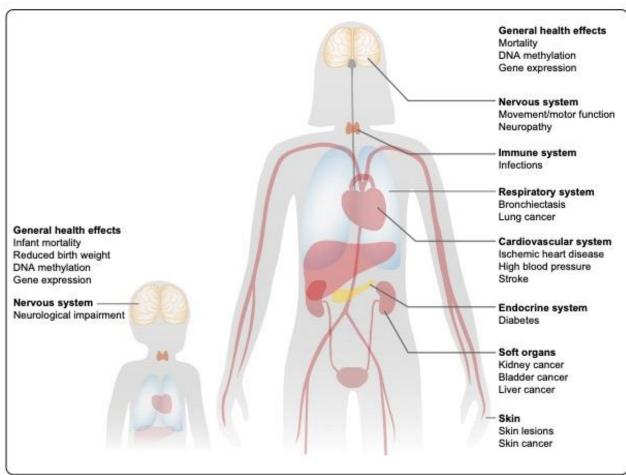

# Arsenic Epigenetics META: Meta-analysis of Epigenome Data on Arsenic

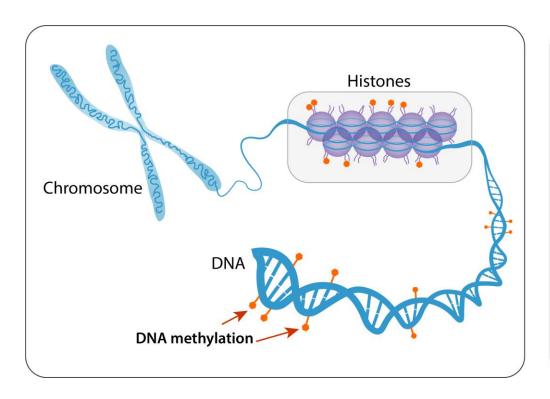
Risk e-Learning Webinar Series, August 3, 2021

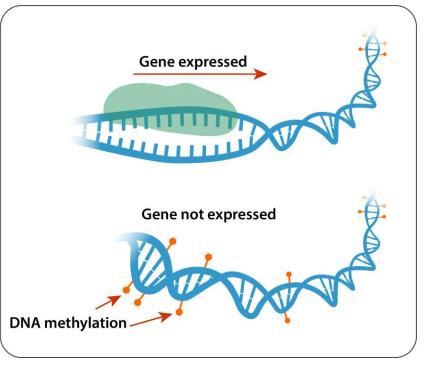
Anne Bozack, MPH, PhD Andres Cardenas, MPH, PhD




# Arsenic exposure and health effects




# Arsenic exposure and health effects






## Arsenic exposure and health effects

- Arsenic-related health risks persist after exposure has ended.
  - Epigenetic dysregulation may be a mechanistic link between As and health outcomes.





### General overview

#### Summary

- Leverage previously measured Epigenome-Wide DNA methylation data across SRP centers for a meta-analysis of arsenic exposure on the epigenome of human cohorts
  - Addresses the question as to whether epigenetic biomarkers of As exposure are generalizable
- Goal is to develop a framework, protocols, open-source code, and associated workflow that can be utilized to meta-analyze multiple EWAS related to environmental exposures (Epigenetics Consortium of Environmental Exposures)

|                    | University of California, Berkeley                              | Columbia University                                                |
|--------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| Point of contact   | Andres Cardenas                                                 | Mary Gamble                                                        |
| Lead project title | Exposomics and<br>Arsenic Epidemiology                          | Impact of Nutrition on Arsenic-Induced<br>Epigenetic Dysregulation |
| Other partners     | Craig Steinmaus; Martyn Smith; Waverly<br>Wei, Philippe Boileau | Ana Navas-Acien; <b>Anne Bozack</b>                                |

