Protein info Alignment metrics
8. Protein info Alignment metrics
9. Protein info Alignment metrics

Evidence of structural conservation to inform SeqAPASS predictions



Finally: important to consider dynamics

Environmental Toxicology and Chemistry—Volume 40, Number 3—pp. 631-657, 2021

PFAS Exposure Pathways for Humans and Wildlife: A Synthesis

of Current Knowledge and Key Gaps in Understanding

Amila O. De Silva,® James M. Armitage},b Thomas A. Bruton,® Clifton Dassuncao,? Wendy Heiger-Bernays,® Xindi C. Hu,f

Anna Kérrman,® Barry Kelly,'“ Carla Ng,' Anna Robuck, Mei Sun,X Thomas F. Webster,® and Elsie M. Sunderland"*
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Understanding the dynamics of physiological changes, protein expression,

and PFAS in wildlife

Jacqueline Bangma ™, T.C. Guillette, Paige A. Bommarito ”, Carla Ng “¢, Jessica L. Reiner,
Andrew B. Lindstrom’, Mark J. Strynar ¢

Factors that
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How do PFAS influence proteins, and how do
proteins influence PFAS?



Inter-individual differences

* the role of dynamic kidney function

Glomerular filtration

Renal reabsorption is understood to

contribute to the long half-life of

proximal Tubular Cel PFOA in humans and to the sex
Elimination | Uptake differences observed between male
Reabsorption and female rats.

¢ 1
Uptake > Elimination > But ma ny more transporters and
acretion many more PFAS exist than have

| 2 been tested.
Blood \ j Urine

And protein expression is dynamic.
—> Reverse causation vs. causation.
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Shan Niu, Ducatman, Sanders and Ng, in preparation



Inter-individual dif

‘erences

* the role of dynamic kidney function

PFOA concentration in plasma (ng/g)

(C) Experimental Acute Kidney Injury
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Niu, Ducatman, Sanders and Ng, in preparation

Selected protein level
changes for largest
difference from normal
function (minimum
expression level in this
case).
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Depending on
which part of
kidney function is
disrupted, PFOA
half-life can

~| increase or

. We are now working to build out this knowledge base with additional

'transporters (OAT1, OAT4, PgP), other PFAS, and perturbation models.
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decrease.
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Niu, Ducatman, Sanders and Ng, in preparation



Tracking Regional PFAS Contamination

Part of McKeesport under water advisory Drinking Water Results December 2022

O July 19,2021 & Mon Valley Independent (> Latest News 1 4
T—

ORESPORT, *

Friday’s fire at McKeesport Auto Body has resulted in a water advisory being issued for a portion of the city.

IEZX X

o N B~ O

By TAYLOR BROWN

——
1

-PFHxA -PFOA-PFBS -PFHxS -PFOS
Residents of the Lower 10th Ward in McKeesport are being asked not to use their tap water as a

result of a fire in the citv Fridav.

17 Months after the fire drinking water samples were down to background levels. Project has
turned to investigating environmental impacts of hydrant flushing.

Proposed
MCL



Can We Engineer Enzymes for PFAS Destruction?
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Questions?

carla.ng@pitt.edu
@Ng_lab

University of
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