### Inputs and actions

#### **Inputs**

- <u>Existing data sets</u>: Columbia SRP DNA methylation data from Bangladeshi adults exposed to arsenic (urinary and water); UC Berkeley cohort from Northern Chile of adults exposed to arsenic early in life (prenatal vs post)
- <u>Variables</u>: High dimensional DNA methylation data (<u>450K</u> or <u>850K CpG</u> sites in the human genome); historical As exposure and biomarkers, and demographic characteristics
- **Repositories**: Data currently stored locally at each SRP center but not systematically preserved/annotated

#### Actions: how are we achieving F, A, I, and or R

- Analytical code is <u>findable</u> internally/externally by users at each center by navigating a well-annotated GitHub repository (<a href="https://github.com/annebozack/SRP">https://github.com/annebozack/SRP</a> arsenic DNAm metaanalysis)
- Summary results <u>accessible</u> by sharing our analytical protocol and code: <a href="https://github.com/annebozack/SRP">https://github.com/annebozack/SRP</a> arsenic DNAm metaanalysis
- We will increase <u>interoperability</u> as summary EWAS findings can be integrated with other omics results (OSF)
- By preserving our data and annotated code we will ensure data is <u>reusable</u> for trainees and investigators. (Epigenetic Aging Biomarkers)

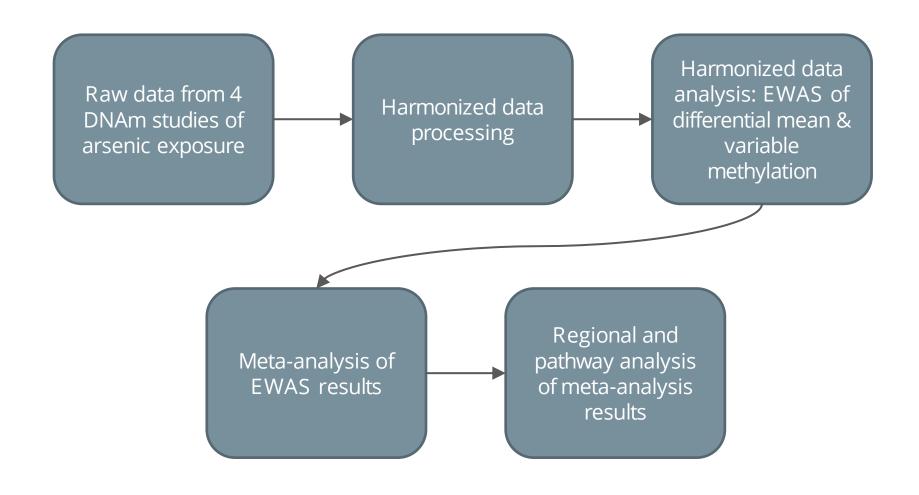
### Collaboration tools

#### **GitHub**

- Created a shared repository to collaborate on development of data processing and analysis pipeline
- Ensured that collaborators had access to the most recent code versions
- Repository made publicly available for other researchers to access data processing and analysis pipeline



#### Box


- Used to securely store/transfer EWAS results between centers
- Convenient upload/download of large datasets (e.g., output from ~450,000 and 850,00 analyses)

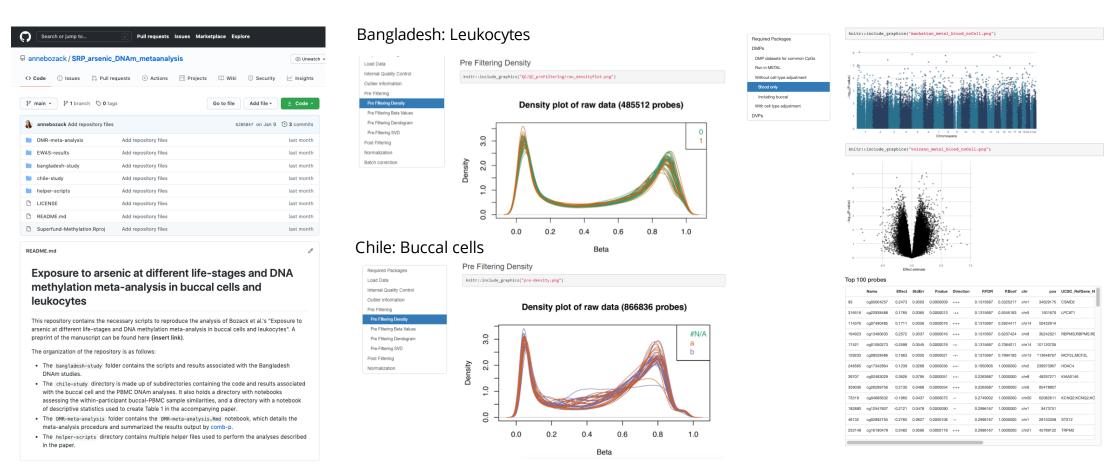


#### **Google docs**

Allowed for collaboration and version control during manuscript preparation








- Two study locations: <u>Bangladesh</u> and <u>Chile</u>
- Chile: two different tissues (buccal and blood cells)
- Bangladesh: two epigenomics platforms: 450K and EPIC (850K)
- Comparison of adult chronic exposure (Bangladesh) vs high fetal exposure (Chile)

|                                      | Chile, PBMCs<br>(N = 40) <sup>a</sup> |       | Chile, buccal cells<br>(N = 39) <sup>a</sup> |       | Bangladesh, 450K<br>(N = 48) |        | Bangladesh, 850K<br>(N = 32) |        |
|--------------------------------------|---------------------------------------|-------|----------------------------------------------|-------|------------------------------|--------|------------------------------|--------|
|                                      | n                                     | %     | n                                            | %     | n                            | %      | n                            | %      |
| Age, years, mean (SD)                | 48.7                                  | (4.7) | 48.7                                         | (4.7) | 39.7                         | (8.1)  | 41.7                         | (6.3)  |
| Male                                 | 21                                    | 52.5  | 20                                           | 51.3  | 48                           | 100.0% | 32                           | 100.0% |
| Ever smoker                          | 16                                    | 40.0  | 16                                           | 41.0  | 21                           | 43.8%  | 20                           | 62.5%  |
| Prenatal/early life arsenic exposure | 20                                    | 50.0  | 19                                           | 48.7  | -                            | -      | -                            | -      |
| High arsenic exposure <sup>b</sup>   | -                                     | -     | -                                            | -     | 23                           | 47.9%  | 11                           | 34.4%  |

a. 850K; PBMC and buccal cell samples from the same study participants. b.  $\geq$  100  $\mu$ g/L water arsenic for 450K analyses and 104  $\mu$ g/L water arsenic for 850K analyses.







#### **Summary of results of individual EWAS**

|                     | Commo    | Common probes a |  |  |
|---------------------|----------|-----------------|--|--|
| DMPs                | р        | p < 0.05        |  |  |
| Chile, PBMCs        | 2        | 23,116          |  |  |
| Chile, buccal cells | 2        | 21,336          |  |  |
| Bangladesh, 450K    | 1        | 18,301          |  |  |
| Bangladesh, 850K    | 7        | 7,954           |  |  |
| DVPs                | p < 0.05 | FDR < 0.05      |  |  |
| Chile, PBMCs        | 23,487   | 3               |  |  |
| Chile buccal, cells | 20,735   | 4               |  |  |
| Bangladesh, 450K    | 16,904   | 2               |  |  |
| Bangladesh, 850K    | 26,155   | 24              |  |  |

DMP: differentially methylated position; DVP: differentially variable position. Adjusted for cell type proportions, age, and smoking status. a. 377,351 included in all four EWAS.

No DMPs at FDR < 0.05 identified in individual EWAS.

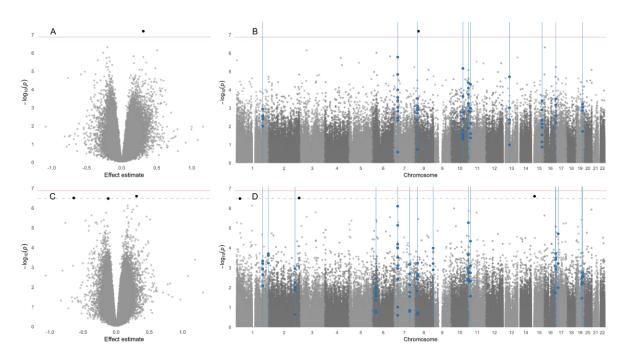


#### **Summary of results of individual EWAS**

|                     | Common probes a |            |  |  |
|---------------------|-----------------|------------|--|--|
| DMPs                | р               | p < 0.05   |  |  |
| Chile, PBMCs        | 2               | 23,116     |  |  |
| Chile, buccal cells | 2               | 21,336     |  |  |
| Bangladesh, 450K    | 1               | 18,301     |  |  |
| Bangladesh, 850K    |                 | 7,954      |  |  |
| DVPs                | p < 0.05        | FDR < 0.05 |  |  |
| Chile, PBMCs        | 23,487          | 3          |  |  |
| Chile buccal, cells | 20,735          | 4          |  |  |
| Bangladesh, 450K    | 16,904          | 2          |  |  |
| Bangladesh, 850K    | 26,155          | 24         |  |  |

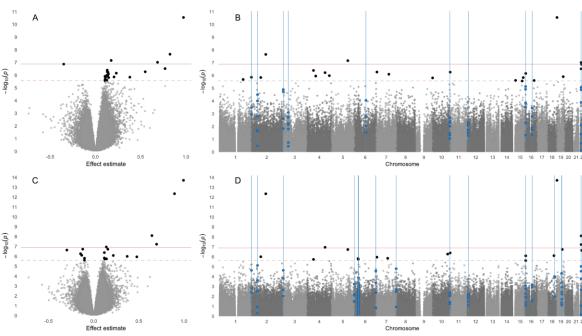
DMP: differentially methylated position; DVP: differentially variable position. Adjusted for cell type proportions, age, and smoking status. a. 377,351 included in all four EWAS.

#### **Summary of results of meta-analyses**


|                      | p < 0.05 | <b>FDR &lt; 0.05</b> | λ    |
|----------------------|----------|----------------------|------|
| DMPs                 |          |                      |      |
| PBMCs                | 23,361   | 1                    | 1.07 |
| PBMCs + buccal cells | 22,612   | 3                    | 1.06 |
| DVPs                 |          |                      |      |
| PBMCs                | 28,578   | 23                   | 1.17 |
| PBMCs + buccal cells | 28,399   | 19                   | 1.18 |
|                      |          |                      |      |

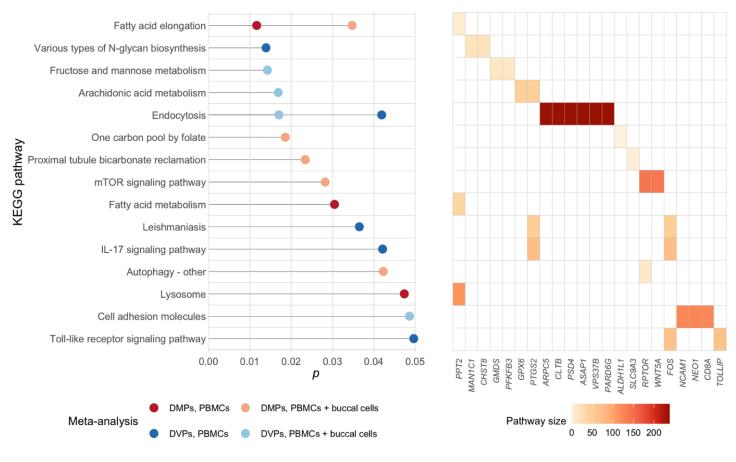
Adjusted for cell type proportions, age, and smoking status. DMP: differentially methylated position; DVP: differentially variable position.




#### **Differential mean methylation**

Top row: PBMC EWAS; Bottom row: PBMC + buccal cell EWAS




#### Differential variability in methylation

Top row: PBMC EWAS; Bottom row: PBMC + buccal cell EWAS





#### **KEGG** pathway analyses



### Actions

**Platforms:** Data processing/analysis pipelines and results available on GitHub; will transfer to Open Science Framework

• GitHub repository: <a href="https:///github.com/annebozack/SRP\_arsenic\_DNAm\_metaanalysis">https:///github.com/annebozack/SRP\_arsenic\_DNAm\_metaanalysis</a>

**Integrating datasets:** Established consistent classification of exposure across datasets; epigenetic measurements and QC

**Communication:** In-person project planning meeting; virtual symposium; weekly virtual meetings

- Virtual symposium: <a href="https://www.youtube.com/watch?v=J3-myoAVIU0">https://www.youtube.com/watch?v=J3-myoAVIU0</a>
- GitHub repository to collaborate on developing code
- Google docs to work on manuscript

**Collaborations:** Established ongoing collaboration between UC Berkeley and Columbia SRPs around arsenic-induced epigenetic dysregulation

### Outcomes and deliverables

#### **Short-term**

 Analytical approach for conducting meta-analyses of EWAS across different populations, platforms, and exposures

#### **Intermediate**

- Harmonized data processing and analysis pipeline
- Repository for code and results
- Virtual metal epigenetics symposium: <a href="https://www.youtube.com/watch?v=J3-myoAVIU0">https://www.youtube.com/watch?v=J3-myoAVIU0</a>

#### Long-Term

- Manuscript describing EWAS meta-analysis approach and findings (*Environ Health*. 2021 Jul 9; 20(1): 79. doi: 10.1186/s12940-021-00754-7)
- Code and summary results publicly available
- Possible collaborations with other groups with arsenic and epigenomic data
- Creation of an Environmental Epigenetic Consortium (future)
- Collaboration between Biostatistics students and EHS scientist

### Lessons learned

- Collaboration is key (multiple stakeholders), and reuse of data improves data FAIRness
- Standard QC practices helped us compare data directly
- Improved data curation practices, annotation and storage
- Long-term storage of data with detail information will facilitate reuse
- Center specific analyses allows for equal partnership and shared governance

## Advantages of collaboration and data sharing

- Scientific question: reproducibility of arsenic associated epigenetic dysregulation?
  - Pooling data enabled us to increase statistical power
  - Improved generalizability of findings
  - Meta-analyses can yield robust human epigenetic biomarkers
- Two cohorts and multiple tissues improved interpretability of epigenetic signature
- Results differed (*i.e.* cohort specific signals vs. common epigenetic signatures)
- Including more studies could address chronic vs acute exposure signatures
- Future questions that remain are *i*) chronic vs acute As epigenetic signature *ii*) reliability of arsenic exposure biomarker *iii*) expanding to other cohorts

### Recommendations

#### Training

- Increasing data FAIRness for all research projects (PIs and trainees)
- Application of data science methods to existing problems
- What future activities are needed to ensure success?
  - Provide incentives for collaborations (i.e., supplemental funds)
  - Increase participation of statisticians and bioinformaticians within and across centers
  - Increase activities/training among statisticians/data scientist and lab scientists
- What future activities are needed to foster and advance data sharing?
  - Provide incentives for collaborations (i.e., supplemental funds)
  - Increase participation of statisticians and bioinformaticians within and across centers



# Questions?



**Contact:** andres.cardenas@berkeley.edu; anne.bozack@berkeley.edu

Funding: NIEHS P42 ES004705, P42 ES010349



